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Chapter 3
Kasparov’s bivariant K-theory

In his seminal work [36], Kasparov defines a bivariant theory assigning an
abelian group KK(A, B) to any pair of C∗-algebras A and B. This theory si-
multaneously generalizes both K-theory and K-homology. Together with the
Kasparov product, a bilinear pairing between KK(A, B) and KK(B, C) that gen-
eralizes the index pairing of K-theory and K-homology, Kasparov’s bivariant
K-theory has become a fundamental tool in of noncommutative geometry.

In the following sections, we introduce Kasparov’s bivariant K-theory. We
begin by recalling the basic theory of Hilbert C∗-modules, which serve as mod-
els for Kasparov A-B-modules. In the next section, we introduce Kasparov’s
original approach to bivariant K-theory, followed by Cuntz’s approach, which
will be used in this thesis. As an application of KK-theory and the Kasparov
product, we discuss extensions of C∗-algebras and K-homology.

3.1 Hilbert C∗-modules

Hilbert C∗-modules have become a fundamental language of noncommutative
geometry today. Roughly speaking, a Hilbert C∗-module is a generalization of
Hilbert space by allowing the inner product to take values in a C∗-algebra. The
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18 Kasparov’s bivariant K-theory

idea of modules over C∗-algebras as a generalization of Hilbert spaces began
to appear in the 1950s. In 1953, I. Kaplansky published the first paper [35] to
study modules over AW∗-algebras in order to solve problems in AW∗-algebras.
A few years later, in 1973, W. Paschke published [50], the first paper formally
studying the inner product modules over a C∗-algebra B, which are now called
pre-Hilbert C∗-modules. One year later, in order to study the induced rep-
resentations of C∗-algebras, M. Rieffel published [54], where he studied the
completion of a pre-Hilbert C∗-module, and this was the first time Hilbert C∗-
modules were defined.

In this section, we will briefly introduce the theory of Hilbert C∗-modules,
serving as the language for the Kasparov bivariant K-theory. We will denote an
arbitrary C∗-algebra with the letter B, and the main references for this section
are [39] and [33].

Definition 3.1 (Pre-Hilbert C∗-module). A pre-Hilbert B-module is a complex vec-
tor space E that is also a right B-module equipped with a B-valued inner product
⟨·, ·⟩ : E ⊗ E → B, which is B-linear and C-linear in the second variable such that for
all x, y ∈ E, b ∈ B, and λ ∈ C, satisfying

(1) (λe)b = λ(eb) = e(λb),

(2) ⟨x, yb⟩ = ⟨x, y⟩b,

(3) ⟨x, y⟩∗ = ⟨y, x⟩,

(4) ⟨x, x⟩ ≥ 0,

(5) x ̸= 0 =⇒ ⟨x, x⟩ ̸= 0.

For a pre-Hilbert C∗-module E, one can define a norm using the norm of B,
as follows,

∥e∥2
E = ∥⟨e, e⟩∥B, ∀e ∈ E. (3.1)

Definition 3.2 (Hilbert C∗-module). A Hilbert B-module is a pre-Hilbert B-module
E that is complete in the norm (3.1). We say a closed subspace F ⊂ E is a Hilbert
submodule if F itself is a Hilbert B-module with respect to the B-valued inner product
inherited from E.

18



3.1 Hilbert C∗-modules 19

Hilbert C∗-modules naturally appear in operator algebra and geometry. We
now present two examples below to revisit classical mathematical objects in the
language of Hilbert C∗-modules.

Example 3.3. The C∗-algebra B itself is a Hilbert B-module when equipped with the
B-valued inner product ⟨b1, b2⟩ = b∗1 b2, for b1, b2 ∈ B and the right B-module action
given by multiplication. Moreover, if J ◁ B is a closed ideal, then J is also a Hilbert
B-module with respect to the same B-valued inner product and right action. □

We now turn to constructions with Hilbert B-modules as preparation for
Kasparov A-B-modules.

Definition 3.4 (Direct sum of Hilbert B-modules). Let B be a C∗-algebra and
E1, E2, . . . , En be Hilbert B-modules. Then E :=

⊕n
k=1 Ek is a Hilbert B-module,

whose B-valued inner product is defined as

⟨(x1, x2, . . . , xn), (y1, y2, . . . , yn)⟩E =
n

∑
k=1

⟨xk, yk⟩Ek .

It is readily seen that E is complete under this B-valued inner product.

Example 3.5. Define EB as the space of sequences (b1, b2, . . . ) that are eventually
zero. Then EB is a pre-Hilbert B-module, where the B-valued inner product is defined
as

⟨(ai), (bi)⟩EB =
∞

∑
i=1

a∗i bi.

The completion of EB with respect to this inner product is a Hilbert B-module, which
we denote by HB. □

Example 3.6. Let X be a compact Hausdorff space and E → X be a complex vector
bundle over X, equipped with a Hermitian metric ⟨·, ·⟩E. Denote by Γ(E) the space of
continuous sections of E. The space Γ(E) is a Hilbert C(X)-module with the following
structure:

(1) The right C(X)-module structure of Γ(E) is defined as follows. For s ∈ Γ(E)
and f ∈ C(X), we define

(s · f )(x) = s(x) f (x), ∀x ∈ X.

19



20 Kasparov’s bivariant K-theory

(2) The C(X)-valued inner product is defined as follows:

⟨s1, s2⟩(x) = ⟨s1(x), s2(x)⟩E, ∀x ∈ X.

The completion of Γ(E) under the norm

∥s∥ = ∥⟨s, s⟩∥
1
2 = sup

x∈X

√
⟨s(x), s(x)⟩E,

is a Hilbert C(X)-module. □

Unlike the case of Hilbert spaces, where every bounded linear map admits
an adjoint, bounded linear maps between Hilbert C∗-modules do not necessar-
ily have adjoints. This leads to the following definition.

Definition 3.7 (Adjointable operators). Let B be a C∗-algebra and E1, E2 be Hilbert
B-modules. A map T : E1 → E2 is adjointable if there exists a map T∗ : E2 → E1

such that ⟨Tx, y⟩E2 = ⟨x, T∗y⟩E2 for all x ∈ E1, y ∈ E2. The set of adjointable maps
is denoted by LB(E1, E2).

It is straightforward to prove that an adjointable map T between Hilbert B-
modules is B-linear, and LB(E1, E2) is a subspace of bounded linear maps from
E1 to E2, equipped with the operator norm ∥T∥ = supx∈E1

{∥Tx∥ : ∥x∥ ≤ 1}.
As a consequence, we have:

Corollary 3.8. Let B be a C∗-algebra and E be a Hilbert B-module. Then, LB(E, E)
is a C∗-algebra.

Let E1 and E2 be Hilbert B-modules. We define the following class of oper-
ators in LB(E1, E2), denoted by Θx,y for x ∈ E2, y ∈ E1:

Θx,y(z) := x⟨y, z⟩E1 , ∀z ∈ E1.

These operators generalize rank-one operators in the setting of Hilbert spaces.
Hence, we still call operators of the form Θx,y rank-one operators.

Let KB(E1, E2) denote the closed linear span of operators of the form Θx,y

for x ∈ E2, y ∈ E1, it follows directly that KB(E, E) is a closed ideal in LB(E, E).
For simplicity, we denote LB(E, E) by LB(E) and KB(E, E) by KB(E).

20



3.1 Hilbert C∗-modules 21

Remark 3.9. It is worth noting that the C∗-algebra KB(E) generalizes the C∗-algebra
of compact operators on a Hilbert space. Indeed, if we replace B with C, then a Hilbert
C-module E reduces to a Hilbert space, and KC(E) coincides with the space of usual
compact operators.

Given a Hilbert B-module E, besides the norm topology on LB(E), the strict
topology is another important topology that appears in Cuntz’s approach to
the bivariant K-theory.

Definition 3.10. Let B be a C∗-algebra and E be a Hilbert B-module. The seminorms
∥ · ∥x, x ∈ E given by ∥T∥x = ∥Tx∥+ ∥T∗x∥, T ∈ LB(E) define a locally convex
topology on LB(E), which is called the strict topology.

Definition 3.11 (Pushout of a Hilbert B-module). Let B and A be C∗-algebras,
and let E be a Hilbert B-module. Suppose f : B → A is a surjective ∗-homomorphism.
Define the following submodule of E:

N f := {x ∈ E : f (⟨x, x⟩E) = 0} ⊂ E.

Let π : E → E/N f be the quotient map, and let π(E) be the algebraic quotient. Then
π(E) is a right A-module with the action

π(x) f (b) := π(xb), ∀x ∈ E, b ∈ B.

This action is well-defined since f and π are surjective and N f is constructed such
that the action on the quotient is consistent. The following A-valued sesquilinear form
defined as

⟨π(x), π(y)⟩E f
:= f (⟨x, y⟩E) ∈ A,

is an A-valued inner product on π(E) making π(E) a pre-Hilbert A-module. The
completion E f , sometimes denoted by f∗(E) in the literature, is then a Hilbert A-
module, called the pushout of f .

Definition 3.12 (Internal Tensor Product of Hilbert B-modules). Let B and A be
C∗-algebras. Let E be a Hilbert B-module, and let F be a Hilbert A-module. Suppose

21



22 Kasparov’s bivariant K-theory

there is a ∗-homomorphism ϕ : B → LA(F). Then ϕ gives rise to a left B-module
structure on F, namely,

b.x := ϕ(b)x, ∀b ∈ B, x ∈ F.

Consider the algebraic tensor product E ⊙ F and a subspace N f defined as:

N f = span{xb ⊙ y − x ⊙ ϕ(b)y : ∀x ∈ E, b ∈ B, y ∈ F}.

Let π denote the quotient map π : E ⊙ F → E ⊙ F/N f . Then π(E ⊙ F) is a right
A-module with the action

π((x ⊙ y)a) := π(x ⊙ ya), ∀x ∈ E, y ∈ F, a ∈ A,

which is well-defined because of the way N f is defined. Then consider the following
A-valued map:

⟨π(x1 ⊙ y1), π(x2 ⊙ y2)⟩E⊗B F := ⟨y1, ϕ(⟨x1, x2⟩E)y2⟩F ∈ A, ∀xi ∈ E, yi ∈ F.

It is routine to check that this map vanishes on N f . Therefore, it induces a well-defined
A-valued inner product on the quotient space. The internal tensor product of E and
F is the completion of the quotient algebraic tensor product E ⊙ F/N f with respect to
the A-valued inner product defined above, and it is denoted by E ⊗B F.

3.2 Kasparov’s K-theory

In this section, we assume all C∗-algebras to be σ-unital.

Definition 3.13 (Graded C∗-algebras). Let A be a C∗-algebra. We say A is graded
if there exists a ∗-automorphism βA : A → A such that β2

A = idA. We say βA is the
grading operator for A.

For a graded C∗-algebra A, it is straightforward to verify that the idempo-
tent ∗-automorphism βA decomposes A into two eigenspaces A0 and A1 such
that βA|A0 = idA and βA|A1 = −idA. We call elements in A0 ∪ A1 homoge-
neous elements. If a ∈ A0, we say a is even, and if a ∈ A1, we say a is odd.

22



3.2 Kasparov’s K-theory 23

A graded ∗-homomorphism f : A → B between graded C∗-algebras A
and B is a ∗-homomorphism that preserves the eigenspace decomposition, i.e.,
f (Ai) ⊂ Bi. If A is a graded C∗-algebra, we can define the graded commutator
[·, ·]g on A as follows:

[a, b]g := ab − (−1)ijba, ∀a ∈ Ai, b ∈ Aj.

Definition 3.14 (Graded Hilbert C∗-modules). Let B be a graded C∗-algebra with
grading operator βB. We say a Hilbert B-module E is graded if there exists a linear
surjective involution SE : E → E such that

(1) SE(xb) = SE(x)βB(b), ∀x ∈ E, b ∈ B,

(2) ⟨SE(x), SE(y)⟩ = βB(⟨x, y⟩), ∀x, y ∈ E.

Given graded C∗-algebras A and B, we are now ready to define the Kas-
parov A-B-module as follows.

Definition 3.15 (Kasparov A-B-module). Let A and B be graded C∗-algebras. A
Kasparov A-B-module is a triple E = (E, ϕ, F), where E is a graded Hilbert B-module,
ϕ : A → LB(E) is a graded ∗-homomorphism, and F ∈ LB(E) is an odd element,
such that

[F, ϕ(a)]g, (F2 − 1)ϕ(a), (F∗ − F)ϕ(a) ∈ KB(E), ∀a ∈ A.

We call a Kasparov A-B-module degenerate if

[F, ϕ(a)]g = (F2 − 1)ϕ(a) = (F∗ − F)ϕ(a) = 0, ∀a ∈ A.

The collection of Kasparov A-B-modules is denoted by E(A, B) and the
collection of degenerate Kasparov A-B-modules is denoted by D(A, B).

Example 3.16. Let A and B be graded C∗-algebras, and let f : A → B be a graded
∗-homomorphism. From Example 3.3, we know that B is a Hilbert B-module. It is
straightforward to check that (B, f , 0) is a Kasparov A-B-module. □

The constructions of Hilbert C∗-modules introduced in Section 3.1 can be
applied to Kasparov A-B-modules in a clear way.

23



24 Kasparov’s bivariant K-theory

Definition 3.17 (Isomorphism of Kasparov A-B-modules). Let A and B be graded
C∗-algebras. Let E1 = (E1, ϕ1, F1) and E2 = (E2, ϕ2, F2) be two Kasparov A-B-
modules. We say E1 is isomorphic to E2 if there exists an isomorphism ψ : E1 → E2 of
graded Hilbert B-modules such that,

ψ ◦ SE1 = SE2 ◦ ψ, ψ ◦ ϕ1(a) = ϕ2(a) ◦ ψ, ψ ◦ F1 = F2 ◦ ψ.

We write E1
∼= E2 if E1 is isomorphic to E2.

We now introduce homotopy equivalence between Kasparov modules. Let
B be a graded C∗-algebra, and let IB := C([0, 1], B) ∼= C([0, 1])⊗ B be the C∗-
algebra of B-valued continuous functions on [0, 1]. There exists a continuous
family of surjective ∗-homomorphisms {πt : t ∈ [0, 1]} defined as follows:

πt : IB → B, C([0, 1])⊗ B ∋ f 7→ f (t) ∈ B.

Define the grading operator on IB by βB ⊗ id. Then for each t ∈ [0, 1], πt is a
graded surjective ∗-homomorphism. If E is a Kasparov A-IB-module, then the
pushout Eπt is a Kasparov A-B-module.

Definition 3.18 (Homotopy of Kasparov A-B-modules). Let A and B be graded
C∗-algebras. Let E , E ′ be two Kasparov A-B-modules. We say E is homotopic to E ′ if
there exists a Kasparov A-IB-module G such that Gπ0

∼= E and Gπ1
∼= E ′. We write

E ∼ E ′ if there is a finite set {E1, . . . , En} ⊂ E(A, B) such that E1 = E , En = E ′,
and Et is homotopic to Et+1 for t = 1, . . . , n − 1.

From Definition 3.18, it is straightforward to verify the following:

Proposition 3.19. Let A, B, C be graded C∗-algebras, and let E ,F be Kasparov A-B-
modules. We have the following properties:

(1) The homotopy ∼ is an equivalence relation on E(A, B).

(2) Let f : B → C be a graded ∗-homomorphism. Then

f∗(E ⊕ F ) ∼ f∗(E)⊕ f∗(F ) ∈ E(A, C).

24



3.2 Kasparov’s K-theory 25

(3) Suppose E1, E2,F1, and F2 are Kasparov A-B-modules such that E1 ∼ F1 and
E2 ∼ F2. Then

E1 ⊕ E2 ∼ F1 ⊕F2.

Definition 3.20 (Kasparov KK-group). Let A and B be graded C∗-algebras. The
Kasparov KK-group, denoted by KK(A, B), is defined to be E(A, B)/ ∼. It is a
semigroup with the addition defined by the direct sum of Kasparov A-B-modules.

It immediately follows from Proposition 3.19 that KK(A, B) is an abelian
semigroup, while showing KK(A, B) is a group needs more work.

Lemma 3.21 ([33, Lemma 2.1.20]). Let A and B be graded C∗-algebras. If E ∈
D(A, B), then E ∼ 0 in KK(A, B).

Besides the homotopy of Kasparov A-B-modules, there is another equiv-
alence relation that provides an alternative characterization of the Kasparov
bivariant K-theory groups.

Definition 3.22 (Operator homotopy). Let A and B be graded C∗-algebras, and let
E1, E2 be two Kasparov A-B-modules. We say E1 is operator homotopic to E2 if there
exist a graded Hilbert B-module E, a graded ∗-homomorphism ϕ : A → LB(E), and
a norm continuous path Ft ∈ LB(E), such that

(1) (E, ϕ, Ft) ∈ E(A, B) for each t ∈ [0, 1].

(2) (E, ϕ, F0) ∼= E1, and (E, ϕ, F1) ∼= E2.

We write E1 ∼op E2, if E1 and E2 are operator homotopic, and E1 ≈ E2 if E1 ∼op E2

up to degenerate Kasparov A-B-modules.

Lemma 3.23 ([33, Lemma 2.1.21]). Let E1, E2 ∈ E(A, B). Then E1 ≈ E2 implies
E1 ∼ E2.

The Lemma 3.23 allows us to construct an inverse for E ∈ KK(A, B) via
operator homotopy, which ensures the following theorem.

Theorem 3.24. Let A and B be graded C∗-algebras. Then KK(A, B) is an abelian
group.

25



26 Kasparov’s bivariant K-theory

Remark 3.25. If A is separable, and B is σ-unital, then E(A, B)/ ≈ is isomorphic to
KK(A, B) (see [12, Theorem 18.5.3]).

We now define the higher KK-groups, and show the Kasparov’s bivariant
K-theory provides a framework for both K-theory and K-homology.

Definition 3.26 (Higher KK-groups). Let A and B be graded C∗-algebras. The
higher KK-group KKn(A, B) is defined to be KK(A, B ⊗ Cn), where Cn denotes the
complex Clifford algebra associated with an n-dimensional vector space.

Like operator K-theory, the Kasparov’s bivariant K-theory admits the Bott
periodicity as well: KKn+2(A, B) ∼= KKn(A, B).

Proposition 3.27. Let A and B be graded C∗-algebras. We have the following:

Ki(A) ∼= KKi(C, A), ∀i = 0, 1.

As introduced previously, Kasparov’s bivariant K-theory also generalizes
the K-homology. One approach to see this, is to define the K-homology for a
C∗-algebra A by Ki(A) := KKi(A, C). Another approach to describe the odd
Kasparov’s bivariant K-theory is to use the extension groups of C∗-algebras
introduced in the previous chapter.

Let A, B be separable C∗-algebras with B being stable. We now show that
the extension group Ext−1(A, B) is isomorphic to the KK1(A, B)-group by show-
ing the isomorphisms:

Ext−1(A, B) ∼= kK1(A, B) ∼= KK1(A, B).

The first isomorphism is due to Theorem 2.22. We now prove the second
isomorphism. Let [v, λ] ∈ kK1(A, B), there is a map α : kK1(A, B) → KK1(A, B)
defined as follows: since B ⊗ C1

∼= B ⊕ B, there exists an isomorphism ϕ :
M(B)⊕M(B) → M(B ⊗ C1), which gives rise to a ∗-homomorphism

ϕ ◦ (λ, λ) : A → M(B ⊗ C1).

It is not hard to see that the triple

E(v, λ) = (B ⊗ C1, ϕ ◦ (λ, λ), ϕ(2v − 1, 1 − 2v)),

26



3.2 Kasparov’s K-theory 27

represents a KK1(A, B)-cycle. By the following theorem, this yields an isomor-
phism, which proves the isomorphism Ext−1(A, B) ∼= KK1(A, B).

Theorem 3.28 ([33, Proposition 1.3.6]). Let A and B be separable C∗-algebras with
B being stable. The map α : kK1(A, B) → KK1(A, B) mapping [v, λ] to E(v, λ) is a
group isomorphism.

Proof. The proof follows from routine checks of conditions and definitions. A
full and detailed proof is available in [33, Proposition 1.3.6] for interested read-
ers.

We conclude this section by introducing the Kasparov product and its con-
sequences. The heart of Kasparov’s KK-theory is the Kasparov product, which
provides a composition between KK-groups, generalizing the composition of
∗-homomorphisms and the index pairing between K-theory and K-homology.

Let A, B, C be separable graded C∗-algebras. The Kasparov product be-
tween KKi(A, B) and KK j(B, C) is an associative bilinear pairing ⊗B:

⊗B : KKi(A, B)⊗B KK j(B, C) → KKi+j(A, C),

which is functorial in all variables. The existence of the Kasparov product is
highly nontrivial. It was proven by G. Kasparov in [36] using a series of tech-
nical lemmas, which will not be discussed in this thesis.

To conclude this section, we briefly introduce the KK-equivalence and the
universal coefficient theorem for C∗-algebras, as preparation for the later chap-
ters.

Definition 3.29 (KK-equivalence). Let A and B be graded C∗-algebras. We say A
is KK-equivalent to B if there exists x ∈ KK(A, B) and y ∈ KK(B, A) such that
x ⊗B y = 1A and y ⊗B x = 1B.

3.2.1 The Universal Coefficient Theorem

The Universal Coefficient Theorem of Rosenberg and Schochet [55] is a useful
theorem that allows us to compute KK-groups for a large class of C∗-algebras

27



28 Kasparov’s bivariant K-theory

and to determine the KK-equivalence between C∗-algebras on the level of K-
theory groups.

Definition 3.30 (Bootstrap Category). Let N be the bootstrap category, which is
the smallest class of separable nuclear C∗-algebras with the following properties:

(1) C ∈ N .

(2) N is closed under countable inductive limit.

(3) If 0 → A → E → B → 0 is a short exact sequence of C∗-algebras, and two of
the C∗-algebras are contained in N , then the third one is also contained in N .

(4) N is closed under KK-equivalence.

For the C∗-algebras in the bootstrap category, we have the following Uni-
versal Coefficient Theorem (see [55, Theorem 1.17]).

Theorem 3.31 ([55, Theorem 1.17]). Let A and B be separable C∗-algebras with
A ∈ N . Then, the following sequence is exact.

0 → Ext1
Z(K∗(A), K∗(B)) δ−→ KK∗(A, B)

γ−→ Hom(K∗(A), K∗(B)) → 0,

where K∗(A) = K0(A) ⊕ K1(A), KK∗(A, B) = KK0(A, B) ⊕ KK1(A, B), and δ

shifts the degree by one.

Corollary 3.32 ([12, Corollary 23.10.2]). Let A and B be C∗-algebras in the boot-
strap category N . If K∗(A) ∼= K∗(B), then A is KK-equivalent to B.

3.2.2 Cuntz’s picture

In this subsection, we introduce Cuntz’s approach to Kasparov’s bivariant K-
theory, which views Kasparov A-B-modules as generalized homomorphisms.
We will use this picture to prove certain KK-equivalences later. In Cuntz’s
picture, we only consider σ-unital C∗-algebras.

28



3.2 Kasparov’s K-theory 29

Definition 3.33 (KKh-cycles). Let A and B be C∗-algebras. A KKh(A, B)-cycle is a
pair (ϕ+, ϕ−) of ∗-homomorphisms ϕ± ∈ Hom(A,M(K⊗ B)) such that

ϕ+(a)− ϕ−(a) ∈ K ⊗ B = KK⊗B(K⊗ B), ∀a ∈ A.

The set of KKh(A, B)-cycles is denoted by F(A, B).

As in the definition of the KK(A, B) group, the KKh(A, B) is the group of
equivalence classes.

Definition 3.34 (Homotopy). Let A and B be C∗-algebras. Two KKh(A, B)-cycles
(ϕ+, ϕ−) and (ψ+, ψ−) are homotopic if there exists a path

(λt
+, λt

−) : [0, 1] → F(A, B), t ∈ [0, 1],

such that

(1) The maps t → λt
±(a) are strictly continuous for all a ∈ A.

(2) The maps t → λt
+(a)− λt

−(a) are norm-continuous for all a ∈ A.

(3) (λ0
+, λ0

−) = (ϕ+, ϕ−) and (λ1
+, λ1

−) = (ψ+, ψ−).

We write (ϕ+, ϕ−) ∼ (ψ+, ψ−) if (ϕ+, ϕ−) and (ψ+, ψ−) are homotopic.

It is straightforward to check that ∼ defines an equivalence relation. We
now define the KKh(A, B) group.

Definition 3.35 (KKh(A, B) group). Let A and B be C∗-algebras. The KKh(A, B)
group is defined as the set of homotopy classes F(A, B)/ ∼. The homotopy class
represented by (ϕ+, ϕ−) is denoted by [ϕ+, ϕ−].

Let ϕ : A → M(K⊗ B) be a ∗-homomorphism, it is clear that (ϕ, ϕ) defines
a KKh(A, B)-cycle, where difference between ∗-homomorphisms in the pair is
zero. This is an analogue in the degenerate elements in KK(A, B). Therefore,
the following lemma is not a surprise.

Lemma 3.36. Let A and B be C∗-algebras. Let (ϕ, ϕ) ∈ F(A, B), then

(ϕ, ϕ) ∼ (0, 0) ∈ F(A, B).
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30 Kasparov’s bivariant K-theory

Since the C∗-algebra K ⊗ B is stable, there exists a ∗-isomorphism ΘB :
M2(M(K ⊗ B)) → M(K ⊗ B), cf. [33, Definition 1.3.8]. Using this iso-
morphism, we define addition + in KKh(A, B) as follows, for [ϕ+, ϕ−], and
[ψ+, ψ−] ∈ KKh(A, B), define

[ϕ+, ϕ−] + [ψ+, ψ−] =

[
ΘB ◦

[
ϕ+ 0
0 ψ+

]
, ΘB ◦

[
ϕ− 0
0 ψ−

]]
∈ KKh(A, B).

With this addition, KKh(A, B) is a semigroup. The following proposition shows
that KKh(A, B) is an abelian group.

Proposition 3.37. Let A and B be C∗-algebras. With the addition + defined above,
KKh(A, B) is an abelian group. The zero element is represented by (0, 0), and

−[ϕ+, ϕ−] = [ϕ−, ϕ+] ∈ KKh(A, B).

We now briefly explain why KKh(A, B) is isomorphic to KK(A, B) to con-
clude this chapter. To establish the connection to Kasparov’s picture, we need
the following preparations.

(1) Let {eij : i, j ∈ N} be the full system of matrix units, such that e∗ij = eji

and eijekl = δjkeil , and spanC{eij : i, j ∈ N} is dense in K. This is unique
up to a unitary equivalence.

(2) Let B be a C∗-algebra and HB be the Hilbert B-module defined in Exam-
ple 3.5. Define the ∗-homomorphism ΨB : spanC{eij : i, j ∈ N} ⊗ B →
LB(HB), as follows:

ΨB(eij ⊗ bc∗) = Θbi ,cj
∈ K(HB), ∀b, c ∈ B, i, j ∈ N,

where bi represents an element in HB whose i-th entry is b and other
entries are 0; similiarly for cj. By [33, Lemma 1.1.14], ΨB is uniquely
extended to a ∗-homomorphism Ψ̃B : M(K⊗ B) → LB(HB).

Let ĤB denote the graded Hilbert B-module such that ĤB ∼= HB ⊕ HB and
SĤB

= idHB ⊕ − idHB . Then given a pair of ∗-homomorphisms (ϕ+, ϕ−) ∈
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F(A, B), we define the triple

E(ϕ+, ϕ−) =

(
ĤB,

[
Ψ̃B ◦ ϕ+ 0

0 Ψ̃B ◦ ϕ−

]
,

[
0 1
1 0

])
.

It is straightforward to show that E(ϕ+, ϕ−) is a Kasparov A-B-module, and
this correspondence gives rise to an isomorphism µ : KKh(A, B) → KK(A, B)
(see [33, Theorem 4.1.8]).
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