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A B S T R A C T

During speech production, lexico-syntactic features associated with nouns (e.g., grammatical gender, classifiers, 
number) are assumed to be automatically activated. Although previous studies have provided evidence for this 
assumption by examining classifier congruency effects, empirical validation of this mechanism in Mandarin Chi
nese remains limited. The present study investigated whether a classifier congruency effect can be reliably elicited 
during noun phrase production in Mandarin and explored how this effect relates to semantic processing. We 
employed a picture-word interference (PWI) paradigm, incorporating several methodological refinements. Both 
classifier congruency and semantic relatedness between the target and distractor words were manipulated. 
Behavioural results replicated the semantic interference effect, with longer naming latencies observed for 
semantically related distractors than semantically unrelated ones. Although no main effect of classifier con
gruency was found, a significant interaction with semantic relatedness emerged. Classifier incongruency led to 
delayed naming under semantically related conditions. ERP results further revealed that both the semantic 
interference and classifier congruency effects peaked within the N400 time window. These findings provide further 
evidence that classifier information is automatically activated as a lexico-syntactic feature during lemma access, 
and that this activation is influenced by semantic processing. The present results contribute both conceptually 
and methodologically to advancing our understanding of classifier processing in Mandarin Chinese.

1. Introduction

While natural speech unfolds linearly in time, the underlying struc
ture of language is hierarchical. In many languages, content words in a 
sentence constrain the selection and morphological form of function 
words. For example, in German, all nouns are categorised into three 
grammatical genders (masculine, feminine, or neuter). The grammatical 
gender of a noun specifies the form of preceding determiners. In the 
phrase das Wasser (“the water”), the neuter noun Wasser requires the 
neuter determiner das, rather than the masculine der or the feminine die. 
A comparable system exists in Mandarin Chinese, wherein nouns are 
required to be paired with classifiers in quantifier-classifier phrases, 
subject to both syntactic and semantic constraints. In the phrase yì běn 
zázhì (“one + classifier + magazine”), the classifier běn must be used for 

book-like objects. Grammatical gender in Indo-European languages and 
classifiers in Mandarin Chinese constitute lexico-syntactic features 
hypothesised to be stored in the mental lexicon alongside lemmas 
(Levelt et al., 1999a). While extensive research has examined the pro
cessing of grammatical gender in Indo-European languages (for a re
view, see Wang & Schiller, 2019), the mechanisms underlying classifier 
processing in Mandarin Chinese remain notably limited. The present 
study builds on prior research by adopting well-established paradigms, 
introducing novel experimental materials and analytical methods to 
examine the cognitive processing of classifiers in Mandarin Chinese.

1.1. Retrieval of lexico-syntactic features during noun phrase production

Major language production models propose that speech involves 
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three stages: the conceptualisation stage, the formulation stage, and the 
articulation stage (e.g., Bock & Levelt, 1994; Caramazza, 1997; Dell, 
1986, 1988; Garrett, 1975, 1980; Levelt, 1989, 1992, 1999; Levelt et al., 
1999b; Oppenheim et al., 2010; Roelofs, 1997, 2000; Roelofs & Ferreira, 
2019; for an overview, see Griffin & Ferreira, 2006). The WEAVER++

model (Levelt et al., 1999a) proposes that lexico-syntactic features are 
activated at the lemma stratum — an intermediate layer between the 
conceptual and word-form strata. During picture naming, activation 
spreads from the concept to the associated lemma and subsequently to 
the connected lexico-syntactic features (e.g., grammatical gender, 
number, or classifier). If these features are overtly produced, activation 
further spreads to their word form, enabling retrieval of appropriate 
determiners or classifiers. In contrast, Caramazza’s (1997) Independent 
Network model suggests three distinct networks — lexical-semantic, 
syntactic, and phonological networks. In this model, the lexical- 
semantic network can activate the syntactic and phonological net
works independently. The model argues for parallel activation of syn
tactic and phonological networks directly from semantics, positing that 
lexico-syntactic feature processing may be bypassed if not phonologi
cally instantiated (e.g., when German nouns of different grammatical 
genders exhibit identical determiners in the plural form).

1.2. Gender congruency effect

Research into the processing mechanisms of lexico-syntactic features 
has initially concentrated on grammatical gender. Schriefers (1993)
investigated the processing of grammatical gender using the picture-word 
interference (PWI) paradigm in Dutch. In this experimental paradigm, a 
distractor word is superimposed onto a target picture. Participants are 
required to name the target pictures verbally while ignoring the dis
tractor words. A gender congruency effect was observed, whereby naming 
latencies increased when the target and distractor nouns differed in 
grammatical gender. This finding suggests that the grammatical gender 
information of distractors is automatically activated during the process 
of lemma retrieval, thereby competing with the grammatical gender 
nodes of the target nouns for selection. Schiller and Caramazza (2003)
challenged this interpretation (i.e., gender selection interference hypothe
sis, GSIH), proposing a determiner selection interference hypothesis (DSIH): 
the observed effect arises not from grammatical gender activation per se 
but from competition between determiners. They found that the gender 
congruency effect diminished when the determiners of both the target and 
distractor stimuli were congruent, even in the presence of grammatical 
gender incongruency. Hence, they refer to this phenomenon as the 
determiner congruency effect. Although behavioural studies yield mixed 
interpretations, electrophysiological evidence supports the activation of 
grammatical gender during noun phrase production. Bürki et al. (2016)
observed differences in ERP signals around 210 ms before articulation 
onset between gender-congruent and gender-incongruent conditions 
(mean RT = 798 ms). Together, these results suggest that grammatical 
gender information may be automatically activated and selected as a 
lexico-syntactic feature during noun phrase production.

1.3. Classifier congruency effect

The investigation of lexico-syntactic feature processing has also 
gained traction in research on Mandarin Chinese. Although Mandarin 
lacks rich morphological inflections and displays more flexible syntax, it 
features a classifier system similar in function to grammatical gender 
(Adams & Faires Conklin, 1973; Allan, 1977; Contini-Morava & Kilarski, 
2013; Kilarski, 2013). In Mandarin Chinese, nouns are quantified 
through quantifier-classifier phrases (i.e., quantifier + classifier +
noun), where the presence of a classifier is mandatory. The syntactic 
position of the classifier is usually fixed. Nouns may pair with various 
classifiers to further specify the quantity or form of the referent, 
enriching its meaning (Wang et al., 2025c; Zhang and Liu, 2009). For 
example, yì zh̄ı yáng means “one sheep”, while yì qún yáng means “a herd 

of sheep”, indicating different quantities. The different classifiers in yì 
d̄ı shuǐ (“a drop of water”) and yì tān shuǐ (“a puddle of water”) highlight 
the distinctions in the form of water.

Chinese classifiers can be categorised into several subtypes, such as 
individual classifiers (e.g., duǒ in yì duǒ huā, “one + classifier +
flower”), group classifiers (e.g., qún in yì qún rén, “one + classifier +
people”), and partition classifiers (e.g., duàn in yí duàn cōng, “one +
classifier + green onion”) (He, 2000). Individual classifiers denote a 
single unit of a person or object. Apart from the general classifier gè, 
which can be used with a wide range of nouns, most individual classi
fiers have specific collocational relationships with nouns. Although a 
noun may take different classifiers depending on context or pragmatic 
purpose, it generally pairs with a dominant individual classifier (Wang 
et al., 2025c). This study focuses on individual classifiers, which are 
referred to simply as classifiers in the following sections, unless other
wise specified.

Several studies have used the PWI paradigm to explore whether 
classifiers are activated during noun phrase production in a manner 
analogous to grammatical gender (Huang & Schiller, 2021; Li et al., 
2006; Zhang & Liu, 2009). These studies revealed that naming latencies 
increased when the classifiers of the distractor and target noun were 
incongruent, demonstrating a classifier congruency effect. This suggests 
that classifier information is automatically activated during lemma ac
cess. Unlike grammatical gender processing, which typically occurs in 
the P600 window (e.g., Foucart & Frenck-Mestre, 2011; Gunter et al., 
2000; Hagoort & Brown, 1999), the classifier congruency effect is often 
reflected in N400-like ERP responses (Huang & Schiller, 2021; Wang 
et al., 2019). The N400 component is generally associated with semantic 
processing (for a review, see Kutas & Federmeier, 2011), suggesting that 
classifier activation may be more semantically influenced than gram
matical gender.

The extent to which classifier processing engages semantic or syn
tactic processing remains a matter of ongoing debate in both language 
comprehension and language production research (for reviews, see 
Qian, in press; Wang and Schiller, in press). In the studies by Wang et al. 
(2019) and Huang and Schiller (2021), both the congruency of the 
classifiers and the semantic relatedness between the target and dis
tractor nouns were manipulated. The experiments also revealed a se
mantic interference effect (for a review, see Bürki et al., 2020), wherein 
naming latencies were longer when the distractor and the target noun 
belonged to the same semantic category, compared to semantically 
unrelated conditions. The behavioural effect was mirrored in the ERP 
data as an N400 component. This raises the question of whether the 
N400-like effects elicited by the semantic interference effect and the 
classifier congruency effect reflect similar underlying cognitive processes.

The categorisation of nouns by classifiers is primarily semantically 
driven. The pairing between a noun and a classifier must be consistent in 
semantic features such as the animacy, function, shape and size (Allan, 
1977; Tai, 1994; Tai & Chao, 1994; Zhang & Schmitt, 1998). The clas
sification of nouns according to these semantic features sometimes 
aligns with the semantic categories. For instance, the classifier tái is 
typically used for machines, whereas liàng is used for vehicles. The 
similar N400-like ERPs elicited by the classifier congruency effect and the 
semantic interference effect in previous studies (Huang & Schiller, 2021; 
Wang et al., 2019) seem to suggest that classifier processing is closely 
tied to the processing of semantic category information. However, the 
precise nature of this relationship and potential distinctions between the 
two ERP components remain underexplored in the literature.

1.4. Limitations of previous studies

Although several studies have reported evidence for a classifier con
gruency effect in Mandarin and have suggested that classifier information 
is automatically activated and selected during noun phrase production, 
these findings so far come from a relatively small number of in
vestigations (Huang & Schiller, 2021; Li et al., 2006; Wang et al., 2019; 
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Wang and Schiller, submitted; Zhang & Liu, 2009). Furthermore, some 
aspects of the experimental design and data analysis in these studies 
leave room for improvement. One issue concerns the use of the general 
classifier gè, which was included in the stimulus materials of some 
previous experiments. As a result of its extensive grammaticalization, gè 
has lost much of its original semantic content and is widely used with 
nearly all nouns in spoken Mandarin (Myers, 2000). This presents two 
potential problems: first, the processing of gè may rely primarily on 
syntactic routines, which distinguishes it from more semantically spe
cific classifiers (Frankowsky et al., 2022; Qian & Garnsey, 2016). Sec
ond, stimuli in the classifier-incongruent condition may not have been 
truly incongruent, given gè’s broad compatibility.

Another limitation relates to the analytical methods employed. Most 
prior studies used traditional average-based analyses, which are limited 
in their capacity to account for variation across participants and items or 
to handle unbalanced datasets. In comparison, (generalised) linear 
mixed-effects models (GLMMs/LMMs) have a better handle on missing 
data, larger statistical power, better control of the type I errors and allow 
for generalisation across items (Baayen et al., 2017; Barr, 2013; Frömer 
et al., 2018; Matuschek et al., 2017).

Finally, time windows and regions of interest (ROIs) in prior studies 
are typically chosen based on prior assumptions or findings. While this 
approach is widely used, it carries the risk of overlooking subtle effects 
that may occur in adjacent time windows or spatial areas. In contrast, a 
data-driven approach using permutation tests across all epochs may 
provide a clearer and more objective understanding of when and where 
effects emerge (Voeten, 2023a, 2023b).

Taken together, while the classifier congruency effect has been re
ported in Mandarin, the limited number of studies and methodological 
considerations suggest that further investigation is warranted. The 
present study seeks to contribute to this line of research by employing 
refined experimental materials and more detailed analytical methods to 
explore whether the classifier congruency effect can be reliably observed 
during noun phrase production in native Mandarin speakers.

1.5. The current study

The present study aims to replicate and extend the findings of Huang 
and Schiller (2021) by implementing three critical methodological up
dates (for detailed methodological differences between the two studies, 
see supplementary Table S.3). First, the experimental materials were 
revised to exclude the general classifier gè, ensuring that the classifier- 
incongruent condition remained valid and was not confounded by the 
pervasive use of gè. Classifiers were selected based on corpus-derived co- 
occurrence frequencies with target nouns, ensuring that they were 
dominant classifiers retaining semantic content and showing strong 
alignment with the semantic features of the nouns. This adjustment 
enables a more fine-grained examination of the potential interaction 
between the semantic features of classifiers and semantic categories of 
nouns. Second, we implemented a permutation-based and data-driven 
approach to identify temporally and spatially relevant EEG windows, 
enabling unbiased determination of time intervals and electrodes. By 
combining permutation testing, scalp topography analysis, and ERP 
component modelling, we systematically compared the neurophysio
logical signatures associated with classifier congruency and semantic 

relatedness, elucidating the relationship between classifier processing 
and semantic processing. Third, we used (generalised) linear mixed- 
effects models (GLMMs/LMMs) at the single-trial level. This approach 
retains more information while controlling for both subject-level and 
item-level variability, thereby increasing the interpretability and 
robustness of the analysis.

The experiment manipulated semantic relatedness and classifier 
congruency between target and distractor nouns using a PWI paradigm. 
We expect to observe both semantic interference and classifier congruency 
effects based on previous findings (Huang & Schiller, 2021; Wang and 
Schiller, submitted). Specifically, we predicted that semantically related 
distractors would lead to longer naming latencies than unrelated ones 
and that naming would be slower in classifier-incongruent conditions 
than classifier-congruent conditions. In the EEG data, we expect a more 
negative-going ERP component in the N400 time window for semanti
cally unrelated distractors relative to related ones. Meanwhile, we 
expect classifier-incongruent trials to elicit more negative voltage am
plitudes than classifier-congruent trials.

2. Methods

2.1. Participants

Thirty-five native Mandarin Chinese speakers (eight males and 
twenty-seven females) were recruited from the University of Münster in 
Germany. All participants were proficient in either English or German as 
a second language. Three participants also spoke Cantonese or Wu 
Chinese, but they primarily used Mandarin Chinese in their daily lives. 
The average age of the participants was 26.33 years (SD = 3.28), and six 
of them were left-handed. All participants reported having normal or 
corrected-to-normal vision, with no history of neurological, psycholog
ical, or language impairments. Informed consent was obtained prior to 
the experiment, and participants were provided with a debriefing form 
after completing the experiment, in accordance with the Ethics Code for 
Linguistic Research at the Faculty of Humanities. Participants received 
monetary compensation for their participation. Five participants were 
excluded due to insufficient valid data.

2.2. Materials

Twenty-five black-and-white line drawings representing objects used 
in daily life were selected from Liu’s picture database (Liu et al., 2011) 
and used as target pictures in the picture naming task. The names of 
these pictures correspond to monosyllabic (36 %) or disyllabic (64 %) 
words in Mandarin Chinese. Four targets were identical to those in 
Huang and Schiller (2021), and five targets overlapped with those used 
by Wang et al. (2019). Each target picture was assigned four distractors. 
The distractors were paired with target words depending on whether 
they shared the same classifier as the target word or whether they 
belonged to the same semantic category as the target word, resulting in 
four experimental conditions (for the example stimuli, see Table 1; for 
the complete stimulus list, see Table S.2 in the supplementary mate
rials), i.e., classifier-congruent and semantically-related (C+S+) condi
tion, classifier-incongruent and semantically-related (C− S+ ) condition, 
classifier-congruent and semantically-unrelated (C+S− ) condition, 
classifier-incongruent and semantically-unrelated (C− S− ) condition. A 
proportion of 12 % of the distractor words overlapped with Huang and 
Schiller (2021), while 26 % overlapped with Wang et al. (2019).

Unlike Huang and Schiller (2021), who selected classifiers from a 
dictionary, the noun-classifier pairings in this study were retrieved from 
the BCC corpus (Xun et al., 2016). Since a noun may occur with multiple 
classifiers, the most frequent one for each noun was selected as the ex
pected response in noun phrase production. On average, its collocation 
frequency (mean collocation frequency = 2,234.94, SD = 4,077.03) was 
5.53 times higher than that of the second most frequent classifier for the 
same noun (mean collocation frequency = 536.01, SD = 9,918.19). All 

Table 1 
Examples of distractors presented with the target noun “猴子 (monkey, classifier 
只 zhi)” in all conditions.

semantically related 
(Sþ)

semantically unrelated 
(S− )

classifier congruent 
(Cþ)

熊猫 (panda, 只 zhi) 袜子 (socks, 只 zhi)

classifier incongruent 
(C− )

马 (horse, 匹 pi) 门票 (ticket, 张 zhang)
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noun-classifier pairs were reviewed by two native speakers of Mandarin 
Chinese with academic training in linguistics prior to the experiment. 
Based on feedback from a pilot study, any pairings deemed implausible 
or unnatural were excluded from the final set of experimental materials. 
Twenty-four native speakers of Mandarin Chinese (Mean age = 23.13 
years, SD = 3.31; 10 male, 14 female), who did not participate in the 
other tasks of this study, evaluated the final set of experimental items. 
They rated the acceptability of each classifier–noun pairing on a 7-point 
scale, with 1 indicating least acceptable and 7 indicating most accept
able. The mean rating score was 6.11 (SD = 0.67).

The semantic relatedness of each pair of distractor and target words 
was assessed by fifteen native Chinese speakers who did not participate 
in the naming task. Ratings were made on a 7-point Likert scale, with 
higher scores indicating a stronger perception that the two words belong 
to the same semantic category. Statistical analysis of rating scores was 
conducted using the clmm() function from the ordinal package 
(Christensen, 2023) in RStudio Version 2024.04.2 + 764 (R Core Team, 
2023). Fixed factors included classifier congruency and semantic relat
edness, modelled using mixed-effects ordinal regression. Model selec
tion followed a backward elimination procedure starting with the 
maximal random-effects structure. The final best-fitting model and its 
parameters are detailed in Table A.1 of Appendix A. The results 
demonstrated that there was a significant difference in rating scores 
between the semantically related (M = 6.36, SD = 1.04) and semanti
cally unrelated (M = 1.60, SD = 1.12) conditions (β = 3.831, SE = 0.359, 
z = 10.666, 95 % CI [3.127, 4.535], p＜0.001), whereas there was no 
significant difference between the classifier-congruent condition (M =
4.07, SD = 2.59) and the classifier-incongruent (M = 3.92, SD = 2.64) 
condition (β = 0.070, SE = 0.059, z = 1.180, 95 % CI [− 0.046, 0.185], p 
= 0.238).

To control for potential confounds, several lexical and visual features 
of the distractors were matched across conditions (for details, see 
Table S.1 in the supplementary materials). Results of Kruskal-Wallis tests 
indicated that distractors across the four conditions did not show sig
nificant differences in word frequency (H(3) = 1.252, p = 0.741, 95 % CI 
[5515.998, 9584.582]), visual complexity determined by the number of 
strokes (H(3) = 1.526, p = 0.676, 95 % CI [12.505, 14.715]), number of 
syllables (H(3) = 2.095, p = 0.553, 95 % CI [1.651, 1.849]) and phrase 
frequency of noun-classifier collocations (H(3) = 7.835, p = 0.050, 95 % 
CI [1105.028, 2274.792]). The word frequency data were obtained from 
the Chinese Lexical Database (Sun et al., 2018). In the present study, 
phrase frequency refers to how frequently the most used classifier for a 
given noun appears in quantifier-classifier phrases. The frequency of co- 
occurrence may affect the degree of classifier activation (Wang et al., 
2025c). Therefore, we additionally controlled for this potential con
founding factor, differing from previous research (Huang & Schiller, 
2021; Wang et al., 2019). The phrase frequency data were retrieved and 
extracted from the BCC corpus (Xun et al., 2016). Last, distractors were 
not phonologically or orthographically related to the corresponding 
target nouns.

2.3. Design and procedure

This experiment followed a 2 × 2 within-subjects design, with clas
sifier congruency (C) and semantic relatedness (S) as two fixed factors. 
Each of the four conditions (C+S+, C− S+, C+S− , C− S− ) included 25 
items. Participants were instructed to name all target pictures using 
noun phrases of the form “quantifier + classifier + noun” during the 
picture naming task. Either two or three identical target pictures were 
randomly presented for each target to minimise potential confounds 
from repeatedly naming the same number. Consequently, each partici
pant completed a total of 200 experimental trials.4 Eight additional trials 
were provided for warming up.

The presentation order of trials was pseudo-randomised using the 
Windows program Mix (Van Casteren & Davis, 2006) program, ensuring 
that trials with identical conditions, classifiers, or syllables were not 
presented consecutively. Trials with the same number of pictures could 
appear at most twice in a row. Additionally, the minimum distance 
between any two identical target words was ten trials. Also, the mini
mum distance between any two target words in the same semantic 
category was three trials. Each participant was presented with the 
stimuli in a different pseudo-random order.

The experiment was implemented in E-Prime 2.0 software (Psy
chology Software Tools, Pittsburgh, PA). The experimental procedure 
followed that of Huang and Schiller (2021), and comprised three ses
sions: a familiarisation session, a practice session, and an experimental 
session. During the familiarisation session, all target pictures were pre
sented sequentially on the screen for 3000 ms, along with their corre
sponding names. Participants were instructed to indicate their 
familiarity with the pictures and target noun phrases by pressing a 
designated key. In the practice session, a string of letters (“XXXX”) was 
superimposed on each target picture, and participants were instructed to 
ignore it while naming the picture using a noun phrase within 3000 ms. 
The experimenter provided corrections for any errors during this phase. 
The experimental session followed the same structure, except that dis
tractor words replaced the letter strings (see Fig. 1). Each trial began 
with a fixation cross (“+”) displayed for 300 ms, followed by a blank 
screen for 200 ms. The target picture, along with the distractor, was then 
shown for 3000 ms, followed by a final blank screen for 500 ms. Vocal 
responses were recorded automatically at the onset of each target pic
ture using E-Prime 2.0 software. Throughout the experiment, EEG data 
were recorded simultaneously. In total, there were 200 trials distributed 
evenly across four blocks, with each block starting with two warm-up 
trials.

2.4. EEG recordings and data pre-processing

EEG data were recorded using a mobile Active-Two BioSemi system 
(BioSemi, Amsterdam) installed and configured in a controlled linguistic 
laboratory environment. The system and its setup were identical to those 
used by Huang and Schiller (2021). Thirty-two Ag/AgCl active elec
trodes were positioned on the EEG cap according to the standardised 
international 10/20 system (see Appendix C). In addition, six external 
electrodes were used: two were placed at the outer canthi of the eyes to 
record horizontal electrooculogram (HEOG), two were positioned above 
and below the left eye to record vertical electrooculogram (VEOG), and 
two were attached to the left and right mastoids to allow for offline re- 
referencing. The Common Mode Sense (CMS) and Driven Right Leg 
(DRL) electrodes served as the online reference and ground, respec
tively, to reduce noise and enhance signal quality. EEG signals were 
sampled at 512 Hz.

Fig. 1. Sequence of stimulus presentation.

4 Brysbaert and Stevens (2018) suggest that a well-powered reaction time 
experiment should have a minimum of 1,600 observations per condition. In the 
present study, each condition consisted of 1,750 observations, satisfying this 
requirement.
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EEG data pre-processing and ERP extraction were performed offline 
using Brain Vision Analyzer (Version 2.2.2, Brain Products GmbH, 
Gilching, Germany), following the procedure outlined in Huang and 
Schiller (2021) and Von Grebmer zu Wolfsthurn et al. (2021). Raw EEG 
signals were re-referenced to the average of the mastoid electrodes and 
band-pass filtered from 0.1 to 30 Hz. A notch filter at 50 Hz was applied 
to eliminate powerline interference. Noisy channels, constituting be
tween 3.13 % and 12.5 % of electrodes per participant (mean = 6.92 %), 
were corrected using spherical spline interpolation. Ocular artefacts 
were identified through combined HEOG and VEOG channels using 
linear derivation and corrected via independent component analysis 
(ICA). Trials with voltage fluctuations exceeding ± 100 μV or containing 
other artefacts were excluded. Epochs were segmented for correctly 
named trials, from − 200 ms to 800 ms relative to picture onset. Baseline 
correction was applied based on the mean voltage in the 200 ms pre- 
stimulus interval. Valid epochs were exported for statistical analysis. 
Five participants were excluded from further analysis due to insufficient 
valid trials (<60 %), resulting in a final dataset of thirty participants.

2.5. Data analysis

2.5.1. Behavioural data analysis
Audio recordings from each trial were annotated and manually 

reviewed offline using Praat 6.3.08 (Boersma, 2001) to extract the 
naming accuracy and latency (measured from stimulus onset to voice 
onset). Resulting behavioural data were then analysed using a single- 
trial modelling approach via the R package lme4 (Bates et al., 2015b). 
Naming accuracy was modelled using generalised linear mixed models 
(GLMMs) via the glmer() function with a binomial distribution. Naming 
latencies, which showed positive skew, were analysed using glmer() with 
an inverse Gaussian distribution. Fixed-effect predictors in the models 
included Classifier Congruency and Semantic Relatedness, both sum- 
coded, with the classifier-incongruent and semantically unrelated con
ditions serving as reference levels, respectively. Random effects initially 
included random intercepts for participants and items and random 

slopes for each fixed effect by participants and by items. A backward 
elimination strategy was applied to refine the random-effects structure. 
Simplification was carried out when models failed to converge or 
additional random effects did not significantly improve model fit (Bates 
et al., 2015a). Model comparison and selection were performed using 
the anova() function, guided by a combination of Akaike’s Information 
Criterion (AIC; Akaike, 1974), Bayesian Information Criterion (BIC; 
Neath & Cavanaugh, 2012), and log-likelihood ratio tests (Lewis et al., 
2011). Model diagnostics included residual plots to assess homosce
dasticity and normality. Post-hoc analyses of the interaction effects were 
conducted using the emmeans package (Lenth, 2024).

2.5.2. EEG data analysis
Different from Wang et al. (2019) and Huang and Schiller (2021), we 

did not predefine the time windows and electrodes for analysis. We first 
performed a permutation test on the ERP data before statistical model
ling to examine the temporospatial distribution of classifier congruency 
and semantic interference effects. Using the permutes package (Voeten, 
2023b), we computed F-values across all electrodes within the 0–700 ms 
time window relative to stimulus onset. Given that 700 ms post-stimulus 
onset is approaching the onset of articulation, as evidenced by the 
behavioural results, the time window for detecting the effects was 
restricted to before this time point. To assess spatial patterns in the ef
fects, we introduced a factor of Anteriority and grouped electrodes into 
three regions: anterior (AF3, AF4, F7, F8, F3, F4, Fz), central (FC5, FC6, 
FC1, FC2, C3, C4, CP5, CP6, CP1, CP2, Cz) and posterior (P7, P8, P3, P4, 
PO3, PO4, O1, O2, Pz, Oz). Based on the results of the permutation 
analysis, we identified time windows and regions of interest (ROIs) and 
then conducted statistical modelling using single-trial linear mixed- 
effects models (LMMs) using the lmer() function (Amsel, 2011; Frömer 
et al., 2018). Unlike previous studies (Huang & Schiller, 2021; Wang 
et al., 2019) that analysed averaged ERPs using ANOVAs, this method 
accounts for both by-subject and by-item variance, providing greater 
explanatory power (Baayen et al., 2017; Barr, 2013; Frömer et al., 2018; 
Matuschek et al., 2017). Fixed effects included Classifier Congruency, 
Semantic Relatedness, and Anteriority (all sum-coded). The random- 
effects structure mirrored the approach used in the behavioural anal
ysis, with backward elimination applied to determine the best-fitting 
model. Post-hoc tests were conducted to determine interaction effects. 
Previous studies (Huang & Schiller, 2021; Wang et al., 2019) have 
shown that both classifier congruency and semantic relatedness can 
elicit N400-like components. To further assess the similarity between 
these components, we analysed and compared the peak latencies of the 
two effects using a gamma-distributed glmer() model. The fixed factor 
Effect had two levels: the semantic interference effect and the classifier 
congruency effect. Subject and Electrode were included as random ef
fects. The model selection procedure was identical to that used in the 
voltage amplitude analysis.

3. Results

3.1. Behavioural data exclusion

To maintain consistency with the EEG datasets, five participants 
were excluded from the behavioural data analysis, whereby a total of 
thirty datasets were retained. From a total of 6000 recorded trials 
collected from the thirty participants, we further excluded 1355 data 
points (22.58 %) when analysing the naming latencies. The exclusions 
were implemented in accordance with the following criteria: (1) 394 
responses (6.57 %) were excluded due to the use of incorrect nouns or 
classifiers and the absence of responses; (2) 50 trials (0.89 %) were 
excluded for exhibiting naming latencies exceeding 2000 ms or falling 
below 200 ms; (3) 79 trials (1.32 %) were identified as outliers, given 
that their naming latencies exceeded three standard deviations from the 
mean latency for each participant and item; (4) further exclusions were 
made based on EEG data (as detailed in Section 3.3). As a result, a total 

Fig. 2. Naming accuracy (%) for each condition.
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of 4645 trials (77.42 %) remained for subsequent analysis.

3.2. Behavioural data results

3.2.1. Naming accuracy
The best-fitting model (see Table A.2 of Appendix A) included the 

main effects of Classifier Congruency, Semantic Relatedness, and 
random intercepts for both subjects and items. The analysis revealed 
(see Fig. 2) a significant main effect of Classifier Congruency, with 
naming accuracy significantly lower for classifier-congruent conditions 
(M = 0.921, SD = 0.269) compared to incongruent (M = 0.947, SD =
0.223) conditions (β = − 0.240, SE = 0.055, z = − 4.361, 95 % CI 
[− 0.348, − 0.132], p < 0.001). A significant effect of Semantic Relat
edness was also found, where naming accuracy was lower for semanti
cally related items (M = 0.925, SD = 0.263) than for unrelated (M =
0.943, SD = 0.23) items (β = − 0.169, SE = 0.055, z = − 3.068, 95 % CI 
[− 0.276, − 0.061], p = 0.002). The interaction between Classifier Con
gruency and Semantic Relatedness did not reach statistical significance 
(β = 0.036, SE = 0.055, z = 0.648, 95 % CI [− 0.072, 0.143], p = 0.517).

3.2.2. Naming latencies
The best-fitting model of naming latencies, as shown in Table A.3 of 

Appendix A and Fig. 3, indicated a significant main effect of Semantic 
Relatedness (β = 9.388, SE = 4.325, 95 % CI [0.909, 17.867], p = 0.03). 
Specifically, naming latencies were longer in the semantically related 
condition (M = 1029 ms, SD = 248) compared to the semantically 

Fig. 3. Naming latencies (in ms) for each condition.

Fig. 4. Outcomes of the permutation test performed on all electrodes for the 0 – 700 ms time window relative to stimulus onset.

J. Wang et al.                                                                                                                                                                                                                                    Brain Research 1868 (2025) 149995 

6 



unrelated condition (M = 1013 ms, SD = 241). No main effect was found 
for Classifier Congruency — naming latencies did not differ significantly 
between classifier-congruent (M = 1021 ms, SD = 248) and classifier- 
incongruent (M = 1021 ms, SD = 241) conditions (β = − 0.161, SE =
4.153, 95 % CI [− 8.303, 7.980], p = 0.969). A significant interaction 
between Classifier Congruency and Semantic Relatedness was observed 
(β = − 10.580, SE = 5.286, 95 % CI [− 20.944, − 0.217], p = 0.045). Post- 
hoc analyses showed that, for semantically related items, naming la
tencies were significantly shorter for classifier-congruent trials (M =
1020 ms, SD = 249) than incongruent (M = 1038 ms, SD = 247) trials (β 
= − 21.5, SE = 10.5, z = − 2.043, 95 % CI [− 42.1, − 0.872], p = 0.041). 
For semantically unrelated pairs, however, there was no significant 
difference in naming latencies between classifier-congruent (M = 1022 
ms, SD = 247) and incongruent (M = 1004 ms, SD = 234) trials (β =
20.8, SE = 15.8, z = 1.315, 95 % CI [− 10.2, 51.887], p = 0.188).

3.3. EEG data exclusion

The EEG data analysis was conducted following the same exclusion 
criteria as those applied to the behavioural analysis, including trials with 
incorrect responses and outliers. 15.02 % of the EEG data was contam
inated by artefacts, which were removed during data pre-processing. 
Thirty datasets were analysed with the same fixed effects as in the 
behavioural analysis.

3.4. EEG data results

Visual inspection of the permutation test results indicated a potential 
modulatory effect of Classifier Congruency in the frontal region (Fz, F8) 
and centro-parietal region (Pz, PO4, P8, P3, Oz, O2, Cz, CP5) between 
400 ms and 500 ms post-stimulus onset, as well as an effect of Semantic 

Fig. 5. Grand averages of ERPs from representative electrodes (Fz, Cz, Pz, Oz) for all conditions.
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Relatedness in the fronto-central region (Fz, FC2, FC1, F8, F7, F4, F3, Cz) 
emerging between 350 ms and 550 ms post-stimulus onset (see Fig. 4).

We modelled the voltage amplitudes from 400 to 500 ms post- 
stimulus onset based on the time window identified in the permuta
tion test for the potential classifier congruency effect. The best-fitting 
model (see Table A.4 of Appendix A) showed a significant main effect 
of Semantic Relatedness (β = 0.285, SE = 0.139, t = 2.053, 95 % CI 
[0.013, 0.557], p = 0.040) with less positive voltage amplitudes for 
semantically unrelated conditions (M = 2.984 μV, SD = 12.771) 
compared to related conditions (M = 3.616 μV, SD = 13.015); There was 
a trend for the classifier congruency effect, with less positive voltage 
amplitudes for classifier-incongruent conditions (M = 3.020 μV, SD =
12.836) than classifier-congruent (M = 3.584 μV, SD = 12.953) condi
tions (β = 0.248, SE = 0.134, t = 1.850, 95 % CI [0.015, 0.511], p =

0.064). The interaction between Classifier Congruency and Anteriority 
was significant, F(2, 3,622,948) = 4.114, p = 0.016. Post-hoc analysis 
showed that the effect of Classifier Congruency was significant in the 
anterior region (β = 0.533, SE = 0.268, z = 1.984, 95 % CI [0.007, 
1.061], p = 0.047), but not in the others. The interaction between Se
mantic Relatedness and Anteriority was significant, F(2, 3,622,948) =
298.997, p < 0.001. Post-hoc analysis showed that the effect of Semantic 
Relatedness was significant in the anterior (β = 0.834, SE = 0.278, z =
3.000, 95 % CI [0.289, 1.379], p = 0.003) and central regions (β =
0.721, SE = 0.278, z = 2.592, 95 % CI [0.176, 1.267], p = 0.010). Post- 
hoc analyses of the three-way interaction between Classifier Congru
ency, Semantic Relatedness, and Anteriority revealed that, in the ante
rior region, the classifier congruency effect was significant in the 
semantically unrelated condition, β = 0.903, SE = 0.322, z = 2.808, 95 

Fig. 5. (continued).
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% CI [0.273, 1.533], p = 0.005. The classifier-incongruent condition (M 
= 0.977 μV, SD = 13.553) elicited more negative amplitudes than the 
classifier-congruent condition (M = 1.869 μV, SD = 13.415). In the 
semantically related condition, the classifier-incongruent condition (M 
= 2.198 μV, SD = 13.489) also elicited more negative amplitudes than 
the classifier-congruent condition (M = 2.537 μV, SD = 14.065), but this 
difference was not significant, β = 0.165, SE = 0.391, z = 0.421, 95 % CI 
[− 0.602, 0.931], p = 0.674. Fig. 5 presents the grand mean of the ERPs 
on a selection of electrodes. Fig. 6 provides a visual presentation of the 
effect of Classifier Congruency and Semantic Relatedness using scalp 
topography.5

Since both the classifier congruency effect and the semantic interference 
effect elicited N400-like components, we further compared the peak 
latencies of these two effects (see Fig. 7). Specifically, within the 
350–550 ms time window, we identified the peak latency of the voltage 
amplitude difference for the classifier congruency and semantic relat
edness effects, respectively. The peak latency of the classifier congru
ency effect occurred at 455.16 ms after stimulus onset (SD = 60.43), 
slightly later than that of the semantic interference effect, which 
occurred at 446.71 ms (SD = 60.51). However, the model results (see 
Table A.5 in Appendix A) indicated no significant difference in peak 
latency between the two effects.

4. Discussion

The present study aimed to investigate the processing of classifier 
information during noun phrase production in Mandarin Chinese. It 

specifically examined the effects of classifier congruency and semantic 
relatedness utilising a picture-word interference (PWI) paradigm. We 
introduced several methodological refinements based on previous 
research (Huang & Schiller, 2021; Li et al., 2006; Wang et al., 2019; 
Zhang & Liu, 2009). These included the exclusion of highly grammati
calised general classifiers (e.g., gè), selecting the classifier that most 
frequently co-occurs with each noun from a corpus, applying single-trial 
linear mixed-effects modelling and adopting a permutation-based 
approach for defining EEG time windows in a data-driven manner. By 
implementing these improvements, we reassess the robustness of the 
classifier congruency effect and gain further insights into its relation to 
semantic processing.

Consistent with previous findings (e.g., Dell’Acqua et al., 2010; 
Huang & Schiller, 2021; Krott et al., 2019; Rose et al., 2019; Wang et al., 
2019; Zhu et al., 2015), the current study replicated a reliable semantic 
interference effect: naming latencies were significantly longer when the 
target and distractor words belonged to the same semantic category 
compared to when they were unrelated. In the electrophysiological data, 
the semantically unrelated condition elicited more negative voltage 
amplitudes than the semantically related condition within the N400 
time window in the fronto-central region, a component typically asso
ciated with semantic processing difficulty (Kutas & Federmeier, 2011). 
Regarding the classifier congruency effect, although no significant main 
effect was found on naming latencies across all conditions, a significant 
interaction between classifier congruency and semantic relatedness 
emerged. Specifically, classifier incongruency delayed naming signifi
cantly when the distractors were semantically related to the target nouns 
but not when the distractors were semantically unrelated. In the ERP 
data, although the main effect of classifier congruency only approached 
statistical significance across all regions within the 400–500 ms time 
window, further regional analyses revealed a significant classifier con
gruency effect in the anterior scalp region. In this region, classifier con
gruency interacted with semantic relatedness. The classifier congruency 
effect was significant in the semantically unrelated condition but did not 

Fig. 6. Scalp topographies every 100 ms after stimulus onset. (a) The difference in voltage amplitudes between the classifier-incongruent condition and the classifier- 
congruent condition. (b) The difference in voltage amplitudes between the semantically unrelated condition and the semantically related condition.

5 Visual inspection of the ERP waveforms and scalp topography also revealed 
an N1–P1–N2 complex that may be influenced by semantic relatedness and 
classifier congruency. These ERP components are typically associated with the 
presentation of visual stimuli and are not relevant to the purpose of the present 
study and will therefore not be discussed further.
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reach significance in the semantically related condition.
The semantic interference effect observed in behavioural and ERP data 

aligns with a large body of literature demonstrating semantic processing 
during lexical retrieval (Bürki et al., 2020). According to the prominent 
model of lexical access (Levelt et al., 1999a; Roelofs, 1992), when par
ticipants attempt to name a target picture, activation initially spreads 
from the conceptual representation of the target to semantically related 
concepts within the network (see also Bloem & La Heij, 2003; Lupker, 
1979; Roelofs, 1992; Schnur et al., 2006). This activation then spreads to 
the corresponding lemma nodes. Consequently, when distractors are 
semantically related to the target, their lexical nodes are activated to a 
higher level compared to unrelated distractors. During lemma selection, 
these co-activated lexical candidates compete with the target lemma, 
leading to increased selection difficulty and extended naming latencies.

The present study also observed a classifier congruency effect, which 
was weaker than the semantic interference effect. Under the semantically 

related condition, stimuli in the classifier-congruent condition were 
named significantly faster than those in the classifier-incongruent con
dition. This difference in naming latency is consistent with the findings 
of Huang and Schiller (2021). Wang et al. (2019) propose that the 
classifier congruency effect is similar to the gender congruency effect 
observed in some Indo-European languages. According to their account, 
the classifier congruency effect reflects the activation of classifiers as 
lexico-syntactic features during lemma access, thereby supporting the 
WEAVER++ model (Levelt et al., 1999a). In this framework, the asso
ciated classifier nodes are automatically activated when the target and 
the distractor are processed. When these classifiers are incongruent, this 
activation leads to competition for selection, which is behaviourally 
observed as prolonged naming latencies. Alternatively, Caramazza’s 
(1997) Independent Network model suggests that lexico-syntactic fea
tures are activated when the corresponding lexical forms need to be 
specified. To produce classifier-noun phrases in the present study, the 

Fig. 7. Difference waves elicited by the classifier congruency effect and the semantic interference effect. The figure shows the four main electrodes (Fz, Cz, Pz, and 
Oz). Shaded areas indicate the standard deviations.
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classifier must be retrieved and produced. The observed classifier 
incongruency effect suggests that the distractor’s classifier was also 
automatically activated during noun phrase production, consistent with 
the Independent Network model. When the classifiers associated with the 
target and distractor words are incongruent, their activation may lead to 
competition during lexical form encoding, resulting in increased pro
cessing time.

For the EEG results, the semantic interference effect and the classifier 
congruency effect were generally reported within the N400 time window 
(Huang & Schiller, 2021; Wang et al., 2019). The ERP data from the 
present study corroborate these previous findings. The permutation-test 
results and scalp topography suggest that the semantic interference effect 
emerged slightly earlier than the classifier congruency effect. However, 
their peak latencies did not differ significantly. The N400-like 

component elicited by classifier congruency was mainly observed over 
frontal regions, while that elicited by semantic relatedness was found 
over both frontal and central regions. The two effects overlapped in 
onset window, peak latency, and scalp distribution. ERP components 
with such distributions are typically associated with semantic informa
tion processing (Kutas & Federmeier, 2011). The classifiers used in this 
study retained a certain degree of semantic content. They can categorise 
nouns according to the consistency between the semantic features of the 
nouns and the classifiers. This function is similar to the way nouns are 
grouped into different semantic categories according to their meanings. 
Therefore, the processing of classifiers might be related to the processing 
of semantic category information in the present study. The N400-like 
effect elicited by the semantic relatedness might arise during concept- 
lexical activation stages (Abdel Rahman & Melinger, 2009; Bloem & 

Fig. 7. (continued).
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La Heij, 2003; Zhang et al., 2016). When the semantic category of the 
target (e.g., fish) and distractor (e.g., road) words mismatched, this 
conflict imposed a cost at the stage of semantic information processing. 
On the other hand, the classifier congruency effect might emerge during 
lemma access and the retrieval of lexico-syntactic features (Huang & 
Schiller, 2021; Wang et al., 2019). Incongruency between the classifiers 
of the distractor and that of the target noun also involved conflicts in 
their semantic features, which might likewise cause difficulty in se
mantic processing. For example, the classifier for sugar (“kē”) and the 
classifier for biscuits (“kuài”) differ in the semantic feature of shape. 
Conflicts arising from a mismatch in semantic categories may be more 
difficult to resolve than conflicts based on specific semantic features of 
the classifier. We found that the semantic relatedness modulated the 
classifier congruency effect in the ERP data. When distractor and target 
belong to the same semantic category, category-level similarity may 
have masked or alleviated the difficulty of resolving the semantic con
flict caused by classifier incongruency. As a result, although ERP dif
ferences were observed between classifier-congruent and incongruent 
conditions in the semantically related condition, this effect did not reach 
statistical significance. Together, the findings of the current study align 
with previous research showing the activation of classifiers during noun 
phrase production. For the classifiers retaining semantic information in 
this study, their processing may be related to the processing of semantic 
category information.

It is worth noting that the present study produced some findings that 
differ from previous research. The main difference is that we observed 
an interaction between classifier congruency and semantic relatedness. 
In naming latency, a significant classifier congruency effect was found 
only in the semantically related condition, while this effect was not 
significant in the semantically unrelated condition. This interaction 
pattern suggests that the classifier congruency effect was stronger in the 
semantically related condition than in the unrelated condition. Although 
Huang and Schiller (2021) did not report an interaction in their study on 
classifiers, a similar interaction has been found in a grammatical gender 
study using the same experimental paradigm. Schriefers (1993) reported 
a stronger gender congruency effect in the semantically related condition 
than in the semantically unrelated condition when examining the effects 
of gender congruency and semantic relatedness on naming latency. 
According to previous accounts of the semantic interference effect (Bürki 
et al., 2020), activation spreads from the target noun’s concept node (e. 

g., hóuzi, “monkey”) to semantically related concepts (e.g., mǎ, “horse”; 
xióngmāo, “panda”; etc.) and their corresponding lexical entries. The 
activation level of distractor words belonging to the same semantic 
category as the target may be enhanced. In contrast, distractors in the 
semantically unrelated condition may not receive such additional acti
vation. Based on the assumption that activation can automatically 
spread from a lemma to its connected lexico-syntactic feature nodes, the 
activation levels of the classifier nodes for distractors in the semantically 
related condition might also be enhanced (e.g., classifier pǐ for mǎ; 
classifier zh̄ı for xióngmāo). In other words, these distractors’ classifiers 
might also receive extra activation. When the classifiers of the seman
tically related distractor and target were congruent, the highly activated 
classifier of the target noun could enter the form encoding stage more 
quickly than in the semantically unrelated condition, resulting in shorter 
naming latencies. When the classifiers were incongruent, the increased 
competition among highly activated but incongruent classifiers may 
have made it more difficult for the classifier of the target word to enter 
the lexical selection stage.

In the semantically unrelated condition, no significant effect of 
classifier congruency was observed on naming latency. Naming was 
slower in the classifier-congruent condition than in the classifier- 
incongruent condition. This result, which differs from previous find
ings, may be due to the selection of classifiers in the present study. 
Compared to the materials in previous studies (Huang & Schiller, 2021; 
Wang et al., 2019), we excluded the highly grammaticalised general 
classifier gè, which has largely lost its semantic content. In addition, 
noun-classifier pairs were carefully selected based on a corpus, ensuring 
the highest collocation frequencies. These adjustments ensured that the 
classifiers used in the experiment preserved semantic content and that 
the semantic associations between nouns and classifiers were relatively 
strong. In other words, there was substantial overlap in their semantic 
features. For example, wéi j̄ın (“scarf”) is a long-shaped object, and its 
classifier tiáo has the semantic feature “long in shape.” Classifiers cate
gorise nouns based on such semantic features. In the semantically un
related but classifier-congruent condition, the classifier-noun 
classification conflicted with the noun’s semantic category. For instance, 
yú (“fish”) and wéi j̄ın (“scarf”) do not belong to the same semantic 
category, but both can take the classifier tiáo. The classifier tiáo groups 
them as long, strip-shaped objects. The EEG results in the present study 
showed a significant classifier congruency effect in the semantically un
related condition, indicating that the classifiers of nouns were activated. 
Previous studies have suggested that the semantic features (e.g., shape, 
animacy) carried by classifiers may also be involved in classifier pro
cessing (Bi et al., 2010; Wang et al., 2025a,b). Therefore, during pro
cessing, the semantic information in classifiers that categorise nouns 
based on semantic features might conflict with the semantic category 
information of the nouns. This conflict might require additional pro
cessing time, leading to longer naming latencies in the semantically 
unrelated but classifier-congruent condition. Together, these findings 
suggested that semantic category information might modulate classifier 
processing. However, interaction effects often require larger sample 
sizes for validation. The conclusions drawn from the interaction effects 
in the present study should be further examined and explored in future 
experiments.

5. Conclusions

This study investigated whether the classifier congruency effect could 
be reliably elicited during noun phrase production in Mandarin Chinese 
and how this effect relates to semantic processing. By employing refined 
experimental materials and advanced analytical approaches, the present 
study provides further evidence for the automatic activation of classi
fiers during lemma access. Furthermore, the results suggest that se
mantic processing may modulate classifier activation. The processing of 
classifiers that retain semantic content may be related to the processing 
of semantic category information. Future research could build on these 

Fig. B1. 32-channels with 10/20 system layout including CMS and DRL (https: 
//www.biosemi.com/headcap.htm).
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findings by exploring how different classifiers (e.g., specific classifiers 
versus general classifiers) differentially engage semantic and syntactic 
processing streams.

CRediT authorship contribution statement

Jin Wang: Writing – review & editing, Writing – original draft, 
Project administration, Methodology, Funding acquisition, Formal 
analysis, Data curation, Conceptualization. Jurriaan Witteman: 
Writing – review & editing, Supervision, Formal analysis. Niels O. 
Schiller: Writing – review & editing, Supervision, Methodology, Fund
ing acquisition, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements

The research received partial funding from the China Scholarship 
Council (CSC) under grant number 202006200006. Niels. O. Schiller. 
was supported by a start-up grant of the City University of Hong Kong 
[grant number: 9380177]. We would like to express our gratitude to all 
the members of the Experimental Linguistics Laboratories at Leiden 
University and Münster University and our participants. Lastly, we 
extend our gratitude to the anonymous reviewers for their valuable 
contributions.

Appendix 

A. Model parameters

Table A1 
Model of best fit for semantic relatedness rating scores, including log-odds ratios, standard errors, confidence intervals, z-values and p-values (n = 15).

Formula: rating score ~ semantic relatedness + classifier congruency + (1 + semantic relatedness | subject) + (1 | item)
Predictors log-odds std. error 95 % CI z-value Pr(>|z|)

1|2 − 2.677 0.263 − 3.192 – − 2.162 − 10.191 <0.001
2|3 − 1.158 0.259 − 1.666 – − 0.649 − 4.463 <0.001
3|4 − 0.185 0.258 − 0.692 – 0.321 − 0.718 0.473
4|5 0.049 0.258 − 0.457 – 0.556 0.192 0.848
5|6 1.495 0.260 0.985 – 2.004 5.750 <0.001
6|7 3.218 0.264 2.700 – 3.736 12.180 <0.001
Semantic relatedness [related] 3.831 0.359 3.127 – 4.535 10.666 <0.001
Classifier congruency [congruent] 0.070 0.059 − 0.046 – 0.185 1.180 0.238
Random Effects
σ2 3.29
τ00 Item 0.33
τ00 Subject 1.58
τ11 Subject.Semantic relatednessUnrelated 6.57
ρ01 Subject − 0.84
ICC 0.37
N Subject 15
N Item 25
Observations 1,453
Marginal R2 / Conditional R2 0.739 / 0.835

Table A2 
Model of best fit for naming accuracy, including log-odds ratios, standard errors, confidence intervals, z-values and p-values (n = 30).

Formula: naming accuracy ~ 1 + classifier congruency × semantic relatedness + (1 | subject) + (1 | item)
Predictors log-odds std. error 95 %CI z-value Pr(>|z|)

(Intercept) 3.198 0.234 2.739 – 3.657 13.653 <0.001
Classifier[Congruent] − 0.240 0.055 − 0.348 – − 0.132 − 4.361 <0.001
Semantic[Related] − 0.169 0.055 − 0.276 – − 0.061 − 3.068 0.002
Classifier[Congruent] × Semantic[Related] 0.036 0.055 − 0.072 – 0.143 0.648 0.517
Random Effects
σ2 3.29
τ00 Subject 0.55
τ00 Item 0.75
ICC 0.28
N Subject 30
N Item 25
Observations 6,000
Marginal R2 / Conditional R2 0.019 / 0.298
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Table A3 
Model of best fit for naming latencies, including estimated means, standard errors, confidence intervals and p-values (n = 30).

Formula: naming latencies ~ 1 + classifier congruency × semantic relatedness + (1 + classifier congruency × semantic relatedness | subject) + (1 | item)
Predictors Estimates std. error 95 %CI Pr(>|z|)

(Intercept) 1054.762 21.866 1,011.895 – 1,097.630 <0.001
Classifier[congruent] − 0.161 4.153 − 8.303 – 7.980 0.969
Semantically[related] 9.388 4.325 0.909 – 17.867 0.030
Classifier[congruent] × Semantically[related] − 10.580 5.286 − 20.944 – − 0.217 0.045
Random Effects
σ2 0.01
τ00 Subject 2,106.02
τ00 Item 882.14
τ11 Subject.ClassifierCongruent 101.85
τ11 Subject.SemanticallyRelated 135.46
τ11 Subject.ClassifierCongruent:SemanticallyRelated 230.52
ρ01 Subject.ClassifierCongruent − 0.06
ρ01 Subject.SemanticallyRelated 0.18
ρ01 Subject.ClassifierCongruent:SemanticallyRelated − 0.09
ICC 1.00
N Subject 30
N Item 25
Observations 4,645
Marginal R2 / Conditional R2 0.055 / 1.000

Table A4 
The best-fitting model for voltage amplitudes in the 400–500 ms time window post-stimulus onset, including estimated means, standard errors, confidence intervals, t- 
values and p-values (n = 30).

Formula: voltage amplitudes ~ 1 + classifier congruency × semantic relatedness × anteriority + (1 + classifier congruency × semantic relatedness | subject) + (1 | item)
Predictors Estimates std. error 95 %CI t-value Pr(>|t|)

(Intercept) 3.139 0.738 1.693 – 4.586 4.255 <0.001
Classifier[Congruent] 0.248 0.134 − 0.015 – 0.511 1.850 0.064
Semantic[Related] 0.285 0.139 0.013 – 0.557 2.053 0.040
Anteriority[Posterior] 1.670 0.009 1.653 – 1.687 192.010 <0.001
Anteriority[Central] − 0.400 0.010 − 0.419 – − 0.381 − 41.560 <0.001
Classifier[Congruent] × Semantic[Related] − 0.036 0.118 − 0.267 – 0.195 − 0.305 0.760
Classifier[Congruent] ×

Anteriority[Posterior]
− 0.023 0.009 − 0.040 – − 0.006 − 2.677 0.007

Classifier[Congruent] ×
Anteriority[Central]

0.005 0.010 − 0.014 – 0.024 0.489 0.625

Semantic[Related] × Anteriority[Posterior] − 0.208 0.009 − 0.225 – − 0.191 –23.914 <0.001
Semantic[Related] × Anteriority[Central] 0.076 0.010 0.057 – 0.095 7.874 <0.001
Classifier[Congruent] × Semantic[Related] ×

Anteriority[Posterior]
0.130 0.009 0.113 – 0.147 14.933 <0.001

Classifier[Congruent] × Semantic[Related] ×
Anteriority[Central]

0.019 0.010 − 0.000 – 0.038 1.948 0.051

Random Effects
σ2 147.14
τ00 Subject 15.40
τ00 Item 0.78
τ11 Subject.ClassifierCongruent 0.54
τ11 Subject.SemanticRelated 0.58
τ11 Subject.ClassifierCongruent:SemanticRelated 0.42
ρ01 Subject.ClassifierCongruent 0.24
ρ01 Subject.SemanticRelated 0.05
ρ01 Subject.ClassifierCongruent:SemanticRelated 0.55
ICC 0.11
N Subject 30
N Item 25
Observations 3,623,100
Marginal R2 / Conditional R2 0.011 / 0.117

Table A5 
The best-fitting model for peak latencies in the 350–550 ms time window post-stimulus onset, including estimated means, standard errors, 
confidence intervals, and p-values (n = 30).

Formula: peak latencies ~ 1 + effect + (1 + effect | subject) + (1 + effect | electrode)
Predictors Estimates std. Error 95 %CI Pr(>|z|)

(Intercept) 454.857 6.872 441.369 – 468.345 <0.001
Effect [Semantic] − 3.993 8.597 − 20.865 – 12.879 0.642
Random Effects
σ2 0.01

(continued on next page)
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Table A5 (continued )

Formula: peak latencies ~ 1 + effect + (1 + effect | subject) + (1 + effect | electrode)
Predictors Estimates std. Error 95 %CI Pr(>|z|)

τ00 Subject 281.59
τ00 Electrode 2.84
τ11 Subject.EffectSemantic 356.58
τ11 Electrode.EffectSemantic 22.22
ρ01 Subject 0.03
ρ01 Electrode − 1.00
ICC 1.00
N Subject 30
N Electrode 15
Observations 900
Marginal R2 / Conditional R2 0.023 / 1.000

B. EEG montage
See Fig. B1.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.brainres.2025.149995.
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