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ARTICLE INFO ABSTRACT

Keywords: Well-maintained urban greenspaces (UGSs) can provide benefits for human health and recreation. Existing
C‘ﬂ“}ral ecosystem services evaluations often focus solely on greenspace presence, overlooking their attractiveness and the resulting quality
Pulbhc Participatory GIS as perceived by the citizens. Thereby, we lack comprehensive understanding on whether citizens have equal
:;XES access to high-quality UGSs that can truly provide health benefits and enhance life satisfaction, obscuring sys-

Greenspace quality temic inequalities in environmental justice. Here we sought to address this challenge by taking cultural

Greenspace expostire ecosystem service (CES) and social values of UGSs as a proxy for the perceived UGS quality. Through a four-

Gini coefficient month survey of 558 citizens in Xiamen, China, we quantified UGS social values and integrated them into the

Urban planning evaluations of UGS use and the inequalities therein between neighborhoods. Our findings indicate that previous
metrics may misrepresent actual enjoyment of UGSs (with coverage-based valuation at 10.28% while social
value-weighted assessment is 6.49%), typically because neighborhoods may have greenspaces with disparate
social values, causing an unbalanced distribution of attractive UGSs. When combined with major inequalities in
access to high-quality UGSs, this may cause significant differences in perceived health benefits among citizens
(Gini coefficient increases from 0.69 to 0.79). We additionally observed that the three focal drivers of these
inequalities—greenspace coverage, local population mobility and UGS social values—vary across neighborhoods,
informing targeted policy interventions. We highlight that disparities in UGS social values contribute to major
extents to inequalities in health benefits, emphasizing the need to extend greenspace assessments from quantity
to quality and ensuring equal access to high-quality greenspaces and their well-being benefits.

Abbreviations: UGS(s), Urban Greenspace(s); CES, Cultural Ecosystem Services; ES, Ecosystem Services; PPGIS, Public Participatory Geographic Information
System; SolVES model, Social Values for Ecosystem Services model; DTR, Distance To Roads; DTW, Distance To Waters; DTRA, Distance To Residential Area; AOI,
Area Of Interest; ELEV, Elevation; LC, Land Cover; NDVI, Normalized Difference Vegetation Index; MaxEnt, Maximum Entropy; AUC, Area Under the Curve; GEgy,
population- and Social Value-weighted Greenspace Exposure; GC, Greenspace Coverage; GE, population-weighted Greenspace Exposure; Gini_GE, the Gini coefficient
calculated based on GE; Gini_GEjy, the Gini coefficient calculated based on GEg,; POP_std, the standard deviation of population (by calculating the standard deviation
of the population in all grids within one neighborhood); SV _total, the total sum of social value within one neighborhood (indicating the overall UGS social value
level); SV_std, the standard deviation of social value within a neighborhood (indicating the internal discrepancy of UGS social value); SV_max, the maximum social
value within one neighborhood (indicating the optimal level of UGS social value); VIF, Variance Inflation Factor; VP, Variance Partitioning; RF, Random Forest;
SHAP, SHapley Additive exPlanations.
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1. Introduction

Nearly one in four global deaths are linked to the environment
(World Health Organization, 2018, 2023). Fundamental components of
healthy environments—including clean air, safe drinking water, and
climate stability—are increasingly threatened, jeopardizing decades of
advancements in global health, particularly within urban contexts. In
response to these challenges, urban greenspaces (UGSs) have been
strategically implemented as nature-based interventions to mitigate
urban health risks and enhance population health outcomes (Pedersen
Zari et al., 2022). UGSs are widely acknowledged for delivering multi-
functional ecosystem services, including enhancing pollutant removal,
regulating microclimate dynamics, protecting biodiversity, mitigating
noise pollution, reducing airborne contaminants, and promoting energy
efficiency (Goddard et al., 2010; Akpinar et al., 2016; Willis and Pet-
rokofsky, 2017; Browning et al., 2022), collectively supporting the
sustainability of urban habitats. Moreover, UGSs also provide cultural
ecosystem services, such as recreation, landscape aesthetics, and spiri-
tual experiences (Havinga et al., 2020). These services, through human
physical activities, can produce a plethora of benefits spanning physical
and mental health (Remme et al., 2021), such as mitigating chronic
metabolic diseases (Nieuwenhuijsen, 2018), improving psychological
well-being (Lee et al., 2023), and fostering social connections and in-
teractions (Orban et al., 2017).

Building upon extensive groundwork dedicated to quantifying citi-
zens’ engagement with UGSs, encompassing metrics such as greenspace
coverage (Zhao et al., 2013; Chen et al., 2017; Ju et al., 2022), avail-
ability (Xu et al., 2018; Farkas et al., 2022; Xu et al., 2024), accessibility
(Fan et al., 2017; Lu et al., 2023; Battiston and Schifanella, 2024), and
exposure-related inequalities (Song et al., 2021; Han et al., 2022; Wu
et al., 2023; Leng et al., 2023), our study aims to address three inter-
connected limitations that persist in this field: First, prevailing exposure
assessments predominantly operationalize UGSs through broad land-
cover classifications (e.g., forests, grasslands, wetlands, parks), over-
emphasizing spatial abundance while neglecting ecosystem service ef-
ficacy and environmental inclusiveness—the latter being explicitly
mandated by Sustainable Development Goal 11 (United Nations, 2015).
Second, conventional spatial accessibility models fail to incorporate
subjective dimensions of UGS engagement, such as spiritual fulfillment
and aesthetic preferences, whereas these perceptual factors have been
demonstrated as significant predictors of actual usage patterns (Liu
et al., 2024). Third, the majority of urban decision-makers overlook the
integration of ecosystem service valuations into planning frameworks
(Hamel et al., 2021), resulting in institutional barriers beyond spatial
accessibility constraints. Collectively, moving beyond these oversights is
essential to obscure the extent to which citizens benefit from
greenspace-derived values, particularly given established linkages be-
tween accessibility inequalities and health disparities (Rutt & Gulsrud,
2016; Chen et al., 2022a,b).

The methodological limitations underscore the need to integrate
value-informed exposure metrics, necessitating valuations of cultural
ecosystem services (CES) and the corresponding social values—specifi-
cally spiritual enrichment, cognitive development, reflection, recrea-
tion, and aesthetic experiences (Millennium Ecosystem Assessment,
2005a; Sherrouse et al., 2014). Quantifying CES and social value bene-
fits can effectively delineate the perceived quality of UGSs (Stanley
et al., 2022; Benati et al., 2024), offer numerical indicators of their ca-
pacity to provide health benefits for humans, and aid decision-making
processes in trade-off scenarios (Chen et al., 2020; Dang and Li, 2023).

Compared to other types of more utilitarian ecosystem services (ES)
including provisioning, regulating, and supporting services (Millennium
Ecosystem Assessment, 2005b), CES are often characterized as “intan-
gible”, “subjective” and difficult to quantify in biophysical or monetary
terms, thereby hindering their integration within the ES framework
(Daniel et al., 2012). To quantify these intangible CES, Public Partici-
patory Geographic Information System (PPGIS) has emerged as a
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prominent methodological framework in human geography and land-
scape planning (Brown and Fagerholm, 2015). Critically, PPGIS meth-
odologies offer distinct advantages for capturing perceived greenspace
quality by spatially contextualizing citizen evaluations (Kajosaari et al.,
2024). These tools overcome methodological constraints inherent in
other typical UGS quality measurements. For instance, street view data
fail to directly reflect humans’ actual interactions with UGS or their
perceptual experiences (Wang et al., 2021), while social media-derived
datasets exhibit significant representativeness bias due to their highly
skewed sampling nature (Brindley et al., 2019). Furthermore, PPGIS
facilitates the documentation of place-based quality attributes through
geo-referenced participatory surveys and photo elicitation techniques.
This capability addresses a critical limitation of aggregate indices (e.g.,
ParkScore), which prioritize system-level metrics like acreage and fa-
cility density at the expense of localized experiential qualities (Rigolon
et al., 2018). Complementing these strengths, PPGIS enables predictive
extrapolation of quality patterns across broader urban landscapes. This
analytical potential is amplified through multidisciplinary integration,
as evidenced by the flourishing development of simulation models for
ecosystem service value mapping—advancements synergistically
combining ecological, geographical, and economic perspectives, such as
the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST)
model (Natural Capital Project, 2024) and the Social Values for
Ecosystem Services (SolVES) model (Sherrouse et al., 2011). Especially
with the emergence of SolVES, the quantification and simulation of CES
becomes feasible and more systematic, without requiring dependency
on monetary value.

To be specific, SOIVES, a GIS-based platform developed by the U.S.
Geological Survey’s Center in collaboration with Colorado State Uni-
versity, is designed to assess, map, and quantify perceived social values
obtained from social survey response data, and facilitate decision-
making regarding tradeoffs among diverse ecosystem services. The so-
cial values referred to here are the non-market values that the public
derives from ES, particularly cultural services for various stakeholder
groups (U.S. Geosciences and Environmental Change Science Center,
2018). SolVES has been verified for its effectiveness in incorporating
quantification and explicit spatial measurement of social values into
ecosystem service assessments across nearly every continent, in various
biophysical and social contexts, including forests (Sherrouse et al.,
2014), mountains (Zhang et al., 2019), coastal areas (Zhao et al., 2023),
riparian zones (Pan et al., 2022), agricultural lands (Petway et al.,
2020), and urban ecosystems (Sun et al., 2019).

Building on this foundation, our study examines: (1) How do esti-
mates of greenspace exposure and inequality, considering both presence
of social values and its accessibility, differ from those derived from
existing greenspace coverage and exposure metrics, (2) Are these in-
equalities primarily influenced by greenspace coverage, population
mobility, social values, or their interactions, and (3) How do these
drivers of inequalities vary across different areas, potentially informing
decision-makers about tailored UGS management strategies?

Through a four-month PPGIS survey (n = 558) in Xiamen, China, we
operationalized six types of UGS social values via SolVES model,
generating an aggregated social value index as a proxy for UGS quality.
Comparative analyses of exposure metrics—including traditional
greenspace coverage versus population-weighted greenspace exposur-
e—were conducted at neighborhood scale, with inequality quantified
through Gini coefficients. This approach advances understanding of how
citizens access and benefit from quality green spaces, directly supporting
SDG 11's mandate for inclusive, accessible urban environments.

2. Methodology
2.1. Overall framework

2.1.1. Descriptions of the framework
The overall framework for deriving estimates of exposure to UGSs
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and the inequality therein based on perceived social values is delineated
into three major steps as follows (see in Fig. 1):

Step 1. Measuring the social values of UGSs based on SolVES: Uti-
lizing the PPGIS concept, an on-site social survey was conducted to
investigate citizens’ perceptions on social values of UGSs. The survey
data and the required environmental variables were jointly put into
the SolVES model to estimate social values. Consequently, social
values for physically and socially similar greenspaces, where primary
survey data are unavailable, could be simulated, resulting a more
complete social value map.

Step 2. Evaluating the social value-weighted greenspace exposure
and inequality: The simulated social values, considered a proxy for
the perceived quality of UGSs, were used as an additional weight in
the formula on greenspace exposure. The weights of social value and
commonly used population distribution, along with UGS coverage,
were integrated to construct a population- and social value-weighted
greenspace exposure metric. This metric of perceived exposure to
high-value UGSs was calculated at the neighborhood level in this
study. Additionally, a social value-weighted Gini coefficient was
defined to evaluate the inequality of greenspace exposure from a
social value perspective.

Step 3. Interpreting focal drivers of inequality and their differences
across neighborhoods: Five measurements within three focal drivers
of inequality were identified: the social value of UGS, population
distribution, and greenspace coverage. The variance inflation factor
was first employed to detect the multicollinearity among variables.
By ranking the importance of variables using a random forest (RF)
model and applying variance partitioning (VP), we identified the top
three factors contributing to social value-weighted greenspace
exposure inequality at the city-scale level, along with their individ-
ual and interactive effects. To further investigate the differences in
drivers’ impacts across neighborhoods, we employed the RF model-
based SHAP (SHapley Additive exPlanations) method to assess the
direction and magnitude of each variable’s importance on inequality
within each neighborhood, with the potential to either exacerbate or
alleviate it. Additionally, hierarchical clustering was used to group
neighborhoods with the same dominant drivers. Three major UGS

STEP 1. Measuring the social values of UGS based on SolVES
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management strategies were proposed, aligned with clusters of
drivers on greenspace exposure inequality.

2.1.2. Case study area

This study was executed in Xiamen city as the case study area. Xia-
men (24°23'~24°54'N, 117°53'~118°26'E) stands as a central city,
harbor, and scenic tourist destination along the Southeast coast of
China, boasting a land area of 1579 km?, sea area of 333 km?, and a total
coastline stretching 234 km. The city comprises six administrative re-
gions (Siming, Huli, Jimei, Tongan, Xiangan, Haicang) and 43 subor-
dinate administrative districts (neighborhoods and towns),
accommodating approximately 5.16 million population (the seventh
Nationwide Census in 2020). The city’s landscape features various
ecosystems, including mountains in the northwestern region, wetlands
along the southeastern coastline, and dispersed lake water systems
across the central plain. As of 2021, Xiamen’s urban built-up areas boast
a green land percentage of 41.5 %, a green coverage percentage of 45.65
%, and a per capita greenspace of 14.84 m?. The urban built-up green-
space spans 16,830.74 ha, with 5,789 ha allocated to park greenspaces,
including comprehensive, special, and community parks. Xiamen’s
green coverage in built-up areas ranks among the highest in the country,
reflecting its commitment to ecological preservation and development.
Given its abundant natural resources and current urban planning
orientation, Xiamen presents an ideal study area for assessing urban
greenspace quality. The map is shown in Fig. 2.

2.2. Measuring the social values of urban greenspace

2.2.1. Indicators of social values in UGS

Previous work often established their social value indicators ac-
cording to the definitions in Millennium Ecosystem Assessment (MA)
framework (Millennium Ecosystem Assessment, 2005b), combined with
pre-survey processes, or consultations with experts and local agencies.
For instance, a study conducted in one of the scenic areas of Wuhan city
by Chen et al., (2020) adopted 11 indicators, including aesthetic,
biodiversity, cultural, economic, future, historic, intrinsic, learning, life-
sustaining, recreation, spiritual, and therapeutic values. In comparison,
another study in U.S. and Australian marine protected areas by Johnson

STEP 2. Evaluating the social value-weighted greenspace exposure and inequality
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et al. (2019) listed one additional indicator — scientific — to specify the
value of “provision of the opportunity for scientific observation or
experimentation”. Dang and Li’s (2023) work in Shenzhen city extracted
a more concise classification system, which contains services of
aesthetic, cultural heritage, recreational, and spiritual values.

In summarizing past research and to ensure alignment with the study
contexts and Chinese language, this study ultimately defined six in-
dicators of UGS social values, as shown in Table 1.

2.2.2. Social survey on the public’s perceived UGS’s social values

We conducted a survey on citizens’ perception of the six selected
social values in different UGSs. This study focuses on the UGSs within
the built-up area in the city to ensure comparability. Fifty-five repre-
sentative UGSs (Fig. S1) were systematically selected from Xiamen’s
registry of 220 municipal parks (comprehensive parks: n = 31, 14.1 %;
community parks: n = 98, 44.5 %; specialized parks: n = 76, 34.5 %;
regional green spaces: n = 15, 6.8 %) to capture potential heterogeneity
in cultural ecosystem services and social value patterns across park ty-
pologies, sizes, and service radii. Specifically, stratification deliberately
adjusted category proportions to optimize CES characterization: (a)
comprehensive parks were oversampled (35 % of selections vs. 14.1 %
citywide) given their significantly larger size and richer cultural service
provision compared to community parks; (b) community parks were
proportionally reduced (20 % vs. 44.5 %) to balance service focus while
retaining neighborhood-scale representation; (c) specialized parks
maintained near-baseline representation (31.6 % vs. 34.5 %), and (d)
regional green spaces were slightly increased (13.3 % vs. 6.8 %) to
ensure peri-urban gradient coverage. Final selection ensured propor-
tional representation across predetermined size-service tiers (1-50 ha/
500-3,000 m radius; >50 ha/>3,000 m radius), aligning with China’s
Standard for planning of urban green space (GB/T 51346-2019, Min-
istry of Housing and Urban-Rural Development of the People’s Republic
of China, 2019). The questionnaire-based survey was conducted over
four months (from April to July 2023), encompassing high-use holidays
(e.g., Labor Day), weekends, weekdays, and various times of the day
(including mornings and afternoons), and at least ten respondents were
collected for each selected parks. We implemented a dual-channel pur-
posive sampling strategy to recruit information-rich participants
capable of providing nuanced assessments of park social values
(Andrade, 2021). This approach integrated (a) on-site intercept surveys
targeting individuals engaged in characteristic local leisure activities (e.
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Table 1
Descriptions of six selected UGS social values in this study.

Social values Descriptions

Recreation Provides abundant spaces, facilities and services for daily leisure
activities and outdoor entertainment.

Aesthetics Offers a picturesque environment for aesthetic experiences,
characterized by attractive scenery, captivating sights, delightful
sounds, etc.

Health Integrate health-promoting environmental attributes (e.g., air

Restoration quality regulation, multifunctional fitness facilities) with
inherent biophilic elements (e.g., restorative vegetation
landscapes), synergistically facilitating psycho-physiological
restoration through enhanced physiological resilience,
psychological stress alleviation, and cognitive rejuvenation.

Scientific Offers designated areas for scientific observation or

Education experimentation, facilitating learning about natural
environments and promoting the popularization of science.

Cultural Preserves architectural landmarks and narratives of natural and

Heritage human history, serving to conserve historical legacies and foster

local cultural identity.
Social Provides venues for social interactions, fostering community
Interaction engagement and enhancing social connections among citizens.

Notes: Preliminary surveys included spiritual values defined as greenspaces’
capacity to provide symbolic sanctuaries for meditation, faith practices, and
existential solace. However, due to scarce religious attributes in Chinese UGS
and recurrent semantic conflation between “spiritual” and “therapeutic” in
Chinese terminology as observed, we consolidated spiritually-oriented restora-
tion components into the Health Restoration construct, creating an integrated
metric that captures public perceptions of greenspaces’ psycho-physiological
restoration capacities.

g., tea-drinking on lawns, shade-seeking under trees), with eligibility
established through immediate residency verification during initial
contact, and (b) community officer-facilitated snowball sampling
(Naderifar et al., 2017) referring citizens meeting the > 1 year contin-
uous residency criterion. The synergistic deployment of these channels
ensured participants possessed place-based familiarity essential for un-
biased spatial evaluations while mitigating self-selection bias inherent in
voluntary sampling (Chen et al., 2020).

The questionnaire (see in Method S1, Supplementary Materials)
comprised three sections, including Part (I) demographic information
and individual preferences on visiting UGS; Part (II) perception on six
social values of the surveyed park using the Likert scale, and Part (III)
social value allocation based on a PPGIS process. For the third section,
interviewees were asked how much hypothetical money they would be
willing to pay to preserve a given social value and to select the parks on
the map that are most representative of the respective social value.
Participants could designate multiple parks as social value points on the
provided basemap. We excluded responses lacking spatial coordinates,
digitized valid points in ArcGIS, and further removed markers posi-
tioned over water bodies or outside park boundaries. This procedure
yielded 4,605 spatially verified points derived from 558 valid ques-
tionnaires (99.64 % validity rate from 560 total surveys). The locations
and point densities for each of six social values were determined based
on these 4,605 selected points, which were digitized into spatial point
data using ArcMap software (Fig. S1). Each point was matched with its
corresponding monetary value assigned in Part (III) of the questionnaire.
The collected visitor profiles and basic investigated information are
presented in Fig. S2.

2.2.3. Simulation of social values using the SolVES model

The  SolVES model (SolVES 3.0, https://www.usgs.
gov/centers/geosciences-and-environmental-ch
ange-science-center/science/social-values-ecosystem#overview)  pro-
vides a systematic framework for evaluating the connections between
the social values of UGSs derived from field survey data and environ-
mental variables (Sherrouse and Semmens, 2015). SolVES constructs a
predictive model linking social values of surveyed UGSs—derived from
Questionnaire Part (II) responses—to environmental variables. This
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framework enables spatial simulation of social values across non-
surveyed greenspaces, generating social value outputs for all UGSs.

The selected environmental variables in this study involved both
natural and artificial conditions (see Table 2), and have been widely
used in the previous social value researches using SolVES (Johnson
et al., 2019; Chen et al., 2020; Dang and Li, 2023). The first three var-
iables comprised Euclidean distances to features, specifically roads
(DTR), water bodies (DTW), and residential areas (DTRA). The SolVES
model employs Euclidean distance as the metric for calculating distances
between environmental variables to ensure data format consistency and
algorithm compatibility. Slope, elevation, and hillshade data were
derived from a digital elevation model using the surface analyst tool in
ArcGIS. These variables were calculated at a spatial resolution of 100 x
100 m based on vector data, which were subsequently converted into
raster format as standardized inputs for SolVES. Additionally, land cover
types were incorporated to reflect the general environmental back-
ground. The mean value of Normalized Difference Vegetation Index
(NDVI) in the whole year of 2023 was calculated to represent the
vegetation characteristics. The raster layers of land cover and NDVI data
were resampled to align with the 100 x 100-meter resolution as
consistent inputs of the SolVES model. The maps of geodatabases are
shown in Fig. S3.

The model consists of three sub-modules: the Ecosystem Services
Social-Values module, the Value Mapping module, and the Value
Transfer Mapping module. The first two modules facilitate the evalua-
tion of social values based on a comprehensive collection of question-
naires (Part II), while the latter predicts social values for similar areas
without on-site surveys by utilizing models generated from the preced-
ing procedures. Collectively, the SolVES workflow serves three primary
functions: (1) generating spatially characterized social value maps rep-
resented by a non-monetary 10-point Value Index (VI), (2) developing
statistical models that elucidate the relationships between VI and envi-
ronmental variables, and (3) generating converted social value maps
employing a Maximum Entropy (MaxEnt) calculator. The corresponding
procedures are described in Method S2 (Supplementary Materials). The

Table 2
Description of geodatabases for SolVES.
Indicators Descriptions Sources Years
Distance to roads Distance between the Roads data was derived 2022
(DTR) grid centroid and the from Open Street Map
nearest road in meters (https://www.openstree
tmap.org)
Distance to waters  Distance between the Data of water bodies 2020
(DTW) grid centroid and the was derived from
nearest waters, like GlobeLand30
rivers, lakes, reservoirs, (https://www.globela
ponds, etc. in meters nd30.org/)
Distance to Distance between the Data of residential areas 2020
residential area grid centroid and the was derived from AOI
(DTRA) nearest residential area (area of interest) on the
in meters Baidu map (htt
ps://map.baidu.com)
Slope (SLOPE) Percent slope Derived from Geospatial 2020
Elevation (ELEV) Digital elevation model Data Cloud (https:
(DEM) in meters //https://www.gscloud.
Hillshade The shade of the cn/)
(HILLSHADE) mountain, simulating
the illuminance of each
grid
Land cover (LC) 8-class categorical land Derived from 2020
cover data GlobeLand30
(https://www.globela
nd30.0rg/)
Normalized Vegetation Index, Derived from Sentinel-2 2023
difference ranging from —1 to 1 dataset on Google Earth
vegetation Engine (https://deve

index (NDVI)

lopers.google.com/ea
rth-engine/dataset
s/catalog/modis)
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model ultimately generated six 100 x 100 m raster maps for each social
value. Furthermore, to simplify the calculation of social value-weighted
greenspace exposure, a single aggregated social value indicator was
defined to represent the overall UGS social value, serving as the social
value weight in Eq. (1) in Section 2.3.1. The aggregated social value
indicator was calculated by summing up all six values (Table 1) within
each 100 x 100 m raster grid and subsequently normalizing the result to
the range of O to 1.

The performance and accuracy of the SolVES model was assessed
using the Area Under the Curve (AUC) statistics in the model. AUC en-
tails the calculation of the total area under the Receiver-Operating
Characteristic plot (ROC), which reflects the performance of the
model’s results. The MaxEnt model partitions the points from each user-
selected social value type into “training” and “testing” datasets at a 3:1
ratio. Subsequently, the computed “training AUC” and “test AUC” values
indicate the goodness-of-fit of the model within the study area and the
potential predictive utility of the model in extrapolating social values to
unobserved areas, respectively. AUC values range from O to 1, with
higher values indicating better model fitness. As summarized by Sher-
rouse and Semmens (2015), if AUC < 0.5, the model performs at the
level of random prediction or worse. Conversely, if AUC > 0.7, the
model is considered potentially useful to be transferred to similar areas,
with values above 0.9 indicating an excellent classification.

2.3. Evaluating the greenspace exposure and inequality based on social
value benefits

2.3.1. Real-time population counts and social value-weighted greenspace
exposure

The social values, in combination with population counts, were used
as weights to create a new greenspace exposure metric, based on which
we measured the level of population- and social value-weighted green-
space exposure at the neighborhood level, allowing for comparative
analysis. We used the Baidu population heat map data in 2023 to
characterize population mobility and assess people’s dynamic exposure
to greenspace with various social values. Baidu heat map collects in-
dividuals’ locations and provides a dataset of hourly population counts
with a spatial resolution of 200 m. We used the spatial join tool in ArcGIS
to align the original population data sampling scale (200 m) with our
analysis unit (100 x 100 m). As people’s behavior varies over time, we
defined five timeframes to characterize population mobility across the
following periods: (I) daytime (6 a.m. - 6p.m.), (II) nighttime (6p.m. —
next 6 a.m.), (III) weekdays (24 h from Monday to Friday), (IV) week-
ends (24 h on Saturday and Sunday), and (V) the average whole day (24
h averaged across weekdays and weekends). We computed the total
population count of each grid unit within these preset time periods to
represent overall population mobility, serving as the population weight
for further calculation. A higher cumulative value indicates more people
may pass through or consistently stay within a given grid during the
specified period, signifying greater population exposure to the grid’s
environment over time.

The greenspace exposure assessment was firstly based on the factor
calculation (i.e., pf, G?, and V?) for each grid cell (100 x 100 m) and its
buffer zone, and then aggregated to the neighborhood level by using a
weighted sum method for all grids within each neighborhood. Conse-
quently, a neighborhood’s greenspace exposure levels can be measured
via Eq. (1):

Xia (Pl x G x V)

n (@)
> (pF x VvE)

GEgy =

where p} refers to the real-time population counts of the i-th grid during
a preset timeframe; G? denotes the total fractional greenspace coverage
within the i-th grid considering nearby green environments with a buffer
radius of 500 m; V? represents the average level of aggregated social
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value for the corresponding greenspace within the corresponding buffer
zone; n signifies the overall number of grids within the administrative
region (here, neighborhood), and GEgy is the population-weighted and
social value-weighted greenspace exposure level of a neighborhood. A
higher value of GEsy indicates a larger greenspace area with higher
social values, attracting more people and providing them with its po-
tential benefits through exposure activities.

The extended buffer addresses the limitations of the Baidu-based
population dataset, where the population count for each grid reflects
the total number of individuals within that pixel, but does not capture
their exact locations. Therefore, although we assumed that all in-
dividuals are located at the centroid of the grid, we measured the social
value-weighted greenspace coverage within an extended buffer. This
approach ensures that the ambient greenspace available to any indi-
vidual within each grid is accounted for. The selected 500-meter buffer
is based on commonly used measurement scales in previous studies
(Sarkar et al., 2018; Chen et al., 2022a) and aligns with the typical
evaluation scale for assessing the service radius of urban park green-
space according to Chinese standards (GB/T 51346-2019, Ministry of
Housing and Urban-Rural Development of the People’s Republic of
China, 2019). Note that, instead of identifying the lands covered by
vegetation, this study’s calculation of greenspace coverage specifically
focuses on urban park green spaces. The boundaries of park green spaces
were derived from AOI on the Baidu map, combined with website doc-
uments and department data.

To reveal how social value weights impact UGS evaluation outcomes,
we additionally calculated greenspace coverage (GC) and population-
weighted greenspace exposure (GE), considering only greenspace
abundance or greenspace abundance and population mobility, respec-
tively (formulas can be found in Method S3 (Supplementary Materials).

2.3.2. Gini coefficient measurement and greenspace exposure inequality

The most commonly used metric for inequality evaluation is the Gini
coefficient (Gini, 1921), which calculates statistical dispersion to
represent the level of inequality and has been validated for use in
greenspace exposure inequality research (Song et al., 2021; Chen et al.,
2022b; Leng et al., 2023). We calculated the Gini coefficient for each
neighborhood via Eq. (2):

Y Z;;llgk +3h Z;czlgk )
mx 3l g

Ginigs, =1 —

& = GCy x Vi 3

where g refers to the magnitude of social value-weighted greenspace
that is exposed to the k-th citizen. GCy is the magnitude of greenspace
coverage that exposed to k-th citizen and V is the average social value of
the corresponding greenspace that the k-th citizen is enjoying. Then, m is
the total number of citizens living within the neighborhood, and
Gini_GE,, represents the inequality of greenspace exposure level
considering social value benefits. The Gini value ranges from 0 to 1,
where 0 denotes absolute equality and 1 means absolute inequality. An
equal exposure means the majority of people in the neighborhood can
enjoy most greenspaces with high social values. The calculation was
processed using the “ineq” package in R (version 0.2-13), and the
elaboration of the Gini calculation theory can be found in Method S4
(Supplementary Materials).

Likewise, we additionally computed the Gini_GE to unveil the eval-
uation difference of greenspace exposure inequality before and after
considering the social value of greenspace. The Gini_GE solely calculates
the inequality in the abundance of greenspace coverage enjoyed by
people, while the Gini_GE;, evaluates the inequality in both abundance
and the potential social value benefits of greenspace available for peo-
ple. Furthermore, considering that urban development in Xiamen city
initially originated from the main island, specifically Siming and Huli
districts, and later expanded beyond the island starting from the early
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2000 s, we respectively calculated the average Gini GEs, of the main
island and outside the island, as a comparison to investigate potential
disparities in social value-weighted greenspace exposure inequalities
across different urban development periods.

2.4. Interpreting the focal drivers of inequality in social value benefits

2.4.1. Drivers and variance partitioning

In order to identify the drivers of inequality in social value-weighted
greenspace exposure (i.e. Gini_GE,), we used five key measures within
three focal drivers derived from the composition of the exposure metric:
(a) greenspace coverage (GC), representing the physical supply of UGS;
(b) aggregation level of population distribution, measured by the stan-
dard deviation of population numbers in all grids within a neighborhood
(POP std), as this metric captures the degree of population cluster-
ing—higher values indicate more uneven distribution with concentra-
tion hotspots; and (c) social value levels of greenspace, including three
complementary metrics: the overall level (SV_total) representing total
cultural endowment, internal discrepancy (SV std, measured by the
standard deviation of social value) capturing heterogeneity in value
distribution, and the optimal level (SV.max) indicating peak quality of
cultural benefits within the area. These variables were selected to
deconstruct the physical, demographic, and quality dimensions inherent
to the equality assessment framework, with each metric theorized to
distinctly influence equitable distribution patterns.

All variables were calculated at the neighborhood level and stan-
dardized to the range of O tol. Next, we evaluated the variance inflation
factors (VIF) for these five key measures in a multiple linear regression
model. Subsequently, we constructed a random forest (RF) model to
explore the association between these variables and the Gini coefficient,
assessing the relative importance of each variable. The RF model was
executed using the ‘randomForest’ package (Breiman et al., 2024) in R
(version 4.7-1.1), with the importance of variables reported via the
increase in node purity after including specific variables and mean
square error upon excluding specific variables.

In line with this, we proceeded to select the three most important
variables and utilized variance partitioning to quantify the relative
variations in the Gini coefficient, which are attributed to the individual
effects of focal drivers and their interaction effects. The variance parti-
tioning analysis was performed using the ‘vegan’ package (Oksanen
et al.,, 2024) in R (version 2.6-4), and the resulting Venn diagram il-
lustrates both unique and combined effects.

2.4.2. Clustering drivers’ impacts on social value-weighted inequality

After gaining a general understanding of how the drivers influence
the Gini coefficient at the city-wide level, we examined the variation in
impacts of drivers across different neighborhoods, by identifying the
dominant driver and the direction and magnitude of its influence in each
neighborhood. For this purpose, a second RF model was constructed
based on the Gini coefficient and the top three important variables.
Utilizing the second RF model, we employed SHAP (SHapley Additive
exPlanations) values, a common machine learning interpretation
method, to elucidate the impact of each variable on the model’s pre-
diction of Gini coefficient at the neighborhood level. SHAP values are
highly interpretable and useful in revealing the direction and magnitude
of influence exerted by explanatory variables. To accomplish this, we
identified the positive and negative influences of each input variable
(here, the three drivers) on a sample-wise basis (here, Gini coefficient of
each neighborhood), following the approach outlined by Lundberg and
Lee (2017).

The resulting distinct impacts of the drivers were further clustered to
identify groups of neighborhoods where variables influence greenspace
inequality in the same direction and with comparable magnitude. This
clustering can inform governments of efficient spatial strategies for
managing greenspaces. Three scenarios with specific strategies are hy-
pothesized: (a) if a neighborhood’s inequality is mostly due to
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insufficient greenspace coverage, improving the coverage is recom-
mended; (b) if the inequality arises from population distribution,
increasing citizens’ availability and accessibility to greenspace is war-
ranted; (c) if the social value of UGS is the primary factor, enhancing
social values of UGSs in the neighborhood is necessary. Targeted man-
agement strategies can be implemented for neighborhoods within the
same cluster. To this end, we employed hierarchical clustering based on
SHAP values to classify neighborhoods according to the impacts of
drivers. The number of clusters was determined using the Elbow method
(Chen et al., 2024). The clustering results were visualized on ArcGIS to
illustrate the spatial distribution of neighborhood clusters. Additionally,
we computed the mean value of the top three important variables for
each cluster type, along with their corresponding mean SHAP value, to
determine whether high or low values of these variables exacerbate or
mitigate inequality in greenspace exposure within each cluster type.

3. Results
3.1. Social values of urban greenspace and the environmental factors

The SolVES model effectively simulated social values of multiple
greenspaces across the large-scale city, which were then visualized on
ArcGIS (Fig. S4). Table 3 presents the model’s performance, indicating
high precision and reliability based on elevated AUC values (all above
0.9). The map of aggregated social values of urban greenspaces in Xia-
men city, shown in Fig. 3, highlights hotspots with high social values in
Gulangyu Island, the western main island (Huli and Siming districts), the
gulf coast region in Jimei district, and the eastern area of Haicang dis-
trict. These hotspot areas coincide with the typical UGSs in Xiamen city,
including highly recognized tourist attractions and important urban
park development projects, encompassing Gulangyu Scenic Spot, Xia-
nyue Mountain Park, Huwei Mountain Park, the scenic belt of Zhong-
shan Park — Wanshi Botanic Garden — Dongping Mountain Park, and
Yuanboyuan Park.

Based on the quantitative analysis, a substantial spatial inequality in
the distribution of social values across neighborhoods is evident. The
average aggregated social value across all 38 neighborhoods is 0.16. The
standard deviation of 0.135 exceeds 80 % of the mean value, indica-
ting high absolute variability. Moreover, this disparity becomes more
pronounced when comparing the main island districts to the peripheral
areas. Neighborhoods within the main island exhibit a notably higher
mean social value of 0.27 (standard deviation = 0.12), while those in the
periphery have a significantly lower mean value of 0.07 (standard de-
viation = 0.06). To further quantify the relative disparity, the coefficient
of variation (CV) was calculated. The CV for the main island is 44.4 %,
compared to 85.7 % for the peripheral neighborhoods. This higher CV in
the periphery indicates not only lower average social value but also
greater relative inequality among neighborhoods within these areas,
clearly demonstrating a dual inequality: both a stark core-periphery
divide and intensified internal inequality within less-advantaged
regions.

Furthermore, the MaxEnt model delineated response curves illus-
trate how various social values vary in response to different environ-
mental contexts. Generally, the variables of distance to roads, distance
to waters, and distance to residential areas show similar trends across all
six social values (see in Fig. S5-S10). For example, social values gradu-
ally decrease as the distance to the nearest roads increases from 500 m to
2 km, approaching zero beyond this threshold. This indicates a critical
distance of 2 km from the nearest road to be able to benefit from UGS

Table 3
Performance of the SolVES-based social value model assessment.
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social values, with an optimal distance of 500 m. In terms of distance to
residential areas, most social values remain low once the distance ex-
ceeds 5 km. However, as shown in Fig. S6 and S8, the response curves for
aesthetics value and scientific education value exhibit a slight upward
trend, suggesting that citizens may be willing to travel longer distances
when seeking these two particular social values.

Additionally, the social value associated with health restoration
peaks at slopes approximating 5 % and remains relatively stable below a
20 % gradient. Beyond this threshold, values dramatically decline
(Fig. S7), suggesting a public preference for moderate-intensity activ-
ities on gently sloped terrain, with optimal conditions occurring at 5 %
and diminishing returns beyond 20 %. Furthermore, in most cases, a
higher NDVI value is observed for areas with higher social values,
indicating that an improved vegetation condition can contribute to the
enhancement of social values associated with UGSs. The importance of
all environmental variables in affecting each social value are detailed in
Table S1.

3.2. Population- and social value-weighted greenspace exposure levels of
neighborhoods

The average greenspace coverage (GC), population-weighted
greenspace exposure (GE), and population- and social value-weighted
greenspace exposure (GEgy) are 10.28 % (0.20 %-100 %), 5.93 %
(0.37 %-100 %), and 6.49 % (0.45 %-100 %), respectively. The top three
neighborhoods for GC are Gulangyu Island (100 %), Huli (46.17 %), and
Binhai (42.24 %); for GE, Gulangyu Island (100 %), Huli (12.71 %), and
Kaiyuan (11.47 %); and for GEsy, Gulangyu Island (100 %), Huli (15.35
%), and Kaiyuan (12.56 %). According to the population distribution
(Fig. 4(a)), only a few areas show zero presence of people during the
specified timeframe (e.g., the average whole day). Population counts in
each grid range from less than 50 to over 500, indicating a significant
variation in potential population exposed to surrounding greenspaces.

Examples from Qiaoying, Jimei, and Xinglin neighborhoods in Fig. 4
(b) illustrate how evaluations differ for different metrics. While these
neighborhoods have the same level of greenspace coverage (the same
size/color of green dots), their levels of greenspace exposure and social
value-weighted greenspace exposure differ considerably (different fill
colors). The greenspace coverage metric tends to overestimate citizens’
enjoyment of UGSs with low social value, which may not attract many
visitors (e.g., Qiaoying neighborhood). Conversely, it may underesti-
mate areas with comparable abundance of greenspaces but high social
value that draw people and increase exposure (e.g., Xinglin
neighborhood).

The spatial distribution of neighborhoods with matching and mis-
matching values between GE and GEgy is also evident in Fig. 4(b).
Gulangyu Island, characterized as a scenic park covering the entire area,
ranks first in the GC index (100 %) as represented by the largest dark
green dot. This neighborhood also demonstrates a perfect match be-
tween GE and GEgy, reflecting that the substantial population distrib-
uted on this island is truly embraced by valuable greenspaces with more
benefits potentially provided. Other neighborhoods demonstrating a
perfect GE-GEsy match (indicated by the dark brown color) are mainly
located on the main island, with two additional neighborhoods in the
Jimei district and Haicang district, which correspond to hotspots of
social value. A mismatching pattern of high GE paired with low GEgy is
particularly noteworthy, as it pinpoints areas where large populations
are highly exposed to abundant greenspace, yet experience limited so-
cial value benefits. For instance, Houxi Town exhibits high GE but low

Recreation Aesthetics Health Restoration Scientific Education Cultural Heritage Social Interaction
training AUC 0.938 0.943 0.927 0.958 0.930 0.948
test AUC 0.913 0.919 0.909 0.926 0.919 0.915
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Fig. 3. Social values of urban greenspaces derived from SolVES. (a) The normalized aggregated social value (ranges from O to 1) of all urban greenspaces in Xiamen
city at the resolution of 100 x 100 m. The bottom panel shows the enlarged view of the six social values of Gulangyu Island. (b) The average aggregated social value
across the 38 neighborhoods, classified into five levels using the natural breaks method (Jenks): low (>0-0.03), relatively low (0.03-0.09), medium (0.09-0.18),

relatively high (0.18-0.28), and high (0.28-1.00).

GEgy, suggesting a lack of significant social value benefits in its parks.
This observation aligns with Houxi Town being a less developed area
without high-quality urban park greenspaces. Conversely, Hongtang
Town displays high GEsy but low GE, likely due to parks along the
coastline that possess high social value contributing to its exposure
rating.

Next to spatial variation, also temporal variation in exposure to
greenspace matter. The GEgy calculated for different timeframes,
including daytime (6 a.m.—6p.m.), nighttime (6p.m.—next 6 a.m.),
weekdays, and weekends, uncovered considerable differences. Fig. 4(c)
demonstrates that certain neighborhoods exhibit higher GEgy levels
during nighttime and on weekends compared to daytime and weekdays.
These neighborhoods, located near the coastline and offering sunset

views or mountain parks, attract individuals seeking specific social
values from greenspace, such as aesthetic enjoyment and sporting ac-
tivities, resulting in elevated exposure levels during evenings and
weekends.

3.3. Inequality of population- and social value-weighted greenspace
exposure

There is a high level of inequality in greenspace exposure in the built-
up area of Xiamen city. This is indicated by the high average values of
greenspace exposure inequality (Gini GE) and social value-weighted
greenspace exposure inequality (Gini GEgy) of 0.69 and 0.79, respec-
tively. The three neighborhoods with the highest Gini GE values are
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Fig. 4. Spatial-temporal heterogeneity of social value-weighted greenspace exposure. (a) The total population counts of each 100 x 100 m grid during the preset
timeframe (the average whole day). (b) Comparison of greenspace coverage, greenspace exposure, and social value-weighted greenspace exposure for 38 neigh-
borhoods. The rating levels (low, medium, and high) for both GE and GEsy, were defined using their respective tertiles (i.e., the 33rd and 66th percentiles) to ensure
comparability in the relative ranking of neighborhoods for each indicator. The three colored squares along the dashed diagonal line in the legend represent the -
matching pattern (i.e., low GE-low GEgy, medium GE-medium GEgy, and high GE-high GEgy), which indicates consistent evaluations across the two metrics. The
remaining off-diagonal squares represent mismatching patterns. (c) Social value-weighted exposure levels in four preset timeframes. The red dashed boxes highlight
neighborhoods showing significant changes from daytime to nighttime or from weekday to weekend. These neighborhoods contain urban parks with coastal sunset
views or mountain parks, including ®Yuanboyuan Park,® Rainbow Beach, ® Haiwan Park, ® Xianyue Mountain Park, and ® Dongping Mountain Park. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Neicuo Town (0.94), Xinmin Town (0.90), and Dadeng (0.86), whereas
for Gini GEsv, the top-ranking neighborhoods are Xinmin Town (0.97),
Maxiang Town (0.96), and Hongtang Town (0.96). The neighborhoods
with the lowest inequality in terms of Gini GE are Gulangyu Island (0),
Jimei (0.50), and Wuxian Town (0.52), while for Gini GEsv, Gulangyu
Island (0), Kaiyuan (0.62), and Jiangtou (0.66) exhibit the lowest
inequality levels.

The difference in evaluating greenspace exposure inequality between
Gini_GE and Gini GEsv is evident in Fig. 5(a). Some neighborhoods with
high social value hotspots consistently exhibit low inequality levels,

regardless of whether Gini GE or Gini GEsv is utilized (indicated by blue
dots and blue fill color). This indicates that in these neighborhoods, a
larger greenspace coverage and high social value greenspaces are
accessible to a greater number of citizens.

Social value benefits play a critical role in delineating spatial dis-
parities in exposure inequality. For instance, the Wucun Neighborhood,
located on the main island, exhibits a high level of inequality according
to Gini_GE (0.81), but a lower level of inequality based on Gini GEsy
(0.77). This indicates that the inequality is somewhat mitigated by the
presence of high social value parks that are accessible to a larger
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Fig. 5. The Gini-based inequality of greenspace exposure at the neighborhood level. (a) Inequalities of greenspace exposure using Gini coefficient (Gini GE) and
social value-weighted Gini coefficient (Gini GEsv), and (b) the comparison of the greenspace exposure inequality on the main island and other areas outside

the island.

population. A contrasting situation is observed in Houxi Town, situated
in Jimei district, which demonstrates a relatively low level of inequality
based on Gini GE (0.65), but a higher level of inequality based on
Gini GEsv (0.77). In this case, citizens are exposed to UGSs with dispa-
rate social values, which should be considered as a more severe
inequality condition.

The main island has lower levels of inequality compared to areas
outside the island, as depicted in Fig. 5(b) for both Gini GE and Gini -
GEsy. This suggests that citizens in more developed neighborhoods on
the main island have access to a greater amount of greenspace with
higher social values, while experiencing a relatively more equal distri-
bution. This difference in inequality between the main island and other
neighborhoods is even more pronounced when considering the social
values of greenspace.

3.4. Drivers of social value-weighted greenspace exposure inequality

The top three influential variables explaining the variation in social
value-weighted greenspace exposure inequality at the neighborhood
level are greenspace coverage (GC), aggregation level of population
mobility (POP_std), and the optimal level of social value (SV_.max)
(Fig. S11). Note that there is no collinearity issue among all five vari-
ables according to the VIF detection, as all VIF values are below 4
(Fig. S12). The top three drivers were more important than the overall
social value in a neighborhood (SV total) or the internal discrepancy of
social value within a neighborhood (SV_std).

Greenspace coverage accounts for most of the variation of social
value-weighted greenspace exposure inequality among neighborhoods

10

(i.e., 47 % of the variance, Fig. 6). The optimal level of social value
contributes 2 % of the variance, while their combined interaction effect
contributes 19 %, highlighting the significance of both greenspace
quantity (GC) and quality (SV_max) in inequalities related to greenspace
exposure.

3.5. Neighborhood clusters impacted by similar inequality drivers

The different drivers of inequality in benefits from greenspace
exposure vary strongly between neighborhoods. This is reflected by
various directions and magnitudes of influences, as indicated by the
respective SHAP values across neighborhoods (Table S2). Hierarchical
clustering, based on the SHAP values, successfully classified all 38
neighborhoods into four distinct clusters, characterized by similar
combinations of dominant drivers and the corresponding suggested
strategies within their respective clusters (Fig. 7(a)). For each of the
cluster A-D, targeted management strategies can address the specific
inequality drivers.

In cluster A, greenspace coverage plays a crucial role in reducing
exposure inequality, surpassing the influence of population mobility and
the maximum social value level of UGS (Fig. 7(c)). This is corroborated
by the box plot displayed in Fig. 7(b), which illustrates a considerably
higher value of greenspace coverage in cluster A compared to clusters B
and C. With limited budgets, no urgent strategies are necessary in these
neighborhoods, possibly with the exception of increasing greenspace
coverage, allowing governments to prioritize other areas.

Conversely, in cluster B neighborhoods, all three variables exhibit a
positive impact on equality in greenspace benefits; lower levels of
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Fig. 6. The Venn diagram based on variation partitioning using the “vegan”
package in R (version 2.6-4). The values show the contributions of the unique
effects of greenspace coverage (GC), aggregation level of population mobility
(POP_std), optimal social value level (SV.max), and their pair-wise combined
effects. Unexplained residuals account for 25%.

greenspace coverage, a uniform population distribution and limited
optimal social value within these neighborhoods all contribute to an
increase in the inequality in green exposure. Consequently, all three
strategies are required to mitigate the inequality in these
neighborhoods.

In cluster C, the population mobility exhibits a relatively high
negative impact on the Gini coefficient. This suggests that a concen-
trated population distribution reduces the inequality of green exposure.
We hypothesize that in these neighborhoods, the presence of valuable
greenspace attracts peoples’ intentional visits, resulting in more equal
access to greenspace. However, since greenspaces abundance and social
values show no significant negative or positive impacts on the
inequality, actions may be implemented based on these two drivers to
further optimize the equality of social value-weighted greenspace
exposure in these areas.

Cluster D, which consists solely of Gulangyu Island, exhibits high
levels of greenspace coverage and optimal social value. High values of
greenspace coverage and the maximum social value significantly reduce
the Gini coefficient. In contrast, population mobility exhibits a slight
positive impact on the Gini coefficient. This can be attributed to the
large number of tourists on the small island, resulting in varying dis-
tributions across areas with distinct social values. As a consequence,
some individuals may be exposed to greenspaces with high social value,
while others may not, thus contributing to the observed inequality in
greenspace exposure. Strategies to increase population accessibility to
greenspaces on the tourist island can be further conducted to enhance
the visitors’ experiences.

4. Discussion

4.1. Enhancing UGS social values based on insights into their linkages
between environmental contexts

Building upon established PPGIS and social value assessment
methods, our analysis confirms that UGS hotspots with high social
values in Xiamen predominantly coincide with flagship tourism desti-
nations and prioritized municipal park projects (Fig. 3). This spatial
alignment suggests congruence between citizens’ perceived values and
government planning priorities, particularly the strategic development
of iconic urban parks through dedicated funding, policy support, and
masterplan implementation. Consequently, the enhancement of UGS
social values can potentially benefit from a government’s focus on key
UGS construction projects. This is supported by previous studies, which
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observed that well-maintained UGSs with governmental coordination
and public engagement in green collective initiatives can significantly
enhance citizens’ sense of safe, beneficial, attachment and belonging
(Pineda-Guerrero et al., 2020; Mejia et al., 2024). In contrast, poor-
quality nature spaces may limit the capacity for well-being benefits
and instead serve as environmental stressors (Berdejo-Espinola et al.,
2024). Thus, without considering quality, accurately identifying UGSs
that have the potential to benefit humans is challenging, and this
oversight may impede the ability to establish a robust connection be-
tween the quantification of UGSs and their capacity to promote public
health (Song et al., 2021).

Furthermore, the response curves (Fig. S5-510) clearly illustrate the
correlations between social values and environmental contexts. To
enhance natural landscapes and improve travel convenience, govern-
ments are encouraged to develop parks in close proximity to water
bodies, roads, and residential areas. Furthermore, the incorporation of
slope design should be considered to increase the health restoration
value. The refined interpretation of these curves provides valuable in-
sights into the environmental variables influencing social values in
urban parks. This serves as a fundamental basis for efforts to eliminate
social value-weighted inequality in greenspace exposure. Besides,
enhancing the social values of UGSs also requires publicity and pro-
motional campaigns (Wan and Shen, 2015), as well as community
engagement (Mullenbach et al., 2019), to strengthen the intensity of
citizens’ perceptions.

4.2. Social value benefit and its impact on greenspace exposure and the
inequality

This study emphasizes the notable disparities in evaluating green-
space exposure levels and inequalities when considering greenspace
coverage (GC), population-weighted greenspace exposure (GE), and
population- and social value-weighted greenspace exposure (GEsv).
Examples in Fig. 4(b) highlight the limitations of the commonly used
greenspace coverage metric—focusing solely on UGS spatial abundance
and failing to account for population distribution (i.e., actual exposure
based on usage rate) and social values (i.e., UGS quality perceived by
citizens) associated with UGSs (Song et al., 2021). Besides, the notable
disparities in UGS exposure levels when using GE and GEgy further
highlight the necessity of incorporating the social value benefits of UGSs
into exposure assessments..Furthermore, by integrating dynamic
mobility data, subtle temporal variations in greenspace exposure levels
(Fig. 4) yield insightful conclusions about city characteristics and human
activity preferences, emphasizing the importance of integrating dy-
namic population mobility data into greenspace exposure evaluations.

In terms of equality, previous studies have characterized equal
exposure as a scenario where the majority of the population has access to
most greenspaces (Song et al., 2021; Wu et al., 2023; Leng et al., 2023).
We expand upon this definition to encompass the quality of green-
spaces—equal exposure signifies that the majority of individuals can
enjoy most greenspaces with high social values.

Overall, our findings indicate pronounced greenspace exposure
inequality across Xiamen (Gini GE = 0.69). This disparity is potentially
amplified by the uneven distribution of social value benefits, evidenced
by a substantially higher social value-weighted greenspace exposure
inequality (Gini GEsv) of 0.79. Critically, the modulating effects of social
value benefits on Gini-based inequality exhibit neighborhood-scale
heterogeneity, with observed outcomes ranging from mitigation to
exacerbation (Fig. 5).

Collectively, our analysis shows that the equality of greenspace
exposure should be viewed as a function of both UGS abundance and
their perceived quality, as represented by their social values. This
demonstrates that the link between nature exposure and life satisfaction
is conditioned by the quality, type, and manageability of nature.
Notably, studies across global contexts reinforce this duality: research in
Global North cities often emphasizes the health and well-being benefits
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linked to high-perceived-quality UGSs rich in CES (Hegetschweiler et al.,
2017; Nesbitt et al., 2019), while evidence from Latin America reveals
that poorly maintained greenspaces may exacerbate safety concerns
such as crime (Berdejo-Espinola et al., 2024). Moreover, significant
disparities in green resource distribution and equality persist between
developed and less-developed regions (Chen et al., 2022b; Han et al.,
2022). Integrating CES and social values into exposure equality frame-
works is therefore essential to meaningfully assess and address
geographical inequality worldwide. Decision-makers should particu-
larly concern with the areas where populations are unequally exposed to
UGSs with distinct social values, implying that some individuals may be
surrounded by poor-quality greenspace.

4.3. Implementing differentiated strategies to eliminate the inequality

Multiple analytical methods confirmed that greenspace coverage,
local population mobility, and the maximum social value of UGS are the
three primary drivers of inequality in social value-weighted greenspace
exposure. Among the social value-related variables, the metric of
SV.max demonstrated predominance, indicating that UGSs with
maximum social value can significantly impact the inequality of
greenspace exposure in a given area (Fig. S11). The Venn diagram based
on variance partitioning (Fig. 6) highlights the combined effect of
greenspace coverage and maximum social value on the provision of
greenspace, demonstrating that both quantity and quality are integral to
the observed inequality (Zhang et al., 2021).

Beyond assessing aggregate variable impacts, identifying
neighborhood-specific dominant drivers through SHAP value analysis is
critical. Based on the clustering of neighborhoods by their dominant
drivers, we propose contextually tailored interventions:

For clusters where greenspace coverage (GC) is the primary
constraint, we recommend utilizing underutilized urban space-
s—including vacated lands from urban redevelopment, marginal lands,
and abandoned areas—for creating pocket parks and micro-greenspaces
(Peschardt et al., 2012). In a high-cost city like Xiamen, where housing
prices rank among the nation’s highest, the prevalence of residential
compounds offers a unique opportunity: club green spaces within these
compounds can serve as a crucial supplementary resource to public UGS,
effectively enhancing coverage without necessitating new public land
acquisition (Xiao et al., 2016; Shan et al., 2024).

For clusters where accessibility issues dominate (indicated by
POP std), infrastructure improvements should be prioritized. Enhancing
urban road networks, bus routes, and station layouts within the “15-min
community living circle” framework directly addresses mobility barriers
(Wu and Kim, 2021). Xiamen’s well-developed Bus Rapid Transit (BRT)
system and its iconic Mountains-to-Sea Trail (Wang et al., 2023) provide
a strategic foundation. Interventions could focus on better integrating
these systems, for instance, by creating first-and-last-mile connections
from BRT stations to neighborhood greenspaces or by strategically
extending the trail network to improve pedestrian and cyclist access to
high-value UGS. Additionally, multi-scalar urban design inter-
ventions—from hierarchical green network planning to street-space
reclamation—can reduce physical barriers to access, particularly in
high-density areas where expansion is constrained (Zhou and Gan,
2025).

For clusters where social value provision (particularly SV max) is the
main driver, quality-enhanced interventions are most appropriate.
Rather than expanding territory, resources should focus on maximizing
the social value of existing UGS through targeted enhancements. This
includes designing urban furniture to accommodate diverse needs (e.g.,
dog walking, children’s play, socializing, resting) and vulnerable groups
(elderly, migrant children, individuals with disabilities) (Wolch et al.,
2011; Gomez et al., 2018; van den Berg et al., 2019). Implementing a
phased quality improvement plan, prioritizing disadvantaged neigh-
borhoods (urban villages, public rental housing, aged communities)
(Xiao et al., 2017), and establishing an evaluation system integrating
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both objective and subjective indicators are essential for ensuring
effectiveness and equity. Strengthening neighborhood ties and place
attachment through UGS design can create a virtuous cycle of use and
satisfaction, further enhancing mental health benefits (Li et al., 2025).

In the context of high-density urban planning in most Chinese cities,
blind expansion or creation of new greenspaces is often impractical.
Instead, improving accessibility to existing greenspaces and enhancing
their social values—particularly by maximizing the social value of key
urban park projects—represents a more feasible and promising
approach (Benati et al., 2024; Liang et al., 2024). These targeted stra-
tegies, informed by our driver analysis, enable efficient governmental
response through uniform management within clusters and differenti-
ated strategies across clusters.

4.4. Limitations and future research

Despite the insights generated, this study has several limitations.
First, practical constraints in recruiting respondents limited de-
mographic balance, disproportionately sampling 20-39 year-olds with
tertiary education. While ensuring data validity, this reduces assessment
representativeness (Gobster et al., 2007). Future implementations
should prioritize stratified sampling of various subgroups.

Second, greenspace exposure assessment incorporates dual meth-
odological constraints. The fixed spatial parameters (500 m buffer; 100
x 100 m resolution) may introduce aggregation uncertainties, as buffer
size variations significantly influence exposure outcomes (Chen et al.,
2022a). Concurrently, Baidu Heatmap data exclude non-user groups (e.
g., elderly, children), creating digital divide biases (Song et al., 2022).
These limitations necessitate cautious interpretation of exposure
patterns.

Third, cultural ecosystem services’ intangible nature required
interviewer-mediated collection, inherently constraining large-scale
generalization (Millennium Ecosystem Assessment, 2005c).

Fourth, methodological simplifications include using single-metric
inequality assessment (Gini coefficient). Comparative validation with
alternative indices (Theil, Atkinson; Wu et al., 2023) would strengthen
culturally-sensitive equality diagnostics by revealing metric-dependent
distribution patterns.

Notwithstanding these limitations, the framework’s successful
implementation supports transferability to global municipalities with
comparable semantic contexts. Future work should: (a) analyze spatial
parameter sensitivity across scales, (b) integrate heatmaps with ground
surveys targeting vulnerable populations, (c) implement multi-metric
inequality validation, and (d) develop lexical gap analyses for cross-
cultural surveys alongside crowdsourced PPGIS for demographic
expansion.

5. Conclusions

Our findings reveal substantial differences in evaluations of green-
space exposure levels when the weight of social value is factored in, as a
proxy for the perceived quality of greenspace. Traditional greenspace
coverage tends to underestimate exposure levels in areas with limited
UGSs but high social value, while overestimating exposure in areas with
ample green coverage but poor social values. Citizens may have access to
greenspace yet miss out on the potential health benefits associated with
high-quality greenspace. Incorporating social value considerations has
significant implications for Gini-based inequality assessments of green-
space exposure. The inequality-inclusive metric enables pinpointing
areas where individuals are unevenly enjoying greenspaces with
different UGS amounts and disparate social values, highlighting in-
equalities in social value benefits experienced by the public. These in-
sights underscore that UGS provision is the product of the interplay
between both quantity and quality. Only by accounting for both di-
mensions can we achieve a more nuanced understanding of citizens’
actual enjoyment of UGSs and recognize the subtle and often-overlooked
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inequalities in health benefits that stem from disparities in greenspace
quality.

Our analyses provide a critical framework for decision-makers to
prioritize interventions in areas facing more pronounced inequalities,
addressing deficiencies in both quantity, accessibility and perceived
quality of UGSs. Given that the importance of available greenspace,
population mobility and UGS social values in determining inequalities
between neighborhoods, a customized, strategic combination of these
factors in UGS planning is needed. In areas constrained by limited nat-
ural endowments or a dearth of available land, enhancing the quality of
existing greenspace offers a more pragmatic and impactful alternative.
Such measures can mitigate greenspace privileges and promote envi-
ronmental justice from the perspective of UGS social values, ultimately
promoting citizens’ enjoyment of UGSs and universal access to public
health benefits derived from urban greenspace.
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