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Chapter 1

INNATE AND ADAPTIVE IMMUNITY

Our immune system is essential in the fight against many different diseases, including
infections and cancer. A distinction can be made between the innate and the adaptive
immune system. Whereas the innate immune system is rather non-specific, as it recognizes
structural components, like damage-associated molecular patterns (DAMPs) and pathogen-
associated molecular patterns (PAMPs), the adaptive immune system can recognize and kill
specific pathogens or malignant cells. In addition, the adaptive immune system acquires
memory in case of secondary encounters with the same pathogen, which can provide life-

long protecting.

The innate immune system is the first line of defense and immediately recognizes the invasion
of pathogens. After recognition of DAMPs and/or PAMPs, cells from the innate immune
system become activated to directly combat pathogens but specialized innate immune cells
also instruct cells from the adaptive immune system as a second line of defense. Especially,
antigen presenting cells (APCs), such as dendritic cells (DCs), are the key players in bridging
the innate and adaptive immune system. APCs take up and process antigens from pathogens
and present these to cells from the adaptive immune system. A specific sequence of the
presented antigen, an epitope, can be recognized by the antigen receptors on B and T cells,
aptly named B cell receptor (BCR) and T cell receptor (TCR), respectively. After recognition of
the antigen, B and T cells are primed and respectively start the production of antibodies to

induce humoral immunity or induce cellular immunity.

TLYMPHOCYTES

Progenitor T cells are imported from the bone marrow into the thymus, where the entire T cell
repertoire is generated throughout life'2. In the thymus, T cell selection and development takes
place. T cells start to express unique TCRs via DNA-recombination, which ensures enormous
variation in T cells that can recognize many different pathogens. All generated TCRs are tested
against reactivity to peptides presented in major histocompatibility complex (MHC) molecules:
MHCI or MHCIP. Low reactivity of the TCR to self-peptide-MHC complex leads to positive
selection while a high affinity of the TCR for self-peptides leads to negative selection. Interaction
with MHCl-peptides results in CD8* T cell differentiation, while interaction with MHCII-peptides
induces CD4" T cell differentation?*. Next, CD4* and CD8" T cells can egress from the thymus into
the circulation and migrate to secondary lymphoid tissues, such as the spleen and lymph nodes.

Once, naive T cells have entered the circulation they migrate to secondary lymphoid organs
where they can interact with APCs. During infection, APCs presenting non-self-antigens

(such as derived from pathogens) stimulate the naive T cells to proliferate and differentiate
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to become effector and memory T cells, which are able to move towards the side of infection

or malignancy to induce cell specific killing.

CD4* and CD8* T cells

CD4* T cells can be further classified into two main subsets: conventional helper CD4* T cells
and regulatory CD4* T cells. Conventional CD4* helper T cells mediate the immune response
by helping B cells and CD8* T cells to become well-activated and induce a specific immune
response®’. Before CD4* T cells can help CD8" T cells, they interact with DCs via CD40/CD40L
to induce cross-activation. Next, the CD4"* T cell is licensed to help installing a cytotoxic
CD8" T cell response®. B cell responses are supported by a specific subset of helper CD4* T
cells, called follicular T cells. Follicular T cells secrete cytokines such as IL-4 and IL-21, which

induce B cell proliferation and differentiation of B cells into antibody secreting plasma cells’.

In contrast to conventional CD4* T cells, CD4* regulatory T cells are fine tuning the magnitude
of the immune response, by providing inhibitory signals to B cells and CD8* T cells’. Without
the presence of regulatory T cells, B cell and CD8* T cell responses are not sufficiently

controlled leading to severe immunopathology®°.

CD8* T cells can specifically and directly kill cancer cells and infected target cells'.
Accordingly, CD8* T cells are called cytotoxic. Upon recognition of specific antigen, CD8* T
cells form a synaptic interaction with the target cell, and start secreting cytotoxic molecules,
such as granzymes and perforin, into the synapse that directly and selectively kill the target
cell to clear the infection or malignancy®2. In addition, CD8* T cells can secrete other cytotoxic
cytokines such as interferon-gamma (IFN-g) and tumor necrosis factor (TNF) to further

stimulate the local immune response®®.

CD8* T CELL ACTIVATION AND PROLIFERATION

CD8* T cells do not only require antigenic signals from the TCR (signal 1) to become activated,
but other signals are necessary to induce a fully activated and functional CD8* T cell; namely
signals from costimulatory receptors (signal 2), and signals mediated by specific cytokines

that bind to their respective receptors (signal 3) (Figure 1).

Signal 1 - TCR-triggering
The first signal that is required to start the activation cascade, is triggering of the TCR by a
specific antigen presented in MHCI molecules on APCs*2, After stimulation of the TCR, various

downstream signaling cascades are activated that are involved in further activation of the
CD8* T cell*®.
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Signal 2 - Costimulation

After TCR triggering, naive CD8" T cells require costimulation. In addition to MHCl-antigen
complexes, activated APCs express costimulatory molecules, such as CD80/CD86 and CD70,
which can be recognized by the costimulatory receptors, CD28 and CD27 respectively, on the
cell surface of naive CD8* T cells®. In contrast to CD28 and CD27, expression of 4-1BB, another
costimulatory molecule, is not present on naive cells, but is induced after costimulation, further
amplifying the response. After costimulation, several different signaling cascades are activated,
which are involved in survival, proliferation and metabolism of CD8* T cells. Interestingly,
after receiving signal 1 and 2, CD8* T cells increase their affinity for IL-2 by upregulation of
the high-affinity IL-2 receptor (CD25). In addition, IL-2 is being produced leading to autocrine
IL-2 signaling, which also induces signaling cascades involved in survival, proliferation and
metabolism'-*°. Besides costimulatory signals, there are also inhibitory interactions between
the APC and CD8* T cell, such as PD-L1-PD1 and CTLA4-CD80/CD86%®. The balance between

costimulation and inhibition determines the magnitude of the CD8" T cell response.

Signal 3 - Cytokines

The last signal that is required to induce full expansion and functionality of CD8" T cells,
is signaling via cytokines. Especially, IL-12 and type | IFNs are important cytokines and
are mainly produced by APCs. Both IL-12 and type | IFNs signaling contribute to increased
expansion, cytotoxicity and differentiation of CD8* T cells into effector and memory cells?,

Antigen presenting cell
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Figure 1. Costimulation and inhibition. Antigen presenting cells present a peptide in a MHCI complex to
a CD8" T cell. The CD8" T cell recognizes its cognate antigen with its T cell receptor (TCR) and becomes
activated (signal 1). Costimulatory (signal 2) and inhibitory interactions between the antigen presenting
cells and the CD8* T cell determine the magnitude of the T cell response. Cytokines IL-12 and type | IFN
are providing signals to increase proliferation, cytotoxicity and shape differentiation.
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Differentiation and proliferation

After activation,a CD8* T cell starts cell division, leading to generation of two daughter cells
that share the same TCR?2 After proliferation is initiated, CD8* T cells expand clonally, all
originating from 1 precursor cell. During proliferation, CD8* T cells also start differentiation
into effector and memory cells. While effector cells are crucial for initial clearance of
pathogens or malignant cells, memory cells install lifelong protection in case of secondary
encounter with the same pathogen. After combatting the pathogen or malignancy, CD8*
effector T cells wane, but 5-10% of the CD8* T cells remain and become memory cells either
in the circulation or in tissue. These memory cells constantly check whether antigen is
cleared from the body. Upon re-encountering the antigen, memory cells are re-stimulated,
which results in rapid proliferation and effector differentiation to again clear the host of the

pathogen or malignancy?2.

Memory cells can be subclassified into 3 different types of circulating cells, which are
central memory (TCM), effector memory (TEM) and terminally differentiated effector memory
(TEMRA) T cells. Whereas TCM cells are restricted to blood and lymphoid organs, TEM cells
can also traffic to other organs and are more cytotoxic then TCM cells**?*. Compared to TEM,
TEMRA cells are even more cytotoxic, but are also more differentiated towards an exhausted
phenotype?. Finally there is a subtype of non-circulating cells, the tissue-resident T (TRM)
cells, which are residing in almost every organ to install tissue immunity and alarm the body

to prevent or combat infection?.

CD8*T CELL METABOLISM

Recently, the metabolism of immune cells, including CD8* T cells, has become a topic of major
interest. In a simplified view, cells, including CD8* T cells, can make use of three different
sources of nutrients: amino acids, lipids and glucose. These nutrients can be taken up from

the environment or produced by CD8* T cells themselves?®2°,

There are 20 different amino acids, which can be further classified into non-essential
and essential. Non-essential amino acids can be synthesized by the cell itself in different

pathways, but the essential amino acids can only be acquired from exogenous nutrients®.

There are multiple types of lipids, including phospholipids, triglycerides and cholesterol.
Phospholipids and triglycerides can be synthesized via processing of glucose-derived
glycerol in the cytosol or via [3-oxidation of fatty acids in the mitochondria. Cholesterol can

only be generated after 3-oxidation of fatty acids®..
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Glucose that has been taken up from the environment can be processed into two main
pathways: glycolysis and the pentose phosphate pathway. Glycolysis breaks down glucose
to generate energy directly or provide intermediates for other metabolic pathways®2. The
pentose phosphate pathway is essential in providing precursors for nucleotides and amino
acids®:. An excess of glucose can be temporarily stored inside the cell in the form of glycogen,
so that cells can convert glycogen back into glucose when needed**. Glucose can also be
generated in a process called gluconeogenesis, in which lactate, glycerol or certain amino

acids are the main substrates®®.

All these nutrients can be processed intracellularly to generate energy in the form of
adenosine triphosphate (ATP) in two main metabolic pathways: oxidative phosphorylation
(OXPHOS) and glycolysis (Figure 2). During OXPHOS, amino acids and fatty acids are being
oxidized, resulting in a high ATP production of 30-32 molecules. During glycolysis, glucose
is broken down into lactate, which results in a low ATP production of only 2 molecules®.
Although the most efficient way for cells to produce energy is via OXPHOS, glycolysis is 100
times faster. Consequently, the situation and the associated needs, will determine if a cell will

rely on OXPHOS or glycolysis to produce energy.

Glucose Amino acids Fatty acids

AAA |

O
OO A O

O AA

Oxidative
Phosphorylation

Glycolysis

Effector cells

Memory cells

Figure 2. Glycolysis and oxidative phosphorylation. CD8* T cells can take up different nutrients from
the environment. Glucose is being processed in glycolysis and amino acids and fatty acids are being
processed processes in oxidative phosphorylation (OXPHOS).Whereas effector cells mainly use glycolysis,
memory cells are depending on OXPHOS.

Resting naive CD8* T cells are using OXPHOS to maintain homeostasis*’. Shortly after

activation, naive CD8* T cells switch their metabolism towards glycolysis to be able to rapidly

12



General introduction

generate energy®®**°. While, short lived effector cells remain mainly glycolytic, memory cells
decrease glycolysis and switch their metabolism towards OXPHOS again“®“!, However, upon
re-stimulation, memory cells quickly switch to glycolysis to fuel fast proliferation and enable

effector functions*2.

CANCER AND THE IMMUNE SYSTEM

A decade ago, the concept of the cancer immunity cycle was introduced by Chen et al. bridging
the field of immunology and oncology®¢. It was shown that dying cancer cells release antigens,
which results in priming of cytotoxic CD8* T cells. These activated CD8" T cells are then able
to attack the cancer cells and induce killing. Accordingly, this is a cyclic self-propagating
process. However, for continuation of this cycle there are two crucial points that must occur:
1.tumor cells must die to release tumor antigens that can then be recognized by the immune
system and 2. CD8* T cells must be activated and become functional. Although the immune
system is surveilling the body to check for and eliminate malignant cells, malignant cells can

escape the immune system and form tumors*.

Chemotherapy

To induce cancer cell killing, a large fraction of cancer patients is still being treated with
chemotherapy. These drugs are designed to target rapidly proliferating cancer cells and
inhibit their cell cycle. Since, cell cycle inhibitors are not cell specific, also other proliferating
cell types, including activated CD8" T cells, can be inhibited in their proliferation. While
the effects of cell cycle inhibitors on cancer cells are well established, the effects on the
immune system are currently being investigated*. Chemotherapy can affect the immune
system either directly or indirectly. Indirect effects are mostly observed in the tumor
microenvironment, where the release of damage signals (such as heat shock proteins) after
chemotherapeutic-induced tumor cell death can activate the immune system. The direct
effects of chemotherapy on immune cells are more diverse and can have both activating
or repressing effects®. Evidence is arising that T cells can tolerate these drugs and that it
might even positively contribute to increased T cell immunity***°. However, further research

is needed to understand the direct effects of cell cycle inhibition on CD8* T cell functionality.

Immunotherapy for cancer

While conventional treatment with surgery, radio- and chemotherapy can cure cancer
patients, unfortunately it often fails to cure all cancer patients®®. Tumor cells can metastasize
and/or adapt themselves to become resistant to the treatment. Research has been looking

for new ways to treat cancer patients and immunotherapy appears to be an attractive and
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successful approach. Immunotherapy includes antibody-based immune-checkpoint blocking,
adoptive cell transfer and (therapeutic) vaccination. In the end, all these different methods

aim to induce a new or enhance an existing anti-tumor immune response.

A major pilar in immunotherapy is immune checkpoint therapy (ICT). The goal is to prevent
or inhibit the suppressive milieu that tumor cells create by attraction of immunosuppressive
cells, secretion of immunosuppressive cytokines or expression of inhibitory molecules®.
Better understanding of these mechanisms has led to the development of strategies to
manipulate the immune system in such a way that malignant cells can be eliminated again.
Immune checkpoint therapy is now implemented in the clinic as standard treatment of care
for certain cancer types°2 Impressive results are obtained in studies in which the interaction
between the inhibitory molecule PD-L1 on tumor cells and myeloid cells and the receptor
PD-1 on CD8* T cells is prevented by antibodies*>**. Treatment with these immune checkpoint
blocking antibodies result in improved tumor clearance and survival in a subset of patients.
Unfortunately, not all patients benefit from this type of treatment and therefore other
methods to manipulate the immune system are explored. Pioneering studies are now looking
for ways to not only prevent inhibitory signals but provide molecules that give stimulatory
signals to CD8* T cells instead. Clinical trials in which agonistic antibodies target 4-1BB to

provide costimulation, are showing promising results®>=.

Besides ICT, also adoptive immune cell transfers (ACT) are efficacious. With this method, cells
from patients are collected, after which these cells can be genetically modified or certain cell
types are specifically selected. Next, these cells are expanded and reinfused into the patient®’.
The last decade, chimeric antigen receptor (CAR) T cell therapy has been established. These
CAR T cells are genetically engineered in such a way that they can recognize tumor-specific
epitopes®®. CAR T cell therapy has emerged quickly and promising clinical results for defined

tumors are obtained thus far>>,

The third pilar in immunotherapy, vaccination, has shown promising results in the treatment of
cancer and even in the prevention of cancer. Whereas therapeutic vaccines aim to prime CD8"
T cells to recognize neoantigens that are expressed by tumor cells to induce specific tumor
cell killing®®. Prophylactic vaccines, such as vaccines against HPV causing cervical cancer, are
designed to induce memory responses, such that upon recognition of antigens malignant cells

are immediately recognized and cleared from the body and tumors cannot be formed®¢3.

To further improve treatment options for cancer patients and increase the effectiveness of
ICT, future research will optimize ways to manipulate and exploit the immune system. Since,
CD8" T cells are the key players in specific tumor cell killing, we suggest that understanding
the underlying molecular mechanisms of CD8* T cell proliferation and differentiation is of

great importance to accomplish this.
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SCOPE OF THESIS

Although there is extensive research showing the beneficial effects of chemotherapy on
tumor cells, the effects of chemotherapy or other cell cycle inhibiting agents on the immune
system, and in particular on CD8" T cells, is still incompletely understood. In this thesis
we investigate how short-term cell cycle inhibition impact CD8" T cells in the context of
cancer. We further discuss the possibilities how this knowledge can be used and exploited to

improve treatment strategies for cancer patients.

In this thesis we dissected the direct and indirect effects of cell cycle inhibition on the
phenotype and proliferation capacity of CD8" T cells. In chapter 2, we review the current
knowledge and consensus of the regulation of cell cycle progression of CD8* T cells and
how proliferation of CD8* T cells is affected by internal and external cues. We propose that
understanding the processes involved in the regulation of proliferation can be used to tweak
and exploit CD8* T cell expansion, which is essential to improve CD8* T cell-based therapies

for cancer.

In chapter 3 and 4, we show, unexpectedly, that temporal cell cycle inhibition can positively
affect CD8* T cell proliferation and effector cell differentiation, which might be used to

improve CD8" T cell-based therapies.

In chapter 3, we investigate the direct effects of short-term cell cycle inhibition on CD8* T
cells with a reductionist approach. We show the effects on proliferation and differentiation,
with a specific focus on the metabolism. Furthermore, we show how our findings can be
implemented in strategies to improve chemo-immunotherapy of cancer. In chapter 4, we
elaborate further on the immunomodulatory effects of chemo-immunotherapy. We show
synergy of chemotherapy with vaccination, resulting in a sustained anti-tumor immune
response. Here, we show both the direct effects of chemotherapy on CD8* T cells, but also
how indirect effects from the tumor microenvironment impact CD8* T cell proliferation and

functionality.

Finally, we discuss all these studies in chapter 5. We will provide a short overview of the main
findings in this thesis and focus on gaps in the current knowledge and understanding of T
cell proliferation and metabolism. We will give suggestions how a better understanding of
CD8* T cell proliferation can be used to improve immunotherapy for cancer patients.
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