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Chapter 5
The Arveson–Douglas
conjecture

The Arveson–Douglas conjectures are a family of conjectures regarding the
essential normality of submodules, and quotient modules of some analytic
Arveson–Hilbert modules over polynomial rings. In the quest for a geomet-
ric invariant of commuting tuples of operators, Arveson formulated what is
now known as the Arveson–Douglas conjecture in [7]. Later, Arveson proved
it in [8] for special cases of Drury–Arveson spaces, Hardy spaces, and Bergman
spaces. In 2005, R. Douglas showed that the conjecture could lead to a new kind
of index theorem, which provides a framework to connect algebraic geometry
and operator theory [21].

Three analytic function spaces are involved in the Arveson–Douglas conjec-
ture: the Drury–Arveson space, the Hardy space, and the Bergman space. We
will briefly discuss the Bergman space and mainly focus on the Drury–Arveson
space, which can be viewed as a special example of a subproduct system.

In this chapter, we first discuss the significance of the Arveson–Douglas
conjecture in functional analysis. We will connect this to subproduct systems
and their associated Toeplitz algebras. Initially, we will revisit some funda-
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56 The Arveson–Douglas conjecture

mental concepts of analytic function spaces.
In this Chapter, the symbol Bn will always denote the n-dimensional open

unit ball in Cn.

5.1 Reproducing kernel Hilbert spaces

As anticipated, in order to discuss the Arveson–Douglas conjecture, we will
focus on the Drury–Arveson spaces, Hardy spaces, and Bergman spaces. These
are classical analytic function spaces and belong to a special family of Hilbert
spaces of functions called reproducing kernel Hilbert spaces.

Definition 5.1 (Reproducing kernel Hilbert space). Let X be a set, and H be a
Hilbert space of functions on X. We say H is a reproducing kernel Hilbert space if the
evaluation map

evx : f 7→ f (x), ∀x ∈ X, f ∈ H

is a continuous linear functional. For simplicity, we shall use the abbreviation RKHS
when talking about reproducing kernel Hilbert spaces.

Let H be an RKHS. By the Riesz representation theorem, for each evx, there
exists Kx ∈ H such that

evx( f ) = f (x) = ⟨ f , Kx⟩H.

We call Kx the reproducing kernel in the sense that f is determined (”repro-
duced”) by the function Kx and the inner product structure of H.

Example 5.2. Consider the standard separable Hilbert space ℓ2(N), viewed as a
Hilbert space of functions on N, such that f = ( fk)k ∈ ℓ2(N) maps k to fk. It
is not hard to see that for all k ∈ N, the reproducing kernel is represented by the
standard orthonormal basis ek, since f (k) = fk = ⟨ f , ek⟩ℓ2(N) and ek is viewed as a
function on N represented by the Kronecker delta δk. □

Now that we have introduced the notion of a Reproducing kernel Hilbert
space, we are ready to define the analytic function spaces that are central to the
Arveson–Douglas conjecture.
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5.1 Reproducing kernel Hilbert spaces 57

Definition 5.3 (Drury–Arveson space). The Drury–Arveson space H2
n is the repro-

ducing kernel Hilbert space on Bn with reproducing kernel

Kz(w) =
1

1 − ⟨z, w⟩ , ∀z, w ∈ Bn.

As a natural generalization of the Hardy space, other points of view of the
Drury–Arveson space will be discussed in detail in the following section.

Definition 5.4 (Bergman space). The Bergman space L2
a(Bn) is a reproducing kernel

Hilbert space on Bn with the reproducing kernel

Kz(w) =
1

(1 − ⟨z, w⟩)n+1 , ∀z, w ∈ Bn.

It is worthwhile to note that one can define the Bergman space on any do-
main in Cn. Indeed, for a domain D ⊂ Cn, the Bergman space L2

a(D) can also
be defined as the L2 closure of analytic functions on D, although on a general
domain D, we may lose the explicit description of reproducing kernels. How-
ever, for the sake of introducing the Arveson–Douglas conjecture, we won’t go
into further details. To provide the reader a general feeling of how the Bergman
space is defined, we will define the weighted Bergman space on Bn.

Definition 5.5 (Weighted Bergman space). The weighted Bergman space L2
a,s(Bn)

with weight s is the closure of analytic functions on Bn with respect to the weighted
L2-norm, that is,

∥ f ∥2
L2

a,s
=
∫

Bn
(1 − ∥z∥2)s · | f (z)|2dz,

where dz is the normalized Lebesgue measure on Bn. In particular, when s = 1,
L2

a,s(Bn) is the classical Bergman space L2
a(Bn).

5.1.1 The Drury–Arveson space as symmetric Fock space

In this subsection, we will discuss the Drury–Arveson space in detail and show
that it is unitarily isomorphic to the symmetric Fock space that we introduced
in Example 4.8.
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58 The Arveson–Douglas conjecture

Before diving into the details of Drury–Arveson spaces, we first recall the
Hardy space, which is a classical analytic function space that motivates the
definition of the Drury–Arveson space.

Definition 5.6 (Hardy space). Let D be the open unit disk in C, and consider the
algebra of analytic functions on D, denoted by O(D). Let f ∈ O(D), and let f =

∑∞
n=0 an · zn be the Taylor expansion, the Hardy space H2 is the closure of O(D) with

respect to the norm

∥ f ∥2
H2 =

∞

∑
n=0

|an|2.

Indeed, Hardy space on D also has a reproducing kernel Hilbert space de-
scription.

Definition 5.7 (Hardy space, RKHS point of view). Let D be the open unit disk
in C, the Hardy space H2 is the reproducing kernel Hilbert space of functions on D

with respect to the reproducing kernel

Kz(w) =
1

1 − z · w
, ∀z, w ∈ D.

Remark 5.8. Thanks to Fourier analysis, one can verify that the Hardy space is iso-
morphic to ℓ2(N). More precisely, every function f ∈ H2 admits a Taylor expansion
at zero (see Definition 5.6):

f (z) =
∞

∑
n=0

anzn, ∀ f ∈ H2,

where the sequence of coefficients (an)n∈N belongs to ℓ2(N). The coefficients (an)n∈N

coincide with the non-negative Fourier coefficients of f̃ ∈ L2(S1), the boundary func-
tion of f . Therefore, the identification, given by the Fourier transformation,

f ↔ (an)n∈N, ∀ f ∈ H2

establishes a unitary isomorphism between H2 and ℓ2(N).

Recall the definition of the Drury–Arveson space in Definition 5.3 as an
RKHS for the kernel
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5.1 Reproducing kernel Hilbert spaces 59

Kz(w) =
1

1 − ⟨z, w⟩ , ∀z, w ∈ Bd.

From the form of the reproducing kernel, it is clear that the Drury–Arveson
space should serve as a natural generalization of the Hardy space in higher
dimensions. In his original work [4], Arveson originally defined the Hilbert
space H2

d as the completion of the space of polynomials with respect to the
topology induced by a suitable inner product.

Definition 5.9 (Drury–Arveson space, power series point of view). The Drury–
Arveson space H2

d is defined to be the following

H2
d =

{
f = ∑

α∈Nd

aα · zα : ∥ f ∥2 = ∑
α∈Nd

|aα|2 ·
α!
|α|! < ∞

}
.

From the norms defined for Drury–Arveson space and Hardy space, it is
also clear that Drury–Arveson space is a natural generalization of Hardy space
in higher dimensions from the power series point of view.

Recall the symmetric subproduct system Es defined in Example 4.8. The
norm of the orthogonal basis of FEs was computed in Example 4.15, which co-
incides with the norm defined in the power series point of view. Therefore,
there exists a unitary isomorphism between the Drury–Arveson space H2

d and
the Fock space FEs of the symmetric subproduct system Es, with Es

1
∼= Cd, pre-

serving the degree of tensor products. This motivates the subproduct system
picture of Drury–Arveson space.

Definition 5.10 (Drury–Arveson space, subproduct systems point of view). Let
Es be the symmetric subproduct system, with Es

1 = Cd. The Drury–Arveson space H2
d

is the Fock space FEs of the symmetric subproduct system Es.

In later chapters, we use the subproduct system picture to study the Arveson–
Hilbert modules of Drury–Arveson spaces and quotient modules. Using this
picture, we will construct novel Toeplitz algebras of such subproduct systems
with different K-theoretical phenomena.
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60 The Arveson–Douglas conjecture

5.2 The Arveson–Douglas conjecture

The history of the Arveson–Douglas conjecture can be traced back to the paper
[5], followed by a detailed version [6]. In these two papers, W. Arveson defined
a geometric invariant, called the curvature of an Arveson–Hilbert module.

5.2.1 Arveson–Hilbert modules

Analytic function spaces play a central role in function theory. To study multi-
variate operator theory, in particular, commuting d-tuples

(T1, T2, . . . , Td), Ti ∈ B(H), ∀i = 1, 2, . . . , d,

which act on a common Hilbert space H, Arveson introduced a notion of func-
tion space equipped with a polynomial ring action. We shall call these objects
Arveson–Hilbert modules to avoid confusion with Hilbert C∗-modules.

Definition 5.11 (Arveson–Hilbert module). Let C[z1, . . . , zd] be the ring of poly-
nomials with complex coefficients in d variables. An Arveson–Hilbert module over
C[z1, . . . , zd], also called a C[z1, . . . , zd]-Hilbert module, is a Hilbert space H, equipped
with a ring action given by a ring homomorphism

σ : C[z1, . . . , zd] → B(H).

We will use the notation (H, σ), or simply H when the module action is clear.

Let (H, ρ) be a C[z1, . . . , zd]-Hilbert module, it is straightforward to verify
that (ρ(z1, ), . . . , ρ(zd)) is a commuting d-tuple acting on H. Conversely, given
a commuting d-tuple T = (T1, . . . , Td) on H, the the assignment zi 7→ Ti ex-
tends uniquely to a ring homomorphsim ρ : C[z1, . . . , zd] → B(H).

As previously mentioned, this notion differs from that of a Hilbert C∗-
module, since the coefficient ring C[z1, . . . , zd] is only viewed as a ring of poly-
nomials instead of a C∗-algebra. Moreover, a C[z1, . . . , zd]-Hilbert module is a
left C[z1, . . . , zd]-module, while for Hilbert C∗-modules it is customary to con-
sider right actions.
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5.2 The Arveson–Douglas conjecture 61

Definition 5.12 (Submodule and quotient module). Let H be an Arveson–Hilbert
module over C[z1, . . . , zd], and let P be a closed subspace of H. We say that P is a
submodule of H if

σ(q)(P) ⊂ P , ∀q ∈ C[z1, . . . , zd]

where σ is the ring action inherited from the C[z1, . . . , zd]-Hilbert module H.
Given a submodule P , we say Q is a quotient module if, as a Hilbert space,

Q = H/P , and the left C[z1, . . . , zd]-action is given by

σQ(q) = PQ ◦ σ(q)|Q, ∀q ∈ C[z1, . . . , zd],

where PQ is the orthogonal projection from H onto Q, and σ(q)|Q is the restriction of
the C[z1, . . . , zd]-action on H to Q.

Definition 5.13 (Graded Hilbert space and graded Arveson–Hilbert module).
A graded Hilbert space is a pair (H, Γ), consisting of a Hilbert space and a strongly
continuous unitary representation Γ of the torus T on H. For each n ∈ Z, we can
define the associated spectral space

Hn = {ξ ∈ H : Γ(λ)ξ = λnξ},

and H is the direct sum of Hn.
A graded Arveson–Hilbert module is a graded Hilbert space H, together with a con-

tractive d-tuple (T1, . . . , Td) that comprises the C[z1, . . . , zd]-module structure such
that

Γ(λ)TkΓ(λ)−1 = λTk, ∀λ ∈ T. (5.1)

Remark 5.14. Given a graded Arveson–Hilbert module H, the associated d-tuple
(T1, . . . , Td) shifts the degree of H, i.e., Tk(Hn) ⊂ Hn+1 for all k = 1, 2, . . . , d.
Indeed, let ξ ∈ Hn. From equation (5.1), we have

Γ(λ)Tk(ξ) = λTkΓ(λ)ξ = λn+1Tk(ξ).
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62 The Arveson–Douglas conjecture

Definition 5.15. Let H be a C[z1, . . . , zd]-Hilbert module such that the C[z1, . . . , zd]

action is defined by a d-tuple of commuting operators (T1, . . . , Td); that is,

σ(q)(ξ) = q(T1, . . . , Td)(ξ), ∀q ∈ C[z1, . . . , zd].

We call H a contractive Arveson–Hilbert module if

∥
d

∑
i=1

Ti(ξi)∥2 ≤
d

∑
i=1

∥ξi∥2, ∀ξi ∈ H.

Let (T1, . . . , Td) be a commuting d-tuple acting on H. Using (T1, . . . , Td), we
define a map ϕ : B(H) → B(H) by

ϕ(A) =
d

∑
i=1

Ti AT∗
i , ∀A ∈ B(H).

We call H a pure Arveson–Hilbert module, if limn→∞ ϕn(1) = 0, where 1 de-
notes the identity operator on H.

Example 5.16. Let H2
d be the Drury–Arveson space. One can equip H2

d with a
C[z1, . . . , zd]-Hilbert module structure via the ring homomorphism ρ : C[z1, . . . , zd] →
B(H2

d) defined as

ρ(p) f = p · f , ∀p ∈ C[z1, . . . , zd], ∀ f ∈ H2
d .

The operator ρ(p) is called the shift operator (or the creation operator) associated with
the polynomial p and is denoted by Mp for simplicity.

We refer to the pair (H2
d , ρ) (or simply H2

d when the module action is clear) as the
Drury–Arveson module. The d-tuple (M1, . . . , Md) := (ρ(z1), . . . , ρ(zd)) is called
the standard d-tuple of multiplication operators on H2

d . □

The curvature of an Arveson–Hilbert module

The associated defect operator ∆ is defined as ∆ = (1 − ∑d
i=1 TiT∗

i )
1
2 . The di-

mension of the range of ∆ is called the rank of H, denoted by rank(H). The cur-
vature of an Arveson–Hilbert module H, denoted by K(H), defined by Arve-
son is an extremal invariant subject to rank(H), such that if H is a free module,
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5.2 The Arveson–Douglas conjecture 63

in the algebraic sense, K(H) = rank(H). Therefore, the curvature K(H) can
be viewed as an invariant that measures freeness, or flatness in the sense of
geometry of an Arveson–Hilbert module.

Remark 5.17. Let H be a rank n Arveson–Hilbert module over C[z1, . . . , zd]. The
purity of a d-tuple guarantees that the n-fold direct sum of H2

d is a rank n minimal
dilation of H, where H2

d is the Drury–Arveson space. The details of this result can be
found in [6, Theorem 1.12].

To define the curvature, we need more preparations. Let z = (z1, . . . , zd) be
a point in Cd, using the d-tuple (T1, . . . , Td), we define

T(z) =
d

∑
i=1

zi · Ti ∈ B(H).

Suppose (T1, . . . , Td) is contractive, we have ∥T(z)∥ ≤ ∥z∥. In particular, for
z ∈ Bd, we have ∥T(z)∥ < 1. Therefore (1− T(z)) is invertible. We now define
a positive operator acting on the range of ∆ for each z ∈ Bd as follows:

F(z) = ∆(1 − T(z)∗)−1(1 − T(z))−1∆.

Definition 5.18 (Curvature, [5, Theorem A]). Let H be an Arveson–Hilbert mod-
ule such that the C[z1, . . . , zd] action is given by a contractive d-tuple (T1, . . . , Td).
The curvature of H is the following non-negative quantity:

K(H) =
∫

∂Bd

lim
r→1

(1 − r2) · Tr(F(r · ξ))dξ ∈ [0, rank(H)].

From the definition, one can immediately observe that the curvature is in-
variant under unitary transformations since an operator’s trace is invariant un-
der a unitary operator’s conjugation.

On the contrary, for a pure Arveson–Hilbert module, one can directly de-
termine freeness from the curvature.

Theorem 5.19 ([5, First Extremal Theorem]). Let H be a pure Arveson–Hilbert
module of finite rank r. Then H is unitarily equivalent to a free Arveson–Hilbert
module if and only if K(H) = r. In that case, H ∼= (H2

d)
⊕r, where H2

d denotes the
Drury–Arveson space.
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64 The Arveson–Douglas conjecture

In general, as one can see from the definition, the curvature is hard to com-
pute, and the integrality is also not ensured. However, for a graded pure finite
rank Arveson–Hilbert module H, Arveson proposed a beautiful approach to
compute the curvature by introducing the Euler characteristic for Arveson–
Hilbert modules.

Let H be a finite rank C[z1, . . . , zd]-Hilbert module. Consider the finitely
generated C[z1, . . . , zd]-module

MH = C[z1, . . . , zd] · ∆(H).

By Hilbert’s syzygy, there exists a finite free resolution of finitely generated free
C[z1, . . . , zd]-modules

0 → Fn → Fn−1 → · · · → F1 → MH → 0,

where Fi
∼= C[z1, . . . , zd]

⊕βi for some non-negative integer βi. It is well known
that the alternating sum of multiplicities βi is independent of the choice of
resolution, which results in the following concept.

Definition 5.20 (Euler characteristic). Let H be a finite rank C[z1, . . . , zd]-Hilbert
module. The Euler characteristic of H is the following non-negative integer

χ(H) =
d

∑
i=1

(−1)i+1βi.

The following theorem relates the analytic and algebraic invariants for cer-
tain C[z1, . . . , zd]-Hilbert modules.

Theorem 5.21 ([5, Theorem B]). For every pure finite rank graded C[z1, . . . , zd]-
Hilbert module H, we have

K(H) = χ(H).

In order to compute the curvature for more general classes of Arveson–
Hilbert modules, Arveson initiated a new approach in [7] three years after [5].

Inspired by the role that the classical Dirac operator plays in the curvature,
Arveson constructed a Dirac operator for any C[z1, . . . , zd]-Hilbert module in
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5.2 The Arveson–Douglas conjecture 65

[7]. We shall describe the construction of the Dirac operator of a d-tuple below,
and the details can be found in [7].

We denote T as the d-tuple of commuting operators (T1, T2, . . . , Td) acting
on a common Hilbert space H. The construction imitates the Dirac operator in
differential geometry. Suppose H is a Hilbert space of dimension d, let ΛH be
the exterior algebra of H, namely,

ΛH =
d

∑
i=0

ΛiH,

where ΛiH is the i-th exterior power of H and is spanned by the following
form

z1 ∧ z2 ∧ · · · ∧ zd, ∀zi ∈ H.

The inner product on ΛiH is defined as follows:

⟨z1 ∧ z2 ∧ · · · ∧ zd, w1 ∧ w2 ∧ · · · ∧ wd⟩ = det
(
⟨zi, wj⟩H

)
, ∀zi, wj ∈ H.

Let e1, . . . , ed be an orthonormal basis of H. For each ei, we define the associated
creation operator

Ci : z1 ∧ z2 ∧ · · · ∧ zd 7→ ei ∧ z1 ∧ z2 ∧ · · · ∧ zd,

which maps ΛiH onto Λi+1H for i < d, and maps ΛdH to zero.

Definition 5.22. Let T be a d-tuple acting on H. The Dirac operator of T is a self-
adjoint operator DT acting on H⊗ ΛCd, as follows:

DT = B + B∗, B =
d

∑
i=1

Ti ⊗ Ci.

We say T is Fredholm if DT is a Fredholm operator.

In [8], a criterion for determining whether a d-tuple T is Fredholm or not
is given, where the essential normality property first appeared and showed
importance.
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66 The Arveson–Douglas conjecture

Proposition 5.23 ([8, Proposition 1.1]). Let T be a d-tuple on some Arveson–Hilbert
module H. If T satisfies

(1) T is essentially normal, that is, for all i, j, [Ti, T∗
j ] ∈ K(H).

(2) ∑d
i=1 TiT∗

i is Fredholm.

Then T is Fredholm.

Motivated by Proposition 5.23, we introduce the property of essential nor-
mality and p-essential normality as follows.

Definition 5.24 (Essential normality and p-essential normality). Let (H, ρ) be a
C[z1, . . . , zd]–Hilbert module. We say (H, ρ) is essentially normal if [ρ(zi), ρ(zj)

∗] ∈
K(H) for all i, j = 1, . . . , d.

Let p ∈ N, we say (H, ρ) is p-essentially normal if [ρ(zi), ρ(zj)
∗] ∈ S p(H) for

all i, j = 1, . . . , d, where S p(H) denotes the set of Schatten p-class operators.

Remark 5.25. Let (H2
d , ρ) be a standard Drury–Arveson module as in Example 5.16.

By [4, Proposition 5.3]), the standard d-tuple of multiplication operators of H2
d is

p-essentially normal for p > d. Note that it is not essentially normal for p = d.

Suppose T is Fredholm, i.e., the Dirac operator DT is Fredholm. There is
an integer invariant associated with T, called the index, which is stable under
homotopy and compact perturbation. Note that H⊗ Cd is naturally endowed
with a Z2 grading H⊗ Cd = H+ ⊕ H− as follows:

H+ = H⊗ ( ∑
i is even

ΛiCd), H− = H⊗ ( ∑
i is odd

ΛiCd).

Then DT can be written as a 2 × 2 matrix with respect to the Z2 grading:

DT =

[
0 D∗

+

D+ 0

]
,

where D+ denotes the restriction of DT to H+. Since DT is Fredholm, we have
that the kernel of D+ and the cokernel of D+ are finite-dimensional and the
index of D+, namely,

Ind(D+) = dim(ker(D+))− dim(ker(D∗
+))
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5.2 The Arveson–Douglas conjecture 67

is an integer that is invariant under homotopy and compact perturbations.
The relation between curvature and index of a C[z1, . . . , zd]-Hilbert mod-

ule whose action is given by a d-tuple T, is given by the following intrinsic
theorem.

Theorem 5.26 ([7, Theorem B, Corollary]). Let T be a pure contractive d-tuple of
finite rank acting on a graded Hilbert space H =

⊕
k Hk. Assume T is graded, i.e.,

Ti(Hk) ⊂ Hk+1, ∀i = 1, 2, . . . , d. Then, both the kernel and the cokernel of D+ are
finite-dimensional and

(−1)d · K(H) = dim(ker(D+))− dim(ker(D∗
+)).

In particular, if T is Fredholm, the curvature of H is stable in the following sense: if
T′

= (T′
1, T′

2, . . . , T′
d) is another d-tuple of H′ such that H is unitarily equivalent to

H′ by the unitary U and TiU − UT′
i is compact for each i = 1, . . . , d, then

K(H) = K(H′).

Theorem 5.26 gives a beautiful and promising approach to finding an ana-
logue of Atiyah–Singer index theory for C[z1, . . . , zd]-Hilbert modules of an-
alytic function spaces, which could possibly connect functional analysis and
algebraic geometry. However, to make the curvature a well-posed invariant,
Fredholmness is necessary.

Recall Proposition 5.23, the sufficient condition for a d-tuple to be Fred-
holm, in the case of finite rank Arveson–Hilbert modules, the defect operator
1 − ∑d

i=1 TiT∗
i is of finite rank; hence ∑d

i=1 TiT∗
i is Fredholm. Therefore, it is

a key problem to determine whether the commutators [Ti, T∗
j ] are compact or

not. This motivated Arveson to study the essential normality problem and to
propose the conjecture in [8], and he ultimately proved the monomial case.

Conjecture 5.27 (The Arveson’s Conjecture). Suppose P is a graded submodule of
the vector-valued Drury–Arveson module H2

d ⊗ Cr. Then P is p-essentially normal,
i.e., [Ti, T∗

j ] ∈ S p(P) for all p > d.

Recall Arveson’s Toeplitz extension in Example 4.15. In [4], Arveson proved
that the Drury–Arveson module H2

d is p-essentially normal for p > d, i.e., Arve-
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68 The Arveson–Douglas conjecture

son’s conjecture holds for H2
d . This implies that the algebra of compact opera-

tors is a subalgebra of the Toeplitz algebra, and therefore the Toeplitz algebra is
the extension of K by a commutative C∗-algebra C(X). In this case, X = ∂Bd.
Indeed, this applies to more general submodules in the following way.

Suppose H is a quotient module of H2
d whose d-tuple (S1, . . . , Sd) is given

by the compression of the d-shift (T1, . . . , Td) described in Example 4.15. If H
is essentially normal, we have the following short exact sequence:

0 → K → C∗(S1, . . . , Sd) +K → C(X) → 0,

for some nontrivial algebraic set X in the projective space. Moreover, this gives
a K-homology class element in K1(X), denoted by [H].

Based on this observation and inspired by Arveson’s conjecture, one year
later, R. Douglas proposed a family of conjectures on essential normality for
more general Bergman spaces in [21], where he generalized Arveson’s conjec-
ture to the Bergman spaces of pseudoconvex domains. Moreover, he showed
how a positive answer would enable one to define the K-homology elements
associated with the corresponding intersection of a pseudoconvex domain and
the varieties that define the quotient Bergman module.

The following conjecture is the most well-known form of the Arveson–
Douglas conjecture.

Conjecture 5.28 (The Arveson–Douglas Conjecture). Let I be a homogeneous ideal
in C[z1, . . . , zd] and let [I] denote its closure in H2

d . Then the graded quotient module
QI := [I]⊥ is p-essentially normal for all p > dimC(V(I)), where

V(I) = {z ∈ Cd : q(z) = 0, ∀q ∈ I}.

Note that one can also consider the conjecture in the setting of the Bergman
space L2

a(Bn) or the Hardy space H2(Bd).

Corollary 5.29. Let I be a homogeneous ideal in C[z1, . . . , zd] and [I] denote its clo-
sure in H2

d . If the graded quotient module QI := [I]⊥ is p-essentially normal for all
p > dimC(V(I)), one has the following exact sequence:

0 → K → TI → C(V(I) ∩ ∂Bd) → 0, (5.2)
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which gives an odd K-homology element in K1(C(V(I) ∩ ∂Bd)).

Based on Corollary 5.29, Douglas proposed a conjecture of K-homology in
his paper A New Kind of Index Theorem [21].

Conjecture 5.30 (Douglas’ K-homology Conjecture). Let I be a homogeneous ideal
in C[z1, . . . , zd] and [I] denote its closure in H2

d . If the graded quotient module QI :=
[I]⊥ is p-essentially normal for all p > dimC(V(I)), then the K-homology element
represented by the extension (5.2) coincides with the fundamental class of V(I)∩ ∂Bd.

We conclude this section by listing some positive results for the Arveson–
Douglas conjecture.

Theorem 5.31. Let I be a homogeneous ideal in C[z1, . . . , zd] and [I] denote its closure
in H2

d . The graded quotient module QI := [I]⊥ is p-essentially normal for all p >

dimC(V(I)) if one of the following conditions is satisfied:

(1) I is generated by monomials; see [8].

(2) I is generated by a homogeneous polynomial or d ≤ 3; see [29].

(3) V(I) decomposes into linear subspaces, and V(I) decomposes into components
with mutually disjoint linear spans; see [37].

In Section 9.3, we will discuss possible extensions of the p-essential nor-
mality results to a new class of varieties not covered by the conditions listed
above.
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