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Summary

In this thesis, we mainly study subproduct systems and their associated C∗-
algebras. To make the topic accessible to a broader audience, we will provide
some intuitive explanations of these core concepts.

Graded algebras and subproduct systems

In mathematics, complex structures can be understood by breaking them down
into simpler and ordered layers. This is the core idea behind a graded algebra.
First of all, an algebra is a mathematical structure in which the operations of
addition and multiplication play a central role. The integers, rational, and real
numbers form algebras, and so do sets of functions and matrices. An algebra
is commutative if for any two of its elements a and b, the multiplication satisfies
ab = ba. Algebras of numbers and functions are commutative, but algebras of
matrices are not: It is well-known that for matrices A and B, the matrix product
AB is in general not equal to the matrix product BA.

Roughly speaking, a graded algebra is an algebra partitioned into layers, in
such a way that addition and multiplication are compatible with this partition.
A simple example is the algebra of polynomials, where the grading is given
by the degree of a given polynomial. Algebras of polynomials in which the
variables represent numbers are commutative.
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Now, what if we want to study polynomials in variables that are not com-
plex or real numbers, but, for instance, matrices? This question naturally leads
us to the study of noncommutative polynomials. A model for such algebras
is given by subproduct systems, a concept that will play a central role in this
Ph.D. thesis. Subproduct systems provide a concrete framework for building
such noncommutative graded structures layer by layer. A subproduct system
E = {En}n∈N can be thought of as an ordered collection of Hilbert spaces
representing the allowed noncommutative polynomials for each degree. The
space E1 is spanned by the generators, E2 represents the allowed quadratic
combinations, and so on.

A special class of subproduct systems called quadratic subproduct systems
plays a central role in this thesis. Using the language of noncommutative poly-
nomials, a quadratic subproduct system E = {En}n∈N is defined by a simple
yet powerful rule: all relations between the noncommutative polynomials are
determined by the quadratic ones. Specifically, the entire structure is deter-
mined by the orthogonal complement E1 ⊗ E1 ⊖ E2.

C∗-algebras as noncommutative spaces

In mathematics, a standard way to understand a topological space is via the
collection of continuous functions defined on it. For instance, all properties of
the circle S1 can be fully recovered from the algebraic structure of its contin-
uous functions. This collection of continuous functions, denoted by C(S1), is
closed under point-wise addition, multiplication, and complex conjugation. In
mathematical terms, one says that C(S1) is a commutative C∗-algebra, where the
commutativity means that f g = g f for all f , g ∈ C(S1).

A C∗-algebra generalizes such an idea to a non-commutative setting, i.e.,
the multiplication is not necessarily commutative. A guiding principle in non-
commutative geometry is to think of a C∗-algebra as the noncommutative func-
tions on some (non-existent) noncommutative space. The Gelfand–Naimark
theorem makes this precise: every commutative C∗-algebra can be represented
as the algebra of continuous functions on a compact topological space. More
general non-commutative C∗-algebras can be described in terms of operators
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on some Hilbert space, thanks to the Gelfand–Naimark–Segal theorem.
Given a Hilbert space, we are usually interested in certain concrete opera-

tors on it. Therefore, it is natural to study the smallest C∗-algebra that contains
those operators. Let E be a subproduct system of finite-dimensional Hilbert
spaces and let FE be the associated Fock space. The elements of E determine
a family of creation operators on FE. Together with the identity operator they
generate the Toeplitz algebra TE, the C∗-algebra we mainly study in this thesis.
Moreover, in our setting, the C∗-algebra of compact operators K(FE) is an ideal
contained in TE. The quotient C∗-algebra TE/K(FE) (denoted by OE), called
the Cuntz–Pimsner algebra, is another important C∗-algebra that we investigate
in this thesis.

K-theory

Once we have constructed C∗-algebras from a subproduct system, a natural
question arises: how can we describe them? Two such C∗-algebras might look
very different but be ”structurally equivalent”. Operator K-theory provides a
tool to classify the structure of C∗-algebras.

For a C∗-algebra A, K-theory associates to it two abelian groups, namely,
K0(A) and K1(A). The K0-group encodes information about its fundamental
building blocks (projections), while the K1-group captures its rotational prop-
erties (unitaries). Together, they provide a robust and computable invariant of
the C∗-algebra at hand.

Take the algebra of complex numbers C, the simplest C∗-algebra, as an ex-
ample. Its K-theory groups are given by

K0(C) ∼= Z, K1(C) = 0.

Here, K0(C) ∼= Z reflects that every projection in a matrix algebra over C is
classified by its rank, which is just an integer. The vanishing of K1(C) follows
from the fact that all invertible matrices over C can be continuously deformed
to the identity matrix.

By computing the K-theory of the Toeplitz and Cuntz–Pimsner algebras,
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we can associate two abelian groups to every subproduct system; each of these
groups encodes certain properties of the subproduct system.

Contributions of this thesis

Now that we have introduced our main objects of study—namely subproduct
systems, their C∗-algebras, and K-theory—we are ready to describe the main
contributions of this thesis. These concern certain quadratic subproduct sys-
tems and their Toeplitz and Cuntz–Pimsner algebras.

Specifically, we investigate three operations on the class of quadratic sub-
product systems: free products, Segre products and Veronese powers. These oper-
ations come from quadratic algebras and are compatible with the structure of
quadratic subproduct systems. Our main contributions are as follows:

(1) We provide a detailed description of the structural properties of the new
subproduct systems resulting from these operations.

(2) Subsequently, we compute the K-theory groups for both the Toeplitz al-
gebras TE and the Cuntz–Pimsner algebras OE associated with these new
subproduct systems constructed from free product and Segre product.

(3) Furthermore, we delve deeper into the analytical properties of the cre-
ation operators. For a specific class of subproduct systems (the Veronese
powers of what are known as p-reductive systems), we examine their
Schatten p-class properties. This is directly motivated by the celebrated
Arveson–Douglas conjecture, an important conjecture that relates func-
tional analysis and algebraic geometry. Our results contribute to a better
understanding of this conjecture.

To sum up, this thesis contributes to our understanding of noncommutative
geometry by constructing new examples of subproduct systems and comput-
ing homological properties of their associated C∗-algebras. Explaining such
research results can be a challenge; nevertheless, I hope this summary offers a
clearer feeling for the core concepts of this work and provides the reader with a
better sense of the problems that currently interest mathematicians in this area.

198




