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Chapter

Kasparov’s bivariant K-theory

In his seminal work [36], Kasparov defines a bivariant theory assigning an
abelian group KK(A, B) to any pair of C*-algebras A and B. This theory si-
multaneously generalizes both K-theory and K-homology. Together with the
Kasparov product, a bilinear pairing between KK(A, B) and KK(B, C) that gen-
eralizes the index pairing of K-theory and K-homology, Kasparov’s bivariant
K-theory has become a fundamental tool in of noncommutative geometry.

In the following sections, we introduce Kasparov’s bivariant K-theory. We
begin by recalling the basic theory of Hilbert C*-modules, which serve as mod-
els for Kasparov A-B-modules. In the next section, we introduce Kasparov’s
original approach to bivariant K-theory, followed by Cuntz’s approach, which
will be used in this thesis. As an application of KK-theory and the Kasparov
product, we discuss extensions of C*-algebras and K-homology.

3.1 Hilbert C*-modules

Hilbert C*-modules have become a fundamental language of noncommutative
geometry today. Roughly speaking, a Hilbert C*-module is a generalization of
Hilbert space by allowing the inner product to take values in a C*-algebra. The
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18 Kasparov’s bivariant K-theory

idea of modules over C*-algebras as a generalization of Hilbert spaces began
to appear in the 1950s. In 1953, I. Kaplansky published the first paper [35] to
study modules over AW*-algebras in order to solve problems in AW*-algebras.
A few years later, in 1973, W. Paschke published [50], the first paper formally
studying the inner product modules over a C*-algebra B, which are now called
pre-Hilbert C*-modules. One year later, in order to study the induced rep-
resentations of C*-algebras, M. Rieffel published [54], where he studied the
completion of a pre-Hilbert C*-module, and this was the first time Hilbert C*-
modules were defined.

In this section, we will briefly introduce the theory of Hilbert C*-modules,
serving as the language for the Kasparov bivariant K-theory. We will denote an
arbitrary C*-algebra with the letter B, and the main references for this section
are [39] and [33].

Definition 3.1 (Pre-Hilbert C*-module). A pre-Hilbert B-module is a complex vec-
tor space E that is also a right B-module equipped with a B-valued inner product
(-,-) : E® E — B, which is B-linear and C-linear in the second variable such that for
all x,y € E,b € B,and A € C, satisfying

(1) (Ae)b = A(eb) = e(Ab),
(2) (x,yb) = (x,y)b,
3) (x,y)* = (y,x),
4) (x,x) >

(5) x £0 = (x,x) #0.

For a pre-Hilbert C*-module E, one can define a norm using the norm of B,
as follows,

lelz = [lte,e)llp, Ve € E. G.1)

Definition 3.2 (Hilbert C*-module). A Hilbert B-module is a pre-Hilbert B-module
E that is complete in the norm (3.1). We say a closed subspace F C E is a Hilbert
submodule if F itself is a Hilbert B-module with respect to the B-valued inner product
inherited from E.

18



3.1 Hilbert C*-modules 19

Hilbert C*-modules naturally appear in operator algebra and geometry. We
now present two examples below to revisit classical mathematical objects in the
language of Hilbert C*-modules.

Example 3.3. The C*-algebra B itself is a Hilbert B-module when equipped with the
B-valued inner product (by,by) = biby, for by, by € B and the right B-module action
given by multiplication. Moreover, if ] < B is a closed ideal, then | is also a Hilbert
B-module with respect to the same B-valued inner product and right action. g

We now turn to constructions with Hilbert B-modules as preparation for
Kasparov A-B-modules.

Definition 3.4 (Direct sum of Hilbert B-modules). Let B be a C*-algebra and
Ey,Ey, ..., Ey be Hilbert B-modules. Then E = @}_; Ey is a Hilbert B-module,
whose B-valued inner product is defined as

n
<(x1/x2/ o /x}’l)/ (]/1/]/2/ o /yn)>E == Z<xk1yk>Ek
k=1

It is readily seen that E is complete under this B-valued inner product.

Example 3.5. Define Eg as the space of sequences (by,by,...) that are eventually
zero. Then Ep is a pre-Hilbert B-module, where the B-valued inner product is defined
as

(@), (b)), = il atb.

The completion of Ep with respect to this inner product is a Hilbert B-module, which
we denote by Hp. OJ

Example 3.6. Let X be a compact Hausdorff space and E — X be a complex vector
bundle over X, equipped with a Hermitian metric (-,-)g. Denote by I'(E) the space of
continuous sections of E. The space I'(E) is a Hilbert C(X)-module with the following
structure:

(1) The right C(X)-module structure of T(E) is defined as follows. For s € T(E)
and f € C(X), we define

(s- f)(x) =s(x)f(x), VxeX.

19



20 Kasparov’s bivariant K-theory

(2) The C(X)-valued inner product is defined as follows:
(s1,82)(x) = (s1(x),s2(x))g, Vx e X.
The completion of T (E) under the norm

sl = l1{s,5)112 = sup \/(s(x), 5(x)),

xeX

is a Hilbert C(X)-module. O

Unlike the case of Hilbert spaces, where every bounded linear map admits
an adjoint, bounded linear maps between Hilbert C*-modules do not necessar-
ily have adjoints. This leads to the following definition.

Definition 3.7 (Adjointable operators). Let B be a C*-algebra and E;, E; be Hilbert
B-modules. A map T : Ey — Ejp is adjointable if there exists a map T* : E; — E4
such that (Tx,y)g, = (x, T*y)E, forall x € Ey,y € Ey. The set of adjointable maps
is denoted by Lp(E1, Ep).

It is straightforward to prove that an adjointable map T between Hilbert B-
modules is B-linear, and Lg(E;, E;) is a subspace of bounded linear maps from
E; to E,, equipped with the operator norm || T = sup, ¢ {|[Tx|| : x| < 1}.
As a consequence, we have:

Corollary 3.8. Let B be a C*-algebra and E be a Hilbert B-module. Then, Lg(E,E)
is a C*-algebra.

Let E; and E; be Hilbert B-modules. We define the following class of oper-
ators in Lp(E1, Ep), denoted by Oy, for x € Ez,y € Ex:

Ouy(z) = x(y,2)E,, Vze€ Ey.

These operators generalize rank-one operators in the setting of Hilbert spaces.
Hence, we still call operators of the form ©y,, rank-one operators.

Let Kp(Eq, E2) denote the closed linear span of operators of the form @y,
for x € Ep,y € Ey, it follows directly that Kp(E, E) is a closed ideal in L5 (E, E).
For simplicity, we denote Lg(E, E) by Lg(E) and Kg(E, E) by Kg(E).

20



3.1 Hilbert C*-modules 21

Remark 3.9. It is worth noting that the C*-algebra Kg(E) generalizes the C*-algebra
of compact operators on a Hilbert space. Indeed, if we replace B with C, then a Hilbert
C-module E reduces to a Hilbert space, and K¢ (E) coincides with the space of usual
compact operators.

Given a Hilbert B-module E, besides the norm topology on L5 (E), the strict
topology is another important topology that appears in Cuntz’s approach to
the bivariant K-theory.

Definition 3.10. Let B be a C*-algebra and E be a Hilbert B-module. The seminorms
|| - |lx,x € E given by ||T||x = ||Tx|| + || T*x||, T € Lg(E) define a locally convex
topology on L (E), which is called the strict topology.

Definition 3.11 (Pushout of a Hilbert B-module). Let B and A be C*-algebras,
and let E be a Hilbert B-module. Suppose f : B — A is a surjective x-homomorphism.
Define the following submodule of E:

Nf:={x€E: f({x,x)p) =0} CE.

Let 7t : E — E/ Ny be the quotient map, and let 7t(E) be the algebraic quotient. Then
nt(E) is a right A-module with the action

nt(x)f(b) := rt(xb), Vx€E,beB.

This action is well-defined since f and 7t are surjective and Ny is constructed such
that the action on the quotient is consistent. The following A-valued sesquilinear form
defined as

(2(x), 7(y))e, = f((x,9)E) € A,

is an A-valued inner product on 1t(E) making 1t(E) a pre-Hilbert A-module. The
completion Eg, sometimes denoted by f.(E) in the literature, is then a Hilbert A-
module, called the pushout of f.

Definition 3.12 (Internal Tensor Product of Hilbert B-modules). Let B and A be
C*-algebras. Let E be a Hilbert B-module, and let F be a Hilbert A-module. Suppose

21



22 Kasparov’s bivariant K-theory

there is a x-homomorphism ¢ : B — L(F). Then ¢ gives rise to a left B-module
structure on F, namely,

bx:=¢(b)x, VbeB,x€eF.
Consider the algebraic tensor product E ® F and a subspace Ny defined as:
N¢ = span{xb Oy —x© ¢(b)y : Vx € E,b € B,y € F}.

Let 7 denote the quotient map w : E© F — E® F/Ny. Then w(E © F) is a right
A-module with the action

n((xoy)a) =n(x@ya), Vxe€EyecFacA,

which is well-defined because of the way Ny is defined. Then consider the following
A-valued map:

((x1 ©y1), (%2 ©Y2)) EsoF = (Y1, ¢((x1,%2)E)y2)r € A, Vx; €Ey; € F.

It is routine to check that this map vanishes on Ny. Therefore, it induces a well-defined
A-valued inner product on the quotient space. The internal tensor product of E and
F is the completion of the quotient algebraic tensor product E ® F / Ny with respect to
the A-valued inner product defined above, and it is denoted by E ®p F.

3.2 Kasparov’s K-theory

In this section, we assume all C*-algebras to be o-unital.

Definition 3.13 (Graded C*-algebras). Let A be a C*-algebra. We say A is graded
if there exists a x-automorphism B : A — A such that B% = id . We say B 4 is the
grading operator for A.

For a graded C*-algebra A4, it is straightforward to verify that the idempo-
tent *-automorphism 4 decomposes A into two eigenspaces Ag and A; such
that Bala, = ida and Bala, = —ids. We call elements in Ag U A; homoge-
neous elements. If 2 € Ay, we say a is even, and if a € A;, we say a is odd.

22



3.2 Kasparov’s K-theory 23

A graded *-homomorphism f : A — B between graded C*-algebras A
and B is a *-homomorphism that preserves the eigenspace decomposition, i.e.,
f(A;) C B;. If Ais a graded C*-algebra, we can define the graded commutator
[-,-]¢ on A as follows:

[a,b]g := ab — (—1)ijba, Va € Ay, b € A;.

Definition 3.14 (Graded Hilbert C*-modules). Let B be a graded C*-algebra with
grading operator Bg. We say a Hilbert B-module E is graded if there exists a linear
surjective involution Sg : E — E such that

(1) SE(xb) = SE<x)ﬁB(b)r Vx € E,b€e B,

(2) (Se(x),Se(v)) = Bs({x,y)), Vxy €L

Given graded C*-algebras A and B, we are now ready to define the Kas-
parov A-B-module as follows.

Definition 3.15 (Kasparov A-B-module). Let A and B be graded C*-algebras. A
Kasparov A-B-module is a triple £ = (E, ¢, F), where E is a graded Hilbert B-module,
¢ : A — Lg(E) is a graded x-homomorphism, and F € Lg(E) is an odd element,
such that

F,p(a)lg, (F2—1)g(a), (F*—F)g(a) € Kp(E), Vac A.
We call a Kasparov A-B-module degenerate if
[F,p(a)]g = (F ~ 1)p(a) = (F* ~ F)p(a) =0, Vac A.

The collection of Kasparov A-B-modules is denoted by E(A,B) and the
collection of degenerate Kasparov A-B-modules is denoted by ID(A, B).

Example 3.16. Let A and B be graded C*-algebras, and let f : A — B be a graded
x-homomorphism. From Example we know that B is a Hilbert B-module. It is
straightforward to check that (B, f,0) is a Kasparov A-B-module. g

The constructions of Hilbert C*-modules introduced in Section [3.1] can be
applied to Kasparov A-B-modules in a clear way.

23



24 Kasparov’s bivariant K-theory

Definition 3.17 (Isomorphism of Kasparov A-B-modules). Let A and B be graded
C*-algebras. Let & = (E1,¢1,F) and & = (Ep, ¢2, F2) be two Kasparov A-B-
modules. We say &1 is isomorphic to &, if there exists an isomorphism 1 : Ey — Ej of
graded Hilbert B-modules such that,

¢OSE1:SEZO¢' ¢o¢1(a):¢2(a)o¢, YpoF =Foi.
We write &1 = &, if &1 is isomorphic to &.

We now introduce homotopy equivalence between Kasparov modules. Let
B be a graded C*-algebra, and let IB := C([0,1],B) = C([0,1]) ® B be the C*-
algebra of B-valued continuous functions on [0,1]. There exists a continuous
family of surjective x-homomorphisms {7 : t € [0,1]} defined as follows:

m:IB— B, C([0,1])®B > f— f(t) € B.

Define the grading operator on IB by fp ® id. Then for each t € [0,1], 71y is a
graded surjective *-homomorphism. If £ is a Kasparov A-IB-module, then the
pushout &, is a Kasparov A-B-module.

Definition 3.18 (Homotopy of Kasparov A-B-modules). Let A and B be graded
C*-algebras. Let £, E' be two Kasparov A-B-modules. We say & is homotopic to E' if
there exists a Kasparov A-1B-module G such that Gy = € and G, = E'. We write
E ~ &' if there is a finite set {&1,...,En} C E(A,B) such that &, = &, &, = &/,
and & is homotopic to &1 fort =1,...,n—1.

From Definition it is straightforward to verify the following:

Proposition 3.19. Let A, B, C be graded C*-algebras, and let £, F be Kasparov A-B-
modules. We have the following properties:

(1) The homotopy ~ is an equivalence relation on E(A, B).

(2) Let f : B — C be a graded x-homomorphism. Then

f(EDF) ~ fu(€) @ fu(F) € E(A,C).

24



3.2 Kasparov’s K-theory 25

(3) Suppose £1,&,, F1, and F; are Kasparov A-B-modules such that & ~ Fq and
E ~ Fy. Then
E1BE ~ F1D Fr.

Definition 3.20 (Kasparov KK-group). Let A and B be graded C*-algebras. The
Kasparov KK-group, denoted by KK(A, B), is defined to be IE(A,B)/ ~. Itisa
semigroup with the addition defined by the direct sum of Kasparov A-B-modules.

It immediately follows from Proposition that KK(A, B) is an abelian
semigroup, while showing KK(A, B) is a group needs more work.

Lemma 3.21 ([33) Lemma 2.1.20]). Let A and B be graded C*-algebras. If € €
ID(A, B), then £ ~ 0in KK(A, B).

Besides the homotopy of Kasparov A-B-modules, there is another equiv-
alence relation that provides an alternative characterization of the Kasparov
bivariant K-theory groups.

Definition 3.22 (Operator homotopy). Let A and B be graded C*-algebras, and let
&1, & be two Kasparov A-B-modules. We say & is operator homotopic to &, if there
exist a graded Hilbert B-module E, a graded x-homomorphism ¢ : A — Lp(E), and
a norm continuous path Fy € Lg(E), such that

(1) (E,¢,F) € E(A,B) foreach t € [0,1].
(2) (E, ¢, Fo) = &, and (E, ¢, F1) = &

We write £y ~op &, if &1 and & are operator homotopic, and £y ~ & if E1 ~op &2
up to degenerate Kasparov A-B-modules.

Lemma 3.23 ([33] Lemma 2.1.21]). Let &,&> € E(A, B). Then & ~ &, implies
&1~ &

The Lemma allows us to construct an inverse for £ € KK(A, B) via
operator homotopy, which ensures the following theorem.

Theorem 3.24. Let A and B be graded C*-algebras. Then KK(A, B) is an abelian
group.

25



26 Kasparov’s bivariant K-theory

Remark 3.25. If A is separable, and B is o-unital, then E(A, B) / = is isomorphic to
KK(A, B) (see [12), Theorem 18.5.3]).

We now define the higher KK-groups, and show the Kasparov’s bivariant
K-theory provides a framework for both K-theory and K-homology.

Definition 3.26 (Higher KK-groups). Let A and B be graded C*-algebras. The
higher KK-group KK" (A, B) is defined to be KK(A, B ® C,), where C,, denotes the
complex Clifford algebra associated with an n-dimensional vector space.

Like operator K-theory, the Kasparov’s bivariant K-theory admits the Bott
periodicity as well: KK"*2(A, B) = KK" (A, B).

Proposition 3.27. Let A and B be graded C*-algebras. We have the following:
K;(A) =2 KK'(C,A), Vi=0,1.

As introduced previously, Kasparov’s bivariant K-theory also generalizes
the K-homology. One approach to see this, is to define the K-homology for a
C*-algebra A by K(A) := KK'(A,C). Another approach to describe the odd
Kasparov’s bivariant K-theory is to use the extension groups of C*-algebras
introduced in the previous chapter.

Let A, B be separable C*-algebras with B being stable. We now show that
the extension group Ext~!(A, B) is isomorphic to the KK (A, B)-group by show-
ing the isomorphisms:

Ext~'(A,B) = kK'(A, B) = KK!(A, B).

The first isomorphism is due to Theorem We now prove the second
isomorphism. Let [0, A] € kK'(A, B), thereisamap « : kK!(A, B) — KK'(A, B)
defined as follows: since B® C; = B @ B, there exists an isomorphism ¢ :
M(B) ® M(B) - M(B ® Cy), which gives rise to a *-homomorphism

¢o ()\,)\) :A— M(B ®C1).
It is not hard to see that the triple

E(v,A) =(BCq,¢po0 (A A),p(20—1,1—20)),

26



3.2 Kasparov’s K-theory 27

represents a KK!(A, B)-cycle. By the following theorem, this yields an isomor-
phism, which proves the isomorphism Ext (A, B) = KK'(A, B).

Theorem 3.28 ([33] Proposition 1.3.6]). Let A and B be separable C*-algebras with
B being stable. The map « : kK'(A, B) — KK'(A, B) mapping [v,A] to E(v,\) isa
group isomorphism.

Proof. The proof follows from routine checks of conditions and definitions. A
full and detailed proof is available in [33, Proposition 1.3.6] for interested read-
ers. O

We conclude this section by introducing the Kasparov product and its con-
sequences. The heart of Kasparov’s KK-theory is the Kasparov product, which
provides a composition between KK-groups, generalizing the composition of
x-homomorphisms and the index pairing between K-theory and K-homology.

Let A, B, C be separable graded C*-algebras. The Kasparov product be-
tween KK'(A, B) and KK/ (B, C) is an associative bilinear pairing ®p:

®p : KK'(A, B) ®5 KK/(B,C) — KK/ (A, C),

which is functorial in all variables. The existence of the Kasparov product is
highly nontrivial. It was proven by G. Kasparov in [36] using a series of tech-
nical lemmas, which will not be discussed in this thesis.

To conclude this section, we briefly introduce the KK-equivalence and the
universal coefficient theorem for C*-algebras, as preparation for the later chap-
ters.

Definition 3.29 (KK-equivalence). Let A and B be graded C*-algebras. We say A
is KK-equivalent to B if there exists x € KK(A,B) and y € KK(B, A) such that
x®py =14 and y Qpx = 1p.

3.2.1 The Universal Coefficient Theorem

The Universal Coefficient Theorem of Rosenberg and Schochet [55] is a useful
theorem that allows us to compute KK-groups for a large class of C*-algebras

27



28 Kasparov’s bivariant K-theory

and to determine the KK-equivalence between C*-algebras on the level of K-
theory groups.

Definition 3.30 (Bootstrap Category). Let N be the bootstrap category, which is
the smallest class of separable nuclear C*-algebras with the following properties:

(1) CeN.
(2) N is closed under countable inductive limit.

(3) If0 = A — E — B — 0is a short exact sequence of C*-algebras, and two of
the C*-algebras are contained in N, then the third one is also contained in N

(4) N is closed under KK-equivalence.

For the C*-algebras in the bootstrap category, we have the following Uni-
versal Coefficient Theorem (see [55, Theorem 1.17]).

Theorem 3.31 ([55, Theorem 1.17]). Let A and B be separable C*-algebras with
A € N. Then, the following sequence is exact.

0 — ExtL (K, (A),K.(B)) -+ KK* (A, B) —Ls Hom(K.(A),K.(B)) — 0,

where K, (A) = Ko(A) @ K{(A), KK*(A,B) = KK°(A,B) @ KK'(A, B), and 6
shifts the degree by one.

Corollary 3.32 ([12, Corollary 23.10.2]). Let A and B be C*-algebras in the boot-
strap category N. If K, (A) = K.(B), then A is KK-equivalent to B.

3.2.2 Cuntz’s picture

In this subsection, we introduce Cuntz’s approach to Kasparov’s bivariant K-
theory, which views Kasparov A-B-modules as generalized homomorphisms.
We will use this picture to prove certain KK-equivalences later. In Cuntz’s
picture, we only consider o-unital C*-algebras.

28



3.2 Kasparov’s K-theory 29

Definition 3.33 (KKj-cycles). Let A and B be C*-algebras. A KK}, (A, B)-cycle is a
pair (¢, p_) of x-homomorphisms ¢+ € Hom(A, M(K ® B)) such that

p+(a) —p—(a) e K®B =Kgep(K®B), VacA.
The set of KK}, (A, B)-cycles is denoted by TF(A, B).

As in the definition of the KK(A, B) group, the KK, (A, B) is the group of
equivalence classes.

Definition 3.34 (Homotopy). Let A and B be C*-algebras. Two KK}, (A, B)-cycles
(¢4, ¢—) and (Y, p_) are homotopic if there exists a path

(AL, ALY 2 [0,1] — F(A,B),t € [0,1],
such that
(1) The maps t — Al_(a) are strictly continuous for all a € A.
(2) The maps t — A'_(a) — A'(a) are norm-continuous for all a € A.
(3) (AL AL) = (¢4, ¢-) and (A}, AL) = (¢4, 9-).
We write (¢4, 9-) ~ (i, ) f (¢ ¢) and (i, ) are homotopc.

It is straightforward to check that ~ defines an equivalence relation. We
now define the KK} (A, B) group.

Definition 3.35 (KK}, (A, B) group). Let A and B be C*-algebras. The KK} (A, B)
group is defined as the set of homotopy classes IF(A,B)/ ~. The homotopy class
represented by (¢, ¢ ) is denoted by [P, p—].

Let¢ : A - M(K ® B) be a x-homomorphism, it is clear that (¢, ¢) defines
a KK}, (A, B)-cycle, where difference between *-homomorphisms in the pair is
zero. This is an analogue in the degenerate elements in KK (A, B). Therefore,
the following lemma is not a surprise.

Lemma 3.36. Let A and B be C*-algebras. Let (¢, ¢) € F(A, B), then

(¢,¢) ~ (0,0) € F(A,B).

29



30 Kasparov’s bivariant K-theory

Since the C*-algebra K ® B is stable, there exists a *-isomorphism @p :
M;(M(K ® B)) — M(K ® B), cf. [33, Definition 1.3.8]. Using this iso-
morphism, we define addition + in KK, (A, B) as follows, for [¢4,¢—], and
[l[)+, l,bf] € KKj, (A, B), define

[P, o]+ [+ 9] = l®BO [‘P* 0 ] ,@po [‘P‘ 011 ¢ KKy, (A, B).

0 ¥ 0 ¢

With this addition, KK}, (A, B) is a semigroup. The following proposition shows
that KK}, (A, B) is an abelian group.

Proposition 3.37. Let A and B be C*-algebras. With the addition + defined above,
KK}, (A, B) is an abelian group. The zero element is represented by (0,0), and

—[¢+, -] = [p—, ¢+] € KKy,(A, B).

We now briefly explain why KK}, (A, B) is isomorphic to KK(A, B) to con-
clude this chapter. To establish the connection to Kasparov’s picture, we need
the following preparations.

(1) Let {e;j : i,j € IN} be the full system of matrix units, such that e;“j =¢ji
and ejje = djxej, and spanc{e;; : i,j € N} is dense in K. This is unique
up to a unitary equivalence.

(2) Let B be a C*-algebra and Hp be the Hilbert B-module defined in Exam-
ple Define the x-homomorphism ¥p : spanc{e;; : i,j € N} ® B —
Lp(Hg), as follows:

‘I’B(eij ®bc*) = ®bircj € IC(HB), Vb, c € B,i,j €N,

where b; represents an element in Hp whose i-th entry is b and other
entries are 0; similiarly for ¢;. By [33, Lemma 1.1.14], ¥ is uniquely
extended to a *-homomorphism ¥ : M (K @ B) — Lp(Hp).

Let H p denote the graded Hilbert B-module such that H B = Hp @ Hp and
Sg, = idp; © —idpy. Then given a pair of *-homomorphisms (¢4, $—) €
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3.2 Kasparov’s K-theory 31

) |

It is straightforward to show that £(¢,¢_) is a Kasparov A-B-module, and

F(A, B), we define the triple

Y0 0 0 1
£(¢+,¢_):<H3,l Bo(}b+ ‘TfBogb]’L 0

this correspondence gives rise to an isomorphism y : KK, (A, B) — KK(A, B)
(see [33, Theorem 4.1.8]).
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