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ABSTRACT

Background: Considerable residual cardiovascular risk persists despite optimized statin therapy,
which may not be fully quantified by risk prediction scores that only incorporate conventional lipid
measures. Apolipoproteins offer the potential to complement residual risk evaluation and inform
patient management. We assessed the prognostic performance of a 9-plex serum apolipoprotein
(apo) panel in patients with recent ACS and the panel’s utility to predict treatment benefit of

alirocumab, a PCSK9 inhibitor.

Methods: Baseline serum samples from 11,843 participants in the ODYSSEY OUTCOMES trial
were analyzed for levels of Apo(a), ApoA-I, ApoA-Il, ApoA-I1V, ApoB, ApoC-I, ApoC-Il, ApoC-lil, and
ApoE, and ApoE phenotyping using mass spectrometry. We used logistic regression modeling
with restricted cubic splines to estimate the probability of first major adverse cardiovascular
events (MACE) and all-cause death based on baseline apolipoprotein and lipid concentrations in
the placebo group. Clinical performance was assessed by comparing the area under the receiver
operating characteristic curve (AUC) of models based on (1) the baseline apo panel, (2) the
baseline conventional lipid panel, and (3) a combination of the two panels. Additionally, models

estimating the treatment benefit of alirocumab by the apo panel were developed.

Results: The prognostic performance of the apolipoprotein panel for MACE showed an AUC (95%
confidence interval) of 0.648 (0.626, 0.670), compared to 0.579 (0.557, 0.602) for the lipid panel.
For all-cause death, the apolipoprotein panel had an AUC of 0.699 (0.664, 0.733), while the lipid
panel had an AUC of 0.599 (0.564, 0.635). Adding the apolipoprotein panel significantly improved
performance of the conventional lipid panel (p<0.0001): AUC 0.659 (0.637, 0.681) for MACE and
0.724 (0.691, 0.756) for all-cause death. Higher risk for MACE based on the baseline apo panel

was found to predict greater treatment benefit with alirocumab.

Conclusions: A multiplex apo panel led to better prediction of MACE and all-cause death, beyond
the conventional lipid panel, in patients with recent ACS on optimized statin therapy. The panel
could also predict treatment benefit of alirocumab. This comprehensive apo panel is a promising
asset for precision diagnostics and personalized disease management, with potential to guide

targeted treatments.

REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01663402.



Apolipoproteins enable CV Precision Diagnostics

CLINICAL PERSPECTIVE

What is new?

Models to predict major adverse cardiovascular event (MACE) and all-cause death
in patients with recent ACS based on an apolipoprotein panel were developed and
compared to models based on the conventional lipid panel.

Apolipoprotein profiling led to better prognostic performance for MACE and all-cause
death than the conventional lipid panel.

Models using the baseline apolipoprotein panel to estimate risk of MACE and all-cause
death also predict treatment benefit of alirocumab on those outcomes, thus allowing
treatment benefit to be estimated in individual patients, enabling personalized

medicine.

What are the clinical implications?

In patients on optimized statin treatment, an integrated serum apolipoprotein panel
significantly improved the estimation of residual cardiovascular risk compared with
the conventional lipid panel.

The apolipoprotein panel has potential to improve health outcomes in patients
with ACS by guiding the identification and treatment of those most likely to benefit
from additional lipid-lowering drugs such as alirocumab, thus potentially reducing

healthcare costs.
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INTRODUCTION

In individuals with dyslipidemia and coronary artery disease, considerable residual risk of
cardiovascular events persists despite optimized statin treatment.”? Some of this residual risk
is attributable to persistent lipoprotein abnormalities. However, estimation of that risk from a
conventional lipid panel, including TC, high-density lipoprotein cholesterol (HDL-C), LDL-C, and
triglyceride levels, may not be fully quantified.* ** There is a clear unmet clinical need for more
refined phenotyping of dyslipidemia to improve risk prediction and guide treatment decisions in

the management of dyslipidemia.®

Apolipoproteins, the functional proteins of lipid metabolism, might be a missing link to fulfill
this unmet clinical need.>’ Over recent years, apolipoproteins have gained recognition as
significant biomarkers for cardiovascular disease.* ® Notably, apolipoprotein B (ApoB), found
on all atherogenic lipoprotein particles, was shown to clinically and metrologically outperform
traditional markers such as LDL-C.>*! In addition, ApoB is reported to be equivalent or even
better of a predictor of cardiovascular events than non-HDL-C.>** Apo(a), associated with the
genetically determined risk factor lipoprotein(a), and ApoC-lll, an inhibitor of triglyceride-rich
lipoprotein clearance, have also become important markers in cardiovascular research.>?’
Therapies targeting ApoB, Apo(a), and ApoC-lll have been, or are currently being developed,*%
and therapies targeting other apolipoproteins may lie ahead. Consequently, measuring a panel
of apolipoproteins may be valuable for both diagnostic purposes and for selecting patients for

advanced lipid-lowering therapies.

Pechlaner et al. and Clarke et al. have reported that a panel of apolipoproteins measured by
mass spectrometry could help predict cardiovascular events.?* % To date, however, the clinical

effectiveness of an apolipoprotein multimarker panel has not yet been demonstrated.

We developed a mass spectrometry-based multiplex apolipoprotein panel test, which is currently
comprised of Apo(a), ApoA-lI, ApoA-ll, ApoA-1V, ApoB, ApoC-I, ApoC-ll, ApoC-lll and ApoE
quantification as well as ApoE phenotyping.?*?® To implement the apolipoprotein panel test as
a new medical test, we relied on the test evaluation framework, developed by the European
Federation of Clinical Chemistry and Laboratory Medicine Working Group Test Evaluation?. Since
analytical performance validation of the apolipoprotein panel has been completed?® 3, showing
accuracy and robustness over time?®, we undertook an evaluation of its clinical performance and

clinical effectiveness in a large, post-ACS cohort of patients on high-intensity statin therapy.

Accordingly, the goal of the current post hoc analysis of the ODYSSEY OUTCOMES trial was to
compare performance of the apolipoprotein panel versus the conventional lipid panelin predicting
major adverse cardiovascular events (MACE) and all-cause death, as well the treatment benefit of

alirocumab, a PCSK9 inhibitor, on MACE.
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METHODS

Requests from qualified investigators for data from the ODYSSEY OUTCOMES Trial will be
considered by its Executive Steering Committee and the sponsor and should be submitted

to odysseyoutcomesesc@gmail.com.

Study design

The design®, primary results®’, and total events analyses®** from the ODYSSEY OUTCOMES Trial
(NCT01663402) have been published. In brief, 18,924 patients from 1,315 sites across 57 countries
were randomized in a 1:1 ratio to receive either alirocumab (75 mg, increased to 150 mg for those
who did not achieve an LDL-C level <1.29 mmol/L (50 mg/dL)) or matching placebo, administered
subcutaneously every 2 weeks. Key inclusion criteria were recent hospitalization (1 to 12 months
prior to randomization) due to ACS (myocardial infarction or unstable angina), and an LDL-C level
>1.81 mmol/L (70 mg/dL), a non-HDL-C level >2.59 mmol/L (100 mg/dL), and/or ApoB >0.80
g/L on treatment with atorvastatin (40 to 80 mg daily), rosuvastatin (20 to 40 mg daily), or the
maximum tolerated dose of either statin. A triglyceride level >4.52 mmol/L (400 mg/dL) at the
screening visit was exclusionary. The trial was approved by the responsible institutional review

board at each participating site. Informed consent was obtained from all participants.

Patient Outcomes

The primary efficacy outcome of the trial and of the current analysis was first occurrence of
MACE, comprising death from coronary heart disease, nonfatal myocardial infarction, fatal or
nonfatal ischemic stroke, or unstable angina requiring hospitalization.3? Additionally, we analyzed
the incidence of all-cause death.?? All events included in the analyses were adjudicated by an

independent committee blinded to treatment assignment.

Measurement of the conventional lipid panel

The conventional lipid panel, including total, LDL, and HDL cholesterol and triglycerides, was
measured centrally at Covance Laboratories. LDL-C levels were calculated using the Friedewald
formula®, except when triglyceride levels exceeded 4.52 mmol/L (400 mg/dL) or when the
calculated LDL-C level was <0.39 mmol/L (15 mg/dL). In these cases, LDL-C was assessed by

preparative ultracentrifugation and 3 quantification.

Measurement of serum apolipoproteins

Serum apolipoprotein Apo(a), ApoA-l, ApoA-Il, ApoA-1V, ApoB (reflecting total ApoB including
ApoB48 and ApoB100), ApoC-l, ApoC-Il, ApoC-IIl, ApoE levels including ApoE phenotype were
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measured with a semi-automated lab-developed multiplex test by liquid chromatography
tandem mass spectrometry (LC-MS/MS) (1290 Infinity Il UHPLC coupled to 6495 QQQ-MS
Agilent Technologies, Santa Clara, CA, USA). The analytical method has been published for
seven apolipoproteins.?® *° In brief, sample pre-analysis was performed semi-automatically on a
96-channel Agilent BRAVO automated liquid handling platform. Thereafter, samples were either
stored overnight at -80 °C with solid-phase extraction the next day or immediately subjected to
solid-phase extraction after quenching. Subsequently, the samples were measured on the mass
spectrometer. More specific details on the process, the measurements, and the quality of the

data have been published.®

Statistical analysis

Patients without available baseline samples for apolipoprotein levels were excluded from the
current analyses, including those recruited from countries or sites where additional exploratory
laboratory testing was not permitted or not possible. Apolipoproteins were also measured in

available month 4 samples on assigned treatment.

Distributions of apolipoproteins at baseline are described by treatment group, along with the
absolute and percentage change from baseline to month 4 (122428 days) after randomization. The
first measurement result was analyzed if a patient had multiple measurements within the time
frame. For statistical analyses, Apo(a) concentrations below the lower limit of quantification (3.8
nmol/L) were set to the midpoint between 0 and the lower limit of quantification (1.9 nmol/L).
Median apolipoprotein levels for baseline and month 4 serum samples were calculated for each

treatment arm, including both the absolute and percentage changes from baseline to month 4.

To evaluate prognostic performance, logistic regression modeling with restricted cubic splines was
used to estimate the probabilities of a MACE and all-cause death based on continuous baseline
biomarker concentrations within the placebo group. Three models were constructed, based on,
respectively, (1) baseline apolipoprotein concentrations including the ApoE phenotype, (2) baseline
conventional lipid concentrations including TC, HDL-C, and triglycerides, and (3) both baseline
apolipoprotein concentrations, the ApoE phenotype and conventional lipid concentrations. LDL-C
was notincluded in the models, as it is calculated using the Friedewald formula based on TC, HDL-C,
and triglycerides, making its inclusion redundant. Direct and calculated LDL-C values also tend to
be inaccurate, especially at lower levels under conditions of intensive lipid-lowering treatment.®
1,36 The ApoE phenotype, was added as a categorical variable with six possible phenotypes (E2/
E2, E2/E3, E2/E4, E3/E3, E3/E4, and E4/E4). The significance of non-linear effects, necessitating
the use of splines, was assessed using Wald tests. Four knots were used for all biomarkers, in

accordance with standard practice.” For Apo(a), three knots were applied due to its highly skewed

174



Apolipoproteins enable CV Precision Diagnostics

distribution (Supplemental Figure S1). We used partial Wald tests for testing the partial effect of

each of the apolipoproteins, adjusted for the other variables in the model.

We calculated the area under the empirical receiver operating characteristic curve (AUC) with
95% Cl for each model as an expression of the prognostic performance. We compared the
performance of the combined model relative to the model based on conventional lipids only
using the generalized likelihood ratio test. Additionally, we compared the ROC curves of the

apolipoprotein panel with those of the lipid panel using the DelLong test.

Additionally, two models were built to quantify the incremental value of apolipoproteins after
accounting for demographic and clinical information. The first model included age, sex, ethnicity, body
mass index, smoking status, and history of diabetes, while the second model added the apolipoprotein

panel to these parameters. The models were compared using the generalized likelihood ratio test.

To evaluate predictive performance, the same prognostic modeling strategy was applied for the
alirocumab treatment arm, to estimate the probabilities of a MACE and all-cause death with
alirocumab. This resulted in three pairs of models, one for each treatment arm, based on baseline

apolipoprotein concentrations, baseline conventional lipids, and the combination of the two.

Placebo and alirocumab models were then run on the full study group to generate two estimated
probabilities of an event per patient, based on that patient’s profile of baseline values: one for
the likelihood of the event if in the placebo group and another for the likelihood of that event
if in the alirocumab group. The treatment effect was calculated as the difference between both
probabilities. The threshold for a treatment benefit was set based on an absolute risk reduction
of MACE of 2.1% and for all-cause death of 0.7%.

P values <0.05 from 2-sided tests were considered statistically significant. Analyses were

conducted using R version 4.3.2.

RESULTS

Baseline characteristics

A total of 11,843 participants had baseline conventional lipid and apolipoprotein measurements
and formed the analysis cohort, which is a subcohort from the original ODYSSEY OUTCOMES
cohort. Baseline characteristics are shown in Table 1. Median age was 58 years, 24% were
female, and 81% were White. Over 95% of patients received statin therapy at randomization; 89%
received high-intensity statin therapy. Median ApoB at baseline was 0.80 g/L (interquartile range
0.69-0.96 g/L) median LDL-C at baseline was 2.24 mmol/L (86.49 mg/dL) (interquartile range
1.89-2.70 mmol/L (73.00-104.40 mg/dL)). Distribution plots of baseline apolipoprotein levels of
the ODYSSEY OUTCOMES study group are depicted in Supplemental Figure S1.
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Table 1: Demographic and Baseline Clinical Characteristics of the Study Group by Treatment Assignment

Characteristics Alirocumab Placebo
(n=5,917) (n=5,926)
Demographics
Age,y 58 (51, 65) 58 (52, 65)
Male sex 4500 (76.1) 4492 (75.8)
Ethnicity
White 4775 (80.1) 4823 (80.7)
Asian 719 (12.1) 721 (12.1)
Black or African American 167 (2.8) 157 (2.6)
Unknown 5(0.1) 2 (0)
Medical history
Hypertension 3796 (63.7) 3731 (62.4)
Diabetes 1741 (29.2) 1788 (29.9)
Current tobacco smoker 1434 (24.1) 1450 (24.3)
Time from index ACS to randomization, months 2.6 (1.7,4.5) 2.7 (1.7,4.5)
Background lipid-lowering therapy
High-intensity statin 5275 (88.5) 5347 (89.5)
Low- or moderate intensity statin 485 (8.1) 446 (7.5)
No statin or other lipid-lowering therapy 75(1.3) 78 (1.3)
Only non-statin lipid-lowering therapy 127 (2.1) 106 (1.8)

Baseline biometric and laboratory data

Body mass index, kg/m2

28.1(25.4, 31.3)

28(25.2,31.2)

Systolic blood pressure, mm Hg

127 (118, 138)

126 (116, 138)

Hemoglobin Alc, %

5.8(5.5,6.3)

5.8 (5.5, 6.4)

High-sensitivity C-reactive protein, mg/dL

0.2 (0.1, 0.4)

0.2 (0.1, 0.4)

Estimated glomerular filtration rate, mL/min/1.73 m2

77.9 (67.2, 90.1)

78.2 (67.4,90.5)

Conventional lipid panel

Total cholesterol (mmol/L)

4.12 (3.67, 4.72)

4.14 (3.67, 4.73)

High-density lipoprotein cholesterol, mmol/L

1.09 (0.93, 1.29)

1.09 (0.93, 1.29)

Low-density lipoprotein cholesterol, mmol/L

2.24(1.89, 2.69)

2.24 (1.89, 2.72)

Triglycerides, mmol/L

1.46 (1.07, 2.06)

1.48 (1.07,2.1)

Non-high-density lipoprotein cholesterol, mmol/L

2.97 (2.56, 3.54)

3(2.57,3.57)

Apolipoprotein panel

Apolipoprotein(a), nmol/L

41.1(14.4,140.1)

43.0 (14.3, 146.2)

Apolipoprotein B, g/L

0.80(0.69, 0.95)

0.80(0.69, 0.96)

Apolipoprotein A-l, g/L

1.20 (1.06, 1.37)

1.20 (1.06, 1.36)

Apolipoprotein A-ll, mg/L

246 (217, 280)

244 (216, 279)

Apolipoprotein A-1V, mg/L

182 (145, 224)

181 (144, 223)

Apolipoprotein C-I, mg/L

16.0(13.0, 19.0)

16.0(13.0, 19.0)

Apolipoprotein C-Il, mg/L

34.0 (26.0, 44.0)

34.0(26.0, 45.0)

Apolipoprotein C-lll, mg/L

85.0 (65.0, 112.0)

86.0 (65.0, 114.0)

Apolipoprotein E, mg/L

23.0(19.0, 28.0)

23.0(19.0, 28.0)

ApoE2/E2 17 (0.3) 12(0.2)
ApoE2/E3 310 (5.2) 298 (5.0)
ApoE2/E4 72 (1.2) 69 (1.2)
ApoE3/E3 3826 (64.7) 3917 (66.1)
ApoE3/E4 1551 (26.2) 1506 (25.4)
ApoE4/E4 141 (2.4) 124 (2.1)

Values are medians (interquartile range) for continuous variables and n (%) for categorical variables.
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The Effect of Alirocumab on Apolipoprotein Levels

The effect of alirocumab on apolipoprotein levels was evaluated by examining changes from
baseline to four months after randomization (Table 2). Alirocumab treatment led to a reduction in
apolipoproteins associated with ApoB-containing lipoprotein particles including decreased levels

of Apo(a), ApoB, ApoC-I, ApoC-Il, ApoC-Iil, and ApoE.

Prognostic Performance

Participants were followed for cardiovascular events for a median of 2.9 years (interquartile range
2.4-3.5). A MACE event was experienced by 721 (12.2%) in the placebo group and 596 (10.1%) in
the alirocumab group (p<0.0005). All-cause death was experienced by 250 (4.2%) patients in the
placebo group and 208 (3.5%) in the alirocumab group.

Spline analysis revealed associations between baseline apolipoproteins and the incidence of
MACE events and all-cause death (Supplemental Figure S2 and S3). Apo(a), ApoB, and ApoC-
Il exhibited a generally linear relationship where higher levels of these apolipoproteins were
associated with higher odds of experiencing a MACE event or all-cause death. In contrast, ApoA-
Il and ApoC-Il showed an inverse linear relationship with the odds of these events. ApoA-IV
demonstrated a J-shape pattern with all-cause death, indicating that both low and high levels
were associated with increased odds, whereas its relationship with MACE appeared more linear.
ApoC-l showed a linear relationship with MACE and an inverse J-shape relationship with all-cause
death. For ApoE, an inverse J-shape pattern was observed with both MACE and all-cause death,

suggesting that both low and high levels were associated with decreased odds of these events.

The apolipoprotein panel model was prognostic for MACE, with an AUC of 0.648 (95% Cl 0.626,
0.670). The apolipoprotein panel was prognostic for all-cause death as well, with an AUC of 0.699
(95% Cl1 0.664, 0.733). In comparison, the prognostic model based on the conventional lipid panel
had a lower AUC for MACE (0.579; 95%Cl 0.557, 0.602) and for all-cause death (0.599; 95%Cl
0.564, 0.635). The apolipoprotein panel had significantly better prognostic performance than
the lipid panel for both MACE and all-cause death (p<0.0001). Adding the apolipoprotein panel
significantly improved performance of the conventional lipid panel (p<0.0001 for both MACE
and all-cause death). With both lipids and apolipoproteins in a single model the AUC for MACE
increased to 0.659 (95% Cl 0.637, 0.681) and to 0.732 (95% CI 0.691, 0.756) for all-cause death.
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Figure 1: Clinical performance of prediction models on MACE and all-cause death. ROC curves of clinical
performance for MACE (top) and all-cause death (bottom) based on the prognostic models based on: the
apolipoprotein panel (left) consisting of baseline apolipoproteins and ApoE phenotype, the lipid panel
(center) consisting of baseline TC, HDL-C, and triglycerides, and the combination of the two panels (right).

The apolipoproteins that significantly contributed to the prognostic full apolipoprotein panel model
for MACE, as indicated by the partial Wald tests, are: Apo(a) (linear relationship, p<0.0001), ApoB
(linear relationship, p<0.001), ApoC-I (linear relationship, p<0.05), ApoA-II (inverse relationship,
p<0.0001), and ApoA-IV (linear relationship, p<0.0001). For all-cause death, ApoA-Il (inverse
relationship, p<0.0001), ApoA-IV (J-shape relationship, p<0.0005), ApoC-II (inverse relationship,
p<0.005) and ApoE (inverse J-shape, p<0.05) significantly contributed to the full apolipoprotein
panel model. Models created based on individual apolipoproteins showed only marginal
discrimination for predicting MACE or all-cause death, as indicated by their AUCs (Supplemental
Figure S4 and S5). Splines of the individual apolipoproteins are shown in Supplemental Figure S6
and S7. A model incorporating the apolipoprotein panel alongside age, sex, ethnicity, body mass
index, smoking status and history of diabetes alongside had a significantly better goodness-of-fit

than a model using only these readily available variables (p<0.0001).
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Predictive Performance

Baseline Apolipoprotein Panel Predicts Treatment Benefit of
Alirocumab on MACE and All-cause Death

Clinical effectiveness for MACE and all-cause death was evaluated based on baseline
apolipoprotein levels of the placebo group (5,926 patients) and the alirocumab group (5,917
patients). The results of the estimated probabilities during a median follow-up of 2.9 years by the
apolipoprotein panel per patient for the full study group are shown in Figure 2A. For comparison,
the probabilities estimated with the lipid panel and with the lipid and apolipoprotein panels

combined are presented in Supplemental Figure S8 and S9.

With higher baseline risk for MACE as estimated by the apolipoprotein panel, a larger number
of patients had a lower calculated probability of an event with alirocumab than with placebo,
indicating that the apolipoprotein panel can predict a treatment benefit of alirocumab on MACE
(Figure 2A). The same trend is observed for prediction models based on the conventional lipid
panel and the combination of the two panels (Supplemental Figure S8). For all-cause death a
comparable pattern emerged, with individuals at higher estimated baseline risk having a lower

estimated probability of an event when allocated to alirocumab (Figure 2C).

Using the observed overall 2.1% absolute reduction in risk of MACE with alirocumab as a
minimum criterion for treatment benefit, two subgroups were defined based on the baseline
apolipoprotein panel: those with a benefit from alirocumab treatment (n = 5,045) and those
without (n = 6,798) (Figure 2B). A similar dichotomization was performed for all-cause death,
using the observed overall 0.7% absolute reduction in risk of all-cause death with alirocumab as
the threshold. A total of 4,384 patients had a risk reduction of 0.7% or more, while 7,459 patients
fell below this threshold.

Figure 2B and 2D show the classification of benefit versus no benefit, using the predefined
thresholds, for different baseline risks, as calculated with the apolipoprotein panels. In a relative
sense, more were found to benefit from alirocumab treatment in those at a higher calculated
baseline risk of a cardiovascular event. Analogous distributions of benefit versus no benefit
based on the lipid panel and the combination of the lipid and apolipoprotein panels are shown in

Supplemental Figure S8.
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Figure 2: Model-based calculated risk fraction in the placebo respectively targeted treatment group of the
apolipoprotein panel for MACE and all-cause death. Panel A for MACE and C for all-cause death display
scatter plots of model-based calculated risk if allocated to placebo or allocated to alirocumab. Panel B and
D present the stacked distribution of risk in the subgroups defined to achieve meaningful benefit or not for
MACE and all-cause death (absolute risk reduction with alirocumab of 2.1% or higher for MACE and 0.7% or
higher for all-cause death). Risk is calculated based on the apolipoprotein panel.

Treatment Benefit of Alirocumab as Estimated by the Apolipoprotein
Panel Prediction Model

The results of estimating treatment benefit of alirocumab for reducing the risk of MACE or all-
cause death based on apolipoproteins can help identify the subgroup most likely to benefit
from treatment. For instance, if one were willing to treat only those with an estimated absolute
MACE risk above 8%, 73% of the cohort would be treated, which would be 95% of those with a
calculated treatment benefit and 55% of those without. (Figure 3A). In contrast, if the clinical
decision threshold to treat with alirocumab was set at a higher estimated risk, 17% (Figure 3B),

only 16% would be treated: 31 of those with a calculated benefit but only 5% of those without.
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Figure 3C shows these proportions for other probability thresholds. For clinical decision making
an example of probability thresholds is shown in Figure 3D, where increasing the threshold means

decreasing the sensitivity, but increasing the specificity of the apolipoprotein panel test.
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Figure 3: Probability thresholds for treatment allocation based on estimated treatment benefit by the
apolipoprotein panel. Panel A and B show the clinical decision limit at 8% and 17% estimated risk of MACE
and the resulting sensitivity and specificity, respectively. Panel C shows the sensitivity or specificity at specific
probability thresholds. Panel D shows a table with five examples of probability thresholds and the resulting
sensitivity, and specificity.

DISCUSSION

In this study, we assessed the clinical performance and clinical effectiveness of a comprehensive
9-plex apolipoprotein panel in a subset of the ODYSSEY OUTCOMES trial participants, comprised
of patients with recent ACS on optimized statin therapy. The baseline apolipoprotein panel
led to better and incremental classification of MACE and all-cause death, compared with the
conventional lipid panel. The apolipoprotein panel was also able to predict treatment benefit of

alirocumab on MACE and all-cause death.

Our results further demonstrate that individual apolipoproteins were not prognostic for MACE
or all-cause death in this population, suggesting that interdependent apolipoproteins should
preferably be measured as a full panel to predict cardiovascular events. In the full apolipoprotein

panel model, the partial effects of each apolipoprotein, adjusted for other variables, significantly
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contributed to the prediction of MACE according to the partial Wald tests. Specifically, Apo(a),
ApoB, ApoC-1, and ApoA-IV demonstrated a positive linear relationship with MACE, while ApoA-
Il exhibited an inverse relationship. For all-cause death, the apolipoproteins that significantly
contributed to the full panel model were ApoA-Il and ApoC-Il, which demonstrated an inverse
relationship, ApoA-IV, which showed a J-shaped relationship, and ApoE, which exhibited an
inverse J-shaped relationship (all p<0.05).

Several of the apolipoproteins in our panel are well-established risk factors. Apo(a) is recognized
as an important cardiovascular risk factor as supported by Mendelian randomization studies®*
39, epidemiological evidence®, and cardiovascular outcome trials.” %> 42 Similarly, ApoB, another
contributing predictor, is a well-established cardiovascular risk factor as well and its measurement
is recommended for cardiovascular risk assessment.” ** 4% ApoC-| plays a dual role in lipid
metabolism, acting as either atherogenic by inhibiting triglyceride-rich lipoprotein metabolism or

atheroprotective by facilitating HDL synthesis and stabilization.®

ApoA-Il and ApoA-IV made significant contributions to the prediction models for both outcomes
according to the partial Wald tests. The role of ApoA-Il in cardiovascular disease remains poorly
understood, with conflicting findings in the literature.?>**# In the present study, spline analysis
in this ACS cohort on optimized statin therapy revealed an inverse relationship between ApoA-I|
concentrations and the likelihood of MACE and all-cause death, indicating that lower ApoA-II
levels may increase the risk of adverse cardiovascular outcomes (Supplemental Figure S2 and
S3). Interestingly in the present study, ApoA-1V, which is generally considered a cardioprotective
factor, was associated with MACE (linear relationship) and all-cause death (J-shape) (Supplemental
Figure S2 and S3). This is in contrast with findings from the PROCARDIS study, where ApoA-IV,
as part of an apolipoprotein panel, was inversely associated with coronary heart disease.?” The
reasons behind the conflicting results for ApoA-IV need further investigation to understand the

underlying mechanisms.

ApoE plays a crucial role in lipid metabolism and cardiovascular disease risk, particularly through
its involvement in the clearance of remnant lipoproteins. ApoC-II, on the other hand, is essential
for activating lipoprotein lipase, promoting the metabolism of triglyceride-rich lipoproteins, and
its inverse association with all-cause death in this study suggests a protective role. ApoC-I and
ApoC-lll are associated with the risk of cardiovascular events which is also demonstrated in the
current study. For ApoC-lll this can be explained by the fact that it acts as an inhibitor of lipolysis
and impairs the clearance of triglyceride-rich lipoproteins, leading to the accumulation of these
atherogenic particles in circulation.® ApoC-I plays a dual role and can act as an inhibitor of lipolysis,
which explains the association with MACE demonstrated in this study with its linear relationship

with MACE and all-cause death.®
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Some potential limitations of our analysis should be acknowledged. It is important to note that
this was a post hoc analysis in a subgroup from a randomized clinical trial. Nevertheless, the
characteristics of the analysis cohort were generally representative of the full trial cohort. Ideally,
the clinical effectiveness of a new medical test should be evaluated using direct outcome data
in a comparative randomized controlled trial. This would involve a study comparing lipids and
apolipoproteins in separate arms of the trial, assessing the impact on patient outcomes based
on management guided by the test results. However, such a study design is challenging and
very expensive. In the current study, we adopted an alternative approach in which we measured
apolipoprotein levels and developed prognostic and predictive models based on these levels,

comparing them with predictions made using the conventional lipid panel.

We developed and evaluated multivariable prediction models in a single study group and did
not rely on a separate validation cohort for obtaining independent estimates of performance.
While this does not jeopardize the validity of our comparison of models based on either lipids,
apolipoproteins or their combination, it may mean that performance of each of the three models
is overestimated, compared to what would have been obtained in an independent evaluation of

performance.

There are numerous apolipoproteins, of which we carefully selected nine for measurement in the
context of cardiovascular disease.®® Not measuring all apolipoproteins may present a limitation,
as it leaves uncertainty regarding whether these selected apolipoproteins provide the greatest

amount of prognostic or predictive information.

The ODYSSEY OUTCOMES Trial recruited from a population with established cardiovascular
disease, which allowed us to assemble a large, multinational cohort for assessing clinical and
predictive performance of apolipoprotein profiling. Performance in other populations and for
other testing purposes is still unknown. In general, clinical performance will differ, according to
the testing purpose, the target population, target condition or event, and with other comparator

index tests.

The study group for our analyses was highly selected, as a results of the trial inclusion criteria,
which focused on inadequate control of ApoB-containing lipoproteins, reflected in levels of LDL-C
and non-HDL-C, while excluding patients with markedly elevated triglyceride levels. Consequently,
patients with pronounced elevations of remnant lipoproteins, a condition often underdiagnosed
in current clinical practice, were likely excluded. It is possible that the apolipoprotein panel has
particular value in remnant disease.*® Nearly 90% of the current analysis cohort was treated with
high-intensity statin therapy, which might have curbed the prognostic and predictive performance

of the apolipoprotein panel.
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The apolipoprotein panel was able to predict treatment benefit with alirocumab for MACE. These
results suggest that the apolipoprotein panel can be used to identify patients more likely to
benefit from addition of a PCSK9 inhibitor to statin. Based on the risk of MACE estimated with the
apolipoprotein panel, physicians might select individuals who are at a sufficiently high estimated
risk and more likely to benefit from treatment, while not treating patients at a lower estimated
risk and lower expected benefit of treatment. This personalized approach might enhance the

cost-effectiveness of treatment.

We speculate that the predictive performance of the apolipoprotein panel in estimating treatment
benefit of therapies that directly target a single apolipoprotein may be even stronger than
observed in the current analysis for alirocumab. For example, it is possible that apolipoprotein
profiling could help guide the selection of patients for therapies in development that specifically

target Apo(a)?* * or ApoC-l114°0,

In addition to treatment decisions, apolipoprotein profiling could serve as a valuable tool for
precision diagnostics and personalized medicine, enabling a more refined diagnosis of dyslipidemia
beyond the traditional classification based on lipids and potentially uncover novel dyslipidemic
phenotypes. Specifically, the comprehensive biomarker panel integrates the interdependencies
between the apolipoproteins and by “thinking in wholes” this multiplex approach improves

clinical performance and clinical effectiveness of testing.

CONCLUSION

In patients with recent ACS receiving optimized or maximum-tolerated statin treatment, a
9-plex comprehensive apolipoprotein panel including ApoE phenotype significantly improved
classification for MACE and all-cause death beyond the conventional lipid panel. In addition, the
apolipoprotein panel may help select patients most likely to benefit from treatment with PCSK9
inhibition therapy versus standard statin therapy. Hence, the 9-plex apolipoprotein panel may be

a valuable asset for cardiovascular precision diagnostics and personalized cardiovascular disease.
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SUPPLEMENTAL INFORMATION

Table S1: Incidence of MACE, cardiovascular death and all-cause death

Alirocumab (5,917) Placebo (5,926) ARR (%) Total
MACE 596 (10.1%) 721 (12.2%) 2.1 1317
All-cause Death 208 (3.5%) 250 (4.2%) 0.7 458
Values are n (%).
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Figure S1: Baseline apolipoprotein levels. Distribution of baseline apolipoprotein concentrations as part
of the apolipoprotein panel in the Odyssey Outcomes trial stratified by sex. Placebo and alirocumab are

combined (n =11,843)
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Figure S2: Spline analysis apolipoprotein profile for MACE. Results of spline analysis of baseline
apolipoproteins within the apolipoprotein panel model, based on the placebo group (n = 5,926), adjusted for
other apolipoproteins in the model, to predict MACE.
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Figure S3: Spline analysis apolipoprotein profile for all-cause death. Results of spline analysis of baseline
apolipoproteins within the apolipoprotein panel model, based on the placebo group (n = 5,926), adjusted for
other apolipoproteins in the model, to predict all-cause death.
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Figure S4: Individual apolipoproteins prognosis of MACE. ROC curves of nine prediction models based on
individual baseline apolipoproteins to of the placebo group predict MACE.
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Figure S5: Individual apolipoproteins prognosis of all-cause death. ROC curves of nine prediction models
based on individual baseline apolipoproteins of the placebo group to predict all-cause death.

198



MACE in placebo group

»
bl

MACE Probability, %
a 8

3

&

[

»
b

MACE Probability, %
o 3 @ 8

°

MACE in placebo group

Apolipoproteins enable CV Precision Diagnostics

MACE Probability, %

»
3

N
S

@

B

o

°

MACE in placebo group

o

200 400
Apo(a) (nmol/L)

MACE in placebo group

MACE Probability, %
a 8

15
ApoA-l (g/L)

MACE in placebo group

20

300 A
ApoA-lI (mg/L)

MACE in placebo group

0 100 200 300
ApoA-IV (mg/L)

MACE in placebo group

N
bl

MACE Probability, %
a 8

s

o

400

8 @ &
g & &

»
bl

MACE Probability, %
a3

3

o

MACE in placebo group

10 15
ApoB (g/L)

20

MACE Probability, %

20
ApoC-| (mglL)

MACE in placebo group

30 60
ApoC-Il (mglL)

0 200
ApoC-il (mgiL)

25 75

50
ApoE (mg/L)

Figure S6: Spline analysis individual apolipoproteins for MACE. Results of spline analysis of individual
baseline apolipoproteins, based on the placebo group (n =5,926) to predict MACE.
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Figure S7: Spline analysis individual apolipoproteins for all-cause death. Results of spline analysis of
individual baseline apolipoproteins, based on the placebo group (n = 5,926) to predict all-cause death.
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Figure S8: Estimated Treatment Effect and Treatment Benefit MACE by Lipid Profile and Lipid Profile in
combination with Apolipoprotein Profile. On the left scatter plots of model-based calculated risk if allocated
to placebo or allocated to alirocumab. The plots on the right show the stacked distribution of risk in the
subgroups defined to achieve meaningful benefit or not for MACE (absolute risk reduction with alirocumab

of 2.1% or higher). Risk is calculated based on the lipid panel and the combination of the lipid panel and the
apolipoprotein panel.
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Figure S9: Estimated Treatment Effect and Treatment Benefit all-cause death by Lipid Profile and Lipid
Profile in combination with Apolipoprotein Profile. On the left scatter plots of model-based calculated risk
if allocated to placebo or allocated to alirocumab. The plots on the right show the stacked distribution of risk
in the subgroups defined to achieve meaningful benefit or not for all-cause death (absolute risk reduction
with alirocumab of 0.7% or higher for all-cause death). Risk is calculated based on the lipid panel and the
combination of the lipid panel and the apolipoprotein panel.
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