

Subproduct systems and C*-algebras Ge, Y.

Citation

Ge, Y. (2025, October 22). Subproduct systems and C*-algebras. Retrieved from https://hdl.handle.net/1887/4279616

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral thesis License:

in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4279616

Note: To cite this publication please use the final published version (if applicable).

Kasparov's bivariant *K*-theory

In his seminal work [36], Kasparov defines a bivariant theory assigning an abelian group KK(A, B) to any pair of C^* -algebras A and B. This theory simultaneously generalizes both K-theory and K-homology. Together with the Kasparov product, a bilinear pairing between KK(A, B) and KK(B, C) that generalizes the index pairing of K-theory and K-homology, Kasparov's bivariant K-theory has become a fundamental tool in of noncommutative geometry.

In the following sections, we introduce Kasparov's bivariant K-theory. We begin by recalling the basic theory of Hilbert C^* -modules, which serve as models for Kasparov A-B-modules. In the next section, we introduce Kasparov's original approach to bivariant K-theory, followed by Cuntz's approach, which will be used in this thesis. As an application of KK-theory and the Kasparov product, we discuss extensions of C^* -algebras and K-homology.

3.1 Hilbert C*-modules

Hilbert C^* -modules have become a fundamental language of noncommutative geometry today. Roughly speaking, a Hilbert C^* -module is a generalization of Hilbert space by allowing the inner product to take values in a C^* -algebra. The

idea of modules over C^* -algebras as a generalization of Hilbert spaces began to appear in the 1950s. In 1953, I. Kaplansky published the first paper [35] to study modules over AW^* -algebras in order to solve problems in AW^* -algebras. A few years later, in 1973, W. Paschke published [50], the first paper formally studying the inner product modules over a C^* -algebra B, which are now called pre-Hilbert C^* -modules. One year later, in order to study the induced representations of C^* -algebras, M. Rieffel published [54], where he studied the completion of a pre-Hilbert C^* -module, and this was the first time Hilbert C^* -modules were defined.

In this section, we will briefly introduce the theory of Hilbert C^* -modules, serving as the language for the Kasparov bivariant K-theory. We will denote an arbitrary C^* -algebra with the letter B, and the main references for this section are [39] and [33].

Definition 3.1 (Pre-Hilbert C^* -module). A pre-Hilbert B-module is a complex vector space E that is also a right B-module equipped with a B-valued inner product $\langle \cdot, \cdot \rangle : E \otimes E \to B$, which is B-linear and \mathbb{C} -linear in the second variable such that for all $x, y \in E, b \in B$, and $\lambda \in \mathbb{C}$, satisfying

(1)
$$(\lambda e)b = \lambda(eb) = e(\lambda b)$$
,

(2)
$$\langle x, yb \rangle = \langle x, y \rangle b$$
,

(3)
$$\langle x, y \rangle^* = \langle y, x \rangle$$
,

(4)
$$\langle x, x \rangle \geq 0$$
,

(5)
$$x \neq 0 \implies \langle x, x \rangle \neq 0$$
.

For a pre-Hilbert C^* -module E, one can define a norm using the norm of B, as follows,

$$||e||_F^2 = ||\langle e, e \rangle||_{B_I} \quad \forall e \in E.$$
(3.1)

Definition 3.2 (Hilbert C^* -module). A Hilbert B-module is a pre-Hilbert B-module E that is complete in the norm (3.1). We say a closed subspace $F \subset E$ is a Hilbert submodule if F itself is a Hilbert B-module with respect to the B-valued inner product inherited from E.

3.1 Hilbert C*-modules 19

Hilbert C^* -modules naturally appear in operator algebra and geometry. We now present two examples below to revisit classical mathematical objects in the language of Hilbert C^* -modules.

Example 3.3. The C^* -algebra B itself is a Hilbert B-module when equipped with the B-valued inner product $\langle b_1, b_2 \rangle = b_1^*b_2$, for $b_1, b_2 \in B$ and the right B-module action given by multiplication. Moreover, if $J \triangleleft B$ is a closed ideal, then J is also a Hilbert B-module with respect to the same B-valued inner product and right action. \Box

We now turn to constructions with Hilbert B-modules as preparation for Kasparov A-B-modules.

Definition 3.4 (Direct sum of Hilbert B-modules). Let B be a C^* -algebra and E_1, E_2, \ldots, E_n be Hilbert B-modules. Then $E := \bigoplus_{k=1}^n E_k$ is a Hilbert B-module, whose B-valued inner product is defined as

$$\langle (x_1, x_2, \ldots, x_n), (y_1, y_2, \ldots, y_n) \rangle_E = \sum_{k=1}^n \langle x_k, y_k \rangle_{E_k}.$$

It is readily seen that E is complete under this B-valued inner product.

Example 3.5. Define E_B as the space of sequences $(b_1, b_2, ...)$ that are eventually zero. Then E_B is a pre-Hilbert B-module, where the B-valued inner product is defined as

$$\langle (a_i), (b_i) \rangle_{E_B} = \sum_{i=1}^{\infty} a_i^* b_i.$$

The completion of E_B with respect to this inner product is a Hilbert B-module, which we denote by H_B .

Example 3.6. Let X be a compact Hausdorff space and $E \to X$ be a complex vector bundle over X, equipped with a Hermitian metric $\langle \cdot, \cdot \rangle_E$. Denote by $\Gamma(E)$ the space of continuous sections of E. The space $\Gamma(E)$ is a Hilbert C(X)-module with the following structure:

(1) The right C(X)-module structure of $\Gamma(E)$ is defined as follows. For $s \in \Gamma(E)$ and $f \in C(X)$, we define

$$(s \cdot f)(x) = s(x)f(x), \quad \forall x \in X.$$

(2) The C(X)-valued inner product is defined as follows:

$$\langle s_1, s_2 \rangle(x) = \langle s_1(x), s_2(x) \rangle_E, \quad \forall x \in X.$$

The completion of $\Gamma(E)$ *under the norm*

$$||s|| = ||\langle s, s \rangle||^{\frac{1}{2}} = \sup_{x \in X} \sqrt{\langle s(x), s(x) \rangle_E},$$

is a Hilbert C(X)-module.

Unlike the case of Hilbert spaces, where every bounded linear map admits an adjoint, bounded linear maps between Hilbert C^* -modules do not necessarily have adjoints. This leads to the following definition.

Definition 3.7 (Adjointable operators). Let B be a C^* -algebra and E_1 , E_2 be Hilbert B-modules. A map $T: E_1 \to E_2$ is adjointable if there exists a map $T^*: E_2 \to E_1$ such that $\langle Tx, y \rangle_{E_2} = \langle x, T^*y \rangle_{E_2}$ for all $x \in E_1, y \in E_2$. The set of adjointable maps is denoted by $\mathcal{L}_B(E_1, E_2)$.

It is straightforward to prove that an adjointable map T between Hilbert B-modules is B-linear, and $\mathcal{L}_B(E_1, E_2)$ is a subspace of bounded linear maps from E_1 to E_2 , equipped with the operator norm $||T|| = \sup_{x \in E_1} \{||Tx|| : ||x|| \le 1\}$. As a consequence, we have:

Corollary 3.8. Let B be a C^* -algebra and E be a Hilbert B-module. Then, $\mathcal{L}_B(E, E)$ is a C^* -algebra.

Let E_1 and E_2 be Hilbert B-modules. We define the following class of operators in $\mathcal{L}_B(E_1, E_2)$, denoted by $\Theta_{x,y}$ for $x \in E_2, y \in E_1$:

$$\Theta_{x,y}(z) := x \langle y, z \rangle_{E_1}, \quad \forall z \in E_1.$$

These operators generalize rank-one operators in the setting of Hilbert spaces. Hence, we still call operators of the form $\Theta_{x,y}$ rank-one operators.

Let $K_B(E_1, E_2)$ denote the closed linear span of operators of the form $\Theta_{x,y}$ for $x \in E_2, y \in E_1$, it follows directly that $K_B(E, E)$ is a closed ideal in $\mathcal{L}_B(E, E)$. For simplicity, we denote $\mathcal{L}_B(E, E)$ by $\mathcal{L}_B(E)$ and $K_B(E, E)$ by $K_B(E)$.

3.1 Hilbert C*-modules 21

Remark 3.9. It is worth noting that the C^* -algebra $\mathcal{K}_B(E)$ generalizes the C^* -algebra of compact operators on a Hilbert space. Indeed, if we replace B with \mathbb{C} , then a Hilbert \mathbb{C} -module E reduces to a Hilbert space, and $\mathcal{K}_{\mathbb{C}}(E)$ coincides with the space of usual compact operators.

Given a Hilbert *B*-module *E*, besides the norm topology on $\mathcal{L}_B(E)$, the strict topology is another important topology that appears in Cuntz's approach to the bivariant *K*-theory.

Definition 3.10. Let B be a C*-algebra and E be a Hilbert B-module. The seminorms $\|\cdot\|_x$, $x \in E$ given by $\|T\|_x = \|Tx\| + \|T^*x\|$, $T \in \mathcal{L}_B(E)$ define a locally convex topology on $\mathcal{L}_B(E)$, which is called the strict topology.

Definition 3.11 (Pushout of a Hilbert *B*-module). Let *B* and *A* be C^* -algebras, and let *E* be a Hilbert *B*-module. Suppose $f: B \to A$ is a surjective *-homomorphism. Define the following submodule of *E*:

$$N_f := \{x \in E : f(\langle x, x \rangle_E) = 0\} \subset E.$$

Let $\pi: E \to E/N_f$ be the quotient map, and let $\pi(E)$ be the algebraic quotient. Then $\pi(E)$ is a right A-module with the action

$$\pi(x) f(b) := \pi(xb), \quad \forall x \in E, b \in B.$$

This action is well-defined since f and π are surjective and N_f is constructed such that the action on the quotient is consistent. The following A-valued sesquilinear form defined as

$$\langle \pi(x), \pi(y) \rangle_{E_f} := f(\langle x, y \rangle_E) \in A,$$

is an A-valued inner product on $\pi(E)$ making $\pi(E)$ a pre-Hilbert A-module. The completion E_f , sometimes denoted by $f_*(E)$ in the literature, is then a Hilbert A-module, called the pushout of f.

Definition 3.12 (Internal Tensor Product of Hilbert B-modules). Let B and A be C^* -algebras. Let E be a Hilbert B-module, and let F be a Hilbert A-module. Suppose

there is a *-homomorphism $\phi: B \to \mathcal{L}_A(F)$. Then ϕ gives rise to a left B-module structure on F, namely,

$$b.x := \phi(b)x, \quad \forall b \in B, x \in F.$$

Consider the algebraic tensor product $E \odot F$ and a subspace N_f defined as:

$$N_f = span\{xb \odot y - x \odot \phi(b)y : \forall x \in E, b \in B, y \in F\}.$$

Let π denote the quotient map $\pi: E \odot F \to E \odot F/N_f$. Then $\pi(E \odot F)$ is a right A-module with the action

$$\pi((x \odot y)a) := \pi(x \odot ya), \quad \forall x \in E, y \in F, a \in A,$$

which is well-defined because of the way N_f is defined. Then consider the following A-valued map:

$$\langle \pi(x_1 \odot y_1), \pi(x_2 \odot y_2) \rangle_{E \otimes_R F} := \langle y_1, \phi(\langle x_1, x_2 \rangle_E) y_2 \rangle_F \in A, \quad \forall x_i \in E, y_i \in F.$$

It is routine to check that this map vanishes on N_f . Therefore, it induces a well-defined A-valued inner product on the quotient space. The internal tensor product of E and F is the completion of the quotient algebraic tensor product $E \odot F/N_f$ with respect to the A-valued inner product defined above, and it is denoted by $E \otimes_B F$.

3.2 Kasparov's K-theory

In this section, we assume all C^* -algebras to be σ -unital.

Definition 3.13 (Graded C^* -algebras). Let A be a C^* -algebra. We say A is graded if there exists a *-automorphism $\beta_A : A \to A$ such that $\beta_A^2 = id_A$. We say β_A is the grading operator for A.

For a graded C^* -algebra A, it is straightforward to verify that the idempotent *-automorphism β_A decomposes A into two eigenspaces A_0 and A_1 such that $\beta_A|_{A_0}=id_A$ and $\beta_A|_{A_1}=-id_A$. We call elements in $A_0\cup A_1$ homogeneous elements. If $a\in A_0$, we say a is even, and if $a\in A_1$, we say a is odd.

3.2 Kasparov's K-theory 23

A graded *-homomorphism $f:A\to B$ between graded C^* -algebras A and B is a *-homomorphism that preserves the eigenspace decomposition, i.e., $f(A_i)\subset B_i$. If A is a graded C^* -algebra, we can define the graded commutator $[\cdot,\cdot]_{\mathcal{S}}$ on A as follows:

$$[a,b]_{\mathcal{S}} := ab - (-1)^{ij}ba, \quad \forall a \in A_i, b \in A_i.$$

Definition 3.14 (Graded Hilbert C^* -modules). Let B be a graded C^* -algebra with grading operator β_B . We say a Hilbert B-module E is graded if there exists a linear surjective involution $S_E: E \to E$ such that

(1)
$$S_E(xb) = S_E(x)\beta_B(b)$$
, $\forall x \in E, b \in B$,

(2)
$$\langle S_E(x), S_E(y) \rangle = \beta_B(\langle x, y \rangle), \quad \forall x, y \in E.$$

Given graded C^* -algebras A and B, we are now ready to define the Kasparov A-B-module as follows.

Definition 3.15 (Kasparov A-B-module). Let A and B be graded C^* -algebras. A Kasparov A-B-module is a triple $\mathcal{E} = (E, \phi, F)$, where E is a graded Hilbert B-module, $\phi : A \to \mathcal{L}_B(E)$ is a graded *-homomorphism, and $F \in \mathcal{L}_B(E)$ is an odd element, such that

$$[F,\phi(a)]_{\mathcal{S}}$$
, $(F^2-1)\phi(a)$, $(F^*-F)\phi(a) \in \mathcal{K}_B(E)$, $\forall a \in A$.

We call a Kasparov A-B-module degenerate if

$$[F,\phi(a)]_g = (F^2 - 1)\phi(a) = (F^* - F)\phi(a) = 0, \quad \forall a \in A.$$

The collection of Kasparov *A-B*-modules is denoted by $\mathbb{E}(A, B)$ and the collection of degenerate Kasparov *A-B*-modules is denoted by $\mathbb{D}(A, B)$.

Example 3.16. Let A and B be graded C^* -algebras, and let $f: A \to B$ be a graded *-homomorphism. From Example 3.3, we know that B is a Hilbert B-module. It is straightforward to check that (B, f, 0) is a Kasparov A-B-module.

The constructions of Hilbert *C**-modules introduced in Section 3.1 can be applied to Kasparov *A-B*-modules in a clear way.

Definition 3.17 (Isomorphism of Kasparov *A-B*-modules). Let *A* and *B* be graded C^* -algebras. Let $\mathcal{E}_1 = (E_1, \phi_1, F_1)$ and $\mathcal{E}_2 = (E_2, \phi_2, F_2)$ be two Kasparov *A-B-modules*. We say \mathcal{E}_1 is isomorphic to \mathcal{E}_2 if there exists an isomorphism $\psi : E_1 \to E_2$ of graded Hilbert *B-modules* such that,

$$\psi \circ S_{E_1} = S_{E_2} \circ \psi$$
, $\psi \circ \phi_1(a) = \phi_2(a) \circ \psi$, $\psi \circ F_1 = F_2 \circ \psi$.

We write $\mathcal{E}_1 \cong \mathcal{E}_2$ if \mathcal{E}_1 is isomorphic to \mathcal{E}_2 .

We now introduce homotopy equivalence between Kasparov modules. Let B be a graded C^* -algebra, and let $IB := C([0,1],B) \cong C([0,1]) \otimes B$ be the C^* -algebra of B-valued continuous functions on [0,1]. There exists a continuous family of surjective *-homomorphisms $\{\pi_t : t \in [0,1]\}$ defined as follows:

$$\pi_t: IB \to B$$
, $C([0,1]) \otimes B \ni f \mapsto f(t) \in B$.

Define the grading operator on IB by $\beta_B \otimes id$. Then for each $t \in [0,1]$, π_t is a graded surjective *-homomorphism. If \mathcal{E} is a Kasparov A-IB-module, then the pushout \mathcal{E}_{π_t} is a Kasparov A-B-module.

Definition 3.18 (Homotopy of Kasparov A-B-modules). Let A and B be graded C^* -algebras. Let $\mathcal{E}, \mathcal{E}'$ be two Kasparov A-B-modules. We say \mathcal{E} is homotopic to \mathcal{E}' if there exists a Kasparov A-IB-module \mathcal{G} such that $\mathcal{G}_{\pi_0} \cong \mathcal{E}$ and $\mathcal{G}_{\pi_1} \cong \mathcal{E}'$. We write $\mathcal{E} \sim \mathcal{E}'$ if there is a finite set $\{\mathcal{E}_1, \ldots, \mathcal{E}_n\} \subset \mathbb{E}(A, B)$ such that $\mathcal{E}_1 = \mathcal{E}, \mathcal{E}_n = \mathcal{E}'$, and \mathcal{E}_t is homotopic to \mathcal{E}_{t+1} for $t = 1, \ldots, n-1$.

From Definition 3.18, it is straightforward to verify the following:

Proposition 3.19. *Let* A, B, C *be graded* C^* -algebras, and let \mathcal{E} , \mathcal{F} *be Kasparov* A-B-modules. We have the following properties:

- (1) The homotopy \sim is an equivalence relation on $\mathbb{E}(A, B)$.
- (2) Let $f: B \to C$ be a graded *-homomorphism. Then

$$f_*(\mathcal{E} \oplus \mathcal{F}) \sim f_*(\mathcal{E}) \oplus f_*(\mathcal{F}) \in \mathbb{E}(A,C).$$

(3) Suppose \mathcal{E}_1 , \mathcal{E}_2 , \mathcal{F}_1 , and \mathcal{F}_2 are Kasparov A-B-modules such that $\mathcal{E}_1 \sim \mathcal{F}_1$ and $\mathcal{E}_2 \sim \mathcal{F}_2$. Then

$$\mathcal{E}_1 \oplus \mathcal{E}_2 \sim \mathcal{F}_1 \oplus \mathcal{F}_2$$
.

Definition 3.20 (Kasparov KK-group). Let A and B be graded C^* -algebras. The Kasparov KK-group, denoted by KK(A,B), is defined to be $\mathbb{E}(A,B)/\sim$. It is a semigroup with the addition defined by the direct sum of Kasparov A-B-modules.

It immediately follows from Proposition 3.19 that KK(A, B) is an abelian semigroup, while showing KK(A, B) is a group needs more work.

Lemma 3.21 ([33, Lemma 2.1.20]). Let A and B be graded C^* -algebras. If $\mathcal{E} \in \mathbb{D}(A,B)$, then $\mathcal{E} \sim 0$ in KK(A,B).

Besides the homotopy of Kasparov *A-B*-modules, there is another equivalence relation that provides an alternative characterization of the Kasparov bivariant *K*-theory groups.

Definition 3.22 (Operator homotopy). Let A and B be graded C^* -algebras, and let \mathcal{E}_1 , \mathcal{E}_2 be two Kasparov A-B-modules. We say \mathcal{E}_1 is operator homotopic to \mathcal{E}_2 if there exist a graded Hilbert B-module E, a graded *-homomorphism $\phi: A \to \mathcal{L}_B(E)$, and a norm continuous path $F_t \in \mathcal{L}_B(E)$, such that

- (1) $(E, \phi, F_t) \in \mathbb{E}(A, B)$ for each $t \in [0, 1]$.
- (2) $(E, \phi, F_0) \cong \mathcal{E}_1$, and $(E, \phi, F_1) \cong \mathcal{E}_2$.

We write $\mathcal{E}_1 \sim_{op} \mathcal{E}_2$, if \mathcal{E}_1 and \mathcal{E}_2 are operator homotopic, and $\mathcal{E}_1 \approx \mathcal{E}_2$ if $\mathcal{E}_1 \sim_{op} \mathcal{E}_2$ up to degenerate Kasparov A-B-modules.

Lemma 3.23 ([33, Lemma 2.1.21]). Let $\mathcal{E}_1, \mathcal{E}_2 \in \mathbb{E}(A, B)$. Then $\mathcal{E}_1 \approx \mathcal{E}_2$ implies $\mathcal{E}_1 \sim \mathcal{E}_2$.

The Lemma 3.23 allows us to construct an inverse for $\mathcal{E} \in KK(A,B)$ via operator homotopy, which ensures the following theorem.

Theorem 3.24. Let A and B be graded C^* -algebras. Then KK(A, B) is an abelian group.

Remark 3.25. If A is separable, and B is σ -unital, then $\mathbb{E}(A, B)/\approx$ is isomorphic to KK(A, B) (see [12, Theorem 18.5.3]).

We now define the higher *KK*-groups, and show the Kasparov's bivariant *K*-theory provides a framework for both *K*-theory and *K*-homology.

Definition 3.26 (Higher KK-groups). Let A and B be graded C^* -algebras. The higher KK-group KKⁿ(A, B) is defined to be KK $(A, B \otimes \mathbb{C}_n)$, where \mathbb{C}_n denotes the complex Clifford algebra associated with an n-dimensional vector space.

Like operator *K*-theory, the Kasparov's bivariant *K*-theory admits the Bott periodicity as well: $KK^{n+2}(A, B) \cong KK^n(A, B)$.

Proposition 3.27. *Let A and B be graded C*-algebras. We have the following:*

$$K_i(A) \cong KK^i(\mathbb{C}, A), \quad \forall i = 0, 1.$$

As introduced previously, Kasparov's bivariant K-theory also generalizes the K-homology. One approach to see this, is to define the K-homology for a C^* -algebra A by $K^i(A) := KK^i(A,\mathbb{C})$. Another approach to describe the odd Kasparov's bivariant K-theory is to use the extension groups of C^* -algebras introduced in the previous chapter.

Let A, B be separable C^* -algebras with B being stable. We now show that the extension group $Ext^{-1}(A,B)$ is isomorphic to the $KK^1(A,B)$ -group by showing the isomorphisms:

$$Ext^{-1}(A,B) \cong kK^{1}(A,B) \cong KK^{1}(A,B).$$

The first isomorphism is due to Theorem 2.22. We now prove the second isomorphism. Let $[v,\lambda] \in kK^1(A,B)$, there is a map $\alpha: kK^1(A,B) \to KK^1(A,B)$ defined as follows: since $B \otimes \mathbb{C}_1 \cong B \oplus B$, there exists an isomorphism $\phi: \mathcal{M}(B) \oplus \mathcal{M}(B) \to \mathcal{M}(B \otimes \mathbb{C}_1)$, which gives rise to a *-homomorphism

$$\phi \circ (\lambda, \lambda) : A \to \mathcal{M}(B \otimes \mathbb{C}_1).$$

It is not hard to see that the triple

$$\mathcal{E}(v,\lambda)=(B\otimes\mathbb{C}_1,\phi\circ(\lambda,\lambda),\phi(2v-1,1-2v)),$$

represents a $KK^1(A, B)$ -cycle. By the following theorem, this yields an isomorphism, which proves the isomorphism $Ext^{-1}(A, B) \cong KK^1(A, B)$.

Theorem 3.28 ([33, Proposition 1.3.6]). Let A and B be separable C^* -algebras with B being stable. The map $\alpha: kK^1(A, B) \to KK^1(A, B)$ mapping $[v, \lambda]$ to $\mathcal{E}(v, \lambda)$ is a group isomorphism.

Proof. The proof follows from routine checks of conditions and definitions. A full and detailed proof is available in [33, Proposition 1.3.6] for interested readers.

We conclude this section by introducing the Kasparov product and its consequences. The heart of Kasparov's *KK*-theory is the Kasparov product, which provides a composition between *KK*-groups, generalizing the composition of *-homomorphisms and the index pairing between *K*-theory and *K*-homology.

Let A, B, C be separable graded C^* -algebras. The Kasparov product between $KK^i(A, B)$ and $KK^j(B, C)$ is an associative bilinear pairing \otimes_B :

$$\otimes_B : KK^i(A,B) \otimes_B KK^j(B,C) \to KK^{i+j}(A,C),$$

which is functorial in all variables. The existence of the Kasparov product is highly nontrivial. It was proven by G. Kasparov in [36] using a series of technical lemmas, which will not be discussed in this thesis.

To conclude this section, we briefly introduce the KK-equivalence and the universal coefficient theorem for C^* -algebras, as preparation for the later chapters.

Definition 3.29 (KK-equivalence). Let A and B be graded C^* -algebras. We say A is KK-equivalent to B if there exists $x \in KK(A,B)$ and $y \in KK(B,A)$ such that $x \otimes_B y = \mathbf{1}_A$ and $y \otimes_B x = \mathbf{1}_B$.

3.2.1 The Universal Coefficient Theorem

The Universal Coefficient Theorem of Rosenberg and Schochet [55] is a useful theorem that allows us to compute KK-groups for a large class of C^* -algebras

and to determine the KK-equivalence between C^* -algebras on the level of K-theory groups.

Definition 3.30 (Bootstrap Category). Let \mathcal{N} be the bootstrap category, which is the smallest class of separable nuclear C^* -algebras with the following properties:

- (1) $\mathbb{C} \in \mathcal{N}$.
- (2) \mathcal{N} is closed under countable inductive limit.
- (3) If $0 \to A \to E \to B \to 0$ is a short exact sequence of C^* -algebras, and two of the C^* -algebras are contained in \mathcal{N} , then the third one is also contained in \mathcal{N} .
- (4) N is closed under KK-equivalence.

For the C^* -algebras in the bootstrap category, we have the following Universal Coefficient Theorem (see [55, Theorem 1.17]).

Theorem 3.31 ([55, Theorem 1.17]). Let A and B be separable C^* -algebras with $A \in \mathcal{N}$. Then, the following sequence is exact.

$$0 \to \operatorname{Ext}^1_{\mathbb{Z}}(K_*(A), K_*(B)) \stackrel{\delta}{\longrightarrow} \operatorname{KK}^*(A, B) \stackrel{\gamma}{\longrightarrow} \operatorname{Hom}(K_*(A), K_*(B)) \to 0,$$

where $K_*(A) = K_0(A) \oplus K_1(A)$, $KK^*(A, B) = KK^0(A, B) \oplus KK^1(A, B)$, and δ shifts the degree by one.

Corollary 3.32 ([12, Corollary 23.10.2]). Let A and B be C^* -algebras in the bootstrap category \mathcal{N} . If $K_*(A) \cong K_*(B)$, then A is KK-equivalent to B.

3.2.2 Cuntz's picture

In this subsection, we introduce Cuntz's approach to Kasparov's bivariant K-theory, which views Kasparov A-B-modules as generalized homomorphisms. We will use this picture to prove certain KK-equivalences later. In Cuntz's picture, we only consider σ -unital C^* -algebras.

Definition 3.33 (KK_h -cycles). Let A and B be C^* -algebras. A $KK_h(A, B)$ -cycle is a pair (ϕ_+, ϕ_-) of *-homomorphisms $\phi_{\pm} \in Hom(A, \mathcal{M}(K \otimes B))$ such that

$$\phi_+(a) - \phi_-(a) \in \mathcal{K} \otimes B = \mathcal{K}_{\mathcal{K} \otimes B}(\mathcal{K} \otimes B), \quad \forall a \in A.$$

*The set of KK*_h(A, B)*-cycles is denoted by* $\mathbb{F}(A, B)$ *.*

As in the definition of the KK(A, B) group, the $KK_h(A, B)$ is the group of equivalence classes.

Definition 3.34 (Homotopy). *Let A and B be C*-algebras. Two KK*_h(A, B)-cycles (ϕ_+, ϕ_-) and (ψ_+, ψ_-) are homotopic if there exists a path

$$(\lambda_{+}^{t}, \lambda_{-}^{t}) : [0, 1] \to \mathbb{F}(A, B), t \in [0, 1],$$

such that

- (1) The maps $t \to \lambda_+^t(a)$ are strictly continuous for all $a \in A$.
- (2) The maps $t \to \lambda_+^t(a) \lambda_-^t(a)$ are norm-continuous for all $a \in A$.

(3)
$$(\lambda_+^0, \lambda_-^0) = (\phi_+, \phi_-)$$
 and $(\lambda_+^1, \lambda_-^1) = (\psi_+, \psi_-)$.

We write $(\phi_+,\phi_-)\sim (\psi_+,\psi_-)$ if (ϕ_+,ϕ_-) and (ψ_+,ψ_-) are homotopic.

It is straightforward to check that \sim defines an equivalence relation. We now define the $KK_h(A, B)$ group.

Definition 3.35 ($KK_h(A, B)$ group). Let A and B be C^* -algebras. The $KK_h(A, B)$ group is defined as the set of homotopy classes $\mathbb{F}(A, B)/\sim$. The homotopy class represented by (ϕ_+, ϕ_-) is denoted by $[\phi_+, \phi_-]$.

Let $\phi: A \to \mathcal{M}(\mathcal{K} \otimes B)$ be a *-homomorphism, it is clear that (ϕ, ϕ) defines a $KK_h(A, B)$ -cycle, where difference between *-homomorphisms in the pair is zero. This is an analogue in the degenerate elements in KK(A, B). Therefore, the following lemma is not a surprise.

Lemma 3.36. Let A and B be C^* -algebras. Let $(\phi, \phi) \in \mathbb{F}(A, B)$, then

$$(\phi,\phi)\sim(0,0)\in\mathbb{F}(A,B).$$

Since the C^* -algebra $\mathcal{K} \otimes B$ is stable, there exists a *-isomorphism Θ_B : $M_2(\mathcal{M}(\mathcal{K} \otimes B)) \to \mathcal{M}(\mathcal{K} \otimes B)$, cf. [33, Definition 1.3.8]. Using this isomorphism, we define addition + in $KK_h(A,B)$ as follows, for $[\phi_+,\phi_-]$, and $[\psi_+,\psi_-] \in KK_h(A,B)$, define

$$[\phi_+,\phi_-]+[\psi_+,\psi_-]=\left[\Theta_B\circ\begin{bmatrix}\phi_+&0\\0&\psi_+\end{bmatrix},\Theta_B\circ\begin{bmatrix}\phi_-&0\\0&\psi_-\end{bmatrix}\right]\in KK_h(A,B).$$

With this addition, $KK_h(A, B)$ is a semigroup. The following proposition shows that $KK_h(A, B)$ is an abelian group.

Proposition 3.37. *Let* A *and* B *be* C^* -algebras. With the addition + defined above, $KK_h(A, B)$ is an abelian group. The zero element is represented by (0, 0), and

$$-[\phi_+,\phi_-] = [\phi_-,\phi_+] \in KK_h(A,B).$$

We now briefly explain why $KK_h(A, B)$ is isomorphic to KK(A, B) to conclude this chapter. To establish the connection to Kasparov's picture, we need the following preparations.

- (1) Let $\{e_{ij}: i, j \in \mathbb{N}\}$ be the full system of matrix units, such that $e_{ij}^* = e_{ji}$ and $e_{ij}e_{kl} = \delta_{jk}e_{il}$, and $\operatorname{span}_{\mathbb{C}}\{e_{ij}: i, j \in \mathbb{N}\}$ is dense in \mathcal{K} . This is unique up to a unitary equivalence.
- (2) Let B be a C^* -algebra and H_B be the Hilbert B-module defined in Example 3.5. Define the *-homomorphism $\Psi_B: \operatorname{span}_{\mathbb{C}}\{e_{ij}: i, j \in \mathbb{N}\} \otimes B \to \mathcal{L}_B(H_B)$, as follows:

$$\Psi_B(e_{ij}\otimes bc^*)=\Theta_{b_i,c_j}\in\mathcal{K}(H_B),\quad \forall b,c\in B,i,j\in\mathbb{N},$$

where b_i represents an element in H_B whose i-th entry is b and other entries are 0; similarly for c_j . By [33, Lemma 1.1.14], Ψ_B is uniquely extended to a *-homomorphism $\widetilde{\Psi}_B : \mathcal{M}(\mathcal{K} \otimes B) \to \mathcal{L}_B(H_B)$.

Let \widehat{H}_B denote the graded Hilbert *B*-module such that $\widehat{H}_B \cong H_B \oplus H_B$ and $S_{\widehat{H}_B} = \mathrm{id}_{H_B} \oplus -\mathrm{id}_{H_B}$. Then given a pair of *-homomorphisms $(\phi_+, \phi_-) \in$

 $\mathbb{F}(A, B)$, we define the triple

$$\mathcal{E}(\phi_+,\phi_-) = \left(\widehat{H}_B, \begin{bmatrix} \widetilde{\Psi}_B \circ \phi_+ & 0 \\ 0 & \widetilde{\Psi}_B \circ \phi_- \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\right).$$

It is straightforward to show that $\mathcal{E}(\phi_+,\phi_-)$ is a Kasparov A-B-module, and this correspondence gives rise to an isomorphism $\mu: KK_h(A,B) \to KK(A,B)$ (see [33, Theorem 4.1.8]).