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Kidney & cysts 
The kidney is one of the key organs in the body, responsible for the removal of waste products 
and toxins from the blood stream, as well as controlling body fluid levels and electrolyte 
concentrations. The functional element in the kidney is known as a nephron, of which 1 
million are present in the average adult kidney. Nephrons can be split into two structural 
parts, the glomerulus, in which the blood is filtered, and the tubule, in which nutrient 
reabsorption takes place until eventually urine is produced and transported via collecting 
ducts to the bladder. About 200 litres of blood are filtered every day by nephrons, resulting 
in the production of 1-2 litres of urine. In each tubule, essentially a system of convoluted 
tube-like structures, four major sections can be distinguished: the proximal tubule, the loop 
of Henle, the distal tubule and the collecting duct. Each section has a specific function in 
nutrient reabsorption and therefore each section can be characterized by its own epithelial 
cells, each with their own set of genes and proteins that are expressed.

While tubular epithelial cell proliferation is very low during homeostasis in the adult kidney, 
this increases for repair of the epithelium, most commonly in response to toxin exposure, 
injury and/or blockages of the tubule. However, in a small percentage of repair events, this is 
done incorrectly, resulting in epithelial cells budding off from the tubular wall and eventually 
detaching, forming a fluid-filled balloon-like structure known as a cyst. This incidental 
cyst formation is common in the general population, normally unrelated to disease and 
harmless. This is in contrast to cyst formation caused by various genetic mutations, which 
result in the formation of cysts that grow progressively in size and number in the kidney, 
until renal failure is reached (Figure 1). Diseases characterized by this type of cyst formation 
are grouped together under ‘polycystic kidney disease’, first reported in the autopsy report 
of Polish king Stefan Bathory, whose kidneys were described as ‘large like those of a bull, 
with an uneven and bumpy surface’1. A large number of conditions are classified under 
polycystic kidney disease, but the most common and the most studied of these is autosomal 
dominant polycystic kidney disease (ADPKD).

ADPKD
As the most common type of cystic kidney diseases, ADPKD affects between 1:400 to 1:2500 
people worldwide, meaning that over 10 million people worldwide are predicted to be 
affected by the disease2. A mutation in either the PKD1 (± 80%) and PKD2 (± 15%) gene is 
the main cause of the disease, with the remaining cases most commonly being caused by 
mutations in other genes, such as GANAB, DNAJB11, IFT140, ALG8 and ALG93-7. In early life, 
ADPKD patients are normally asymptomatic, but from the second decade of life, cysts are 
large enough to be detected and will increase in size and number over time. This lowers 
kidney tissue function and is commonly accompanied by hypertension, proteinuria (excessive 
protein levels in the urine), haematuria (blood in the urine), abdominal pain, nephrolithiasis 
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(kidney stones), urinary tract infections, and problems with urine concentration. In addition, 
cysts may develop in other organs, with the liver, pancreas and seminal vesicles most 
commonly affected. Other extrarenal manifestations include intracranial aneurysms, cardiac 
valve irregularities and cardiomyopathy2,8. ADPKD is progressive in nature, meaning that 
around 50-60 years of age, patients reach end-stage renal disease (ESRD, or renal failure), 
needing renal replacement therapy (dialysis or kidney transplantation). Diagnosis options 
include abdominal imaging using ultrasound, CT and/or MRI or by screening for PKD1 and/
or PKD2 mutations via gene-panel analysis or whole-exome sequencing9-11. Difficulties 
arise with genetic screening due to the large size of the PKD1 gene, the number of PKD1 
pseudogenes in the human genome (6) with a highly similar genetic sequence and the high 
level of allelic heterogeneity in both PKD1 and PKD2, but this is lessened by technological 
developments, however abdominal imaging is still the first option11-17.

Figure 1: Comparison of a normal human kidney (left) with an end-stage human autosomal dominant polycystic 
kidney (right). 
The cystic kidney is clearly increased in size and has grown large fluid-filled cysts. Image from Calvet JP, Nature 
Genetics 2003275.
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Current treatment options are limited, as only one drug is approved for patient use thus far, 
the vasopressin V2 receptor (V2R) antagonist tolvaptan (Jinarc®). Tolvaptan has received 
regulatory approval in recent years in the Japan, Canada, the European Union, Switzerland, 
South Korea and the United States. By acting on V2R, tolvaptan lowers intracellular cyclic 
AMP (cAMP) levels, thereby slowing cyst growth. Clinical trials showed that tolvaptan can 
slow the rate of kidney growth, as well as estimated glomerular filtration rate (eGFR) decline 
in both early- and late-stage ADPKD patients18-20. However, tolvaptan is associated with 
multiple adverse effects, most commonly polyuria and hepatotoxicity, which means that the 
drug is only available to a subset of patients, those with rapidly progressive ADPKD21. Other 
treatment options remain elusive up till now, and the current treatment paradigm consists 
of monitoring and managing kidney function, cyst progression, blood pressure and pain2. 

The polycystin proteins
The human PKD1 gene is located on chromosome 16 (16p13.3), contains 46 exons and is 
widely expressed, with transcripts detected in virtually all tissues22,23. The level of expression 
differs throughout life, with higher levels detected during embryonic development and lower 
levels in adulthood23,24. PKD1 encodes the protein polycystin-1 (PC-1), a transmembrane 
protein of 450 kDa and containing 4303 amino acids22. The protein has a large extracellular 
N-terminal segment, 11 transmembrane domains and a small intracellular C-terminal tail 
(Figure 2)25. As such, its structure is reminiscent of a G-protein coupled receptor (GPCR), 
and indeed, PC-1 is increasingly being described as an adhesion GPCR. Various studies 
have already shown that PC-1 interacts with G proteins via their Gα subunits through its 
C-terminal tail and can regulate signalling activity downstream of these G proteins26-33 In 
addition, manipulation of the PC-1-G protein interactions affects the development of a 
cystic phenotype in Xenopus embryos and mice34,35. Like other adhesion GPCR families, PC-1 
contains multiple domains that are involved in protein-carbohydrate, protein-protein and 
protein-matrix interactions, of which the GPCR-Autoproteolysis Inducing (GAIN) domain is 
the most promiment36-38. In addition, both PC-1 and other adhesion GPCRs contain a GPCR 
proteolytic site (GPS) in their GAIN domains, where autoproteolytic cleavage can take place39. 
PC-1 cleavage at the GPS results in an extracellular N-terminal fragment and an intracellular 
C-terminal fragment. The N-terminal fragment then undergoes conformational changes, 
revealing a ‘stalk’ peptide which can non-covalently bind to the remaining transmembrane 
region, inducing G protein signaling40,41. It has since been demonstrated that GPS cleavage is 
vital for proper PC-1 trafficking and function39,42,43. The C-terminal part, when cleaved from 
the full protein, can translocate to the nucleus, where it modulates Wnt or STAT signalling, 
or to the mitochondria, where it alters mitochondrial function and potentially energy 
metabolism44-47. The C-terminal part is also used to communicate with polycystin-2 (PC-2), 
the other polycystin protein encoded by PKD248,49. PKD2 can be found on chromosome 4 
(4q22.1) and has 15 exons, the corresponding PC-2 protein (110 kDa) has 968 amino acids. 
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Structurally, PC-2 consists of six transmembrane domains and a C-terminal tail containing a 
calcium binding motif (Figure 2)49. PC-2 is a transient receptor potential family member and 
serves as a non-selective cation channel, conducting Ca2+, K+ and Na+48,49. PC-1 and PC-2 can 
be found at different sites in the cell; PC-1 at the plasma membrane and lateral junctions, 
with PC-1 fragments translocating to the mitochondria and nucleus41,50. PC-2 is found at 
the basolateral membrane and the endoplasmic reticulum (ER)50. Both are also found in 
the primary cilium, an organelle responsible for converting environmental cues into cellular 
signalling to maintain tissue homeostasis51,52. PC-1 and PC-2 can form heterotetramers with 
1:3 stoichiometry, functioning as ion channels, which a higher Ca2+ ion conductance than 
homotetramer PC-2 channels 25,53-56. In fact, the ion channel function is directly affected by 
PC-1 through its contribution to the channel pore55,57. 

Cyst formation 
Multiple models have been proposed to describe the initial events underlying cyst formation. 
ADPKD patients are born with a wildtype PKD1/PKD2 allele and a germline mutation in the 
other allele. The second hit model proposes that throughout life, the wildtype allele will 
also be affected by a somatic mutation, lowering the level of functional PC-1/PC-2, and 
consequently, priming the renal epithelium for cyst formation58-60. This model is supported 

Figure 2: Schematic representation of the structure of the polycystin proteins and their intracellular cleaved 
fragments. Image from Zhou X & Torres VE, Front Mol Biosci 2022276.
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by individual cyst analyses that confirm point mutations or deletions in the wildtype allele. 
The second hit model has been expanded with findings that germline mutations in one PKD 
gene (i.e. PKD1) can be followed by somatic mutations in the other PKD gene (i.e. PKD2), 
so-called transheterozygous mutations60,61. The gene dosage model proposes that stochastic 
fluctuations in the PC-1 protein level might lower the level of functional protein below a 
critical threshold, priming the renal epithelium for cyst formation. Evidence supporting this 
model shows that both overexpression and lower expression of the PC-1 protein results in 
cyst formation62-64. No definitive evidence exists for either model at this point, and it is very 
possible that the models are not mutually exclusive, and occur virtually simultaneously in 
the cystic kidney65. Multiple studies have demonstrated that a third hit (after germline and 
somatic mutations), in the form of renal injury, is often required for cystogenesis, adding 
further complexity to the cystogenesis process66-69.

Polycystin dosage falling below a critical threshold, either through gene mutation or 
stochastic fluctuation, is the primary step for cystogenesis, but the downstream mechanisms 
from that point remain to be identified. It has been proposed from studies with knock-out 
mice for Pkd1 and cilia that a cilia-dependent cyst activation (CDCA) signal exists, as mice 
with a Pkd1 and cilia KO, and mice with only a cilia KO, develop less cysts compared to Pkd1 
KO mice70-72. The Hedgehog pathway has been investigated as possible contributor to the 
CDCA signal, but was found not to be involved73. While more information has been revealed 
in recent years about the function of the PC-1/PC-2 complex within the cell, in particular in 
relation to its adhesion GPCR and ion channel functions, the exact mechanism as to how 
downstream signalling pathways are regulated remains to be further elucidated.

Dysregulated intracellular signalling 
After formation of an initial cyst, both mechanical stress and injury-related mechanisms 
result in aberrations in various processes, such as proliferation and fluid transport, which 
promote formation and expansion of new cysts in a snowball-like fashion74. This culminates 
in the total dysregulation of the intracellular signalling machinery, with many pathways 
affected, that all contribute to the excessive cyst growth, and eventually, renal failure.  

Proliferation/cAMP/calcium
The polycystin proteins and cAMP signalling are closely interlinked through calcium 
signalling. PC-2 is a non-selective cation channel, and can form heterotetramer complexes 
together with PC-1, with PC-1 regulating the gating of the ion channel complex. In 
addition, PC-1 can also regulate the calcium influx through the PC-2 homomeric calcium 
channels55,57,75,76. As such, intracellular calcium levels are dysregulated in ADPKD, which 
also affects intracellular cAMP levels through activation of adenylate cyclase (AC)  
5 and/or 677,78. In addition, phosphodiesterases (PDEs), responsible for cAMP breakdown, 
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is also affected through calcium-independent mechanisms. In the early stages of ADPKD, 
impaired urine concentrating results in elevated circulating vasopressin levels80-83. This 
results in V2R overactivation and subsequently, in AC6 overactivation (Figure 3). 

Figure 3: Overview of altered cyclic adenosine monophosphate (cAMP) signalling effects in ADPKD. 

Due to binding of vasopressin (AVP) to the vasopressin V2 receptor (V2R) results via G-protein coupled receptors to 
the activation of adenylate cyclase 5/6 (Acy 5/6), the enzymes responsible for cAMP production. Increased cAMP 
in turn results in the activation of protein kinase A (PKA) and cAMP-responsive binding element (CREB), which are 
both responsible for the activation of downstream signalling pathways, transcription factors and co-activators. 
cAMP can be converted to AMP via phosphodiesterase (PDE) enzymes, which are less active in ADPKD. Inhibition 
of V2R with tolvaptan or lixivaptan inhibits the pro-cystic cAMP-mediated effects. Image adapted from Zhou X & 
Torres VE, Front Mol Biosci 2022276.

The increased levels of intracellular cAMP have been well described in ADPKD models, 
as well as the mechanisms through which it promotes ADPKD disease progression84-87. 
cAMP increases epithelial cell proliferation in ADPKD through sequential phosphorylation 
of PKA, B-Raf, MEK and ERK, a process that can be inhibited by restoring normal calcium 
levels88-90. cAMP also promotes cystogenesis through increased fluid secretion driven by 
the exit of chloride ions via PKA-dependent phosphorylation of the apical cystic fibrosis 
transmembrane conductance regulator (CFTR)91,92. Together with the increased transport 
across the basolateral membrane of Na+ and K+ ions, this induces osmotic pressure, which 
forces fluid excretion into the cyst lumen. 

In addition to promoting cyst growth, it has also been shown that cAMP might have a role in 
cyst formation. Increased cAMP levels can disrupt regular tubulogenesis by PKA-dependent 
enhancement of the Wnt/β-catenin signalling axis93-95. In addition, PC-1 deletion switches 
tubule formation to cyst formation in principle-like Madin-Darby canine kidney (MDCK) 
cells via increased cAMP levels, while in PC-1 containing cells, pharmacologically increased 
cAMP causes cyst formation and mis-orientation reminiscent of PC-1 deficient cells. This 
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misorientation was also observed in metanephric kidneys with pharmacologically increased 
cAMP levels96.

Metabolic reprogramming
Due to the excessive cell proliferation observed in ADPKD, as well as other biochemical 
similarities, ADPKD has in the past been referred to as a ‘neoplasia in disguise’97. A 
prominent feature in tumour cells is the metabolic shift from oxidative phosphorylation to 
aerobic glycolysis, better known as the Warburg effect. This shift results in low adenosine 
triphosphate (ATP) generation, but allows tumour cells higher nutrient availability and 
building blocks to facilitate their excessive proliferation (Figure 4)98-100. This metabolic 
rewiring was also observed in mouse Pkd1 and human PKD1 mutant cells and tissues, and is 
accompanied with lactate production, increased expression of glycolytic enzymes, increased 
intracellular ATP, overactivation of mammalian target of rapamycin (mTOR) complex 1 
(mTORC1), inhibition of adenosine monophosphate (AMP)-activated kinase (AMPK) and 
dysregulation of metabolic transcription factors101-105. Consistent with these findings are the 
observations that high glucose concentrations and hyperglycaemia promote cystogenesis 
and disease progression106,107. Although the Warburg effect is yet to be proven in ADPKD 
patients, its importance is further highlighted by the increased activity of the pentose 
phosphate pathway in Pkd1-/- cells105. This pathway branches off from glycolysis after the 
formation of glucose-6-phosphate, and is vital for the biosynthesis of ribonucleotides and 
fatty acids, which are both used in anabolic processes to facilitate the excessive proliferation 
observed in ADPKD108. 

As part of the metabolic shift from oxidative phosphorylation to aerobic glycolysis,  
Pkd1-/- cells transform pyruvate to lactate, instead of using it to fuel the tricarboxylic acid 
(TCA) cycle. However, to maintain a mitochondrial membrane potential (and prevent cell 
death), the TCA cycle must remain active. Therefore, Pkd1-/- cells require an alternative carbon 
source to do so. Perhaps unsurprisingly, Pkd1-/- cells utilize the same source as tumour cells, 
namely the amino acid glutamine, through glutamine anaplerosis. In this process, tumour 
cells convert glutamine to glutamate and then to α-ketoglutarate, a TCA cycle intermediate, 
which then fuels the TCA cycle. In addition, α-ketoglutarate also is used to produce citrate, 
which in turn forms a building block for lipids109-111. Pkd1-/- cells use the same mechanism for 
TCA fuelling, for example through glutaminase 1112-114. However, Pkd1-/- cells can also utilize 
other enzymes for this purpose, such as asparagine synthetase (conversion of aspartate 
to asparagine while deamidating glutamine to glutamate) or arginosuccinate synthase 1 
(required for arginine synthesis; lower expression of the enzyme in Pkd1-/- cells and tissues 
increases glutamine utilization)105,115. 
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Figure 4: Overview of the reprogrammed metabolic pathways in ADPKD. 

Pathways supportive of cell proliferation, such as glycolysis, pentose phosphate pathway are more active in  
Pkd1-/- cells and tissues, to the detriment of catabolic pathways such as β-oxidation, the TCA cycle and the urea 
cycle. The reprogramming of metabolic pathways results in an altered flux of metabolites throughout the different 
pathways, as indicated by the arrows (increased flux is indicated by thick arrows). 2-HG = 2-hydroxyglutarate, ASNS 
= asparagine synthetase, ASS1 = arginosuccinate synthase 1, α-KG = α-ketoglutarate, CoA = co-enzyme A, Cys = 
cysteine, GLS1 = glutaminase 1, Gly = glycine, GSH = glutathione, OAA = oxaloacetate, TCA = tricarboxylic acid. 
Image from Podrini C et al., Cell Signal 2020277.

Other than carbohydrates and amino acids, lipids also are an important fuel source for 
the proliferating cell. As such, it is to be expected that lipid metabolism is also hijacked 
in ADPKD, and this is indeed the case, although the molecular mechanisms underlying 
this are less elucidated than their carbohydrate and amino acid counterparts. The main 
characteristic of the hijacked lipid metabolism in ADPKD is a reduction in fatty acid oxidation 
(FAO)116,117. Urinary acetylcarnitine, an important FAO regulator, has been shown to correlate 
with disease progression118. Also, reduced FAO is partly caused by the reduced expression 
of the two transcription factors peroxisome proliferator-activated receptor alpha (PPARα) 
and hepatocyte nuclear factor 4 alpha (HNF4α) in ADPKD117,118. Reduced PPARα activity is 
regulated by the oncogene c-Myc through microRNA-17 in both ADPKD and cancer, which 
further emphasizes the similarities between Pkd1-/- and cancer cell metabolism119,120. 
Moreover, the necessity for increased fatty acid synthesis (FAS) in rapidly proliferating 
cells (for example to facilitate membrane production for new cells) activates a feedback 
loop, inhibiting fatty acid transporters carnitine palmitoyltransferase 1 (CPT1) and CPT2 in 
ADPKD105. In this light, it is interesting to note that mutations in the CPT2 gene can result in 
a severe case of infantile PKD121.
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The amount of metabolic alterations found in ADPKD also has consequences for 
mitochondrial function. The mitochondria are the powerhouse of the cell, and as 
such, are home to many metabolic pathways, including the TCA cycle and oxidative 
phosphorylation. Reduced oxidative phosphorylation is a hallmark of ADPKD, and has 
extensively been demonstrated in various murine models, as well as human ADPKD 
cysts and patient-derived cells, both functional (through measurement of ATP synthesis 
and the oxygen consumption rate) and transcriptional (reduced expression of genes 
involved in oxidative phosphorylation)52,101,102,105,116-118,122,123. The functional defects are 
accompanied by structural changes as well. Both mouse models and patient tissue have 
shown that ADPKD cells show swollen mitochondria with abnormal cristae that are less 
elongated, as well as reduced mitochondrial biogenesis due to reduced activity of PPARα 
and PPAR–gamma coactivator 1-alpha (PGC1α)44,117,122,124. Another observed defect is the 
increased fragmentation of mitochondria in Pkd1-/- and Pkd2 knock-down cells, indicating 
mitochondrial dysfunction124,125. The major dysfunction of mitochondria in ADPKD is not 
surprising, as several studies have shown that the polycystin proteins can directly influence 
mitochondria. Both PC-1 and PC-2 can influence calcium signalling (as discussed before), 
in which the mitochondria also play an important role. An increased mitochondrial Ca2+ 
concentration increases mitochondrial gene expression, required to sustain and increase 
oxidative phosphorylation and ATP synthesis126. The source of mitochondrial calcium are 
the mitochondria-associated ER membranes, and studies have shown that both polycystin 
proteins can localize to these membranes52. Intriguingly, reduced PC-1 activity results in less 
mitochondrial influx, while reduces PC-2 activity results in the opposite52,125. PC-1 can also 
directly influence mitochondrial morphology and function, as the PC-1 C-terminal tail can be 
cleaved and translocated to the mitochondrial matrix44.

Inflammation and immunity
Histological analysis of both early-stage and late-stage kidneys of ADPKD patients revealed 
apparent signs of inflammation in both stadia of the disease50,127. As such, interstitial 
inflammation and a large presence of cytokines and inflammatory cells are considered a 
hallmark of ADPKD. Analysis of both patient tissue and cyst fluid revealed the presence 
of several cytokines (or genes encoding them), among which monocyte chemoattractant 
protein 1 (MCP-1), tumor necrosis factor alpha (TNFα) and several interleukins are most 
prominent and the best described128-130. MCP-1, encoded by the Ccl2 gene, is a ligand for the 
CCR2 receptor, which can be found on monocytes and T-cells131,132. Its presence is elevated 
in tissues, cyst fluid and urine from both rodent and human origin, and urinary MCP-1 
levels inversely correlate with renal function133-136. The importance of MCP-1 in   disease 
progression was further emphasized by a Ccl2;Pkd1-/- double knock-out mouse, which 
displayed reduced macrophage numbers, slower cyst growth and improved renal function, 
compared to a Pkd1-/- single knock-out mouse. Treatment with a CCR2 inhibitor showed 
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shown to be elevated in patient cyst fluid128,138. In collecting duct cells, TNFα can disrupt 
polycystin interactions and alter the subcellular localization of PC-2, and it also influences 
many other signalling pathways and processes known to be dysregulated in ADPKD, such as 
proliferation, apoptosis and inflammation138-140. 

The elevated cytokine production by the renal epithelium in ADPKD consequently results in 
the recruitment of immune cells, such as mast cells and neutrophils. Both have been shown 
to be present in human cystic kidneys, and neutrophils have also been detected in animal 
models141-146. However, the most prominent immune cell contributing to disease progression, 
and therefore the most researched, is the macrophage. Macrophages are part of the innate 
immune system, and are responsible for the phagocytosis of foreign materials, secreting 
both pro- and anti-inflammatory cytokines in the process, which eventually results in tissue 
repair. They can be classified based on origin, as either infiltrating (bone-marrow derived) or 
tissue-resident (embryonically derived)147,148. The presence of macrophages in cystic tissues, 
both human and animal, has been described extensively over multiple decades, which 
consequently was followed by several genomic studies revealing overexpression of innate 
immune response genes101,133,149-153. More recent studies revealed that macrophages also 
directly contribute to disease progression and are pro-proliferative, as F4/80+ (mice) and 
CD163+ (human) macrophages were accumulating in cyst-lining regions and the interstitium. 
Treatment with liposomal clodronate, which depletes macrophages, reduced various 
cystic disease parameters, as well as excessive epithelial proliferation154,155. Macrophage 
effects on cell proliferation were also confirmed by findings that (1) macrophage migratory 
inhibitory factor (MIF) is required for macrophage retention, and that both genetic deletion 
and pharmacological inhibition of MIF slow down cyst growth, and (2) arginase 1 (Arg1) 
expressing macrophages directly communicate with the cystic epithelium, stimulating 
proliferation, and that Arg1 inhibition reduces cyst growth and proliferation135,156. The exact 
contributions of both infiltrating and resident macrophages are difficult to separate, as both 
types secrete similar sets of cytokines. Pkd1-/- mice display cyst formation, increased MCP-1 
expression, as well as an increased presence of CCR2+ macrophages, however it is unknown 
if these macrophages are infiltrating or resident157. Both inhibition and genetic deletion 
of MCP-1 reduce the cystic burden, which suggests a role for infiltrating macrophages in 
disease progression, although this has recently been questioned137,157,158. The overlapping 
sets of cytokines secreted by infiltrating and resident macrophages are likely regulated by 
the transcription factor interferon regulatory factor 5 (IRF5), which is increased in both cell 
types153. 

While the role of innate immune cells, and specifically macrophages, has been researched 
extensively, much less is known about the role of the adaptive immune system. The presence 
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of lymphocytes in both cystic tissue (human and mouse) and cyst fluid has been described 
extensively, which indicates they do play a role in disease progression128,149,151,159,160. Recent 
studies have found increased T-cell numbers in mouse and human kidneys, which correlate 
with disease severity161,162. Of note here is that immunodepletion of CD8+ T-cells exacerbates 
disease progression in mice, which is associated with decreased apoptosis and increased 
proliferation of the epithelium161. This suggests that CD8+ T-cells might have a protective role 
in ADPKD disease progression.

Other than the attraction of immune cells, the release of cytokines by the cystic epithelium 
also results in the overactivation of several pro-inflammatory signalling pathways, which 
reinforce the inflammatory reaction. The most relevant pathways in this regard are the 
nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) pathway and the Janus 
kinase-signal transducer and activator of transcription proteins (JAK-STAT) pathway, which 
both were identified as upregulated in human cystic kidney tissue101. The NFkB pathway 
can be activated by a variety of cytokines, such as MCP-1, TNFα and interleukin 6, that 
bind to Toll-like receptors (TLRs)163,164. Most cytokines, in turn, are also upregulated by 
NFkB pathway activation, creating a positive feedback loop165. Several studies have shown 
that different pathway effectors of the NFkB pathway, such as p65, IKKα/β and NFkB, are 
increased in both mouse and human cystic tissues, and result in the increased expression 
of pro-inflammatory genes166-168. The JAK-STAT pathway is activated by a multitude of 
cytokines, such as interferons and interleukins, as well as multiple growth factors169. 
Pathway activation results in JAK activation, which in turn can phosphorylate different STAT 
transcription factors, such as STAT3 and STAT6. These then translocate to the nucleus and 
activate the transcription of pro-inflammatory and pro-fibrotic genes. Several studies have 
shown that the polycystin complex, the PC-1 C-terminal tail and membrane-bound PC-1 can 
interact with STAT1, STAT3 and STAT6, all three of which are overexpressed in both mouse 
and human cystic kidneys46,101,170-173. 

Therapeutic strategies & trials
Due to the diverse range of dysregulated signalling pathways in ADPKD, many possibilities 
exist for therapies interfering with this dysregulation. However, such a compound will only be 
a symptomatic treatment and not a curative one, as the underlying cause, mutations in the 
PKD1 or PKD2 genes, are not addressed. While multiple options for potential interventions 
are possible, it is important to consider the duration of a potential treatment. As ADPKD 
patients will suffer from the disease for their whole lifetime, a treatment has to be safe in 
this long period and without major side-effects, while maintaining its efficacy. As such, it has 
been difficult to identify, test and approve a new treatment that can meet all these criteria. 
Nevertheless, progress has been made in this regard (Figure 5).
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Figure 5: Overview of tested (pre)clinical drug candidates and associated pathways in autosomal dominant 
polycystic kidney disease (ADPKD). 
2-DG = 2-deoxyglucose, AC5/6 = adenylyl cyclase 5/6, 5’AMP or AMP = adenosine monophosphate, AMPK = adenosine 
monophosphate-activated kinase, ATP = adenosine triphosphate, cAMP = cyclic adenosine monophosphate, CREB 
= cyclic adenosine monophosphate-responsive element, ER = endoplasmic reticulum, Gi = Gi protein alpha subunit, 
Gs = Gs alpha subunit, IP3R = inositol 1,4,5-triphosphate receptor, miR-17 = miR-17 microRNA precursor family, 
mTOR1 = mammalian target of rapamycin 1, PC = polycystin, PDE = phosphodiesterase , PKA = protein kinase A, 
PPARα = peroxisome proliferator-activated receptor alpha, SST = somatostatin, SSTR = somatostatin receptor, tmAC 
= transmembrane adenylyl cyclases, TZDs = thiazolidinediones, V2R = vasopressin V2 receptor. Adapted from Zhou 
JX & Torres VE, Adv Kidney Dis Health 2023182. 

Vasopressin V2 receptor antagonists
As described before, V2R has an important role in driving disease progression. Vasopressin 
levels are elevated in ADPKD patients, and as a consequence, the receptor is overactivated80-83. 
This then leads to AC6 overactivation and then elevated intracellular cAMP concentrations, 
which drive excessive cell proliferation and cyst progression, mainly in the collecting duct 
and distal tubule segments77,78,88-90,174. This prompted further preclinical research into V2R 
antagonists, of which multiple showed efficacy in cellular and animal models85,174-177. Due to 
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these positive results, the TEMPO 3:4 phase 3 clinical trial was started in 2007 with tolvaptan, 
and showed that tolvaptan slows down the total kidney volume (TKV) increase and slows 
the rate of declining kidney function (measured by the estimated glomerular filtration 
rate, eGFR) in ADPKD patients18. However, already in this trial, it was established that many 
tolvaptan-treated patients deal with thirst (55.3%) and polyuria (38.3%), as well as several 
serious adverse events, such as elevations in alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), and bilirubin levels, indicative of hepatotoxicity18. This prompted 
a follow-up clinical study to determine the long-term safety and efficacy of tolvaptan in 
ADPKD patients, the TEMPO 4:4 trial, which displayed similar results as the first trial178. 
Also a third phase 3 clinical trial (REPRISE) was performed in late-stage ADPKD patients, 
confirming the results of both TEMPO trials, but also showed that tolvaptan treatment has 
no significant benefits in patients older than 55 years20. Thanks to these positive results, 
tolvaptan has been approved as an ADPKD drug in Japan, Canada, the European Union, 
Switzerland, South Korea and the United States. Due to the serious side effects regarding 
hepatotoxicity, the drug is only available to a subset of patients with rapidly progressing 
ADPKD21. This has also resulted in research on other vaptans, out of which lixivaptan was 
particularly interesting. Lixivaptan has been tested preclinically and can slow down disease 
progression in mice85,175,179-181. In addition, mathematical modelling predicted lixivaptan 
to have less risk for hepatotoxicity compared to tolvaptan. Two clinical trials have been 
started to assess the safety and efficacy of lixivaptan in ADPKD patients, but were recently 
terminated due to clinically significant liver enzyme elevations182. 

Somatostatin analogues
By binding to somatostatin receptors, somatostatin can inhibit AC-mediated cAMP synthesis 
in the collecting duct182,183. Therefore, long-acting somatostatin analogues such as octreotide 
and pasireotide have been tested preclinically in rodent models and were found to be 
effective in reducing cyst progression in both kidney and liver, with pasireotide outperforming 
octreotide184-186. These positive results were followed up by a large clinical trial (DIPAK-1) 
investigating the effect of long-term lanreotide treatment in ADPKD patients187. While TKV 
growth was reduced by lanreotide, no delayed decline in kidney function was observed. 
Clinical trials (ALADIN and ALADIN-2) investigating octreotide long-acting release (LAR) had 
similar findings188,189. A combined treatment of tolvaptan and octreotide has also been tested 
in a phase 2 clinical trials, showing that a combination treatment can enhance tolvaptan’s 
beneficial effects on eGFR and TKV, in line with a previous preclinical outcome186,190.

mTOR inhibitors
The mTOR pathway is a central pathway in the cell that integrates growth factor cues and 
nutrient availability in order to regulate cell proliferation and energy metabolism, through 
the mTORC1 and mTORC2 proteins191. It was found that mTOR pathway activity is regulated 
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investigating mTOR pathway inhibitors, such as rapamycin/sirolimus and everolimus, in 
ADPKD, indeed showing that mTOR inhibition slows down disease progression in rodent 
models192-198. However, this effect could not be replicated in phase 3 clinical trials, possibly 
due to usage of a too low dose199-202. A possible option to increase the effective dose  
would be to administer a folate-drug conjugate, as folate receptors are highly expressed 
on the kidney epithelium203. Indeed, folate conjugates of rapamycin and dactolisib (a dual 
PI3K/mTOR inhibitor) accumulated in the kidney and slowed down disease progression in  
mice203-205. Importantly, no other organs were affected by folate conjugate drug treatment, 
which is the major concern for increasing the therapeutic dose of mTOR inhibitors for 
human use206-208. 

microRNA therapeutics
In recent years, a number of studies have shown that cystic disease progression can be 
reduced in vivo through microRNA (miRNA) therapeutics. miRNAs belong to the non-coding 
RNAs used in the post-transcriptional regulation of gene expression. Several miRNAs have 
been shown to regulate disease progression and subsequent intracellular pathway activity 
in ADPKD209. miR-21, miR193-3p and miR-214 have all been reported to have negative 
(miR-21) or positive effects (miR193-3p, miR-214) on cystic disease progression, but the 
best described in this regard is the miR-17~92 cluster210,211. The miR-17~92 cluster was first 
shown to be upregulated in Kif3a-KO mice and later as well in Pkd1-KO and Pkd2-KO mouse 
models, with the upregulation mediated by the oncogene cMyc117,212. Subsequent research 
showed that the miR-17 family is the primary driver of disease progression in ADPKD 
within the cluster, that miR-17 can bind to Pkd1 and Pkd2 through their 3’-untranslated 
region (UTR) miR-17 binding element, and that deleting or pharmaceutically blocking this 
element ameliorates disease progression in mice120,213,214. Blockade of the 3’-UTR miR-17 
binding element was done with the anti-miR-17 oligonucleotide RGLS4326, which has 
shown to be non-toxic in both mice and primates and is currently in a Phase 1b clinical trial 
(NCT04536688)215. 

Dietary metabolic interventions
As discussed before, numerous metabolic processes are dysregulated in ADPKD, due to 
the Warburg-like metabolic reprogramming that takes place. As a consequence, more 
research in the last years has focused on various metabolic interventions, both dietary and 
pharmacological, in order to prevent disease progression. One type of dietary intervention, 
caloric restriction (reducing caloric intake), has wide-ranging benefits in terms of metabolic 
health, longevity and healthy aging 216,217. To the contrary, being overweight or obese are 
detrimental to these processes, and have been found to be independent predictors of 
ADPKD disease progression and TKV growth218,219. In preclinical studies, moderate caloric 
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restriction (10-40% reduction) in Pkd1RC/RC and PKDcond/cond:NesCre mice was already enough 
to reduce disease progression and altered cellular signalling220-222. A preliminary clinical trial 
among 15 ADPKD patients showed that an approximate 30% caloric restriction for 12 months 
is feasible in patients and results in weight loss correlating with slower kidney growth222. 
A new clinical trial with 2 year follow-up, comparing caloric restriction to standard advice 
control, is currently underway (NCT04907799). Several studies have looked into the effects 
of low protein and low fat diets, instead of full caloric restriction. In pcy mice, it was found 
that a low protein diet reduces disease progression and increases survival, however multiple 
clinical studies have since found no beneficial effects of a low protein diet223-225. In a similar 
vein, low fat diet-fed Pkd1cko/cko

 mice have reduced cystic parameters, while high fat diet-fed 
Han:SPRD-cy rats have increased cystic parameters)116,226-228, but no dedicated clinical trial has 
been performed at this point. Caloric restriction diets are difficult to adhere to for patients, 
mainly due to lifestyle reasons229. A better option could be time-restricted feeding (or 
intermittent fasting), in which the access to food is time-restricted, but not calorie-restricted, 
which has been shown to prevent disease in rodents and humans230. Time-restricted feeding 
was found to improve disease parameters in Han:SPRD rats, but not in the Pkd1RC/RC mouse 
model222,231. A preliminary clinical trial among 13 ADPKD patients showed that intermittent 
fasting for 12 months also is feasible in patients and results in weight loss correlating with 
slower kidney growth222. A larger clinical trial investigating time-restricted feeding in ADPKD 
patients (29 patients, 24 month follow-up) is currently underway (NCT04534985). The 
positive time-restricted feeding results together with other parameters measured suggest 
a state of ketosis was induced in the rats231. Indeed, a ketogenic diet (high in fats, low in 
carbohydrates) ameliorated disease progression in young and adult Han:SPRD rats, as well 
as oral supplementation of the ketone β-hydroxybutyrate231. A recently published clinical 
trial testing the effects of a 5 month ketogenic diet in ADPKD patients shows that the diet 
induces weight loss and improves eGFR, but does not change TKV232. 

Pharmacological metabolic interventions
Many different options exist for pharmacological intervention on the Warburg-like 
metabolic reprogramming present in ADPKD. However, the most effective results would 
likely be yielded by targeting a protein/pathway that affects most of the dysregulated 
processes, i.e. excessive glycolysis, impaired FAO and altered mitochondrial function. One 
target that ticks these boxes is AMPK, one of the central regulators in cellular metabolism. 
AMPK, when active, regulates glucose transport by promoting translocation of glucose 
transporters 1 and 4 (GLUT1/4) to the cell membrane233,234. Lipid metabolism is regulated 
through the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (CoA) reductase (HMGR) 
and acetyl-CoA carboxylase (ACC), limiting fatty acid/lipid synthesis and promoting  
FAO235-237. AMPK can promote mitochondrial biogenesis through the activation of PGC1α, 
which as a transcriptional co-activator, interacts with among others, PPARα, to promote the 
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In addition to this, AMPK activation results in the inhibition of cell growth and cell 
proliferation, through inhibition of mTORC1, phosphorylation of p53, as well as inhibition 
of the Hippo-YAP and RAS/B-RAF/MEK/ERK pathways240-245. Because of this versatility, AMPK 
activators are increasingly becoming attractive as potential ADPKD treatment, and have 
already been tested preclinically. Both caloric restriction and intermittent feeding modulate 
the intracellular AMP-ADP/ATP ratio (an important regulator of AMPK activity) and increase 
AMPK activity220,221,231. Compound-wise, the antihyperglycemic agent metformin has been 
the most researched. Originally used to treat type 2 diabetes, it indirectly activates AMPK by 
inhibiting mitochondrial complex I, which in turn affects the AMPK-modulating intracellular 
AMP-ADP/ATP ratio246,247. Preclinical data on metformin treatment in ADPKD is conflicting, 
with studies reporting that metformin slows down disease progression in mice, zebrafish 
and a miniature pig model, but there are also several studies (see chapter 3) that show no 
effect of metformin on ADPKD in mouse models248-253. Multiple clinical trials have been or 
are underway testing metformin as a therapeutic in ADPKD. The TAME-PKD phase 2 clinical 
trial investigated the safety, tolerability and efficacy of metformin in 21 ADPKD patients 
and found metformin to be safe and tolerable, while eGFR decline was non-significantly 
reduced254. A second trial in 22 participants also found no significant changes in TKV or 
eGFR, although this was not the primary outcome of the study255. Two larger phase 3 clinical 
trials with metformin are currently underway (NCT04939935, NCT03764605). 

Several pharmacological metabolic interventions that are being investigated in ADPKD 
do not have AMPK as a direct target, but do affect its activation indirectly. One such 
compound is 2-deoxyglucose, which as a glucose analogue, can inhibit glycolysis, activate 
AMPK and reduce disease progression in different ADPKD models102-104,250. A pilot clinical 
study investigating the pharmacokinetics, safety and tolerability of 2-deoxyglucose is 
currently being planned256. A different group of compounds, the thiazolidinediones, are 
synthetic activators of the transcription factor PPARγ, which regulates fatty acid and glucose 
metabolism, cell proliferation, inflammation and fluid transport, in part through AMPK 
activation257-261. Several thiazolidinediones have been shown to reduce disease progression 
in Pkd1-/- embryos and orthologous rat models262-265. Based on these results, a small phase 
1b clinical trial investigating the safety and efficacy of pioglitazone in 15 patients found 
pioglitazone to be safe for ADPKD patients. However, no significant change in TKV was 
observed266. The gliflozin class of medication are sodium/glucose cotransporter 2 (SGLT2) 
inhibitors, which can activate AMPK through their inhibitory function267. However, the 
drug canagliflozin had no effect on disease progression in an ADPKD mouse model (see 
chapter 3)251. Two clinical trials are currently recruiting participants to investigate the safety 
of empagliflozin administration in ADPKD patients (NCT06391450, NCT05510115). Other 
compound classes that have been tested were statins (pravastatin) and sirtuin inhibitors 
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(niacinamide), which both were effective in preclinical or preliminary clinical studies, but 
showed no clinical benefit in larger clinical trials268-271. 

Other interventions
The retinoic acid receptor (RAR) is currently under investigation as a possible target in 
ADPKD, as it has been shown that the RAR agonist tamibarotene has anti-inflammatory 
and anti-fibrotic effects in unilateral ureteral obstruction (UUO) models of chronic kidney 
disease272,273. A phase 2 clinical trial investigating the effect of 1-year tamibarotene 
treatment in ADPKD patients is now recruiting participants (NCT06289998). In part due to 
the metabolic reprogramming in ADPKD, patients also suffer from increased body weight 
and insulin resistance218,219,274. Because of this, the recently approved class of glucagon-
like peptide 1 (GLP1) antagonists, such as semaglutide and liraglutide, might be beneficial 
in ADPKD treatment. The effect of 22-month semaglutide treatment on cystic disease 
progression will be investigated in a phase 2 clinical trial (NCT06582875).

Aim and outline of this thesis
ADPKD is a progressive, genetic kidney disease, affecting about 10 million individuals 
worldwide, and accounting for 5-10% of ESRD cases worldwide. Despite a large amount 
of preclinical and clinical investigations, thus far, only one drug has been approved for the 
treatment of ADPKD: tolvaptan. However, due to its numerous side-effects (such as polyuria 
and hepatotoxicity), only a subset of patients can benefit from its use, and therefore, 
there is still a large unmet clinical need for therapeutics. In this thesis, we aim to identify 
novel therapeutics, and test them in preclinical models, to evaluate their safety and most 
importantly, their efficacy in slowing down disease progression, with the end goal of 
providing new candidates for clinical investigation.

In chapter 2, we investigate whether a combination treatment of tolvaptan and the 
thiazolidinedione pioglitazone can improve clinical efficacy compared to single-drug 
treatment in an adult-onset PKD mouse model. The combination treatment improved 
renal survival and slowed disease progression, but it wasn’t more effective than tolvaptan 
alone. Unexpectedly, pioglitazone treatment had no effects on these parameters, although 
systemic biomarkers were affected by pioglitazone.

In chapter 3, 4 and 5, we perform a thorough investigation of the direct AMPK activator 
salicylate and its prodrug salsalate. We find that salsalate can slow disease progression and 
improve renal survival in an adult-onset PKD mouse model, in contrast to indirect AMPK 
activators metformin and canagliflozin (chapter 3). We then delineate with the use of  
in vitro models through which targets and pathways salicylate could exert its beneficial 
effects, and whether those effects could be AMPK-independent (chapter 4). Next, we 
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eliminate potential phenotypic biases (chapter 5).

In chapter 6, we follow-up on the main results from a previously published 3D drug 
screening of ADPKD therapeutic candidates. Our main hit, fiboflapon, was found to reduce 
cyst swelling in both murine and human ADPKD 3D cysts. We followed this up with an  
in vivo study of fiboflapon in a progressive, early-onset ADPKD mouse model characterized 
by rapid disease progression. Fiboflapon did not affect disease progression or relevant cystic 
parameters, but it did affect its predicted drug marker in blood.

Finally, in chapter 7, we present a general overview and discussion of our obtained results 
and provide suggestions for future research.
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