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During speech production, lexico-syntactic features associated with nouns (e.g., grammatical gender, classifiers,
number) are assumed to be automatically activated. Although previous studies have provided evidence for this
assumption by examining classifier congruency effects, empirical validation of this mechanism in Mandarin Chi-
nese remains limited. The present study investigated whether a classifier congruency effect can be reliably elicited
during noun phrase production in Mandarin and explored how this effect relates to semantic processing. We
employed a picture-word interference (PWI) paradigm, incorporating several methodological refinements. Both
classifier congruency and semantic relatedness between the target and distractor words were manipulated.
Behavioural results replicated the semantic interference effect, with longer naming latencies observed for
semantically related distractors than semantically unrelated ones. Although no main effect of classifier con-
gruency was found, a significant interaction with semantic relatedness emerged. Classifier incongruency led to
delayed naming under semantically related conditions. ERP results further revealed that both the semantic
interference and classifier congruency effects peaked within the N400 time window. These findings provide further
evidence that classifier information is automatically activated as a lexico-syntactic feature during lemma access,
and that this activation is influenced by semantic processing. The present results contribute both conceptually
and methodologically to advancing our understanding of classifier processing in Mandarin Chinese.

1. Introduction

While natural speech unfolds linearly in time, the underlying struc-
ture of language is hierarchical. In many languages, content words in a
sentence constrain the selection and morphological form of function
words. For example, in German, all nouns are categorised into three
grammatical genders (masculine, feminine, or neuter). The grammatical
gender of a noun specifies the form of preceding determiners. In the
phrase das Wasser (“the water”), the neuter noun Wasser requires the
neuter determiner das, rather than the masculine der or the feminine die.
A comparable system exists in Mandarin Chinese, wherein nouns are
required to be paired with classifiers in quantifier-classifier phrases,
subject to both syntactic and semantic constraints. In the phrase yi bén
zazhi (“one + classifier + magazine”), the classifier bén must be used for

book-like objects. Grammatical gender in Indo-European languages and
classifiers in Mandarin Chinese constitute lexico-syntactic features
hypothesised to be stored in the mental lexicon alongside lemmas
(Levelt et al., 1999a). While extensive research has examined the pro-
cessing of grammatical gender in Indo-European languages (for a re-
view, see Wang & Schiller, 2019), the mechanisms underlying classifier
processing in Mandarin Chinese remain notably limited. The present
study builds on prior research by adopting well-established paradigms,
introducing novel experimental materials and analytical methods to
examine the cognitive processing of classifiers in Mandarin Chinese.

1.1. Retrieval of lexico-syntactic features during noun phrase production

Major language production models propose that speech involves
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three stages: the conceptualisation stage, the formulation stage, and the
articulation stage (e.g., Bock & Levelt, 1994; Caramazza, 1997; Dell,
1986, 1988; Garrett, 1975, 1980; Levelt, 1989, 1992, 1999; Levelt et al.,
1999b; Oppenheim et al., 2010; Roelofs, 1997, 2000; Roelofs & Ferreira,
2019; for an overview, see Griffin & Ferreira, 2006). The WEAVER-+-+
model (Levelt et al., 1999a) proposes that lexico-syntactic features are
activated at the lemma stratum — an intermediate layer between the
conceptual and word-form strata. During picture naming, activation
spreads from the concept to the associated lemma and subsequently to
the connected lexico-syntactic features (e.g., grammatical gender,
number, or classifier). If these features are overtly produced, activation
further spreads to their word form, enabling retrieval of appropriate
determiners or classifiers. In contrast, Caramazza’s (1997) Independent
Network model suggests three distinct networks — lexical-semantic,
syntactic, and phonological networks. In this model, the lexical-
semantic network can activate the syntactic and phonological net-
works independently. The model argues for parallel activation of syn-
tactic and phonological networks directly from semantics, positing that
lexico-syntactic feature processing may be bypassed if not phonologi-
cally instantiated (e.g., when German nouns of different grammatical
genders exhibit identical determiners in the plural form).

1.2. Gender congruency effect

Research into the processing mechanisms of lexico-syntactic features
has initially concentrated on grammatical gender. Schriefers (1993)
investigated the processing of grammatical gender using the picture-word
interference (PWI) paradigm in Dutch. In this experimental paradigm, a
distractor word is superimposed onto a target picture. Participants are
required to name the target pictures verbally while ignoring the dis-
tractor words. A gender congruency effect was observed, whereby naming
latencies increased when the target and distractor nouns differed in
grammatical gender. This finding suggests that the grammatical gender
information of distractors is automatically activated during the process
of lemma retrieval, thereby competing with the grammatical gender
nodes of the target nouns for selection. Schiller and Caramazza (2003)
challenged this interpretation (i.e., gender selection interference hypothe-
sis, GSIH), proposing a determiner selection interference hypothesis (DSIH):
the observed effect arises not from grammatical gender activation per se
but from competition between determiners. They found that the gender
congruency effect diminished when the determiners of both the target and
distractor stimuli were congruent, even in the presence of grammatical
gender incongruency. Hence, they refer to this phenomenon as the
determiner congruency effect. Although behavioural studies yield mixed
interpretations, electrophysiological evidence supports the activation of
grammatical gender during noun phrase production. Biirki et al. (2016)
observed differences in ERP signals around 210 ms before articulation
onset between gender-congruent and gender-incongruent conditions
(mean RT = 798 ms). Together, these results suggest that grammatical
gender information may be automatically activated and selected as a
lexico-syntactic feature during noun phrase production.

1.3. Classifier congruency effect

The investigation of lexico-syntactic feature processing has also
gained traction in research on Mandarin Chinese. Although Mandarin
lacks rich morphological inflections and displays more flexible syntax, it
features a classifier system similar in function to grammatical gender
(Adams & Faires Conklin, 1973; Allan, 1977; Contini-Morava & Kilarski,
2013; Kilarski, 2013). In Mandarin Chinese, nouns are quantified
through quantifier-classifier phrases (i.e., quantifier + classifier +
noun), where the presence of a classifier is mandatory. The syntactic
position of the classifier is usually fixed. Nouns may pair with various
classifiers to further specify the quantity or form of the referent,
enriching its meaning (Wang et al., 2025¢; Zhang and Liu, 2009). For
example, yi zht yang means “one sheep”, while yi qiin yang means “a herd
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of sheep”, indicating different quantities. The different classifiers in yi
di shui (“a drop of water”) and yi tan shui (“a puddle of water”) highlight
the distinctions in the form of water.

Chinese classifiers can be categorised into several subtypes, such as
individual classifiers (e.g., dud in yi dud hua, “one + classifier +
flower”), group classifiers (e.g., quin in yi qiin rén, “one + classifier +
people™), and partition classifiers (e.g., duan in yf duan cong, “one +
classifier + green onion”) (He, 2000). Individual classifiers denote a
single unit of a person or object. Apart from the general classifier ge,
which can be used with a wide range of nouns, most individual classi-
fiers have specific collocational relationships with nouns. Although a
noun may take different classifiers depending on context or pragmatic
purpose, it generally pairs with a dominant individual classifier (Wang
et al., 2025c). This study focuses on individual classifiers, which are
referred to simply as classifiers in the following sections, unless other-
wise specified.

Several studies have used the PWI paradigm to explore whether
classifiers are activated during noun phrase production in a manner
analogous to grammatical gender (Huang & Schiller, 2021; Li et al.,
2006; Zhang & Liu, 2009). These studies revealed that naming latencies
increased when the classifiers of the distractor and target noun were
incongruent, demonstrating a classifier congruency effect. This suggests
that classifier information is automatically activated during lemma ac-
cess. Unlike grammatical gender processing, which typically occurs in
the P600 window (e.g., Foucart & Frenck-Mestre, 2011; Gunter et al.,
2000; Hagoort & Brown, 1999), the classifier congruency effect is often
reflected in N400-like ERP responses (Huang & Schiller, 2021; Wang
etal., 2019). The N400 component is generally associated with semantic
processing (for a review, see Kutas & Federmeier, 2011), suggesting that
classifier activation may be more semantically influenced than gram-
matical gender.

The extent to which classifier processing engages semantic or syn-
tactic processing remains a matter of ongoing debate in both language
comprehension and language production research (for reviews, see
Qian, in press; Wang and Schiller, in press). In the studies by Wang et al.
(2019) and Huang and Schiller (2021), both the congruency of the
classifiers and the semantic relatedness between the target and dis-
tractor nouns were manipulated. The experiments also revealed a se-
mantic interference effect (for a review, see Biirki et al., 2020), wherein
naming latencies were longer when the distractor and the target noun
belonged to the same semantic category, compared to semantically
unrelated conditions. The behavioural effect was mirrored in the ERP
data as an N400 component. This raises the question of whether the
N400-like effects elicited by the semantic interference effect and the
classifier congruency effect reflect similar underlying cognitive processes.

The categorisation of nouns by classifiers is primarily semantically
driven. The pairing between a noun and a classifier must be consistent in
semantic features such as the animacy, function, shape and size (Allan,
1977; Tai, 1994; Tai & Chao, 1994; Zhang & Schmitt, 1998). The clas-
sification of nouns according to these semantic features sometimes
aligns with the semantic categories. For instance, the classifier tdi is
typically used for machines, whereas liang is used for vehicles. The
similar N400-like ERPs elicited by the classifier congruency effect and the
semantic interference effect in previous studies (Huang & Schiller, 2021;
Wang et al., 2019) seem to suggest that classifier processing is closely
tied to the processing of semantic category information. However, the
precise nature of this relationship and potential distinctions between the
two ERP components remain underexplored in the literature.

1.4. Limitations of previous studies

Although several studies have reported evidence for a classifier con-
gruency effect in Mandarin and have suggested that classifier information
is automatically activated and selected during noun phrase production,
these findings so far come from a relatively small number of in-
vestigations (Huang & Schiller, 2021; Li et al., 2006; Wang et al., 2019;
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Table 1
Examples of distractors presented with the target noun “¥&F (monkey, classifier
H zhi)” in all conditions.

semantically related semantically unrelated
s+) (s-)

HESH (panda, R zhi) #F (socks, R zhi)

classifier congruent
Cc+H)
classifier incongruent

(c-)

5 (horse, Pt pi) Z (ticket, 3 zhang)

Wang and Schiller, submitted; Zhang & Liu, 2009). Furthermore, some
aspects of the experimental design and data analysis in these studies
leave room for improvement. One issue concerns the use of the general
classifier ge, which was included in the stimulus materials of some
previous experiments. As a result of its extensive grammaticalization, ge
has lost much of its original semantic content and is widely used with
nearly all nouns in spoken Mandarin (Myers, 2000). This presents two
potential problems: first, the processing of ge may rely primarily on
syntactic routines, which distinguishes it from more semantically spe-
cific classifiers (Frankowsky et al., 2022; Qian & Garnsey, 2016). Sec-
ond, stimuli in the classifier-incongruent condition may not have been
truly incongruent, given ge’s broad compatibility.

Another limitation relates to the analytical methods employed. Most
prior studies used traditional average-based analyses, which are limited
in their capacity to account for variation across participants and items or
to handle unbalanced datasets. In comparison, (generalised) linear
mixed-effects models (GLMMs/LMMs) have a better handle on missing
data, larger statistical power, better control of the type I errors and allow
for generalisation across items (Baayen et al., 2017; Barr, 2013; Fromer
et al., 2018; Matuschek et al., 2017).

Finally, time windows and regions of interest (ROIs) in prior studies
are typically chosen based on prior assumptions or findings. While this
approach is widely used, it carries the risk of overlooking subtle effects
that may occur in adjacent time windows or spatial areas. In contrast, a
data-driven approach using permutation tests across all epochs may
provide a clearer and more objective understanding of when and where
effects emerge (Voeten, 2023a, 2023b).

Taken together, while the classifier congruency effect has been re-
ported in Mandarin, the limited number of studies and methodological
considerations suggest that further investigation is warranted. The
present study seeks to contribute to this line of research by employing
refined experimental materials and more detailed analytical methods to
explore whether the classifier congruency effect can be reliably observed
during noun phrase production in native Mandarin speakers.

1.5. The current study

The present study aims to replicate and extend the findings of Huang
and Schiller (2021) by implementing three critical methodological up-
dates (for detailed methodological differences between the two studies,
see supplementary Table S.3). First, the experimental materials were
revised to exclude the general classifier ge, ensuring that the classifier-
incongruent condition remained valid and was not confounded by the
pervasive use of ge. Classifiers were selected based on corpus-derived co-
occurrence frequencies with target nouns, ensuring that they were
dominant classifiers retaining semantic content and showing strong
alignment with the semantic features of the nouns. This adjustment
enables a more fine-grained examination of the potential interaction
between the semantic features of classifiers and semantic categories of
nouns. Second, we implemented a permutation-based and data-driven
approach to identify temporally and spatially relevant EEG windows,
enabling unbiased determination of time intervals and electrodes. By
combining permutation testing, scalp topography analysis, and ERP
component modelling, we systematically compared the neurophysio-
logical signatures associated with classifier congruency and semantic
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relatedness, elucidating the relationship between classifier processing
and semantic processing. Third, we used (generalised) linear mixed-
effects models (GLMMs/LMMs) at the single-trial level. This approach
retains more information while controlling for both subject-level and
item-level variability, thereby increasing the interpretability and
robustness of the analysis.

The experiment manipulated semantic relatedness and classifier
congruency between target and distractor nouns using a PWI paradigm.
We expect to observe both semantic interference and classifier congruency
effects based on previous findings (Huang & Schiller, 2021; Wang and
Schiller, submitted). Specifically, we predicted that semantically related
distractors would lead to longer naming latencies than unrelated ones
and that naming would be slower in classifier-incongruent conditions
than classifier-congruent conditions. In the EEG data, we expect a more
negative-going ERP component in the N400 time window for semanti-
cally unrelated distractors relative to related ones. Meanwhile, we
expect classifier-incongruent trials to elicit more negative voltage am-
plitudes than classifier-congruent trials.

2. Methods
2.1. Participants

Thirty-five native Mandarin Chinese speakers (eight males and
twenty-seven females) were recruited from the University of Miinster in
Germany. All participants were proficient in either English or German as
a second language. Three participants also spoke Cantonese or Wu
Chinese, but they primarily used Mandarin Chinese in their daily lives.
The average age of the participants was 26.33 years (SD = 3.28), and six
of them were left-handed. All participants reported having normal or
corrected-to-normal vision, with no history of neurological, psycholog-
ical, or language impairments. Informed consent was obtained prior to
the experiment, and participants were provided with a debriefing form
after completing the experiment, in accordance with the Ethics Code for
Linguistic Research at the Faculty of Humanities. Participants received
monetary compensation for their participation. Five participants were
excluded due to insufficient valid data.

2.2. Materials

Twenty-five black-and-white line drawings representing objects used
in daily life were selected from Liu’s picture database (Liu et al., 2011)
and used as target pictures in the picture naming task. The names of
these pictures correspond to monosyllabic (36 %) or disyllabic (64 %)
words in Mandarin Chinese. Four targets were identical to those in
Huang and Schiller (2021), and five targets overlapped with those used
by Wang et al. (2019). Each target picture was assigned four distractors.
The distractors were paired with target words depending on whether
they shared the same classifier as the target word or whether they
belonged to the same semantic category as the target word, resulting in
four experimental conditions (for the example stimuli, see Table 1; for
the complete stimulus list, see Table S.2 in the supplementary mate-
rials), i.e., classifier-congruent and semantically-related (C+S+) condi-
tion, classifier-incongruent and semantically-related (C—S+ ) condition,
classifier-congruent and semantically-unrelated (C+S—) condition,
classifier-incongruent and semantically-unrelated (C—S—) condition. A
proportion of 12 % of the distractor words overlapped with Huang and
Schiller (2021), while 26 % overlapped with Wang et al. (2019).

Unlike Huang and Schiller (2021), who selected classifiers from a
dictionary, the noun-classifier pairings in this study were retrieved from
the BCC corpus (Xun et al., 2016). Since a noun may occur with multiple
classifiers, the most frequent one for each noun was selected as the ex-
pected response in noun phrase production. On average, its collocation
frequency (mean collocation frequency = 2,234.94, SD = 4,077.03) was
5.53 times higher than that of the second most frequent classifier for the
same noun (mean collocation frequency = 536.01, SD = 9,918.19). All
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Fig. 1. Sequence of stimulus presentation.

noun-classifier pairs were reviewed by two native speakers of Mandarin
Chinese with academic training in linguistics prior to the experiment.
Based on feedback from a pilot study, any pairings deemed implausible
or unnatural were excluded from the final set of experimental materials.
Twenty-four native speakers of Mandarin Chinese (Mean age = 23.13
years, SD = 3.31; 10 male, 14 female), who did not participate in the
other tasks of this study, evaluated the final set of experimental items.
They rated the acceptability of each classifier-noun pairing on a 7-point
scale, with 1 indicating least acceptable and 7 indicating most accept-
able. The mean rating score was 6.11 (SD = 0.67).

The semantic relatedness of each pair of distractor and target words
was assessed by fifteen native Chinese speakers who did not participate
in the naming task. Ratings were made on a 7-point Likert scale, with
higher scores indicating a stronger perception that the two words belong
to the same semantic category. Statistical analysis of rating scores was
conducted using the clmm() function from the ordinal package
(Christensen, 2023) in RStudio Version 2024.04.2 + 764 (R Core Team,
2023). Fixed factors included classifier congruency and semantic relat-
edness, modelled using mixed-effects ordinal regression. Model selec-
tion followed a backward elimination procedure starting with the
maximal random-effects structure. The final best-fitting model and its
parameters are detailed in Table A.1 of Appendix A. The results
demonstrated that there was a significant difference in rating scores
between the semantically related (M = 6.36, SD = 1.04) and semanti-
cally unrelated (M = 1.60, SD = 1.12) conditions ( = 3.831, SE = 0.359,
z = 10.666, 95 % CI [3.127, 4.535], p <0.001), whereas there was no
significant difference between the classifier-congruent condition (M =
4.07, SD = 2.59) and the classifier-incongruent (M = 3.92, SD = 2.64)
condition (f = 0.070, SE = 0.059, z = 1.180, 95 % CI [-0.046, 0.185], p
= 0.238).

To control for potential confounds, several lexical and visual features
of the distractors were matched across conditions (for details, see
Table S.1 in the supplementary materials). Results of Kruskal-Wallis tests
indicated that distractors across the four conditions did not show sig-
nificant differences in word frequency (H(3) = 1.252,p = 0.741, 95 % CI
[5515.998, 9584.582]), visual complexity determined by the number of
strokes (H(3) = 1.526, p = 0.676, 95 % CI [12.505, 14.715]), number of
syllables (H(3) = 2.095, p = 0.553, 95 % CI [1.651, 1.849]) and phrase
frequency of noun-classifier collocations (H(3) = 7.835, p = 0.050, 95 %
CI[1105.028, 2274.792]). The word frequency data were obtained from
the Chinese Lexical Database (Sun et al., 2018). In the present study,
phrase frequency refers to how frequently the most used classifier for a
given noun appears in quantifier-classifier phrases. The frequency of co-
occurrence may affect the degree of classifier activation (Wang et al.,
2025c). Therefore, we additionally controlled for this potential con-
founding factor, differing from previous research (Huang & Schiller,
2021; Wang et al., 2019). The phrase frequency data were retrieved and
extracted from the BCC corpus (Xun et al., 2016). Last, distractors were
not phonologically or orthographically related to the corresponding
target nouns.
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2.3. Design and procedure

This experiment followed a 2 x 2 within-subjects design, with clas-
sifier congruency (C) and semantic relatedness (S) as two fixed factors.
Each of the four conditions (C+S+, C—S+, C+S—, C—S—) included 25
items. Participants were instructed to name all target pictures using
noun phrases of the form “quantifier + classifier + noun” during the
picture naming task. Either two or three identical target pictures were
randomly presented for each target to minimise potential confounds
from repeatedly naming the same number. Consequently, each partici-
pant completed a total of 200 experimental trials.” Eight additional trials
were provided for warming up.

The presentation order of trials was pseudo-randomised using the
Windows program Mix (Van Casteren & Davis, 2006) program, ensuring
that trials with identical conditions, classifiers, or syllables were not
presented consecutively. Trials with the same number of pictures could
appear at most twice in a row. Additionally, the minimum distance
between any two identical target words was ten trials. Also, the mini-
mum distance between any two target words in the same semantic
category was three trials. Each participant was presented with the
stimuli in a different pseudo-random order.

The experiment was implemented in E-Prime 2.0 software (Psy-
chology Software Tools, Pittsburgh, PA). The experimental procedure
followed that of Huang and Schiller (2021), and comprised three ses-
sions: a familiarisation session, a practice session, and an experimental
session. During the familiarisation session, all target pictures were pre-
sented sequentially on the screen for 3000 ms, along with their corre-
sponding names. Participants were instructed to indicate their
familiarity with the pictures and target noun phrases by pressing a
designated key. In the practice session, a string of letters (“XXXX"") was
superimposed on each target picture, and participants were instructed to
ignore it while naming the picture using a noun phrase within 3000 ms.
The experimenter provided corrections for any errors during this phase.
The experimental session followed the same structure, except that dis-
tractor words replaced the letter strings (see Fig. 1). Each trial began
with a fixation cross (“+”) displayed for 300 ms, followed by a blank
screen for 200 ms. The target picture, along with the distractor, was then
shown for 3000 ms, followed by a final blank screen for 500 ms. Vocal
responses were recorded automatically at the onset of each target pic-
ture using E-Prime 2.0 software. Throughout the experiment, EEG data
were recorded simultaneously. In total, there were 200 trials distributed
evenly across four blocks, with each block starting with two warm-up
trials.

2.4. EEG recordings and data pre-processing

EEG data were recorded using a mobile Active-Two BioSemi system
(BioSemi, Amsterdam) installed and configured in a controlled linguistic
laboratory environment. The system and its setup were identical to those
used by Huang and Schiller (2021). Thirty-two Ag/AgCl active elec-
trodes were positioned on the EEG cap according to the standardised
international 10/20 system (see Appendix C). In addition, six external
electrodes were used: two were placed at the outer canthi of the eyes to
record horizontal electrooculogram (HEOG), two were positioned above
and below the left eye to record vertical electrooculogram (VEOG), and
two were attached to the left and right mastoids to allow for offline re-
referencing. The Common Mode Sense (CMS) and Driven Right Leg
(DRL) electrodes served as the online reference and ground, respec-
tively, to reduce noise and enhance signal quality. EEG signals were
sampled at 512 Hz.

4 Brysbaert and Stevens (2018) suggest that a well-powered reaction time
experiment should have a minimum of 1,600 observations per condition. In the
present study, each condition consisted of 1,750 observations, satisfying this
requirement.
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Fig. 2. Naming accuracy (%) for each condition.

EEG data pre-processing and ERP extraction were performed offline
using Brain Vision Analyzer (Version 2.2.2, Brain Products GmbH,
Gilching, Germany), following the procedure outlined in Huang and
Schiller (2021) and Von Grebmer zu Wolfsthurn et al. (2021). Raw EEG
signals were re-referenced to the average of the mastoid electrodes and
band-pass filtered from 0.1 to 30 Hz. A notch filter at 50 Hz was applied
to eliminate powerline interference. Noisy channels, constituting be-
tween 3.13 % and 12.5 % of electrodes per participant (mean = 6.92 %),
were corrected using spherical spline interpolation. Ocular artefacts
were identified through combined HEOG and VEOG channels using
linear derivation and corrected via independent component analysis
(ICA). Trials with voltage fluctuations exceeding & 100 pV or containing
other artefacts were excluded. Epochs were segmented for correctly
named trials, from —200 ms to 800 ms relative to picture onset. Baseline
correction was applied based on the mean voltage in the 200 ms pre-
stimulus interval. Valid epochs were exported for statistical analysis.
Five participants were excluded from further analysis due to insufficient
valid trials (<60 %), resulting in a final dataset of thirty participants.

2.5. Data analysis

2.5.1. Behavioural data analysis

Audio recordings from each trial were annotated and manually
reviewed offline using Praat 6.3.08 (Boersma, 2001) to extract the
naming accuracy and latency (measured from stimulus onset to voice
onset). Resulting behavioural data were then analysed using a single-
trial modelling approach via the R package Ime4 (Bates et al., 2015b).
Naming accuracy was modelled using generalised linear mixed models
(GLMMs) via the glmer() function with a binomial distribution. Naming
latencies, which showed positive skew, were analysed using glmer() with
an inverse Gaussian distribution. Fixed-effect predictors in the models
included Classifier Congruency and Semantic Relatedness, both sum-
coded, with the classifier-incongruent and semantically unrelated con-
ditions serving as reference levels, respectively. Random effects initially
included random intercepts for participants and items and random
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slopes for each fixed effect by participants and by items. A backward
elimination strategy was applied to refine the random-effects structure.
Simplification was carried out when models failed to converge or
additional random effects did not significantly improve model fit (Bates
et al., 2015a). Model comparison and selection were performed using
the anova() function, guided by a combination of Akaike’s Information
Criterion (AIC; Akaike, 1974), Bayesian Information Criterion (BIC;
Neath & Cavanaugh, 2012), and log-likelihood ratio tests (Lewis et al.,
2011). Model diagnostics included residual plots to assess homosce-
dasticity and normality. Post-hoc analyses of the interaction effects were
conducted using the emmeans package (Lenth, 2024).

2.5.2. EEG data analysis

Different from Wang et al. (2019) and Huang and Schiller (2021), we
did not predefine the time windows and electrodes for analysis. We first
performed a permutation test on the ERP data before statistical model-
ling to examine the temporospatial distribution of classifier congruency
and semantic interference effects. Using the permutes package (Voeten,
2023b), we computed F-values across all electrodes within the 0-700 ms
time window relative to stimulus onset. Given that 700 ms post-stimulus
onset is approaching the onset of articulation, as evidenced by the
behavioural results, the time window for detecting the effects was
restricted to before this time point. To assess spatial patterns in the ef-
fects, we introduced a factor of Anteriority and grouped electrodes into
three regions: anterior (AF3, AF4, F7, F8, F3, F4, Fz), central (FC5, FC6,
FC1, FC2, C3, C4, CP5, CP6, CP1, CP2, Cz) and posterior (P7, P8, P3, P4,
PO3, PO4, 01, 02, Pz, Oz). Based on the results of the permutation
analysis, we identified time windows and regions of interest (ROIs) and
then conducted statistical modelling using single-trial linear mixed-
effects models (LMMs) using the Imer() function (Amsel, 2011; Fromer
et al., 2018). Unlike previous studies (Huang & Schiller, 2021; Wang
et al., 2019) that analysed averaged ERPs using ANOVAs, this method
accounts for both by-subject and by-item variance, providing greater
explanatory power (Baayen et al., 2017; Barr, 2013; Fromer et al., 2018;
Matuschek et al., 2017). Fixed effects included Classifier Congruency,
Semantic Relatedness, and Anteriority (all sum-coded). The random-
effects structure mirrored the approach used in the behavioural anal-
ysis, with backward elimination applied to determine the best-fitting
model. Post-hoc tests were conducted to determine interaction effects.
Previous studies (Huang & Schiller, 2021; Wang et al., 2019) have
shown that both classifier congruency and semantic relatedness can
elicit N400-like components. To further assess the similarity between
these components, we analysed and compared the peak latencies of the
two effects using a gamma-distributed gimer() model. The fixed factor
Effect had two levels: the semantic interference effect and the classifier
congruency effect. Subject and Electrode were included as random ef-
fects. The model selection procedure was identical to that used in the
voltage amplitude analysis.

3. Results
3.1. Behavioural data exclusion

To maintain consistency with the EEG datasets, five participants
were excluded from the behavioural data analysis, whereby a total of
thirty datasets were retained. From a total of 6000 recorded trials
collected from the thirty participants, we further excluded 1355 data
points (22.58 %) when analysing the naming latencies. The exclusions
were implemented in accordance with the following criteria: (1) 394
responses (6.57 %) were excluded due to the use of incorrect nouns or
classifiers and the absence of responses; (2) 50 trials (0.89 %) were
excluded for exhibiting naming latencies exceeding 2000 ms or falling
below 200 ms; (3) 79 trials (1.32 %) were identified as outliers, given
that their naming latencies exceeded three standard deviations from the
mean latency for each participant and item; (4) further exclusions were
made based on EEG data (as detailed in Section 3.3). As a result, a total
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of 4645 trials (77.42 %) remained for subsequent analysis.

3.2. Behavioural data results

3.2.1. Naming accuracy

The best-fitting model (see Table A.2 of Appendix A) included the
main effects of Classifier Congruency, Semantic Relatedness, and
random intercepts for both subjects and items. The analysis revealed
(see Fig. 2) a significant main effect of Classifier Congruency, with
naming accuracy significantly lower for classifier-congruent conditions
(M = 0.921, SD = 0.269) compared to incongruent (M = 0.947, SD =
0.223) conditions (f = —0.240, SE = 0.055, z = —4.361, 95 % CI
[-0.348, —0.132], p < 0.001). A significant effect of Semantic Relat-
edness was also found, where naming accuracy was lower for semanti-
cally related items (M = 0.925, SD = 0.263) than for unrelated (M =
0.943, SD = 0.23) items (f = —0.169, SE = 0.055, z = —3.068, 95 % CI
[-0.276, —0.061], p = 0.002). The interaction between Classifier Con-
gruency and Semantic Relatedness did not reach statistical significance
(#=0.036, SE = 0.055, z=0.648, 95 % CI [-0.072, 0.143], p = 0.517).

3.2.2. Naming latencies

The best-fitting model of naming latencies, as shown in Table A.3 of
Appendix A and Fig. 3, indicated a significant main effect of Semantic
Relatedness (f = 9.388, SE = 4.325, 95 % CI [0.909, 17.867], p = 0.03).
Specifically, naming latencies were longer in the semantically related
condition (M = 1029 ms, SD = 248) compared to the semantically

(b) Semantic Relatedness
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Fig. 4. Outcomes of the permutation test performed on all electrodes for the 0 — 700 ms time window relative to stimulus onset.
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Fig. 5. Grand averages of ERPs from representative electrodes (Fz, Cz, Pz, Oz) for all conditions.

unrelated condition (M = 1013 ms, SD = 241). No main effect was found
for Classifier Congruency — naming latencies did not differ significantly
between classifier-congruent (M = 1021 ms, SD = 248) and classifier-
incongruent (M = 1021 ms, SD = 241) conditions ( = —0.161, SE =
4.153, 95 % CI [—8.303, 7.980], p = 0.969). A significant interaction
between Classifier Congruency and Semantic Relatedness was observed
(8 =-10.580, SE = 5.286, 95 % CI [-20.944, —0.2171, p = 0.045). Post-
hoc analyses showed that, for semantically related items, naming la-
tencies were significantly shorter for classifier-congruent trials (M =
1020 ms, SD = 249) than incongruent (M = 1038 ms, SD = 247) trials (
—21.5, SE = 10.5, z = —2.043, 95 % CI [—-42.1, —0.872], p = 0.041).
For semantically unrelated pairs, however, there was no significant
difference in naming latencies between classifier-congruent (M = 1022
ms, SD = 247) and incongruent (M = 1004 ms, SD = 234) trials (f =
20.8, SE = 15.8, 2 = 1.315, 95 % CI [-10.2, 51.887], p = 0.188).

3.3. EEG data exclusion

The EEG data analysis was conducted following the same exclusion
criteria as those applied to the behavioural analysis, including trials with
incorrect responses and outliers. 15.02 % of the EEG data was contam-
inated by artefacts, which were removed during data pre-processing.
Thirty datasets were analysed with the same fixed effects as in the
behavioural analysis.

3.4. EEG data results

Visual inspection of the permutation test results indicated a potential
modulatory effect of Classifier Congruency in the frontal region (Fz, F8)
and centro-parietal region (Pz, PO4, P8, P3, Oz, 02, Cz, CP5) between
400 ms and 500 ms post-stimulus onset, as well as an effect of Semantic
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Incongruent&Unrelated

Relatedness in the fronto-central region (Fz, FC2, FC1, F8, F7, F4, F3, Cz)
emerging between 350 ms and 550 ms post-stimulus onset (see Fig. 4).

We modelled the voltage amplitudes from 400 to 500 ms post-
stimulus onset based on the time window identified in the permuta-
tion test for the potential classifier congruency effect. The best-fitting
model (see Table A.4 of Appendix A) showed a significant main effect
of Semantic Relatedness (f = 0.285, SE = 0.139, t = 2.053, 95 % CI
[0.013, 0.557], p = 0.040) with less positive voltage amplitudes for
semantically unrelated conditions (M = 2.984 pV, SD = 12.771)
compared to related conditions (M = 3.616 pV, SD = 13.015); There was
a trend for the classifier congruency effect, with less positive voltage
amplitudes for classifier-incongruent conditions (M = 3.020 pV, SD =
12.836) than classifier-congruent (M = 3.584 pV, SD = 12.953) condi-
tions (# = 0.248, SE = 0.134, t = 1.850, 95 % CI [0.015, 0.511], p =

0.064). The interaction between Classifier Congruency and Anteriority
was significant, F(2, 3,622,948) = 4.114, p = 0.016. Post-hoc analysis
showed that the effect of Classifier Congruency was significant in the
anterior region (f = 0.533, SE = 0.268, z = 1.984, 95 % CI [0.007,
1.061], p = 0.047), but not in the others. The interaction between Se-
mantic Relatedness and Anteriority was significant, F(2, 3,622,948) =
298.997, p < 0.001. Post-hoc analysis showed that the effect of Semantic
Relatedness was significant in the anterior (f = 0.834, SE = 0.278, z =
3.000, 95 % CI [0.289, 1.379], p = 0.003) and central regions (8 =
0.721, SE = 0.278, z = 2.592, 95 % CI [0.176, 1.267], p = 0.010). Post-
hoc analyses of the three-way interaction between Classifier Congru-
ency, Semantic Relatedness, and Anteriority revealed that, in the ante-
rior region, the classifier congruency effect was significant in the
semantically unrelated condition, # = 0.903, SE = 0.322, z = 2.808, 95
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Fig. 6. Scalp topographies every 100 ms after stimulus onset. (a) The difference in voltage amplitudes between the classifier-incongruent condition and the classifier-
congruent condition. (b) The difference in voltage amplitudes between the semantically unrelated condition and the semantically related condition.

% CI [0.273, 1.533], p = 0.005. The classifier-incongruent condition (M
= 0.977 pV, SD = 13.553) elicited more negative amplitudes than the
classifier-congruent condition (M = 1.869 pV, SD = 13.415). In the
semantically related condition, the classifier-incongruent condition (M
= 2.198 uV, SD = 13.489) also elicited more negative amplitudes than
the classifier-congruent condition (M = 2.537 uV, SD = 14.065), but this
difference was not significant, f = 0.165, SE = 0.391, z = 0.421, 95 % CI
[-0.602, 0.931], p = 0.674. Fig. 5 presents the grand mean of the ERPs
on a selection of electrodes. Fig. 6 provides a visual presentation of the
effect of Classifier Congruency and Semantic Relatedness using scalp
topography.®

Since both the classifier congruency effect and the semantic interference
effect elicited N400-like components, we further compared the peak
latencies of these two effects (see Fig. 7). Specifically, within the
350-550 ms time window, we identified the peak latency of the voltage
amplitude difference for the classifier congruency and semantic relat-
edness effects, respectively. The peak latency of the classifier congru-
ency effect occurred at 455.16 ms after stimulus onset (SD = 60.43),
slightly later than that of the semantic interference effect, which
occurred at 446.71 ms (SD = 60.51). However, the model results (see
Table A.5 in Appendix A) indicated no significant difference in peak
latency between the two effects.

4. Discussion

The present study aimed to investigate the processing of classifier
information during noun phrase production in Mandarin Chinese. It

5 Visual inspection of the ERP waveforms and scalp topography also revealed
an N1-P1-N2 complex that may be influenced by semantic relatedness and
classifier congruency. These ERP components are typically associated with the
presentation of visual stimuli and are not relevant to the purpose of the present
study and will therefore not be discussed further.

specifically examined the effects of classifier congruency and semantic
relatedness utilising a picture-word interference (PWI) paradigm. We
introduced several methodological refinements based on previous
research (Huang & Schiller, 2021; Li et al., 2006; Wang et al., 2019;
Zhang & Liu, 2009). These included the exclusion of highly grammati-
calised general classifiers (e.g., ge), selecting the classifier that most
frequently co-occurs with each noun from a corpus, applying single-trial
linear mixed-effects modelling and adopting a permutation-based
approach for defining EEG time windows in a data-driven manner. By
implementing these improvements, we reassess the robustness of the
classifier congruency effect and gain further insights into its relation to
semantic processing.

Consistent with previous findings (e.g., Dell’Acqua et al., 2010;
Huang & Schiller, 2021; Krott et al., 2019; Rose et al., 2019; Wang et al.,
2019; Zhu et al., 2015), the current study replicated a reliable semantic
interference effect: naming latencies were significantly longer when the
target and distractor words belonged to the same semantic category
compared to when they were unrelated. In the electrophysiological data,
the semantically unrelated condition elicited more negative voltage
amplitudes than the semantically related condition within the N400
time window in the fronto-central region, a component typically asso-
ciated with semantic processing difficulty (Kutas & Federmeier, 2011).
Regarding the classifier congruency effect, although no significant main
effect was found on naming latencies across all conditions, a significant
interaction between classifier congruency and semantic relatedness
emerged. Specifically, classifier incongruency delayed naming signifi-
cantly when the distractors were semantically related to the target nouns
but not when the distractors were semantically unrelated. In the ERP
data, although the main effect of classifier congruency only approached
statistical significance across all regions within the 400-500 ms time
window, further regional analyses revealed a significant classifier con-
gruency effect in the anterior scalp region. In this region, classifier con-
gruency interacted with semantic relatedness. The classifier congruency
effect was significant in the semantically unrelated condition but did not
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Fig. 7. Difference waves elicited by the classifier congruency effect and the semantic interference effect. The figure shows the four main electrodes (Fz, Cz, Pz, and

0Oz). Shaded areas indicate the standard deviations.

reach significance in the semantically related condition.

The semantic interference effect observed in behavioural and ERP data
aligns with a large body of literature demonstrating semantic processing
during lexical retrieval (Biirki et al., 2020). According to the prominent
model of lexical access (Levelt et al., 1999a; Roelofs, 1992), when par-
ticipants attempt to name a target picture, activation initially spreads
from the conceptual representation of the target to semantically related
concepts within the network (see also Bloem & La Heij, 2003; Lupker,
1979; Roelofs, 1992; Schnur et al., 2006). This activation then spreads to
the corresponding lemma nodes. Consequently, when distractors are
semantically related to the target, their lexical nodes are activated to a
higher level compared to unrelated distractors. During lemma selection,
these co-activated lexical candidates compete with the target lemma,
leading to increased selection difficulty and extended naming latencies.

The present study also observed a classifier congruency effect, which
was weaker than the semantic interference effect. Under the semantically

10

related condition, stimuli in the classifier-congruent condition were
named significantly faster than those in the classifier-incongruent con-
dition. This difference in naming latency is consistent with the findings
of Huang and Schiller (2021). Wang et al. (2019) propose that the
classifier congruency effect is similar to the gender congruency effect
observed in some Indo-European languages. According to their account,
the classifier congruency effect reflects the activation of classifiers as
lexico-syntactic features during lemma access, thereby supporting the
WEAVER++ model (Levelt et al., 1999a). In this framework, the asso-
ciated classifier nodes are automatically activated when the target and
the distractor are processed. When these classifiers are incongruent, this
activation leads to competition for selection, which is behaviourally
observed as prolonged naming latencies. Alternatively, Caramazza’s
(1997) Independent Network model suggests that lexico-syntactic fea-
tures are activated when the corresponding lexical forms need to be
specified. To produce classifier-noun phrases in the present study, the
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Fig. 7. (continued).

classifier must be retrieved and produced. The observed classifier
incongruency effect suggests that the distractor’s classifier was also
automatically activated during noun phrase production, consistent with
the Independent Network model. When the classifiers associated with the
target and distractor words are incongruent, their activation may lead to
competition during lexical form encoding, resulting in increased pro-
cessing time.

For the EEG results, the semantic interference effect and the classifier
congruency effect were generally reported within the N400 time window
(Huang & Schiller, 2021; Wang et al., 2019). The ERP data from the
present study corroborate these previous findings. The permutation-test
results and scalp topography suggest that the semantic interference effect
emerged slightly earlier than the classifier congruency effect. However,
their peak latencies did not differ significantly. The N400-like

11

component elicited by classifier congruency was mainly observed over
frontal regions, while that elicited by semantic relatedness was found
over both frontal and central regions. The two effects overlapped in
onset window, peak latency, and scalp distribution. ERP components
with such distributions are typically associated with semantic informa-
tion processing (Kutas & Federmeier, 2011). The classifiers used in this
study retained a certain degree of semantic content. They can categorise
nouns according to the consistency between the semantic features of the
nouns and the classifiers. This function is similar to the way nouns are
grouped into different semantic categories according to their meanings.
Therefore, the processing of classifiers might be related to the processing
of semantic category information in the present study. The N400-like
effect elicited by the semantic relatedness might arise during concept-
lexical activation stages (Abdel Rahman & Melinger, 2009; Bloem &
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La Heij, 2003; Zhang et al., 2016). When the semantic category of the
target (e.g., fish) and distractor (e.g., road) words mismatched, this
conflict imposed a cost at the stage of semantic information processing.
On the other hand, the classifier congruency effect might emerge during
lemma access and the retrieval of lexico-syntactic features (Huang &
Schiller, 2021; Wang et al., 2019). Incongruency between the classifiers
of the distractor and that of the target noun also involved conflicts in
their semantic features, which might likewise cause difficulty in se-
mantic processing. For example, the classifier for sugar (“ke”) and the
classifier for biscuits (“kuai”) differ in the semantic feature of shape.
Conflicts arising from a mismatch in semantic categories may be more
difficult to resolve than conflicts based on specific semantic features of
the classifier. We found that the semantic relatedness modulated the
classifier congruency effect in the ERP data. When distractor and target
belong to the same semantic category, category-level similarity may
have masked or alleviated the difficulty of resolving the semantic con-
flict caused by classifier incongruency. As a result, although ERP dif-
ferences were observed between classifier-congruent and incongruent
conditions in the semantically related condition, this effect did not reach
statistical significance. Together, the findings of the current study align
with previous research showing the activation of classifiers during noun
phrase production. For the classifiers retaining semantic information in
this study, their processing may be related to the processing of semantic
category information.

It is worth noting that the present study produced some findings that
differ from previous research. The main difference is that we observed
an interaction between classifier congruency and semantic relatedness.
In naming latency, a significant classifier congruency effect was found
only in the semantically related condition, while this effect was not
significant in the semantically unrelated condition. This interaction
pattern suggests that the classifier congruency effect was stronger in the
semantically related condition than in the unrelated condition. Although
Huang and Schiller (2021) did not report an interaction in their study on
classifiers, a similar interaction has been found in a grammatical gender
study using the same experimental paradigm. Schriefers (1993) reported
a stronger gender congruency effect in the semantically related condition
than in the semantically unrelated condition when examining the effects
of gender congruency and semantic relatedness on naming latency.
According to previous accounts of the semantic interference effect (Biirki
et al., 2020), activation spreads from the target noun’s concept node (e.
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g., houzi, “monkey”) to semantically related concepts (e.g., md, “horse”;
xiongmao, “panda”; etc.) and their corresponding lexical entries. The
activation level of distractor words belonging to the same semantic
category as the target may be enhanced. In contrast, distractors in the
semantically unrelated condition may not receive such additional acti-
vation. Based on the assumption that activation can automatically
spread from a lemma to its connected lexico-syntactic feature nodes, the
activation levels of the classifier nodes for distractors in the semantically
related condition might also be enhanced (e.g., classifier pi for mg;
classifier zhi for xiongmao). In other words, these distractors’ classifiers
might also receive extra activation. When the classifiers of the seman-
tically related distractor and target were congruent, the highly activated
classifier of the target noun could enter the form encoding stage more
quickly than in the semantically unrelated condition, resulting in shorter
naming latencies. When the classifiers were incongruent, the increased
competition among highly activated but incongruent classifiers may
have made it more difficult for the classifier of the target word to enter
the lexical selection stage.

In the semantically unrelated condition, no significant effect of
classifier congruency was observed on naming latency. Naming was
slower in the classifier-congruent condition than in the classifier-
incongruent condition. This result, which differs from previous find-
ings, may be due to the selection of classifiers in the present study.
Compared to the materials in previous studies (Huang & Schiller, 2021;
Wang et al., 2019), we excluded the highly grammaticalised general
classifier ge, which has largely lost its semantic content. In addition,
noun-classifier pairs were carefully selected based on a corpus, ensuring
the highest collocation frequencies. These adjustments ensured that the
classifiers used in the experiment preserved semantic content and that
the semantic associations between nouns and classifiers were relatively
strong. In other words, there was substantial overlap in their semantic
features. For example, wéi jin (“scarf”) is a long-shaped object, and its
classifier tido has the semantic feature “long in shape.” Classifiers cate-
gorise nouns based on such semantic features. In the semantically un-
related but classifier-congruent condition, the classifier-noun
classification conflicted with the noun’s semantic category. For instance,
yi (“fish”) and wéi jin (“scarf’) do not belong to the same semantic
category, but both can take the classifier tido. The classifier tiGo groups
them as long, strip-shaped objects. The EEG results in the present study
showed a significant classifier congruency effect in the semantically un-
related condition, indicating that the classifiers of nouns were activated.
Previous studies have suggested that the semantic features (e.g., shape,
animacy) carried by classifiers may also be involved in classifier pro-
cessing (Bi et al., 2010; Wang et al., 2025a,b). Therefore, during pro-
cessing, the semantic information in classifiers that categorise nouns
based on semantic features might conflict with the semantic category
information of the nouns. This conflict might require additional pro-
cessing time, leading to longer naming latencies in the semantically
unrelated but classifier-congruent condition. Together, these findings
suggested that semantic category information might modulate classifier
processing. However, interaction effects often require larger sample
sizes for validation. The conclusions drawn from the interaction effects
in the present study should be further examined and explored in future
experiments.

5. Conclusions

This study investigated whether the classifier congruency effect could
be reliably elicited during noun phrase production in Mandarin Chinese
and how this effect relates to semantic processing. By employing refined
experimental materials and advanced analytical approaches, the present
study provides further evidence for the automatic activation of classi-
fiers during lemma access. Furthermore, the results suggest that se-
mantic processing may modulate classifier activation. The processing of
classifiers that retain semantic content may be related to the processing
of semantic category information. Future research could build on these
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findings by exploring how different classifiers (e.g., specific classifiers
versus general classifiers) differentially engage semantic and syntactic
processing streams.
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Model of best fit for semantic relatedness rating scores, including log-odds ratios, standard errors, confidence intervals, z-values and p-values (n = 15).

Formula: rating score ~ semantic relatedness + classifier congruency + (1 + semantic relatedness | subject) + (1 | item)

13

Predictors log-odds std. error 95 % CI z-value Pr(>|z))
1|2 —2.677 0.263 —3.192 - -2.162 —10.191 <0.001
2|3 —1.158 0.259 —1.666 — —0.649 —4.463 <0.001
3l4 —0.185 0.258 —0.692 - 0.321 —0.718 0.473
4|5 0.049 0.258 —0.457 - 0.556 0.192 0.848
5|6 1.495 0.260 0.985 - 2.004 5.750 <0.001
6|7 3.218 0.264 2.700 - 3.736 12.180 <0.001
Semantic relatedness [related] 3.831 0.359 3.127 - 4.535 10.666 <0.001
Classifier congruency [congruent] 0.070 0.059 —0.046 - 0.185 1.180 0.238
Random Effects
o* 3.29
T00 Item 0.33
T00 Subject 1.58
T11 Subject.Semantic relatednessUnrelated 6.57
P01 Subject —0.84
ICC 0.37
N Subject 15
N Item 25
Observations 1,453
Marginal R? / Conditional R 0.739 / 0.835
Table A2
Model of best fit for naming accuracy, including log-odds ratios, standard errors, confidence intervals, z-values and p-values (n = 30).
Formula: naming accuracy ~ 1 + classifier congruency x semantic relatedness + (1 | subject) + (1 | item)
Predictors log-odds std. error 95 %CI z-value Pr(>|z|)
(Intercept) 3.198 0.234 2.739 - 3.657 13.653 <0.001
Classifier[Congruent] —0.240 0.055 —0.348 - —0.132 —4.361 <0.001
Semantic[Related] —0.169 0.055 —0.276 — —0.061 —3.068 0.002
Classifier[Congruent] x Semantic[Related] 0.036 0.055 —0.072 -0.143 0.648 0.517
Random Effects
¢? 3.29
T00 Subject 0.55
T00 Item 0.75
ICC 0.28
N Subject 30
N Item 25
Observations 6,000
Marginal R? / Conditional R 0.019 / 0.298
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Model of best fit for naming latencies, including estimated means, standard errors, confidence intervals and p-values (n = 30).

Formula: naming latencies ~ 1 + classifier congruency x semantic relatedness + (1 + classifier congruency x semantic relatedness | subject) + (1 | item)

Predictors Estimates std. error 95 %CI Pr(>|z))
(Intercept) 1054.762 21.866 1,011.895 - 1,097.630 <0.001
Classifier[congruent] —0.161 4.153 —8.303 - 7.980 0.969
Semantically[related] 9.388 4.325 0.909 - 17.867 0.030
Classifier[congruent] x Semantically[related] —10.580 5.286 —20.944 - —0.217 0.045
Random Effects

s 0.01

T00 Subject 2,106.02

T00 Item 882.14

T11 Subject.ClassifierCongruent 101.85

T11 Subject.SemanticallyRelated 135.46

T11 Subject.ClassifierCongruent:SemanticallyRelated 230.52

PO1 Subject.ClassifierCongruent —0.06

P01 Subject.SemanticallyRelated 0.18

Po1 Subject.ClassifierCongruent:SemanticallyRelated —-0.09

ICC 1.00

N Subject 30

N 1tem 25

Observations 4,645

Marginal R? / Conditional R? 0.055 / 1.000

Table A4

The best-fitting model for voltage amplitudes in the 400-500 ms time window post-stimulus onset, including estimated means, standard errors, confidence intervals, t-

values and p-values (n = 30).

Formula: voltage amplitudes ~ 1 + classifier congruency x semantic relatedness x anteriority + (1 + classifier congruency x semantic relatedness | subject) + (1 | item)

Predictors Estimates std. error 95 %CI t-value Pr(>|t)

(Intercept) 3.139 0.738 1.693 - 4.586 4.255 <0.001

Classifier[Congruent] 0.248 0.134 —0.015-0.511 1.850 0.064

Semantic[Related] 0.285 0.139 0.013 - 0.557 2.053 0.040

Anteriority[Posterior] 1.670 0.009 1.653 - 1.687 192.010 <0.001

Anteriority[Central] —0.400 0.010 —0.419 - —0.381 —41.560 <0.001

Classifier[Congruent] x Semantic[Related] —0.036 0.118 —0.267 - 0.195 —0.305 0.760

Classifier[Congruent] x —0.023 0.009 —0.040 — —0.006 —2.677 0.007
Anteriority[Posterior]

Classifier[Congruent] x 0.005 0.010 —0.014 - 0.024 0.489 0.625
Anteriority[Central]

Semantic[Related] x Anteriority[Posterior] —0.208 0.009 —0.225 - —-0.191 -23.914 <0.001

Semantic[Related] x Anteriority[Central] 0.076 0.010 0.057 — 0.095 7.874 <0.001

Classifier[Congruent] x Semantic[Related] x 0.130 0.009 0.113-0.147 14.933 <0.001
Anteriority[Posterior]

Classifier[Congruent] x Semantic[Related] x 0.019 0.010 —0.000 - 0.038 1.948 0.051
Anteriority[Central]

Random Effects

o2 147.14

T00 Subject 15.40

700 Item 0.78

T11 Subject.ClassifierCongruent 0.54

T11 Subject.SemanticRelated 0.58

T11 Subject.ClassifierCongruent:SemanticRelated 0.42

PO1 Subject.ClassifierCongruent 0.24

P01 Subject.SemanticRelated 0.05

P01 Subject.ClassifierCongruent:SemanticRelated 0.55

1CC 0.11

N Subject 30

N Item 25

Observations 3,623,100

Marginal R? / Conditional R? 0.011 / 0.117

Table A5

The best-fitting model for peak latencies in the 350-550 ms time window post-stimulus onset, including estimated means, standard errors,
confidence intervals, and p-values (n = 30).

Formula: peak latencies ~ 1 + effect + (1 + effect | subject) + (1 + effect | electrode)

Predictors Estimates std. Error 95 %CI Pr(>|z|)
(Intercept) 454.857 6.872 441.369 — 468.345 <0.001

Effect [Semantic] —3.993 8.597 —20.865 - 12.879 0.642

Random Effects

o2 0.01

(continued on next page)
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Table A5 (continued)
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Formula: peak latencies ~ 1 + effect 4 (1 + effect | subject) + (1 + effect | electrode)

Predictors Estimates std. Error 95 %CI Pr(>|z))
T00 Subject 281.59

T00 Electrode 2.84

T11 Subject.EffectSemantic 356.58

T11 Electrode.EffectSemantic 22.22

Po1 Subject 0.03

Po1 Electrode —1.00

1cc 1.00

N subject 30

N Electrode 15
Observations 900

Marginal R? / Conditional R 0.023 / 1.000

B. EEG montage
See Fig. B1.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.brainres.2025.149995.
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