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Part I

Preliminaries
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Chapter 2
K-theory and K-homology

In this chapter, we recall operator K-theory and then discuss extensions of C∗-
algebras and K-homology.

2.1 K-theory of C∗-algebras

Our main references for operator K-theory are [46], [12], and [62]. For clar-
ity, we fix the following convention: we denote by C∗Alg the category whose
objects are C∗-algebras and whose morphisms are the ∗-homomorphisms be-
tween C∗-algebras.

The origins of K-theory trace back to A. Grothendieck’s work in the late
1950s. His work was motivated by the study of coherent sheaves on varieties
[14]. Building on Grothendieck’s ideas, M. F. Atiyah and F. Hirzebruch ex-
tended K-theory to topological spaces [9]. Their generalization played an im-
portant role in formulating topological analogues of Riemann–Roch theorem
for differentiable manifolds and in classifying vector bundles over topological
spaces.

Roughly speaking, for a compact Hausdorff topological space X, the topo-
logical K-theory group K0(X) is defined to be the Grothendieck group of the
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4 K-theory and K-homology

monoid of isomorphism classes of complex vector bundles over X. The higher
K-theory groups K−n(X) are defined by suspension, i.e., K−n(X) = K0(ΣnX).
For topological complex K-theory, Bott periodicity reduces K-theory groups to
only K0(X) and K−1(X), which leads to the six-term exact sequence and makes
K-theory a computable homological theory.

The development of a K-theory for C∗-algebras was inspired by ideas from
topological K-theory, together with the Gelfand–Naimark duality [46, Theorem
2.1.10], and the Serre–Swan theorem [49]. This is now an independent field of
research known as operator K-theory.

In the categorical language, operator K-theory is a functor from the category
of C∗-algebras C∗Alg to the category of abelian groups. That is, for each C∗-
algebra A, operator K-theory associates two abelian groups, denoted by K0(A)

and K1(A) such that for a ∗-homomorphism f : A → B between C∗-algebras
A and B, there is an induced homomorphism f∗ between abelian groups

f∗ : Ki(A) → Ki(B), i = 0, 1.

There are three key properties of the operator K-theory: homotopy invari-
ance, half-exactness, and stability, which are now introduced in turn as follows.

Let f and g be ∗-homomorphisms between C∗-algebras A and B. We say f
is homotopic to g, if there exists a norm-continuous path of ∗-homomorphisms
φt indexed by t ∈ [0, 1], such that φ0 = f and φ1 = g. The K-theory functor
is homotopy invariant in the sense that if f and g are homotopic, then they
induce the same homomorphism between K-theory groups, i.e., f∗ = g∗.

Half exactness means the following: for any short exact sequence of C∗-
algebras

0 → J → B → A → 0,

there is an induced sequence

Ki(J) → Ki(B) → Ki(A), i = 0, 1,

that is exact at Ki(B).
Lastly, the stability is the property that for any C∗-algebra A, one has Ki(A) ∼=

Ki(A ⊗K), for i = 0, 1.
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2.1 K-theory of C∗-algebras 5

Concretely, for a C∗-algebra A, K0(A) is the Grothendieck group of equiva-
lence classes of Murray–von Neumann projections in the matrix algebras over
A, and the higher K-theory groups Kn(A) are defined to be the K0-group of the
n-fold suspension of A, i.e.,

Kn(A) = K0(Sn A),

where SA := C0(0, 1)⊗ A.
Let J be a closed two-sided ideal in A, there is a short exact sequence of

C∗-algebras:
0 → J ι−→ A π−→ A/J → 0.

By the half-exactness, we obtain sequences of K-theory groups

Ki(J) → Ki(A) → Ki(A/J), (2.1)

that are exact at K0(A) and K1(A) respectively.
Operator K-theory also has Bott periodicity, i.e., Kn(A) ∼= Kn+2(A). There-

fore, K0(A) and K1(A) are essentially the only two K-theory groups. A cru-
cial consequence of Bott periodicity is the six-term exact sequence of K-theory
groups, which is a powerful tool for computing K-theory groups of C∗-algebras.

There is a well-defined group homomorphism δ (see [12, Definition 8.3.1]),

δ : K1(A/J) → K0(J),

called the index map, that completes sequences (2.1) for i = 0, 1 into a long ex-
act sequence for K-theory groups. This is formalized in the following theorem.

Theorem 2.1 ([62, Theorem 8.2.1]). Let J be a two-sided ideal in A. Then the
following sequence is exact everywhere:

K1(J) ι∗−→ K1(A)
π∗−→ K1(A/J) δ−→ K0(J) ι∗−→ K0(A)

π∗−→ K0(A/J).

Since the higher K-theory groups are defined inductively by suspension,
the above sequence extends into an infinite exact sequence. Bott periodicity
reduces the infinite exact sequence to the following six-term exact sequence.
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6 K-theory and K-homology

Theorem 2.2 (Six-term Exact Sequence). Let J be a closed two-sided ideal in A.
Then the following six-term cyclic sequence is exact everywhere:

K0(J) K0(A) K0(A/J)

K1(A/J) K1(A) K1(J)

ι∗ π∗

δδ

π∗ ι∗

.

2.1.1 Equivariant K-theory

To prepare for our applications in the study of symmetries and group actions
on C*-algebras, we finish this section by introducing equivariant operator K-
theory, which generalizes equivariant topological K-theory.

Let G be a compact group and X be a compact Hausdorff space with a
continuous G-action α. The equivariant topological K-theory group K0

G(X) is
defined to be the Grothendieck completion of the abelian semigroup of the iso-
morphism classes of equivariant G-vector bundles over X. Higher equivariant
K-theory groups are defined via suspension as in the ordinary topological K-
theory. The group action on a compact space X is dualized to a group action
on the C(X), which in turn inspired the construction of crossed products of C∗-
algebras. In fact, the crossed product of C(X) and G, denoted by C(X)⋊α G
encodes full information of the dynamical systems of the G-action on X. This
idea motivates the definition of equivariant K-theory for arbitrary C∗-algebras
with G-actions.

Definition 2.3 (Equivariant K-theory). Let G be a compact group and A be a uni-
tal C∗-algebra with a strongly continuous group action α. The equivariant K-theory
group KG

0 (A) is defined as the K0(A⋊α G), and the higher equivariant K-theory group
KG

n (A) are defined via suspensions: set KG
n (A) := KG

0 (S
n A).

We conclude this section with the following remarks.

(1) If A = C(X) for some compact space X, then KG
0 (A) ∼= K0

G(X), coincid-
ing with equivariant topological K-theory. In particular, if A = C, then
KG

0 (A) ∼= R(G), the representation ring of G.
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2.2 Extensions and K-homology 7

(2) Equivariant K-theory shares the same properties of ordinary K-theory,
including stability, Bott periodicity, and the existence of a six-term exact
sequence.

2.2 Extensions and K-homology

In this section, we introduce extensions of C∗-algebras and establish their con-
nection to K-homology, discussing the foundational work [15], which exam-
ines extensions of C∗-algebras from continuous functions on compact metriz-
able spaces. Lastly, we present the index pairing between K-theory and K-
homology.

2.2.1 General theory

R. Busby initiated a systematic study of extensions of C∗-algebras [17], where
he defined an invariant to describe extensions, which later became known as
the Busby invariant. However, his work did not attract much attention until
1977 (see [12, Chapter 15.2]).

In 1977, L. Brown, R. Douglas, and P. Fillmore published a famous paper
[15] titled Extensions of C∗-algebras and K-homology, which is considered a cor-
nerstone in the theory.

In this section, we denote the multiplier algebra of a C∗-algebra B by M(B),
and the corona algebra Q(B) as the quotient M(B)/B. Before introducing the
Busby invariant, let us recall the classical notion of extensions of C∗-algebras.

Definition 2.4 (Extension). Let A and B be C∗-algebras. An extension of A by B is
a short exact sequence of C∗-algebras:

0 → B i−→ E
p−→ A → 0.

We denote an extension of A by B by (i, E, p), where B ∼= i(B) ⊆ E and
E/i(B) ∼= A = p(E). The set of all extensions of A by B is denoted by
Ext(A, B). We say two extensions (i1, E1, p1) and (i2, E2, p2) are isomorphic if
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8 K-theory and K-homology

there exists a ∗-isomorphism γ : E1 → E2 such that γ ◦ i1 = i2 and p2 ◦ γ = p1.
In other words, the following diagram commutes:

0 B E1 A 0

0 B E2 A 0.

id

i1

γ

p1

id
i2 p2

Given an extension (i, E, p) of A by B, Busby proposed a way to transform it
into a ∗-homomorphism τ : A → M(B)/B, such that all essential information
is preserved. The construction is as follows.

Let (i, E, p) be an extension of A by B, and let (ι,M(B), π) be the extension
of Q(B) by B, where ι is the natural embedding of B into M(B), and π is the
quotient map. By the universal property of multiplier algebras, there exists a ∗-
homomorphism φ : E → M(B) such that ι(b) = φ ◦ i(b). Since p is surjective,
for each a ∈ A, there exists e ∈ E such that p(e) = a. This allows us to define a
map as follows,

τ : a 7→ π ◦ φ(e).

The following proposition shows that τ is a well-defined ∗-homomorphism,
independent of the choice of e.

Proposition 2.5. Let A and B be C∗-algebras, and let (i, E, p) be an extension of A
by B. Then there exist unique ∗-homomorphisms φ : E → M(B), τ : A → Q(B)
such that the following diagram of C∗-algebras commutes:

0 B E A 0

0 B M(B) Q(B) 0,

id

i

φ

p

τ

i

ι π

(2.2)

where φ is defined by the universal property of the multiplier algebras and τ is con-
structed as above.

Definition 2.6 (The Busby invariant). Let (i, E, p) be the extension of A by B, and
we define the Busby invariant of the extension to be the ∗-homomorphism τ : A →
Q(B) given by

τ(a) = π(e), p(e) = a.
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2.2 Extensions and K-homology 9

The Busby invariant of an extension (i, E, p) contains all essential informa-
tion, which means that two extensions are isomorphic if and only if their Busby
invariants are identical. Indeed, given a ∗-homomorphism τ : A → Q(B), one
can construct a canonical extension of A by B and show that this extension is
isomorphic to any extension with the same Busby invariant.

Theorem 2.7. Let A and B be C∗-algebras, there is a one-to-one correspondence be-
tween the set of ∗-homomorphisms τ : A → Q(B) and the set of isomorphism classes
of extensions of A by B.

Definition 2.8 (Split extension). Let (i, E, p) be an extension of A by B. It is said to
be a split extension if there exists ∗-homomorphism γ : A → E such that p ◦ γ = idA.

The following theorem provides another characterization of split exten-
sions using Busby invariants.

Theorem 2.9. Let (i, E, p) be an extension of A by B, and let τ : A → Q(B) be the
corresponding Busby invariant. The following statements are equivalent:

(1) There exists a ∗-homomorphism γ : A → E such that p ◦ γ = idA.

(2) There exists a ∗-homomorphism σ : A → M(B) such that τ = π ◦ σ.

In addition to the isomorphism of extensions, another equivalence relation,
known as strong unitary equivalence, is used to define the extension group.

Definition 2.10 (Unitary equivalence). Two extensions τ1 and τ2 of A by B are
said to be strongly unitarily equivalent if there is a unitary u ∈ M(B) such that
τ2(a) = π(u)τ1(a)π(u∗) for all a ∈ A, where π : M(B) → Q(B) denotes the
quotient map. If τ1 and τ2 are strongly unitarily equivalent, we write τ1 ≈u τ2.

Let A and B be C∗-algebras, we write E(A, B) = Ext(A, B)/ ≈u. Assum-
ing B is stable and σ-unital, and A is separable, one can endow E(A, B) with
an algebraic structure. Within this structure, two types of extensions, called
degenerate extensions and semi-split extensions, play crucial roles.

Definition 2.11 (Degenerate extension). Let τ : A → Q(B) be a Busby invariant.
We call τ degenerate if the corresponding extension is split.

9



10 K-theory and K-homology

Definition 2.12 (Semi-split extension). Let (i, E, p) be an extension of A by B, we
call it a semi-split extension if there exists a completely positive contraction γ : A → E
such that p ◦ γ = idA.

Since B is stable, there exists a map ΘB implementing the isomorphism
M2(B) ∼= B. In addition, ΘB induces a ∗-isomorphism from M2(Q(B)) to
Q(B), denoted by Θ̃B (see [33, Definition 1.3.8, Lemma 1.3.9]). For simplicity,
we will omit the map ΘB and identify M2(B) with B in the rest of the chapter.
This allows us to define an addition on E(A, B):

τ1 + τ2 =

[
τ1 0
0 τ2

]
, ∀τ1, τ2 ∈ E(A, B).

Let D(A, B) denote the set of degenerate Busby invariants τ : A → Q(B).
We write D(A, B) = D(A, B)/ ≈u as the collection of equivalence classes of
degenerate Busby invariants. The extension semigroup is defined as follows.

Definition 2.13 (The extension semigroup). Let A and B be separable C∗-algebras
with B stable. Then the extension semigroup Ext(A, B) is defined as

E(A, B)/D(A, B).

Let τ be a Busby invariant, we denote the representative of τ by [τ].

Note that the definition suggests that the split extensions are zero elements
in Ext(A, B), explaining why we call the Busby invariant of a split extension
degenerate. The invertible elements in Ext(A, B) form a group, called the ex-
tension group.

Definition 2.14 (The extension group). Let A and B be separable C∗-algebras with
B being stable. Then the extension group Ext−1(A, B) is an abelian group consisting
of invertible elements in Ext(A, B).

To ensure that the extension group Ext−1(A, B) can be nontrivial for some
separable C∗-algebras A and stable separable C∗-algebra B, we have to find a
more concrete description of invertible elements in Ext(A, B).
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2.2 Extensions and K-homology 11

Theorem 2.15 ([33, Theorem 3.2.9]). Assume A and B are separable C∗-algebras
with B stable. Let τ : A → Q(B) be a Busby invariant. The following conditions are
equivalent:

(1) [τ] is invertible in Ext(A, B).

(2) τ corresponds to a semi-split extension.

Since the proof is technical and requires a nontrivial fact from the theory of
completely positive linear maps between C∗-algebras, we omit the proof and
recommend interested readers to read [33, Theorem 3.2.9].

We now introduce another description of the extension group. This ap-
proach allows us to relate the extension group Ext−1(A, B) to Kasparov’s KK-
group KK1(A, B), which will be introduced in Chapter 3.

Definition 2.16 (KK1-cycle). Let A and B be separable C∗-algebras with B being
stable. A KK1-cycle for A and B is a pair (v, λ) where

v ∈ M(B), λ ∈ Hom(A,M(B)),

such that

[v, λ(a)], (v∗ − v)λ(a), (v2 − v)λ(a) ∈ B, ∀a ∈ A.

If [v, λ(a)] = (v∗ − v)λ(a) = (v2 − v)λ(a) = 0, we call (v, λ) a degenerate KK1-
cycle. The set of KK1-cycles for A and B is denoted by E1(A, B), and the set of degen-
erate KK1-cycles for A and B is denoted by D1(A, B).

Definition 2.17 (Homotopy). Let A and B be separable C∗-algebras with B being
stable. We say (v0, λ0), (v1, λ1) ∈ E1(A, B) are homotopic if there exists a norm-
bounded strictly continuous path ωt ∈ M(B) and a path ϕt ∈ Hom(A,M(B)) such
that

(1) (ωt, ϕt) ∈ E1(A, B) for each t ∈ [0, 1], and (ωi, ϕi) = (vi, λi) for i = 0, 1.

(2) t 7→ ϕt(a) is strictly continuous for all a ∈ A, meaning that for every ξ ∈
M(B), the map t 7→ ϕt(a)ξ is norm-continuous.

11



12 K-theory and K-homology

(3) t 7→ [ωt, ϕt(a)], t 7→ (ω∗
t − ωt)ϕt(a), and t 7→ (ω2

t − ωt)ϕt(a) are norm
continuous for all a ∈ A.

If (v0, λ0) is homotopic to (v1, λ1), we write (v0, λ0) ∼h (v1, λ1).

This defines an equivalence relation on E1(A, B). As the name ”degener-
ate” suggests, degenerate KK1-cycles are homotopic to (0, 0) ∈ E1(A, B).

Lemma 2.18. Let A and B be separable C∗-algebras with B being stable. If (v, λ) is
degenerate, then (v, λ) is homotopic to (0, 0).

Definition 2.19. Let A and B be separable C∗-algebras with B being stable. The
kK1(A, B) is defined as E1(A, B)/ ∼h, and the representative of (v, λ) in kK1(A, B)
is denoted by [v, λ].

The following lemma ensures that the kK1(A, B) does admit an abelian
group structure.

Lemma 2.20. Let A and B be separable C∗-algebras with B being stable. Then
kK1(A, B) is an abelian group with zero elements represented by degenerate KK1-
cycles, where addition is defined as follows,

(v1, λ1) + (v2, λ2) = (ΘM(B)(

[
v1 0
0 v2

]
), ΘM(B)(

[
λ1 0
0 λ2

]
)).

We conclude this section by identifying the extension group Ext−1(A, B)
and kK1(A, B). To construct the isomorphism, we need the following Lemma.

Lemma 2.21 ([33, Corollary 3.2.10]). Assume A is a separable C∗-algebra, and let
[τ] ∈ Ext−1(A, B) be represented by a Busby invariant τ : A → Q(B). Then there
exists a ∗-homomorphism λτ : A → M(B) and a fully complemented projection
vτ ∈ M(B) such that τ = π(vτλτ).

For each τ : A → Q(B), the above lemma ensures the existence of a projec-
tion vτ and a ∗-homomorphism λτ : A → M(B). Since vτ is a fully comple-
mented projection, it is not hard to see that

(v2
τ − vτ)λτ(a) = 0 = (v∗τ − vτ)λτ(a), [vτ , λτ(a)] ∈ B, ∀a ∈ A.
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2.2 Extensions and K-homology 13

Let A and B be separable C∗-algebras with B being stable. This construction
provides a map between the extension group Ext−1(A, B) and the kK1(A, B)
group, and this map is an isomorphism by the following theorem.

Theorem 2.22 ([33, Lemma 3.3.8, Theorem 3.3.10]). Let A and B be separable
C∗-algebras with B being stable. There is a group isomorphism e : Ext−1(A, B) →
kK1(A, B) such that e([τ]) = [vτ , λτ ], where vτ ∈ M(B) is a projection, and λτ is a
∗-homomorphism from A to M(B).

In the next section, we will apply this general theory of extensions to exten-
sions of C∗-algebras of continuous functions on compact metric spaces.

2.2.2 Extensions of C(X) by K

Let K be the C∗-algebra of compact operators on ℓ2(N), and let C(X) be the
C∗-algebra of continuous functions on some compact metrizable space X. In
this section, we briefly introduce the theory of extension of C(X) by K, based
on the paper [15].

The following theorem, proven by Brown, Douglas, and Fillmore, is a cor-
nerstone of the theory: it shows that any two split extensions of C(X) by K
are unitarily equivalent and are determined by the topology of X. This result
connects the structure of operator algebras to the underlying topology of X.

Theorem 2.23 ([15, Theorem 1.13]). For any compact metrizable space X, there
exists a split extension, and any two split extensions are unitarily equivalent.

Sketch of proof. The existence follows by evaluating functions in C(X) along a
dense sequence {xn} in X and embedding the image into ℓ∞(N) ⊂ B(ℓ2(N)),
yielding a split extension via the Busby invariant. Uniqueness up to unitary
equivalence is shown by observing that any two such sequences are asymp-
totically equivalent and can be transformed to each other via a permutation
unitary. Finally, using spectral theory and functional calculus, as in [15, The-
orem 1.13], one shows that any split extension arises from such a construc-
tion.
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14 K-theory and K-homology

Remark 2.24. In the original paper [15], the authors use the terminology ”trivial
extension” instead of ”split extension”. This is because in the case of extensions of
C(X) by K, the split extensions play the role of ”zero elements” in the extension group,
as discussed in the previous section.

Theorem 2.23 shows the existence and uniqueness of split extensions of
compact metrizable spaces. In fact, some compact metrizable spaces only ad-
mit split extensions up to unitary equivalence.

Lemma 2.25 ([15, Lemma 1.14]). Let X ⊆ R be a compact space. Then, every
extension of C(X) splits.

Theorem 2.26 ([15, Theorem 1.15]). Let X be a compact, totally disconnected space.
Then, every extension of C(X) splits.

Proof. Since X is totally disconnected, C(X) is generated by projections. There-
fore, C(X) is generated by a non-negative function p ∈ C(X) and X is homeo-
morphic to p(X) ⊆ R. Applying Lemma 2.25 completes the proof.

In [15], the authors proved that Ext(K, C(X)) = Ext(K, C(X))−1 for com-
pact metrizable spaces. In the original proof, the authors used an unpublished
result of A. M. Davie, which claims the existence of a completely positive lift-
ing of a unital positive linear map τ : C(X) → E/J for some C∗-algebra E and
a two-sided closed ideal J ◁ E. However, one year before [15], M. Choi and E.
Effros published a paper containing a more general result.

Theorem 2.27 (Choi–Effros Lifting Theorem, [18, Corollary 3.11]). Suppose A
is a separable, nuclear C∗-algebra, and B is a unital C∗-algebra with a two-sided ideal
J ◁ B. Then each completely positive contraction φ : A → B/J has a completely
positive lifting φ̃ : A → B.

By Theorem 2.27 above, one can prove the following corollary in a simpler
way.

Corollary 2.28 ([15, Theorem 1.23]). For any compact metrizable space X, the semi-
group Ext(K, C(X)) is a group.

14



2.2 Extensions and K-homology 15

Proof. Let 0 → K i−→ E
p−→ C(X) be an extension of C(X) by K. Since C(X)

is a nuclear C∗-algebra, by the Choi–Effros Lifting Theorem, the extension is
semi-split. Indeed, we have C(X) ∼= E/K, and this isomorphism is completely
positive and thus admits a completely positive lifting γ : C(X) → E acting as
the right inverse for p.

At the end of this section, we will realize the index pairing between the
odd K-homology group K1(C(X)) and the odd K-theory group K1(C(X)) by
using the identification of the odd K-homology group and the extension group
Ext(C(X),K).

In Chapter 3, we will introduce Kasparov’s KK-groups, which generalize
K-theory groups and K-homology simultaneously. Furthermore, the Kasparov
product provides a general framework for the index pairing between K-theory
groups and K-homology. For a compact metrizable space X, there is an index
pairing as follows,

⊗C(X) : K1(C(X))× Ext(K, C(X)) → K0(C) ∼= Z.

This is a special case of the Kasparov product, which is, in general, very hard
to compute. The group Ext(K, C(X)) is isomorphic to the odd Kasparov KK-
group KK1(K, C(X)), which will be defined in Chapter 3. We now present a
concrete realization of the Kasparov product, using the extension group, via
the Fredholm index of operators associated with extensions.

Let [τ] ∈ Ext(C(X),K) represented by the Busby invariant

τ ∈ Hom(C(X),Q(ℓ2(N))),

which extends to a unital ∗-homomorphism

τn : C(X)⊗ Mn(C) → Q(ℓ2(N))⊗ Mn(C) ∼= Q(ℓ2(N)⊗ Cn).

Recall that K1(C(X)) is generated by homotopy classes of unitaries in Mn(C(X))

for n ∈ N. Let [ f ] be a nonzero element in K1(C(X)) represented by a unitary

f ∈ Un(C(X)) ⊆ Mn(C(X)) ∼= C(X, Mn(C)) ∼= C(X)⊗ Mn(C),

15



16 K-theory and K-homology

we have that τn ◦ f is an invertible element in Q(ℓ2(N))⊗ Mn(C). Therefore,

by Atkinson’s theorem, there exists a lifting τ̃n ◦ f ∈ B(ℓ2(N)⊗ Cn) of τn ◦ f

such that τ̃n ◦ f is Fredholm. Then, the pairing can be defined as follows:

[ f ]⊗C(X) [τ] = ind(τ̃n ◦ f ) ∈ Z.

Since the Fredholm is independent of the choice of the lifting and invariant
under the homotopy, the index pairing is well-defined. This gives a concrete
realization of the pairing between the K-theory groups and K-homology.
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