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Chapter 4

Abstract

Background

Osteoarthritis (OA) is a complex, age-related multifactorial degenerative disease of
diarthrodial joints marked by impaired mobility, joint stiffness, pain, and a significant
decrease in quality of life. Among other risk factors, such as genetics and age, hyper-
physiological mechanical cues are known to play a critical role in the onset and
progression of the disease (1). It has been shown that post-mitotic cells, such as articular
chondrocytes, heavily rely on methylation at CpG sites to adapt to environmental cues
and maintain phenotypic plasticity. However, these long-lasting adaptations may
eventually have a negative impact on cellular performance. We hypothesize that hyper-
physiologic mechanical loading leads to the accumulation of altered epigenetic markers
in articular chondrocytes, resulting in a loss of the tightly regulated balance of gene
expression that leads to a dysregulated state characteristic of the OA disease state.

Results

We showed that hyper-physiological loading evokes consistent changes in CpGs
associated with expression changes (ML-tCpGs) in ITGA5, CAV1, and CD44, among other
genes, which together act in pathways such as anatomical structure morphogenesis
(GO:0009653) and response to wound healing (GO:0042060). Moreover, by comparing
the ML-tCpGs and their associated pathways to tCpGs in OA pathophysiology
(OA-tCpGs), we observed a modest but particular interconnected overlap with
notable genes such as CD44 and ITGAS. These genes could indeed represent lasting
detrimental changes to the phenotypic state of chondrocytes due to mechanical
perturbations that occurred earlier in life. The latter is further suggested by the
association between methylation levels of ML-tCpGs mapped to CD44 and OA severity.

Conclusion

Our findings confirm that hyper-physiological mechanical cues evoke changes to the
methylome-wide landscape of chondrocytes, concomitant with detrimental changes in
positional gene expression levels (ML-tCpGs). Since CAV1, ITGA5, and CD44 are subject to
such changes and are central and overlapping with OA-tCpGs of primary chondrocytes,
we propose that accumulation of hyper-physiological mechanical cues can evoke
long-lasting, detrimental changes in set points of gene expression that influence the
phenotypic healthy state of chondrocytes. Future studies are necessary to confirm this
hypothesis.
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Mechanical loading alters epigenetic set-poins of gene expression levels

Introduction

Osteoarthritis (OA) is a complex, age-related multifactorial degenerative disease
of the diarthrodial joints marked by impaired mobility, joint stiffness, pain, and a
significant decrease in quality of life. Among other risk factors, such as genetics and
age, hyper-physiological mechanical cues are known to play a critical role in the onset
and progression of the disease (1). OA is characterized by an imbalance in the articular
chondrocytes’ anabolic and catabolic activities, impacting the integrity of the cartilage.
Hyper-physiologic mechanical loading as seen with post-traumatic injury is compress
articular chondrocytes and introduce catabolic signalling in chondrocytes (1, 2).

Previous studies have characterized the deregulated signalling pathways in articular
chondrocytes in response to hyper-physiological mechanical cues with transcriptome-
wide differential expression analyses. These studies show that hyper-physiologic
mechanical cues significantly enhance cell apoptosis (3) and cellular senescence (4),
increase catabolic gene expression (5), and reduce matrix production (6), whereas
physiologic mechanical loading induces a broad anabolic response in the transcriptome
thatisassociated with increased matrix formation (7). Post-mitotic cells, such asarticular
chondrocytes, heavily rely on methylation at CpG sites to adapt to environmental cues
and maintain phenotypic plasticity (8). However, these long-lasting adaptations may
eventually have a negative impact on cellular performance (9, 10). We hypothesize that
hyper-physiologic mechanical loading leads to the accumulation of altered epigenetic
markers in articular chondrocytes resulting in a loss of the tightly regulated balance of
gene expression to a dysregulated state characteristic of the OA disease state.

Here, we aimed to study the effect of hyper-physiological mechanical stress on changes
in DNA methylation-driven set points of epigenetically regulated gene expression
that potentially contribute to OA-related loss of the chondrocytes’ epigenetically
controlled healthy maturational arrested phenotypic state. To this end, we employed
an established human induced pluripotent stem cell (hiPSC)-derived cartilage organoid
model and studied the methylome and transcriptome-wide changes in response to
previously assessed hyper-physiological mechanical loading conditions (11). Using
these techniques, we show that changes in the epigenetic set point of transcription
in chondrocytes responding to hyper-physiological loading overlap with OA
pathophysiology, further underlining their mutual role in evoking aberrant chondrocyte
cellular functions.
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Results
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Figure 1 | Effect of hyper-physiological loading on the genome-wide methylation (A) A volcano plot
of the methylome-wide response to hyper-physiological loading conditions. Red dots denote CpG sites
mapped to a gene body with increased methylation, FDR<0.01, and blue dots represent CpG sites mapped
to a gene body that are de-methylated in response to hyper-physiological loading conditions as determined
by MEAL. (B) Manhattan plot of differentially methylated CpG sites with their genomic mapped genes. The
horizontal red line represents the FDR<0.05 threshold. (C) Enrichment of significant DMs within chromatin
states; active transcription start site (TSS), proximal promoter states (TssA, TssAFInk), a transcribed state at
the 5" and 3’ ends of genes showing both promoter and enhancer signatures (TxFInk), actively transcribed
states (Tx, TxWKk), enhancer states (Enh, EnhG), and a state associated with zinc finger protein genes (ZNF/
Rpts). The inactive states consist of constitutive heterochromatin (Het), bivalent regulatory states (TssBiv,
BivFInk, EnhBiv), repressed Polycomb states (ReprPC, ReprPCWKk), and a quiescent state (Quies) (D) Notable
example of differentially methylated mapped CpGs in response to hyper-physiological mechanical loading
conditions. The box plots represent the 25th, 50th, and 75th percentiles, and whiskers extend to 1.5 times
the interquartile range. Individual samples are depicted by black dots in each graph. *FDR<0.05, **FDR<0.01,
***FDR<0.001.

Characterization of experimental set-up to test the epigenome- and transcriptome-wide
effects of hyper-physiological loading.

To test the effects of hyper-physiological loading on the epigenetically regulated
transcriptome, we employed a human induced pluripotent stem cell (hiPSC)-derived
neo-cartilage organoid model. hiPSCs were differentiated into chondrocytes using
a previously established chondrogenic differentiation protocol (12). To study the
response of chondrocytes to hyper-physiological mechanical loading conditions we
have applied two different models that are commonly used in osteoarthritis research:
(1) chondrocyte derived (spherical) neo-cartilage constructs, and (2) chondrocytes
embedded in (cylindrical) agarose constructs. To distill the most consistent effects we
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Mechanical loading alters epigenetic set-poins of gene expression levels

employed both models and performed a meta-analysis on the methylome-wide changes
in response to hyper-physiological mechanical loading. Successful differentiation
towards chondrocytes and the production of neo-cartilage was confirmed by protein
immunolabeling of collagen II (COLII) and collagen VI (COLVI), as well as staining for
sulfated glycosaminoglycans (sGAGs) (Fig. S1A).

To test the hypothesis that injurious mechanical stress can alter the epigenetically
regulated transcriptome, both of the organoid models were exposed to hyper-
physiologic mechanical loading (total n=26) alongside unloaded controls (total n=27)
(11). Methylome- and transcriptome-wide profiles resulting from the jointly analyzed
neo-cartilage models, together with real-time quantitative polymerase chain reaction
(RT-qPCR), immunohistochemistry (IHC), and dimethyl methylene blue (DMMB)
assays, resulting from the spherical neo-cartilage organoids were measured 12 hours
after mechanical stimulation. First, we characterized the response of neo-cartilage
organoids to hyper-physiological loading conditions by targeted analysis using RT-qPCR
of catabolic and anabolic cartilage markers and mechano-sensors (Table 1). Similar to
other mechanically induced injurious in vitro and in vivo models of OA (4, 13), expression
of anabolic ADAMTSS5 significantly increased in response to hyper-physiological loading.
This finding suggests that hyper-physiological loading conditions induced a catabolic
response in neo-cartilage organoids. Additionally, there was an increase in PIEZO1
expression, which is hypothesized one of the main transducers of hyper-physiological
mechanical loading (14). Nonetheless, staining intensity of COLII and COLVI, as well as
SGAG deposition normalized to DNA content, showed no significant change in response
to hyper-physiological loading conditions (Fig. S1B-C).

Methylome-wide response to hyper-physiological mechanical loading conditions

Following Illumina EPIC array analyses and quality control (QC), we obtained robust
methylation data of 807655 CpGs for the two models to determine differential DNA
methylation in response to hyper-physiological loading by meta-analysis. In total, we
detected 6830 differentially methylated (DM) CpG sites (FDR<0.01, Fig. 1A; Table
S$1) and plotted them across the genome annotated with the GENCODE basic V12
database (Fig. 1B) (15). Notable examples of highly significant DM CpG sites are
cg27310485 annotated to calcium binding protein S100A2 (beta =.01, FDR = 7.8X10),
cg16217885 annotated to inflammatory receptor IL1R1 (beta = 0.01, FDR = 1.2x103),
cg12795959 annotated to SIRPB1 (beta = -0.03, FDR = 2.4x107). As shown in Fig. 1B,
we recognized some skyscrapers suggesting differentially methylated regions (DMRs).
Upon defining DMRs as 3 or more DM CpGs with an inter-CpG distance of <1kb and
allowing for 3 non-DM CpGs in the complete DMR (16), these DMRs did not reach
statistical significance. To gain insight into the functional aspects of DM CpGs, their
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enrichment to chromatin states was analyzed (17). As shown in Fig. 1C, DM CpG sites
with hyper-physiological loading were significantly enriched within chromatin regions
associated with active transcription start site (TSS) proximal promoter states TssAFInk
(OR=0.87, FDR=1.8X10?), transcription start sites (TssA) (OR=0.69, FDR=4.7X10?%1),
enhancer states (Enh) (OR=1.51, FDR=6.5X10-!), bivalent regulatory states (BivFInk)
(OR=0.59, FDR=2.0X10*), and a quiescent state (Quies) (OR=1.08, FDR=6.3X103). The
highly significant enrichment for DM CpGs in Enh suggests that mechanical loading
induced differential methylation, particularly at CpG sites that reside in genomic
regions involved in the regulation of gene expression. Notable examples of highly
significant DM CpG sites that mapped to such regulatory regions of gene expression
were cg18180456 annotated PHF17 encoding Jade Family PHD Finger 1 involved in
histone acetylation (beta=-0.0632, FDR=8.8X107%), cg13727613 annotated RUNX2
encoding a well-known transcription factor detrimental to cartilage, (beta=-0.021,
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Mechanical loading alters epigenetic set-poins of gene expression levels

Figure 2 | Circos Plot of Transcriptionally active DM CpG sites responding to hyper-physiologic
mechanical loading showing the genomic distribution of the DM CpG sites and positional DE genes. The
inner circle displays the chromosomes. The middle circle displays change in percentage of the methylation
of the 2492 DM-CpG’s that mapped to a gene site. Blue bars depict de-methylated CpG-sites, red bars depict
increased Methylated CpG-sites. (FDR<0.01) The outside circle displays the log fold change of the 169 unique
DE ML-tCpG-Genes. Blue dots depict downregulation, red dots depict upregulation. (FDR<0.05)

FDR=6.2X10"*), and cg23194024 annotated MSL1 encoding a component of the histone
acetyltransferase complex responsible for the majority of histone H4 acetylation (beta=-
0.032, FDR=6.9X107%) (Fig. 1D).

Transcriptionally active CpG-sites

To biologically interpret the DM CpG sites in response to hyper-physiological loading
more specifically, we next integrated a previously assessed RNA sequencing dataset
(18) of the same experiment. To prioritize DM CpG that likely affect gene expression,
we first prioritized, among the DM CpG sites, those that mapped to genes within 200
or 1500 bp of the transcription start site (TSS200, TSS1500), located within the 3’ or
5" UTR regions, or CpG sites that were exon bound. This resulted in 2492 CpG-gene
pairs. (Fig. 2; Table S2). As shown in Figure 2, around multiple genes such as ITGAS5,
DLG2 and ABR multiple DM-CpGs are clustered. Next, among the 2492 DM CpG sites, we
prioritized those that mapped to a gene that was also differentially expressed in response
to hyper-physiological loading conditions based on FDR correction for the number of
genes overlapping with mapped CpGs. This selection of the most likely transcriptionally
active DM CpGs, henceforth defined as mechanical loading induced, transcriptionally
active CpGs (ML-tCpGs), consisted of a total of 208 ML-tCpGs that mapped at TSS200
(15.4%), TSS1500 (28.5%), 3'UTR (13.65%), 5’'UTR (32.2%), and 1st Exon (5.78%) or
were Exonbound (4.3%) (Table S3). As shown in Fig. 2 and Table S3, these 208 ML-
tCpGs were connected to 169 unique differentially expressed (DE) genes. As shown in
Fig. 3A, 57 of the 169 genes showed a strong protein-protein interaction (FDR = 2.4x10-
%) as determined by STRING-DB. Examples of highly connected ML-tCpGs-genes within
this network are HSPA1B, CD44, and CAV1 (Fig. 3B-C) To gain insight into the biological
processes that are affected by the ML-tCpGs responding to hyper-physiological loading
conditions, we performed pathway enrichment analysis of gene ontology biological
processes (GO BP), KEGG, and Reactome (Table S4) on all 169 unique genes that were
associated with a ML-tCpG. Pathways such as anatomical structure morphogenesis
(e.g., ANGPTL4, WNT9A, HMGAZ2), wound healing (e.g., HSPB1, SERPINE2, FERMT1), and
caveola assembly (e.g., CAV1, CAV2, PACSINZ) were enriched.

Overlapping key nodes in the network of t-CpGs affected by mechanical loading and OA
pathophysiology

To explore the role of the identified ML-tCpG-gene pairs in OA pathophysiology, we
examined the overlap of our ML-tCpG-gene pairs with those previously reported tCpG-
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gene pairs associated to OA pathophysiology, i.e. differentially expressed between
lesioned and preserved cartilage from OA patients who underwent a joint replacement
surgery (19). Although, the overlap was modest (n = 8 of 142 OA-tCpG-gene pairs) (Fig.
$3), the ML-tCpG genes that did overlap with OA-tCpGs, CD44, ITGAS5, and CAV1, are
central and particularly interconnected genes in the network of both ML-tCpG-gene
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Figure 3 | Epigenetically regulated transcriptome pathway enrichment analysis. (A) Protein-protein
network of ML-tCpG - genes as determined by STRING-DB. (B) Differential gene expression of genes to
which a DM CpG was mapped. (C) Diffevrential methylation of CpG sites mapped to the gene body. The box
plots represent 25th, 50th, and 75th percentiles, and whiskers extend to 1.5 times the interquartile range.
Individual samples are depicted by black dots in each graph. *FDR<0.05, ***FDR<0.001. (D) Top 10 most
significantly enriched pathways of epigenetically regulated DEG. FDR<0.05. (E) Gene-pathway network
of notable enriched pathways where lines depict the relationship between the genes and the pathways
determined by enrichment analysis. Blue dots depict downregulated DEGs in response to hyper-physiologic
mechanical loadings conditions, and red dots depict upregulated DEGs in response to hyper-physiologic
mechanical loading conditions.

pairs and OA-tCpG-gene pairs (Fig. 3A; Fig. S2). Taken together, we showed that hyper-
physiological loading resulted in changes in tCpG-gene pairs that are both located
within gene regulatory chromatin states and that are central and responsive to changes
that occur during OA pathophysiology.
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Correlation of tCpGs with clinical OA phenotypes

Finally, we set out to gain insight into the clinical relevance of altered epigenetic
control of the identified ML-tCpG. Therefore, we determined the association of ML-
tCpGs overlapping with OA-related epigenetically regulated genes (8) to phenotypic
traits in the respective preoperative radiograph of the OA patient (the RAAK study).
This subset of ML-tCpGs was regulating PFKE, CD44, CAV1, SVIL, and CY1BP1. Next, to
assess how methylation levels of these genes relate to OA severity, methylation levels
in preserved cartilage from joint replacement surgeries of these overlapping ML-tCpGs
were correlated with OA severity as determined by the Kellgren-Lawrence grading scale
(KL-score), adjusted for BMI and age. We found that both CD44 (beta=-0.053, P=0.048)
and PFKP (beta=-0.111, P=3.12X10%) methylation levels were negatively associated
with the KL-score, suggesting indeed that mechanical loading-induced alterations in
epigenetic set points of expression are associated to the OA disease state of the patient.

Discussion

The goal of this study was to determine the effect of hyper-physiological mechanical
loading on changes in stable set points of epigenetically regulated gene expression (ML-
tCpGs) that could contribute to the long-lasting, detrimental changes in chondrocytes
that are characteristic of an OA phenotype. To this end, we employed two human
induced pluripotent stem cell (hiPSC)-derived neo-cartilage organoid models for robust
readouts and studied the methylome- and transcriptome-wide changes in response to
hyper-physiological mechanical loading conditions. We showed that hyper-physiological
loading evokes consistent changes in ML-tCpGs associated with expression changes in
ITGAS5, CAV1, and CD44, among other genes, which together act in pathways such as
anatomical structure morphogenesis (GO:0009653) and response to wound healing
(GO:0042060). Moreover, by comparing the ML-tCpGs and their associated pathways
to tCpGs in OA pathophysiology, we observed a modest but particular interconnected
overlap with notable genes such as CD44 and ITGA5. These genes could indeed
represent lasting detrimental changes to the phenotypic state of chondrocytes due to
mechanical perturbations that occurred earlier in life. The latter is further suggested
by the association between methylation levels of ML-tCpGs mapped to CD44 and OA
severity.

Since injurious mechanical loading is considered an important driver of the onset and
progression of the OA, here, we studied for the first time whether injurious mechanical
loading evokes stable, detrimental changes to chondrocyte phenotypic states. In doing
so, we revealed that DM CpGs are particularly enriched in transcription start sites
and enhancers suggesting that the DM CpG sites evoke changes in gene transcription.
However, we cannot exclude the epigenetic regulatory effects of in trans t-CPGs. To allow
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biological interpretation of the DM CpGs in response to hyper-physiological loading, we
integrated RNA sequencing data from the same experiment. We showed that significant
differential CpG-gene pairs with hyper-physiological loading occurred, particularly
near genes OA relevant genes (e.g., ITGA5, CD44, CAV1, WNT94, and HMGAZ2). The
relevance of mechanically induced expression of ITGAS5 is that the binding of matrix
fragments such as fibronectin to integrin a5p1 heterodimer activates a pro-catabolic
response (20). Also, CD44 plays a role in matrix catabolism by degrading hyaluronic acid
in articular cartilage (21), while catabolic stress has been shown to upregulate CAV1,
coding for caveolin-1, which has been linked to chondrocyte senescence (22). Genes
like WNT9A as well as HMGAZ are reported OA risk genes (23). Nonetheless, the design
of our study does not justify a direct causal relationship between DM at ML-CpGs and
differential gene expression. To further confirm a direct causal relationship between
CpG-specific methylation levels and gene expression, a CRISPR-Cas9-DNMT/TET1
guided manipulation of methylation levels of the identified CpG sites mapped to CD44,
PFKP, SVIL, and CY1BP1, is warranted.

Here we have combined genome-wide methylation and RNAseq analysis of hiPSC-
derived chondrocytes either in deposited (spherical) neo-cartilage or embedded
in (cylindrical) agarose, which currently are the most commonly used models in
osteoarthritis research (7, 11, 14, 24). The advantage of the spherical neo-cartilage
model is that it contains an extracellular matrix deposited by the chondrocytes. Herein
the response of the chondrocyte to the mechanical perturbation likely reflects changes
in the chondrocyte-matrix interaction. Additionally, it allows for evaluating responses
of mechanical loading on sGAGs and other matrix constituents by histology. Henceforth,
this model has been used to evaluate the effects of hyper-physiologic mechanical
loading conditions on matrix properties. On the other hand, the strain distribution on
the spherical pellets, hence chondrocytes, is less equal and could have reduced power
or introduce bias. The advantage of the cylindrical-shaped model, for that matter, allows
for an equal strain distribution, hence a more precise relation between the applied
stress and the response of the chondrocytes to the deformation. By performing a meta-
analysis on the methylome-wide landscape of these two models we aimed to distill
the most consistent and robust effects in the molecular response to hyper-physiologic
mechanical loading conditions.

Founded by the notion that early environmental challenges could evoke long-lasting
changes to methylation at tCpG sites, resulting in detrimental changes to set points of
gene expression, we sought evidence that ML-tCpGs are associated with previously
assessed, OA-related differences in methylation in articular cartilage (OA-tCpGs) (8). We
showed that genes such as CAV1, CD44, and ITGA5 appeared to be identically changed,
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highly interconnected, and central to both the OA-tCpGs and ML-tCpGs networks. As
such, it is tempting to suggest that mechanical injurious loading can indeed contribute
to stable and detrimental changes to the phenotypic state of chondrocytes eventually
making the chondrocyte prone to an OA phenotype. Nonetheless, this hypothesis needs
to be further investigated by confirming that CD44 upregulation leads to detrimental
downstream effects of chondrocytes towards an OA chondrocyte phenotype.

After subjecting the neo-cartilage organoids to a single episode of mechanical injurious
loading, the epigenetic and transcriptomic profiles were captured 12 hours later. This
loading regime was based on a previous study, which optimized the loading regime to
induce catabolic signaling in neo-cartilage organoids. (11) Although this loading regime
resulted in many changes in methylation and associated expression, we did not observe
changes in matrix content. The fact that histological changes were not visible is likely
due to the relatively early time point and/or the intrinsic insensitivity of identifying
changes in protein levels. Moreover, although changes in methylation at CpG sites
are generally considered stable and long-lasting (10), the fact that we only measured
methylation at 12 hours post-stimulus did not allow us to confirm the duration of
the change in methylation, and future studies may wish to address this question
directly. Additionally, this model of hyper-physiological loading in hiPSC neo-cartilage
organoids can be expanded to define and apply more beneficial mechanical loading
regimes, further unraveling the shift in molecular mechanisms underlying the normal
physiological response to loading, and potentially counteract the detrimental changes
in set-points in gene expression as induced by more damaging loading regimes.Such
insights might further aid in the development of treatment strategies.

Conclusion

Together, the current study confirms that hyper-physiological mechanical cues
evoke changes to the methylome-wide landscape of chondrocytes, concomitant with
detrimental changes in positional gene expression levels (ML-tCpGs). Since CAV1, ITGAS5,
and CD44 are subject to such changes and are central and overlapping with OA-tCPGs of
autologous cartilage, we advocate that accumulation of hyper-physiological mechanical
cues can evoke long-lasting, detrimental changes in set points of gene expression that
eventually affect the phenotypic healthy state of chondrocytes. Future studies are
necessary to confirm this hypothesis.

Methods

Experimental design
The objective of the current study was to study the effects of hyper-physiologic
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mechanical loading conditions on the epigenetically regulated transcriptome. Here, we
employed an hiPSC-derived neo-cartilage organoid model that was exposed to hyper-
physiological mechanical loading conditions. These samples were then analyzed using
850k EPIC array and RNA sequencing.

hiPSC line and cell culture

An hiPSC line as described earlier was used (12). In short, the RVR-hIPSC line was
retrovirally reprogrammed from human foreskin BJ fibroblasts and characterized. The
hiPSCs were maintained under standard conditions (37 °C, 5% CO,) on Matrigel (Corning,
cat # 356237, New York, US) coated plates and refreshed daily with TeSR-E8 medium
(STEMCELL Technologies, Vancouver, Canada) with 0.5% penicillin-streptomycin (P/S;
Gibco Landsmeer, the Netherlands) upon reaching approximately 70% confluence.

hiPSC differentiation to induced chondrocytes

Generation of hiPSC-derived chondrocytes was based on a protocol previously described
(12), which was shown to result in the formation of tissue similar to young human
cartilage (25-27). When hiPSCs reached 60% confluence, the culture medium was
switched to mesodermal differentiation (MD) medium, composed of IMDM GlutaMAX
(IMDM; Thermo Fisher Scientific, St Louis, MO ) and Ham’s F12 Nutrient Mix (F12; Sigma-
Aldrich Zwijndrecht, the Netherlands) with 1% chemically defined lipid concentrate
(Gibco Landsmeer, the Netherlands), 1% insulin/human transferrin/selenous (ITS+;
Corning), 0.5% penicillin-streptomycin (P/S; Gibco Landsmeer, the Netherlands), and
450 puM 1-thioglycerol (Sigma-Aldrich, Zwijndrecht, the Netherlands). Before induction
of anterior primitive streak (day 0), hiPSCs were washed with wash medium (IMDM/
F12 and 0.5% P/S) and then fed with MD medium supplemented with activin A (30
ng/ml; Stemgent), 4 uM CHIR99021 (CHIR; Stemgent, Zwijndrecht, the Netherlands),
and human fibroblast growth factor (20 ng/ml; FGF-2; R&D Systems) for 24 hours.
Subsequently, the cells were washed again with wash medium, and paraxial mesoderm
was induced on day 1, by MD medium supplemented with 2 uM SB-505124 (Tocris,
Bristol, United Kingdom, 3 uM CHIR, FGF-2 (20 ng/ml), and 4 uM dorsomorphin (Tocris,
Bristol, United Kingdom for 24 hours. Before induction of early somite (day 2), cells were
washed with wash medium, and then cells were fed with MD medium supplemented
with 2 uM SB-505124, 4 uM dorsomorphin, 1 pM C59 (Cellagen Technology), and 500
nM PD173074 (Tocris, Bristol, United Kingdom), for 24 hours. Subsequently, cells
were washed with wash medium, and for induction of sclerotome, cells (days 3 to 5)
were fed daily with MD medium supplemented with 2 uM purmorphamine (Stemgent
Zwijndrecht, the Netherlands) and 1 pM C59. To induce chondroprogenitor cells (days
6 to 14), cells were washed briefly with wash medium and fed daily with MD medium
supplemented with human bone morphogenetic protein 4 (BMP-4; 20 ng/ml; Miltenyi
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Biotec, Leiden, The Netherlands).

Monolayer cultured hiPSC aggregates present at day 14 of the differentiation were
washed with MD medium, dissociated with Gentle Cell dissociation medium (Stem Cell,
Vancouver, Canada) and centrifuged for 5 minat 300G. Cell aggregates were subsequently
maintained in chondrogenic differentiation (CD) medium containing Dulbecco’s
modified Eagle’s medium/F12 (Gibco Landsmeer, the Netherlands, supplemented with
1% ITS+, 55 uM 2-mercaptoethanol (Gibco Landsmeer, the Netherlands), 1% non-
essential amino acids (Gibco Landsmeer, the Netherlands), 0.5% P/S, L-ascorbate-2-
phosphate (50 pg/ml; Sigma-Aldrich , Zwijndrecht, the Netherlands), L-proline (40
pg/ml; Sigma-Aldrich , Zwijndrecht, the Netherlands), ML329 (1uM; CSNpharm), C59
(1pM; Tocris , Bristol, United Kingdom),, and transforming growth factor-3 (10 ng/
ml; PeproTech, Londen, United Kingdom) for 30 days while refreshing medium every
3 to 4 days.

Neo-cartilage organoid models

Two different chondrogenic constructs were used for downstream analysis; either
these chondrogenic constructs were directly used for further experiments or they were
dissociated using collagenase II, encapsulated in 2% w/v agarose at 30 million cells/
ml, and cultured for 14 days with CD creating cylindrical shaped constructs. Across the
independent differentiations a total of 53 samples were used for molecular profiling via
RNA-seq and Methylation analysis divided loaded samples (n=26) alongside unloaded
controls (n=27).

Mechanical loading

The spherical shaped neo-cartilage constructs were mechanically loaded using a MACH-
1 mechanical testing device (Biomomentum, Laval, Canada), at a rate of 5hz with 20%
sinusoidal peak-to-peak strain for 10 minutes as described earlier (11). The cylindrical
constructs were loaded with a custom-build mechanical loading device, with the same
loading regime. After mechanical loading, we have placed the neo-cartilage organoids
back into CD medium excluding transforming growth factor-3 to prevent interference
of its anabolic response with the response to mechanical loading.

SGAG measurement

Sulphated glycosaminoglycan (sGAG) concentrations in the neo-cartilage organoids (ug
SGAG/ug DNA) was measured using the Farndale Dimethyl Methylene Blue (DMMB,
Sigma, Zwijndrecht, the Netherlands) method (28). Chondroitin sulphate (Sigma,
Zwijndrecht, the Netherlands) was used as a reference standard. Absorbance was
measured at 535 and 595 using a microplate reader (Synergy HT, Biotek, Winooski,
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VT, USA). Neo-cartilage sGAG concentrations were corrected for DNA content measured
with the Qubit® 2.0 Fluorometer (Invitrogen™, Carlsbad, CA, USA) using the dsDNA HS
Assay Kit (Invitrogen™, Carlsbad, CA, USA).

Histology and immunohistochemistry

Neo-cartilage samples were fixed in 4% formaldehyde and embedded in paraffin. Sections
were stained with Alcian Blue (Sigma-Aldrich, Zwijndrecht, the Netherlands) and
Nuclear Fast Red (Sigma-Aldrich, Zwijndrecht, the Netherlands). Deposition of collagen
VIand collagen Il in the neo-cartilage constructs was visualized immunohistochemically
using a polyclonal antibody for COL6A1 (abcam ab6588), a primary sub-unit of COLV],
and a polyclonal antibody for COL2A1 (abcam ab34712), a primary sub-unit of COLII,,
antigen retrieval was done by treating deparaffinized sections with proteinase K (5 pg/
ml, Qiagen Venlo, the Netherlands) and hyaluronidase (5 mg/ml, Sigma Zwijndrecht,
the Netherlands). Sections were incubated overnight with the primary antibodies,
followed by incubation with a HRP conjugated secondary antibody (ImmunoLogic).
Peroxidase binding for collagen VI was visualized using diaminobenzidine, and sections
were counterstained with haematoxylin.

RT-gPCR

Per sample, two replicate neo-cartilage pellets were collected in TRIzol (Invitrogen™,
Carlsbad, CA, USA), and RNA was isolated using the RNeasy Mini Kit (Qiagen, Venlo,
the Netherlands) according to the manufacturer’s protocol. DNA contamination was
removed by treating the RNA with Rnase-Free DNase. RNA quality (A260/280: 1.7-
2.0) was assessed using a nanodrop. RNA concentrations were measured with the
Qubit® 2.0 Fluorometer (Invitrogen™, Carlsbad, CA, USA) using the RNA HS Assay Kit
(Invitrogen™, Carlsbad, CA, USA), with an A260/280 between 1.7-2.0. RNA was reverse
transcribed into cDNA using the Transcriptor First Strand cDNA Synthesis Kit (Roche,
Basel, Switzerland). cDNA was amplified using FastStart SYBR Green Master (Roche,
Basel, Switzerland), and mRNA expression was measured in triplicates in a MicroAmp™
Optical 384-Well Reaction Plate (ThermoFisher Scientific, Landsmeer, the Netherlands),
using the QuantStudio™ Flex Real-Time PCR system (Applied Biosystems™, Foster
City, CA, USA), with the following cycling conditions: 10 min 95 °C; 10 sec 95 °C, 30
sec 60 °C, 20 sec 72 °C (45 cycles); 1 min 65 °C and 15 sec 95 °C. Primer efficiency
was tested using a cDNA dilution series, and primers were considered efficient with
an efficiency between 90% and 110%. -ACt expression levels were calculated using
two housekeeping genes GAPDH and SDHA with the following formula: ACt=Ct (gene
of interest) - Ct (average housekeeping genes). Both housekeeping genes were stably
expressed in this model. Fold changes were calculated using the 24 method with
AACt=ACt (MS) - ACt (Control).
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Methylation data analysis

DNA methylation was assessed using the Illumina Infinium Methylation EPIC (850K)
BeadChip according to GenomeScan’s standard operating procedures (SOPs) based on
the [llumina Infinium II Protocol. To analyze methylation array data (MethylationEPIC
850k array), the MethylAid R script (29)All samples showed a detected CpG above 95%.
The minfi.v_1.36.0 R package (30) was used to pre-process the data. We removed any
probe that have failed in one or more samples (p < 0.01). Probe level intensities were
quantile normalized across samples prior to calculation of the 3-values. MethylToSNP
was used to filter SNPs. This method looked for patterns in methylation array data and
identified methylation probes with SNP-like patterns. The method removes outliers,
which adds robustness to the analysis and is enabled by default. A confidence score
was calculated to show how close the observed pattern of methylation beta values was
to a canonical case of a SNP in a homozygously methylated CpG locus. Additionally,
MethylToSNP can overlap the SNPs identified in methylation data with known SNPs
from dbSNP. The probes that have shown to be cross-reactive (demonstrated to map to
multiple places in the genome) were filtered out (31). The probes that were overlapping
with rare SNPs (probes in transcription factor binding sites that showed extreme
methylation pattern) were filtered out (32). To minimize the unwanted variation
within and between samples, we used the Functional Normalization method from
the minfi.1.36.0 R package (33) We ran differential mean analysis using t-moderated
statistics. Using the MEAL.1.20.3 R package pipeline, which, relies on the ImFit from
limma R package (design model=~ Loading). CpGs after Bonferroni correction P <
6.243109e-08 (0.05/800883) were considered significant. Stratified analysis for each
neo-cartilage construct was performed. These two datasets were then combined with
a random effect meta-analysis using the metaVolcano R package The circos plot was
produced using the Circlize 0.4.3 R package (34).

Statistical analysis

For all data analysis except methylome data, we have used a generalized linear model
including the factors hyper-physiological loading using R statistical software version
4.1.1.
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Supplementary figure 1 | Experimental set-up and effect of the hyper-physiological loading conditions
on matrix deposition neo-cartilage organoids (A) Schematic representation experimental set-up adapted
from Bloks et al. 2023, BioArxiv: hiPS cells were differentiated using an established differentiation protocol
to produce neo-cartilage organoids. Two different organoid models were employed and jointly analyzed; 1. A
spherical pellet model harnessing the original matrix produced by the hiPSCs. 2. A cylindrical organoid model
in which the hiPSC-derived chondrocytes were embedded in an agarose construct, ideally suited for testing
the effects of mechanical loading conditions. These constructs were both exposed to hyper-physiological
loading conditions, after which the organoids were harvested for downstream analysis. (B)Representative
images of Alcian blue staining marking sulfated glucosaminoglycans (sGAGs) and immunohistological
stainings of collagen II (COL II) and collagen VI (COLVI) in spherical neo-cartilage organoids. Scale bar
200pm. (C) Quantification of Alcian blue, COLII, and COLVI in unloaded controls and loaded spherical neo-
cartilage organoids show no significant effect of hyper physiological loading (N=16). (D) Quantification of
sGAG deposition in neo-cartilage organoids. sGAG deposition in these neo-cartilage organoids is not affected
by mechanical loading. (N=16). Statistics are reported as beta + standard error. The box plots represent 25th,
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50th, and 75th percentiles, and whiskers extend to 1.5 times the interquartile range. Individual samples are
depicted by black dots in each graph. P values were attained using a generalized linear model, with intensity
(for immuno-stainings) and (sGAGs/DNA) as dependent variable and genotype as independent variable.
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Supplementary figure 2 | Protein-Protein Interaction Networks of (A) mechanically loading- or (B) OA-
associated tCpGs as determined by STRING-DB.
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