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Chapter

Introduction

The field of Noncommutative Geometry, initiated by A. Connes, has deeply in-
fluenced various branches of mathematics and theoretical physics by extend-
ing our geometric and topological intuition to the realm of operator algebras. A
central philosophy in this theory involves translating geometric and topologi-
cal ideas into the operator algebraic language. This provides new insights and
powerful tools to tackle problems where the classical tools of measure theory
and classical topology fail. One of the foundational examples of a construction
connecting geometry and operator algebras is the classical Toeplitz extension.
Recall that an extension of C*-algebras is a short exact sequence of C*-algebras.
The classical Toeplitz extension reads

0K—=T—=C(YH)—o,

where 7 is the classical Toeplitz algebra, defined as the unital C*-algebra gen-
erated by the unilateral shift on /?(IN), K denotes the algebra of compact oper-
ators, and C(S') is the commutative algebra of continuous functions on the unit
circle. Identifying ¢%(IN) with the Hardy space H?(S'), the Toeplitz algebra can
be represented as the unital C*-algebra of Toeplitz operators Ty with continu-
ous symbols f, where T is the compression of the multiplication operator My
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X Introduction

to H?(S!). One can view 7 as an extension of the algebra of continuous func-
tions C(S') by the ideal of compact operators K, with the quotient map send-
ing Ty to its symbol f € C(S!). This setup provides a classical example of the
Atiyah-Singer Index Theorem, known as the Noether-Gohberg—Krein Index
Theorem: if f is a continuously differentiable function that vanishes nowhere
on S, then Ty is a Fredholm operator and its index is equal to the minus of its
winding number:

Ind(Ty) = ~w(f) = - [ J;((.:)) dz

A functional analytic quantity, the index of a Fredholm operator, is realised as
a topological invariant, the winding number. In 1967, Coburn [19] proved that
the Toeplitz algebra 7 is the universal C*-algebra generated by an isometry.
This deep connection between operator algebras and complex function theory
establishes the Toeplitz extension as one of the cornerstones of noncommuta-
tive geometry.

Faced with the beauty and depth of the classical Toeplitz extension, it is
natural to wonder if such an extension can be generalized beyond the classical
Hardy space setting. Inspired by its construction, efforts were made to gener-
alize it in two main directions: commutative and noncommutative.

Arveson’s Toeplitz extension Theorem stands out as a natural generaliza-
tion in the commutative setting. In his influential work [4], Arveson introduced
the Drury—Arveson space Hﬁ as a multivariable analogue of the Hardy space,
and the unital C*-algebra generated by its shift operators fits into the following
extension:

0— K(H3) — U Cc(s¥-1 .

In particular, he proved that the commutators of the shift operators on Hé are
Schatten p-class operators for p > d. Motivated by a series of parallel work on
curvatures of Hilbert modules (in the context of function theory) [SH8] and by
Douglas’ novel approach to index theory of Hilbert modules [21]], the conjec-
ture of essential normality of the submodules and quotient modules of H3, was
eventually formulated. This conjecture, known as the Arveson-Douglas con-
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jecture, has become a central theme in modern function theory and operator
theory.

Around the same time, Pimsner’s work [51], published in 1997, is regarded
as a natural and successful generalization in the noncommutative setting. Given
a C*-correspondence £ over a C*-algebra A, Pimsner introduced the Toeplitz
algebra T¢ and the Cuntz-Pimsner algebra O associated with £. In this set-
ting, the Toeplitz extension becomes as follows:

0K —=>Tg— Og =0,

where Og¢ is not commutative in general. Cuntz—Pimsner algebras O¢ gener-
alize a broad class of dynamical C*-algebras and provide a unified approach
to studying a broad range of C*-algebras arising from dynamical systems and
graph theory.

Later, the concepts of the Toeplitz algebra and the Toeplitz extension have
been extended and reinterpreted in the unifying framework of subproduct sys-
tems, formally introduced by O. Shalit and B. Solel in [58]. Their construc-
tion generalises Arveson’s approach and Pimsner’s approach simultaneously.
Without going into the precise definition, given E a subproduct system of
finite-dimensional Hilbert spaces, Viselter [61]] proved the Toeplitz algebra 7T
of E and the Cuntz-Pimsner algebra Of of E fit into the following exact se-
quence

0K —Tg— O —0.

The study of the K-theoretical aspects of 7 and Of has gained increasing at-
tention in the past five years, cf. [3], [31], and [30].

Primarily motivated by the SU(2)-subproduct systems studied in [3], this
thesis introduces the notion of quadratic subproduct systems and develops
a K-theoretic approach to study their associated C*-algebras. Quadratic sub-
product systems offer a framework that naturally generalizes the subproduct
systems studied in [3], [31]], and [30]. Motivated by the rich theory of quadratic
algebras [52] we explore algebraic operations such as free products, Segre prod-
ucts, and Veronese subalgebras in the more general framework of subproduct
systems. We investigate the properties of the associated C*-algebras and their
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K-theory groups. More precisely, our main contributions are summarized as
follows.

Free product of subproduct systems

Our first contribution concerns the free product of subproduct systems. We
address the first question posed in [3] Section 7.1], which asks about extending
their construction to the case where the SU(2)-representation that induces the
subproduct systems is no longer irreducible. We observe that, for multiplicity-
free SU(2)-representations, the fibers of the associated subproduct system ex-
hibit a free product-like structure akin to that of quadratic algebras. This is the
first concrete and motivating example of a free product of subproduct systems,
a novel construction, to the best of our knowledge, that has not been studied
before.

We therefore introduce the notion of the free product of subproduct sys-
tems, motivated by the example of multiplicity-free SU (2)-representations. We
discuss this construction in the context of quadratic subproduct systems, and
study their Toeplitz algebras and Cuntz—Pimsner algebras. As an application,
we construct explicit KK-equivalences for the Toeplitz algebras of free products
of Temperley-Lieb subproduct systems defined in [31] and [30], which leads
to the computation of K-theory groups of the Toeplitz algebras and Cuntz-
Pimsner algebras. This generalizes the subproduct system associated with
multiplicity-free SU(2)-representations, thus partially answering the question
raised in [3, Section 7.1], that we mentioned at the start of this paragraph.

Our discussion is based on the recent preprint [2].

Segre subproduct systems

Motivated by the classical Segre embedding in algebraic geometry and the no-
tion of the Segre product in quadratic algebras, our second contribution is to
introduce a Segre product operation for subproduct systems. We show that the
class of subproduct systems of finite-dimensional Hilbert spaces is closed un-
der the Segre product, thus forming a monoid. For two generic quadratic sub-
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product systems, whose Hilbert series are explicitly determined by the num-
ber of generators and the number of quadratic relations, we derive an explicit
recursive formula for the dimension sequence of their Segre product, which
further allows us to compute their Hilbert series.

As an application, we investigate the Toeplitz algebra of the Segre product
of two Temperley-Lieb subproduct systems. We study the commutation rela-
tions of the associated Toeplitz operators in detail and compute the K-theory
groups, showing that the resulting Toeplitz algebras provide a novel example
that is not KK-equivalent to C, thus partially answering a problem proposed
by M. Lesch in [40].

Veronese subproduct systems

Our third contribution involves the study of Veronese subproduct systems.
Motivated by classical algebraic geometry in Veronese embedding, we con-
sider Veronese subalgebras, an important construction relating graded alge-
bras to projective geometry. Inspired by this classical operation, we introduce
and investigate the concept of Veronese subproduct systems.

We begin by defining Veronese subproduct systems, mimicking the classi-
cal construction of Veronese subalgebras in algebraic geometry. We focus on
their Hilbert series and algebraic properties, and we show that certain geomet-
ric properties are preserved under this operation. Our results include explicit
characterizations of the C*-algebras associated with some Veronese subprod-
uct systems and computations of their K-theory groups, which leads to a partial
answer to an aforementioned problem proposed by M. Lesch in [40].

Lastly, we prove that taking Veronese submodules preserves the Arveson—
Douglas conjecture in the following sense: if a given quotient module satisfies
the conjecture, then its Veronese submodules give rise to p-essentially normal
Hilbert modules. This provides a novel tool for constructing new examples
of p-essentially normal Hilbert modules that are not covered in the existing
results.
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Outline of the thesis

Part[l|covers some necessary prerequisites from subproduct systems, noncom-
mutative geometry, and the Arveson-Douglas conjecture: Chapter 2| provides
an overview of K-theory and K-homology of C*-algebras. Afterwards, we
present an overview of the theory of Hilbert C*-modules, and Kasparov’s bi-
variate K-theory in Chapter 3] These theories are fundamental tools for the
study of C*-algebras. Chapter [ introduces subproduct systems and their C*-
algebras. As an application, we introduce Matsumoto’s approach to subshifts
of finite type in the framework of subproduct systems and comment on the
relation between the dimension of the fibers and topological entropy. The en-
closing chapter of this part is Chapter [5, where we introduce the theory of
Hilbert modules, review the history of the Arveson-Douglas conjecture, and
discuss its consequences.

In Part[ll, we describe quadratic subproduct systems and the K-theoretical
properties of their C*-algebras. In Chapter 6| we outline the general frame-
work of quadratic algebras, with an emphasis on their Hilbert series and how
they inspire the definition of quadratic subproduct systems, which is intro-
duced afterwards. In particular, we focus on the generic quadratic algebras and
quadratic subproduct systems. Chapter [/|introduces three operations on sub-
product systems: free products, Segre products, and Veronese subalgebras. We
investigate the variation of the Hilbert series under these specific operations
and describe the relationship between Veronese subalgebras and Veronese em-
bedding within the framework of graded algebras, defined as coordinate rings.
This chapter should serve as a preparation for the following chapters.

Chapter|[8|connects the ideas of the previous chapters and combines the al-
gebraic and analytic methods we introduced earlier. This chapter explores the
Toeplitz and Cuntz-Pimsner algebras of quadratic subproduct systems. We
prove that the Toeplitz algebra of the free product of subproduct systems is
isomorphic to the reduced free product of the Toeplitz algebras of subproduct
systems. As an application, we show how this theory works in the context of
the free product of Temperley-Lieb subproduct systems and generalize the re-
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sults in [3] and [31]. In addition, we explore SU, (2)-subproduct systems, show-
ing that multiplicity-free corepresentations give rise to Toeplitz algebras in the
form of reduced free products, while isotypical corepresentations yield generic
quadratic structures of the corresponding subproduct systems. Finally, we de-
fine the Segre product of two quadratic subproduct systems, showing that it
can be described via explicit quadratic relations, and compute the commuta-
tion relations of Toeplitz operators for the Segre product of SU(2)-subproduct
systems.

In the last chapter, Chapter [J} we investigate the K-theory of Toeplitz al-
gebras and Cuntz-Pimsner algebras of subproduct systems. We first compute
the K-theory groups of the Toeplitz algebras of free products of subproduct sys-
tems under certain conditions, applying six-term exact sequences. As an appli-
cation, we obtain explicit formulas for the K-theory groups of Cuntz-Pimsner
algebras of the free product of Temperley-Lieb subproduct systems. Next,
we study a specific example of Segre product, the Segre product of SU(2)-
subproduct systems, and determine the K-theory of the resulting Toeplitz al-
gebra. Finally, we study the behaviour of Veronese subalgebras in the con-
text of Hilbert modules, proving that the Veronese subalgebras of a quotient
module satisfying the Arveson-Douglas conjecture give rise to p-essentially
normal Hilbert modules. This theorem allows us to construct new classes of
p-essentially normal Hilbert modules, which, to the best of our knowledge, are
novel.

Finally, we conclude the thesis with three appendices. Appendix|Alis de-
voted to the discussion of the Segre product operation beyond the quadratic
case, where we prove that the Segre product of subproduct systems of Hilbert
spaces is again a subproduct system. To provide more background for Section
we briefly introduce the theory of compact quantum groups and their
corepresentations in Appendix

Appendix |C] contains the computer programs developed and employed
throughout this project. These codes aided us in checking our mathematical
results and testing our intuitions. In Appendix we include three Magma
programs: Appendix contains some pre-defined functions that are used
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in subsequent Appendices; Appendix consists of codes for constructing
maximal subproduct systems; and Appendix demonstrates the way of
computing Veronese powers of varieties. Appendix documents Macaulay
2 codes for computing the singular points of a variety, which proved more ef-
ficient than Magma in our experiments. Finally, Appendix offers a Python
program that converts the results from Magma into symbolic form, thereby
enhancing readability.
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List of Notations

This section provides an overview of the notations and symbols used through-

out this thesis for easy reference.

Symbol

Description

XOY
ExF
HxcK
AxC

The floor function.

The set of complex numbers.

The set of all real numbers.

The set of all natural numbers containing zero.

The symmetric subproduct system.

The open unit ball in C".

The category of C*-algebras.

The compact operators on a separable Hilbert space.
The p-th Schatten class operators of the Hilbert space H.
The classical Toeplitz algebra.

The Toeplitz algebra of a subproduct system E.

The Cuntz-Pimsner algebra of a subproduct system E.
The algebraic tensor product of Hilbert C*-modules X and Y.
The free product of subproduct systems E and F.

The free product of Hilbert spaces H and K.

The full free product of C*-algebras A and C.
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Symbol Description
AxpC The amalgamated free product of C*-algebras A and C over B.
Ki(A) The K;-group of the C*-algebra A.

KK;(A,B)  The KK;-group of C*-algebras A and B.
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