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R.A.B. van Bree

2 Theory

In the previous chapter the theoretical framework for molecular modelling in
surface science was briefly discussed and somewhat brushed over in light of
summarising the scope and main results of this thesis. However, the complete
framework of theory required to accurately model chemical reactions, even for
“simple” diatomic molecules, is far from trivial and comes with a large set of
interwoven complexities. This chapter will discuss the needed theoretical
framework more comprehensively such that the methods and new results of
Chapters 3-5 may be understood more clearly. Constructing this framework is
done in three major sections. Section 2.1 will discuss the starting point for any
and all a priori chemical models and will discuss the first major approximation
needed to reduce complexity and facilitate the splitting of the framework into
the next two sections. The first of these two sections (Section 2.2) will discuss
the theory needed for describing the electrons in the chemical reaction, and the
second (Section 2.3) will consider the procedures for modelling the atoms
(nuclei) and how to setup the initial conditions for the motion of diatomic
molecules.

2.1 First steps and the Born-Oppenheimer
approximation

Let us begin by taking a major step back: we know that chemically relevant
matter in the universe will consist of three major building blocks: electrons,
protons, and neutrons. Therefore, put simply, chemical interactions, i.e.,
chemistry, will be due to interactions of these three building blocks. Luckily, for
most chemical cases the neutrons and protons are clustered together into the
atomic nucleus and we can simplify this to the interactions of the negatively
charged electrons with the positively charged atomic nuclei. Nevertheless, this
still results in major hurdles we need to overcome. The first problem is that
particles with masses as small as electrons, and sometimes light atomic nuclei
as well, cannot be described as just point charges or particles, but require a
wavefunction description to describe their behaviour accurately. Put differently,
we need quantum mechanics to describe them?°. The wave-like nature of these
particles brings with it uncertainties about the locations and states of the
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particles'®®. Furthermore, any system that contains three or more interacting
particles will become very difficult or even impossible to solve exactly because
the state of one particle will often depend on the states of all other particles but
the states of all the others are dependent on the state of this same one particle,
also referred to as the many-body problem?0:112.164,

In this thesis, we will not dwell further on the “why” of quantum mechanics,
which, although very interesting, goes far beyond the scope of this thesis.
Nevertheless, the rest of this chapter, and arguably this whole thesis, is
concerned more with the “how” of quantum mechanics for our specific
problems.

To start, the quantum mechanical counter-part to the classical second
Newtonian law of motion, i.e., the change of a system with time, for a system of
N non-relativistic particles with zero spin (more about that in Section 2.2.2) is
defined by the time-dependent Schrédinger equation®:
ih%l}’(f’, t) = AY(# 1) (2).
Here H is the (Hermitian) Hamiltonian operator, A = h/2m, h is Planck’s
constant, tis time, 7 is the complete spatial (coordinate) vector of all N particles,
and %is the function describing the complete system in a waveform, hereafter
referred to as the wavefunction. The Hamiltonian (/) operator describes the
energy of the system and will take a different form depending on the particles in
the system?10:112118164165 piffarent observables, like position or momentum, are
described by different operators. Furthermore, the wavefunction (#) needs to
adhere to a few requirements. First, it needs to be single-valued. Second, it
needs to be square-integrable. Third, it and its derivative function need to be
continuous everywhere. Furthermore, probabilities of finding the particles in

particular regions at a certain time t are given by the integral®®:

f WG O 2dF

If the region comprises the entire space this integral is equal to 1. Lastly, note
that |¥(#,t)|? in Equation 2.2 describes the probability density of the system.

(2.2).
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In chemistry, we are mostly interested in the energy of the system. The N particle
Hamiltonian operator for energy can be split into two major components, the
kinetic energy operator (T) and the potential energy operator (V), such that:
H=T+7V (2.3).

If there is no external force or torque on the system, e.g., no electric or magnetic
field is applied, then the potential energy can be described by the Coulomb
interaction between all the particles in the system. Then, the Hamiltonian for the
energy of a chemical system with N particles is described by

N N N
R hZ 5 1 1 qiqj (2.4).
R ]
£ 2m; 2 dmeg |7 —
T v

i=1i%j J

Here m; is the mass of particular particle i, VL-2 is the Laplacian operator for
particle i (when using Cartesian spatial coordinates: the sum of the three
unmixed second-order partial derivatives to the Cartesian coordinates), o is the
electric constant or vacuum permittivity, g; the charge of particle i, and 7; is the
three-dimensional Cartesian position vector of particle i.

It follows from Equation 2.4 that the Hamiltonian in the Schrodinger equation is
not explicitly dependent on time (¢), and thus, if the wavefunction W(#,t) is a
non-degenerate eigenfunction of this Hamiltonian (Eq. 2.4) we can make the
“product ansatz”, i.e., the wavefunction can be taken as a product of two
independent parts:

Y(#t) = YV (T) (2.5).
The time dependency of Equation 2.5 can then be described by
Y(t) = Cetift (2.6).

Equation 2.6 shows us that the time dependence of the energy of a system is
given by a phase-factor in the complex plane This phase-factor can be divided
out to arrive at the time-independent Schrédinger equation, or commonly just
referred to as the Schrédinger equation:

AY(#) = E¥Y(®) (2.7).

More generally, the expectation value for the total energy ({(E)) of a system that
is described by the wavefunction W(#) is described analogous to Eq. 2.2 by

(E) = f‘P*(F)ﬁlp(?)df (2.8).
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Furthermore, Equation 2.8 is often written as

(E) = (w|A|w) (2.9),
using the Bra-Ket or Dirac notation, which is a shorter method of writing the
integral®’, and will henceforth also be used.

We can break down the Hamiltonian even further. That is, we know that the only
relevant interactions in chemical systems are those of the N number of electrons
and M number of atomic nuclei, thus, we can split the Hamiltonian into the
relevant parts such that:

N o 22 Mo .2 2.10
_Z e NP (2:10)
2 2M; !
i=1 I=1
N M
Yy +ZZ
i=11= 14n£0|1‘l i=17] 47Tg°|T‘ =7l
n ZIZJQe
1=1 J>I 4”50|R1 - RJl

Although it may look like we only made Equation 2.4 longer, Equation 2.10 has a
few benefits. First, the mass (m.) and charge (qg.) of electrons are well-defined
constants, such that we only need the mass (M,) and the number of protons (Z))
of the nuclei in the system to proceed. Moreover, note that we limit the number
of calculations by avoiding double-counting the pair interactions (in Equation 2.4
this is compensated by the 1/2). Lastly, the operator is now clearly split into five
different “types” of energy. Namely, the kinetic energies of the electrons and the
nuclei, the attractive force between the negatively charged electrons and
positively charged nuclei, the repulsion between the nuclei, and the repulsion
between electrons. The use of atomic units will make it possible to simplify
Equation 2.10 further. In this unit system, all the natural constants in the
Hamiltonian are taken equal to 1, reducing the writing of constants that would
otherwise be required!®®,

Equations 2.7 and 2.10 show us “what” we have to solve to fully describe the
energy of a chemical system but it does not show us “how”. For instance, in the
Hamiltonian, the Coulomb potential operator is a function of all the distances
between the particles and in quantum mechanics (when solving for the energy
of the system) the particle locations cannot be exactly defined because of their
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delocalised wave-like naturel®!12118164 Additionally, finding a suitable (eigen-)
wavefunction to properly describe a chemical system is not trivial. Lastly, there
is also still the many-body problem that will need to be addressed as well.
However, setting up Equation 2.10 like this will allow us to make the first
important fundamental approximation to start working on the “how” of
guantum mechanics in chemical systems. This is the Born-Oppenheimer

approximation (BOA)*Y,

The BOA means that we decouple the motion of the electrons from the motion
of the nuclei, which is often allowed because the nuclei have a mass of at least
three orders of magnitude higher than the electrons. The handwaving argument
is that the electrons can “instantly” move and adjust to any motion of the nuclei.
For a complete and detailed derivation of the BOA, the reader is referred to Refs.
117.139 However, for this thesis, it is convenient to note that the BOA results in
splitting the quantum mechanical problem into two, such that we have to first
solve the electronic problem:

ﬁElech(?Elec; Rnuc) = EElec(Rnuc)Lp(FElecF Rpuc (2.11),
where the electronic energy (Egc) is still dependent on the parametric position

of the nuclei (R nuc) as the eIectromc Hamlltoman is now (usmg atomic units)

(2.12).
Bec 2 R,l |Tl - le

i=11 1| l i=1 j>i

EEleC(ﬁnuc) has a set of solutions which represent the different electronic
states. Often, and especially in this thesis, we are only interested in the ground-
state solution, i.e., the lowest energy solution. Then, by applying the BOA and
thus completely neglecting the, often small, coupling between the motion of
electrons and nuclei!'? we can, for every value of ﬁnuc, i.e., for every possible
geometry of the nuclei, compute the potential energy for the nuclei with:

VPOt (ﬁnuc) = Eglec (ﬁnuc) + Erepulsion(ﬁnuc) (2.13),
Z,Z
- EElec(Rnuc) + z Z el
=1 J>I |R1 R]l

such that we can now solve the Schrodinger equation for the nuclei separately
using our resulting potential energy surface (PES) for the movement of the nuclei
such that:
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[TNuc + vPot(Rnuc)] cI)(Rnuc) = ETotal CD(Rnuc) (2'14)'
Note, that the use of a PES is also possible without necessarily applying the BOA,
however, in this work, the BOA is the foundation of all PESs used in Chapters 3,4
and 5.

In the end, the consequence of the BOA is that we are now able to separately
solve two “easier” problems instead of one more complicated one. That is, for
every “snapshot” of the positions of the nuclei we need to find the energy of the
resulting electronic structure. The electronic structure energy gives us the
potential energy of the nuclei such that we can calculate either the total energy
of the chemical system or we can use the potential energy to calculate where
and how the nuclei are going to move in time. Even more powerful is that, at
least for this thesis, the atomic nuclei are all considered “heavy”. Therefore, we
even resort to treating the motion of the nuclei with classical mechanics!? (see
Section 2.3). Thus, we only need to proceed with using quantum mechanics to
build the PES for the nuclei, i.e., for a good approximation of the systems
described in this thesis quantum mechanics is only required to solve the
electronic structure of the system. There are known scenarios where the BOA
cannot be applied, i.e., where the coupling between the motion of nuclei and
electrons cannot be neglected®¥516%-171 These scenarios will be discussed in
later chapters when needed.

2.2 The electronic structure

The electronic state has been separated from the rest of the system, specifically
the motion of the nuclei, by applying the BOA and this has simplified our
problem to a certain degree. Yet, the major challenges of “how” still remain,
however, for the this section these challenges are limited to those of the
electrons in the system. This section will discuss the basics of how electronic
structure calculations can be done. It will first show that there is a strategy we
can employ to find the best possible approximation for the electronic
wavefunction (Section 2.2.1). Then, we will briefly discuss the basics of Hartree-
Fock wavefunction-based solutions to the electronic structure(2.2.2), and the
method employed to solve the resulting eigenvalue equations to come to a
converged electronic energy (2.2.3). After this, we will pivot to Density

36



R.A.B. van Bree

Functional Theory (DFT) (2.2.4 and 2.2.5) as an alternative approach to solving
the electronic Schrodinger equation. Thereafter, the discussion will move to the
DFT implementation that is best for periodic systems (2.2.6).

2.2.1 The variational theorem

The exact wavefunctions for systems with at least two atoms and more than one
electron, which interact, are not known, so the only path to solving the
electronic structure problem is by trying a so-called “trial wavefunction”, or
P (7). Fortunately, we can use the Hermitian nature of the Hamiltonian operator
to come up with a strategy for finding the best possible trial wavefunction. By
selecting a trial wavefunction that maintains the required boundary conditions
of the system and adheres to the wavefunction demands of Section 2.1, we can
prove that the expectation value of the energy for that trial wavefunction must
always be larger than or equivalent to the true ground state energy of the
system, i.e.,
(E(@@)) 2 Eo(¥(P) (2.15).

Equation 2.15 is easily proven by expressing the trial wavefunction as a linear
combination, i.e., as a superposition, of all possible eigenfunctions of the
electronic Hamiltonian and calculating the resulting expectation value using
Equation 2.8.

In the end, the result of Equation 2.15 means that we can now formulate a
strategy for optimising our wavefunctions. That is, the lower the expectation
value of the energy of the system, the better the trial wavefunction is as an
approximation of the true wavefunction of that system (as long as the boundary
conditions remain satisfied). Thus, for any trial wavefunction that fulfils the
normalisation constraint and that is dependent on a defined set of parameters
we can optimise that trial wavefunction by minimising the expectation value of
the energy as a function of those trial wavefunction parameters. This procedure
is referred to as the variational method and Eq. 2.15 as the variational

theorem10,112,118,164
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2.2.2 Building a wavefunction

Randomly trying trial wavefunctions and minimising their energy expectation
value may still not be an optimal approach to finding a good trial wavefunction.
It may, however, be a good idea to use solutions for more easily solvable systems
as a basis for our trial wavefunction. It so happens that the Hamiltonian is fully
separatable and the Schrodinger equation is exactly solvable in the context of a
one-electron system that also adheres to the BOA, like an H atom, He" ion, etc.°.
The resulting one-electron wavefunctions, or orbitals, could then serve as a basis
for the much harder multi-electron system. This means that for a system of N
electrons and M nuclei, it may be possible to start constructing a trial
wavefunction by starting with a system of N non-interacting electrons such that
the electrons in the wavefunction can be separated by the product ansatz,
similar to Equation 2.5, i.e., we would describe the wavefunction of the system
with

(2.16).

N
(75 R) = | [ Wi B)
i=1

Equation 2.16 is also referred to as the Hartree product (HP)
wavefunction®112118164168  Tha henefit of the product ansatz of the HP is that
we could then express the Hamiltonian as a sum of N one-electron Hamiltonians,

N
ﬁ = Zﬁl
i=1

Here each one-electron Hamiltonian A; would then satisfy the N one-electron

i.e.,
(2.17).

Schrodinger equations

ha; (75 R) = &0 (745 R) (2.18).
Then, using the HP for the wavefunction, it follows that the Schrodinger equation
for the complete electronic system would be expressed as

N
i=1

In a real system of N electrons there will be a repulsive force between all the

(2.19).

electrons, i.e., the N number of electrons do interact with each other. However,
to maintain the ease of solving N one-electron systems this repulsive force can
be approximated as the electronic repulsion force on any one electron i, as a
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mean field force created by all other N-1I electrons. This mean-field
approximation will then result in the following expression for the one-electron
Hamiltonians:

q B (2.20).
hi=——\7%—z +z I ()| 7,
2 |7'—R1 |rl—r]|

J#i
It can be shown that the HP of Equation 2.16 will still be an eigenfunction of the
one-electron Hamiltonian of Equation 2.20. Still, the mean-field force is
dependent on the one-electron wavefunctions of all other electrons in the
system but each of those one-electron wavefunctions will have to be optimised,
using variational calculus, with their “own” one-electron Hamiltonian which will,
in turn, be dependent on the wavefunctions of all other electrons. It is here that

the infamous many-body problem clearly shows up. Luckily, Hartree!®®

came up
with an iterative solution strategy to this problem that we will discuss more in
Section 2.2.3, making the mean-field approximation a useful approach to deal

with and ‘solve’ electron interactions.

Note that in Equation 2.20 we need to loop over all other electrons to compute
the mean-field repulsion force but this does mean we are systematically double
counting our electron-electron interaction thus, to compute the total energy of
a HP(-like) solution to a many-electron system we would need to apply a
Coulombic interaction correction:

W _ G NIGH)] -
¢ Z EEII 7 — 7] 47 %

i=1 j=#i J

(2.21).

At this point, we need to address a larger elephant in the room. The Hartree
product is still not a great approximation for electrons as it ignores a few key
features of the electron?®, The first key feature is the Pauli exclusion principle!’2
which states that no two electrons can have the same set of quantum numbers.
This feature can be addressed by adding the electronic spin-function into the
wavefunction. Electron spin it not only added to address the Pauli exclusion
principle and the spin of an electron is also observed, but for more details on the
“what, why, and how” of electron spin the reader is referred to Refs, 10112164 For

this thesis, it is important to note that a spin coordinate S; needs to be added to
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the wavefunction such that an N electron (HP-like) wavefunction would take the
form:
N (2.22).
wre=tike (7, 5 B) = [ [ (s R)os)
i=1

Here o (S;) is an eigenfunction of the S, spin operator with only two eigenvalues,
i.e., h/2 (or #1/2 in atomic units), and its two orthonormal eigenfunctions are
often denoted as a and 8.

However, Equation 2.22 is still not a good approximated wavefunction as we also
need to account for two other important physical features of electrons. Namely,
electrons are non-distinguishable, i.e., we cannot tell one apart from the other,
and most importantly, we need to adhere to the fact that electrons are fermions.
Crucially, this means that the total wavefunction needs to be anti-symmetric,
i.e., if we were to exchange two electrons in our wavefunction then the
wavefunction would need to change sign. These demands may seem a little
arbitrary when we describe them here so briefly, and the “why” thereof is a very
interesting piece of physics but entirely out of scope for this work, so here it is
convenient to take these features as given assertions and proceed. For further

clarification, the reader is encouraged to read to Refs. 19173,

To satisfy all three assertions, discussed above, the N-electron wavefunction
needs to take the form of a Slater determinant (SD)8'74 instead of an HP
wavefunction or the spin-modified HP wavefunction of Equation 2.22. An N-
electron SD takes the following form:

Wp (7, °S; R) (2.23),
X1(771;51; ﬁ) X2(71:51iﬁ) XN(771;51;§)
= L X1(772;52;§) XZ(FZISZ;ﬁ) XN(FZJSZ;R))
VN! : : :
Xl(FN: SN;R) XZ(?N:SN;R) XN(FNJSN;R)
in which, analogously to Equation 2.22, each spin-orbital is defined by
xi(7, S5 B) = @i (7 R) o (S) (2.24).

In the Slater determinant every electron i can be contained in each occupied
spin-orbital (x), as we cannot distinguish between electrons. Moreover, the SD
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enforces that the exchange of two electrons (i and j) results in a sign change of
the SD-wavefunction.

Fulfilling the three assertions means that the wavefunction has gotten more
complicated and that the Coulombic electron interaction in the Hamiltonian
requires a compensation component for the possible exchange of electrons, i.e.,
we need to subtract the exchange energy from the Coulomb potential in the
Hamiltonian. The proof for this can be found in Refs. 112118 |n the end, this means
that the N-electron, M-nuclei (BOA, one-electron) Fock operator, as it is called,
will (in atomic units) take a slightly different form to accommodate for this
exchange compensation. This form is

1 5z
iF =~ V¢ —2_,—2
2 |Ti—R1

N
+zjlx1(rp R)I
|rl— J| ]

(2.25).

JE!
J(#uSuR)
,Si R)xi(7, 55 R
Zx,(n.suR) ij(n (5 5iR) oo
];tl |rl - ]|
E(F,-,S,-;ﬁ)

Here f(#,S;R) is the Coulomb operator and K(7,S;R) is the exchange
operator. The Fock operator has the Slater determinant as eigenfunction and the
resulting eigenvalues of this operator are the orbital energies of the system
where the set of N eigenfunction problems that come from this are called the
Hartree-Fock (HF) equations. Similar to the Hartree operator we employ a mean-
field theory to describe the electronic interactions with each other. Lastly, the
total energy of the chemical system is now given by

BYE (7,5 R) (2.26).

N
Xi (ru Si; R)>

= Z<Xi(7i;5iiﬁ)‘— ZM|

i=1

N N/2
+ 3" 3 @G S B R) (5.5 8)
i=1 ':

( FL'SUR)lK(TvSURNX (T' ﬁ)))"'Erepulsion(ﬁ)
j\7j
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We can parametrize the spin-orbitals in the SD-wavefunction (Equation 2.24)
and then optimise them using the variational theorem (Section 2.2.1). The
parametrisation can be done in many different ways but often the orbital
wavefunctions in a molecular system are set up as a linear combination of all
contributing atom-centred wavefunctions (or atomic orbitals (AO)).

K
xi(7 S B) = z Ciei®x (7 Sis R)
3

The atom-centred wavefunctions (¢y), are themselves normally constructed via

(2.27).

another linear combination of basis functions that represent the shapes of the
atom-centred wavefunctions (or AOs). These basis functions come in collections
that are called basis sets, and these sets can be based on so-called Gaussian-
type orbitals''#17>, Slater-type orbitals!*?!’®, Numerical orbitals?'#%%177 or in
principle any other type that will fulfil the required constraints. The choice of
basis set will influence the results of the electronic structure calculations, where
the general trend is that a larger, more complex, and more complete basis set
will improve the results, but increase the demands of the electronic structure
calculation. In the following chapters, a very different type of basis sets are used.
These types are constructed with an entirely different philosophy and method in
mind and these will be discussed in more detail in Sections 2.2.4, 2.2.5, and
2.2.6.

2.2.3 Solving the electronic structure

At this point, we have a description of the multi-electron wavefunction and a
strategy to optimise that wavefunction via the variational method. Still, we need
to find a way to solve the “chicken-egg problem”, or many-body problem, that
arose from applying the mean-field theory in the one-electron operator, the Fock
operator, and the HF equations.

To start, an initial guess of the wavefunction can be made for any initial
configuration or geometry of the system, i.e., nuclei positions. This guessed
wavefunction is used to construct the mean-field theory (Hartree-Fock or any
other) many-body operator. This initial operator, with the initial guess of the
wavefunction, is used to optimise the wavefunction it works on, i.e., the
wavefunction is minimised with respect to the total energy via the variational
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theorem. Then, the optimised wavefunction of this new iteration is used to
construct a new mean-field operator, which in turn is used to re-optimise the
wavefunction for the next iteration. Then the resulting energy of the new
wavefunction is tested against the energy of the previous iteration. If these
energies are the same (within a certain threshold) then the calculation is
considered converged and is stopped. Otherwise, the procedure is repeated, i.e.
the new wavefunction will make a new operator, will make a new wavefunction,
and is tested against the previous energy again. The process is continued until
the energy is self-consistent, i.e., the value essentially does not change anymore
between iterations. This is why this method is referred to as the self-consistent-
field (SCF) method. A simplified flowchart of a SCF procedure is shown in Figure
2.1.

The procedure as described above, and shown in Figure 2.1, is in reality
somewhat more complicated and especially optimising the parameters in the
wavefunction is far from trivial. For a more complete understanding, the reader
is encouraged to read Refs. 112118 However, for our purposes, we now have a
complete picture of how to “solve” the electronic structure for multi-electron
atoms and molecules. A good example of this method in practice for the “simple”
H, molecule was published already in 1971 by Dewar et al. 1%,

Lastly, we must note that the HF method does not yield the exact electronic
energy of a molecular system. We have thus far neglected the tendency of
electrons to correlate, that is, the movement of electrons is also influenced by
the presence and movement of other electrons individually and not by their
average overall momentum?'2, This, in turn, influences the total energy of the
system. This is why correlation energy is usually defined as the residual energy
difference between the converged Hartree-Fock energy and the exact energy of
the system. The correlation energy can be included via methods like full
configuration interaction!'#1?°, but these are computationally very demanding
and out-of-scope for this work. Moreover, in Sections 2.2.4. and 2.2.5. a different
method of including some correlation effects within a different electronic
structure method is discussed.
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Take any geometry Guess initial wavefunction

’

58"

Construct, Hartree-Fock,
operator

ﬁHFU) (LPSD(F: §’ ﬁ)“_l))

Use the new wavefunction

== )] Optimise wavefunction
’ ) (variational theorem)

L2 =a®
9E ¢ (7, S, R) o
el)

Is energy converged?

O]

Epat(?,:?, R)

. : - (I-1)
Epot (7. S, R)

Done
(calculate other properties)

Figure 2.1: Simplified flow chart of the self-consistent-field method in optimising a wavefunction
in the HF-theory (or other Wavefunction) method.
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2.2.4 Density functional theory, Hohenberg-Kohn and Kohn-
Sham

An observant reader may have picked up on two crucial points in the previous
section. First, the complexity of the wavefunction is, thus far, very dependent on
the number of electrons, such that a larger chemical system with many electrons
quickly becomes unmanageable. Second, the basis functions for the
wavefunction are all atom-centred. This makes our solution inherently
atomically localised. This is a logical approach for molecules because the
electrons are only spread over certain orbitals, and even though overlapping
orbitals can share electrons over many orbitals, the electron density tends to be
high only in the vicinity of the atomic nuclei. However, as discussed in Chapter
1, there are two different phases to molecule-surface systems, the first is the
molecule in the gas-phase and the second is the metal solid. The electronic
structure of a metal is very delocalised, such that electrons are, in principle,
spread over the entire metal, forming electronic bands of electrons rather than
isolated electronic levels. It is not hard to imagine that using an atom-centred
wavefunction method to describe such an electronic structure may not be ideal.
Furthermore, the computational scaling in HF methods is not very favourable.
Computational scaling is the change in the amount of time the calculation would
take if the size of the chemical system is changed. In the case of “cheap”
wavefunction methods like HF, the scaling nevertheless tends to be O(N¥,
meaning a system that has two times the number of electrons will need sixteen
times more time to be solved. However, most wavefunction methods that go
beyond HF, i.e., which try to improve the electronic correlation, tend to scale
with O(N?) or even higher. Thus, a different approach may be needed.

It may, therefore, be fruitful to use an approach where we can describe the
electronic energy with a concept that makes the calculations scale better and
could possibly even amount to an observable. The concept that fits these criteria
is the electronic density (see also Section 1.2.4). Such a different approach to
calculating electronic structures comes in the form of density functional theory
(DFT).
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The density of the electrons of a system can be directly related to the total
number of electrons in that system (N):

N = fp(r)dr

where this integral goes over all space, and p is the electron density as a function

(2.28),

of r, which is a three-dimensional position vector, indicated with boldface to
avoid confusion with 7 (which is the complete position vector of all electrons in
the system). The use of electron density is intuitive, for instance, the maxima in
density could indicate the likely locations of electrons. Another benefit would be
that any solution would no longer be dependent on 4N dimensions, that is the
three spatial and spin dimensions, but instead, it would depend on just the three
spatial coordinates of the electron density. This may, in turn, help to reduce both
the complexity and the scaling of electronic structure methods.

These possibilities seem potentially useful though a mapping to an electron
density would need to be proven to be possible. For that, we have to turn to the
work of Hohenberg and Kohn!%, They were able to prove that the electron
ground state density must determine the so-called “external potential”, thus
determine the Hamiltonian and thus determine the energy of the system. Here
the external potential is defined as:

M Z (2.29),
Vexe (1) = 2—_)
I=1 |T - R1|

That is, the external potential is defined as the attractive Coulomb force that the
nuclei apply to the electron (density). The rest of the Hamiltonian, as seen in
Equation 2.12, is governed by the number of electrons in the system (where the
electrons are undistinguishable), and this is already directly related to the
density via Equation 2.28. Thus, it only needs to be proven that the external
potential is directly determined by the electron density.

This proof is done via reductio ad absurdum, i.e., the contrary results in
impossibilities, and the proof is rather straightforward. Conversely, two different
external potentials vex® and ve’, both describe the same (nondegenerate)
ground state electron density po. With both external potentials, different
Hamiltonians, H* and H?, will be associated, which both would have their
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associated eigenfunctions and eigenvalues W2, Wob, E%, and Eo°. Then the
variational theorem(2.2.1) would say that:

E§ < (¥5|H|¥5) (2.30).

This can be rewritten to:
E§ <(¥g|H* + A — H°|¥5) (2.31)
E§ < (WP|vlee — vl |¥E) + EC (2.32)

The external potential operators are one-electron operators thus Eq. 2.32 can be
expressed as a function of the ground state density po

B8 < [ [08 () = B lpo () + B}
Then, this same procedure can be done for the ground state energy of b such
that:

(2.33)

2.34
B < [[08r) = v 0o r)dr + E§ (2:34)
Now adding the two inequalities of Egs. 2.33 and 2.34 will result in:
2.35
BS + B < [ 08 (r) = vhalpo () + B} (2:35)
+ [ er) = v 0)por)dr + B
E2 Eb a _ b b _ a0 d (2-36)
o tEg < [vext (1) = Vext (1) + ey (Y) — Veye (r)]Po (rdr
+E2 + E¢
Which will result in the following impossibility:
E& + E <El + E¢ (2.37)

Thus, a non-degenerate ground state density must determine a uniquely
associated external potential, Hamiltonian and energy(Hohenberg-Kohn I, HK I)
121" Further work!>'® has even shown HK | also holds for exited electron
densities. Nevertheless, for this thesis, the ground state is already sufficient.

To effectively utilise HK | to describe electronic energies we need to prove that
the variational theorem also holds for the use of an electron density, as we
otherwise have no way of optimising the density function. Luckily Hohenberg
and Kohn have produced a second theorem that proves just that, i.e., the
electron density that minimises the total energy is the exact ground state
density!2%. Proving this is rather trivial keeping in mind that any density of a non-
degenerate ground state will correspond to a unique wavefunction and energy
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(HK 1) so that for a trial density (5) and corresponding trial wavefunction (P[p])
we have:

E[p] = (m[ﬁ]lﬁo[ﬁ”qj[ﬁ]) = (Lpo[Po]mo[Po”qjo [Po]) = Eg[po] (2.38)

E[p] = Eo[po] (2.39)

As such we can optimise the density of our system by minimising the total energy
of the system (Hohenberg-Kohn II, HK Il). There is a small caveat that changing
certain approximations in the Hamiltonian (see Section 2.2.5.) may break with
the variational theorem, but that is due to the introduction approximations in
the Hamiltonian, and not because the variational theorem does not hold**2.

A major difficulty remains though. Yes, a mapping from density to Hamiltonian
to wavefunction and energy must exist (HK 1), however, there is no basis for what
such a mapping would be as the proof for the mapping is done via reductio ad
absurdum. So even though it is possible to map the energy to the density, we are
still not able to do so exactly. Nevertheless, there are clever tricks that can be
used to achieve very good approximations with such mappings, and it was the
trick of Kohn and Sham'? that resulted in the most widely used variant of DFT.

Kohn-Sham (KS) DFT is constructed by initially taking a fictitious system of N non-
interacting electrons that has the same ground-state electronic density as the
real system, where the N electrons do interact. Kohn and Sham proposed that
this is possible because electron density mapping is defined by the number of
electrons and the external potential (HK I), which are taken the same for both
systems. Here KS used that the exact eigenvalue problems for N non-interacting
electrons can be computed exactly (see also 2.2.2). In reality, electrons do
interact with each other but this can, in the Kohn-Sham framework, be corrected
by adding a correction term to the total energy of the non-interacting electrons.
As such, the total energy is no more than the sum of the energy of the non-
interacting electrons and the addition of a correction such that the energy
functional (i.e., a function that is a function of another function) will be

112,118,122,

described in full by

E[p(r)] = Tnon—i[p(r)] + Vnuc [p(r)] + VCee [p(T)] (2-40)-
+ ATi [p(r)] + AVQee [p(r)]
Exclp()]
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Here the terms are, in order of appearance: the non-interacting electronic
kinetic energy, the nuclear-electron attractive Coulombic force, i.e., the external
potential; the classical electron-electron Coulomb interaction; the correction on
the kinetic energy term including electronic correlation; and the quantum
correction to the electronic interaction including the electron exchange energy.
The last two terms are generally combined into one collection of unknowns that
is referred to as the exchange-correlation functional (E,.[p(r)])**2. This term
may also include other corrections to the non-interacting electron system, like a

self-interaction correction®!?.

For the non-interacting electrons, the exact eigenfunction is the Slater
determinant (see Equation 2.23) but now built up using the one-electron KS
orbitals. The corresponding electron density is
N (2.41).
p() = ) (uilxi)
i=1

Here y; are the KS-orbitals, which are similar, but not equal, to the AOs used in
Equation 2.23. We can now represent the energy functional in atomic units as'!%

N " e (2.42).
Elp(r)] = Z (<Xi|_zvlz |Xi>) - <Xi Y (W) ‘Xi

' i (fee| 35 P2 Lrar ) + B o

=1
r,—1r|

This will mean it is now possible to start solving, and also optimising, a set of N
number of one-electron non-interacting eigenvalue equations of the form:

ELKSXi = &iXi (2.43),
where the one-electron Kohn Sham Hamiltonian is given by:
M
N 1 ZI p(rl) (244),
) (e Ry e R
20T L\ =R ) =
and in which
SExc[p(1)] (2.45)

Vee [.0 (T)] = 5p )

is the functional derivative of the exchange-correlation energy as presented in
2.42112,
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From this point on, solving the known parts of the KS equations is very similar to
the wavefunction approach as discussed in 2.2.2 and 2.2.3, and from Equation
2.42 it is obvious that yet another self-consistent field-based approach will be
required. To reiterate, the Hamiltonian determines the density but requires a
density to be determined first. Thus, one has to: guess, improve, and reuse the
density until it no longer changes. Solving the unknown exchange-correlation
part (Vi) of the energy functional (hereafter referred to as density functional, or
DF) is, however, still far from trivial. Luckily, in the KS approach, the unknowns
are reduced to a smaller fraction of the total value and any error made there will
influence the final result less than trying to come up with one whole new answer
for a density energy mapping. The majority of research and studies done to
improve the quality of DFT are all to try and find a better approximation to this
Vi.. Some of the more common approaches will be discussed in the next section.

2.2.5 Exchange-correlation functional approximations

The exact form of the Ex is not known, but it stands to reason that this term will,
just like the one-electron potential, depend on the electron density. Thus, Ey is
often expressed as an integral over a product of the density and the so-called
“energy-density” &x(this is not required but is a common notational method)*.
In this frame, E is described by:

Erelp(r)] = f P exelp(m)]dr

Here the energy density functional is often split up into contributions from
112,118.

(2.46).

exchange and correlation
Exclp(M)] = ex[p(M)] + ec[p(1)] (2.47).
However, again this is not always the case!'?, and it should be reiterated that the
Ex. DF is meant to compensate for more than just exchange and correlation
energy, for instance for an error due to electrons interacting with themselves
(which occurs in the construction of the density). Additionally, splitting up the
exchange-correlation functional also does not mean that the actual
contributions are necessarily properly split, as the exact form of the Ex. DF is not

known112,118,173

Nevertheless, there now is a starting point for approximating the E,. DF. The
simplest and most logical starting point is to let the exchange-correlation be

50



R.A.B. van Bree

dependent on a single value of the electron density at a given location, i.e., to
let there be a local dependency on the density in Egs. 2.46 and 2.47. This is
referred to as the local density approximation (LDA). An example of local density

exchange energy is the Slater exchange based on the uniform electron
gas112,178,179.

94 (3 1 (2.48),

3 1
elp] = - = (2)" p(r):

where a can take either the value 1 or 2/3%8%81 depending on the underlying
derivation (see Ref. % for more information). Setting up the correlation
contribution has generally always been a far more arduous task, and quickly goes
beyond the scope of this work and the reader is referred to the works of 1827187
for detailed derivations on that end.

It is at this time a good moment to discuss that the LDA can also work for

calculations where the electrons have to be spin polarised, i.e., when there are

unpaired electrons in the mix. The electron spin density is simply given by the

normalised spin polarization factor!:

() = prm —pf™ _p*r) —pf () (2.49),
p*(r) + pP(r) p(r)

where p? is the a-spin density and p? is the 8-spin density. At this point, the

exchange-correlation energy density can be expressed as a function of the total
electron density and the spin polarisation such that!?:

Exclp(r), ((T)] (2.50),
= exclp(M] + (e2¢ " [p()]
4 4
) (1+¢(@)3+(1—-4(r))3—2
2(2% -1
Spin

where €. [p(r)] is the energy density functional based on the uniform

— &xclp ()]

electron gas of electrons with all uniform spin, and &,.[p(r)] is the regular
ground state energy density. Equations 2.49 and 2.50 show that the addition of
spin into DFT will make the formulation more complicated. Because it requires
the evaluation of the uniform spin exchange-correlation energy functional it also
slightly increased computational demands, though not by much. For the sake of
clarity in formulation, the spin density terms will from now on not be discussed
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in detail, but it is good to have noted that using spin densities is possible and will
be used in Chapters 3-5.

The LDAis a local approximation to Ex.. When locally approximating any function,
a Taylor expansion may quickly come to mind. As such, a common next step in
improving the exchange-correlation energy is to go beyond the dependence on
the local value of the density and to also include a dependence on the local first-
order derivative, i.e., gradient, of the density. This brings us to the generalised
gradient approximation (GGA) to the exchange-correlation DF. Ei. can now be
expressed as:

Bxelp(), V()] = [ pr)f o), Vp(rdr (251)
where the function f can take some different forms but is often!? set as:
(2.52).
\Y
Flo (), V()] = 24 [p(r)] + Ao | ]
p(r)3

However, it should be noted that the precise implementations of GGA DFs vary
greatly. It is not uncommon for semi-empirical parameters to be introduced into
the exchange-correlation DF to improve the description for certain systems. For
an example of a GGA DF without the use of such parameters, the reader is
strongly encouraged to read the work behind the PW91 and/or PBE** DF,
which are some of the most commonly applied DFs, and the PBE DF is also used
further in Chapters 3-5. Going even beyond the GGA, it is possible to take the
Taylor expansion further, with limited returns, to start using the second-order
derivative of the density as well. These types of DFs are then referred to as meta-
GGA (MmGGA) DFs'?2, These types of DFs are moving beyond the scope of this
thesis.

A quite different approach to improving the exchange-correlation description is
to use the fact that we have a potentially more precise description for the
exchange energy based on the HF wavefunction method (Equation 2.25, Section
2.2.2). Since the density in KS-DFT is often based on Slater-like eigenfunctions,
computing the exact exchange using the E(Fi,Si; ﬁ) operator (see Eqg. 2.25 and
2.26) is possible. Mixing this associated exact exchange with the semi-local
exchange-correlation energy amounts to the use of a so-called hybrid functional.
Note that this will increase computational demands moving from the worst-case
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DFT scenario of O(N3)112118 to a worst-case of O(N*) scaling!!?118, Additionally,
the exchange-correlation energy is not just a correction for the exchange energy
and cannot be cleanly split into two separate contributions!'?. Thus, replacing
the entire semi-local exchange contribution with exact exchange does not
necessarily yield any improvement over GGA DFs. As such, the exact exchange is
mixed into the (usually GGA) DFT exchange with a certain fraction(a)'%:

ERYPrid — gpHF 4 (1 — @)EPFT 4 EPFT (2.53).
One of the most straightforward global hybrid DFs, which uses PBE as the GGA
backbone, is the PBEO DF where « is set to a value of 1/4%213 Finally, it should
be noted that the global description of exact exchange is not accurate for larger-
range Coulombic systems like metals where the interaction between electrons
needs to be screened at long range®®®1% To accommodate this range-
separated, or screened exchange, hybrids have been developed where the exact
exchange energy is only active at short range and is fully replaced with semi-local

exchange at long range, see also Chapters 3, 4 and 5.

Analogously to hybrid DFs, it is also possible to replace the correlation
contribution with better approximations of non-local correlation energies.
Specific non-local correlation functionals are capable of approximately
describing the long-range like Van der Waals (VdW) dispersion interaction2,
However, such improvements again come with additional computational
demands. Furthermore, it is possible to combine the two concepts of exact
exchange and long-range correlation interaction into a single DF. In Chapters 4
and 5 we have done exactly that with a screened hybrid DF, HSE?*6189190 gnd the
VdW-DF2 correlation DF831% These two chapters go into more detail about the
implementation and the DF so there is no need to repeat that here, though it
should be noted that the combination of these different DFs is not necessarily
internally consistent. Only recently, work has been done to try and build an
internally consistent combination of exact exchange and non-local correlation,
and an example of such a DF is VdW-DF-ahcx*4,
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2.2.6 Periodic boundary conditions, plane waves, Bloch’s
theorem, and pseudopotentials

A proper description of metal surfaces will require a large number of atoms.
Smaller clusters of atoms will inevitably exhibit nanoparticle behaviour. This type
of behaviour, though interesting, is not what we want when describing a
macroscopic metal surface. A clever way to resolve this is by imposing so-called
periodic boundary conditions (PBC). In a PBC environment, a given unit cell is
constructed and images of that unit cell are repeated infinite times in two or all
three dimensions. This means that only the atoms in the cell need to be
simulated but the images of the cell do ensure that atoms on the edges of the
cell still “feel” like they are part of an infinite ensemble!!?. In mathematical
terms, PBC in three dimensions means that for any potential:
V) = V(X + 4) (2.54)

A =n,d; + nydy + nsds (2.55),
where X are Cartesian coordinates within the cell, the n;integers and the a; cell-
vectors in 3D Cartesian space with a given orthogonal component spanning the
repeating unit cell (the three lattice vectors do not need to be fully orthogonal).
A downside is that the atoms in the cell interact with the periodic images of
themselves, which if the cell is not large enough may cause artefacts in the
results!®?,

Most solid compounds, except for amorphous solids, can inherently be
described by a given repeating cell. For simple non-alloy metals such unit cells
can be constructed from a single atom placed inside a box spanned by three
distinctly sized vectors spanning three-dimensional space. For a (metal) surface,
this becomes more difficult as the periodicity will be broken in at least one
direction. The interface between the bulk metal and the vacuum creates a
discontinuity that needs to be dealt with. The simplest solution is to create PBC
only in the direction of the surface-plane (See Figure 2.2A for an FCC(111)
surface example, the surface-plane is indicated by the U, V-plane), excluding the
surface normal (i.e., the Z-axis). This does require the resulting surface “slab” to
be thick enough to properly simulate the underlying metal bulk, and it also
means that the slab has two surfaces, one on the top side (higher Z) and one on
the bottom side of the slab. If an electronic structure code will allow for this,

54



R.A.B. van Bree

then this type of setup will work well enough for atomic orbital-based
approaches. If the code does not allow for axis selective PBC (like two-
dimensional PBC) then the other option is to include a large vacuum along the
Z-axis such that the slab cannot interact, or hardly interacts with its periodic
images. An example of such a setup can be found in Figure 2.2B. For this thesis,
a computer program was used that imposed PBC in all three dimensions, for
reasons that will be discussed below. Thus, in this thesis, all metal slabs will be
separated with a minimum of 10 A vacuum. Further slab-specific details can be
found in the method sections of the relevant chapters.

A

&V
v

v
Figure 2.2: Schematic description of a periodic metal FCC(111) surface. Purple shades indicate the
original atoms in the repeating cell, grey depicts periodic images and red arrows indicate the
relevant axes where the red dashed lines close the repeating unit, red dots show the periodic
images of the cell translated to different locations; A: periodicity in the surface (U\V-) plane; B:
periodicity along the surface normal (Z axis) for a 4 layer surface slab, including the layer of vacuum
in-between surfaces.

PBC allow for an elegant trick to ease the description of the electrons in a
periodic potential (like that of metals) via Bloch’s theorem!®!. This theorem
states that any eigenfunction of the Schrédinger equation in a periodic potential
can be expressed as a plane wave such that:

() = g (r)e* (2.56).
In Equation 2.56 (1) is a periodic function that obeys the periodicity of the

lattice, i.e., the potential as defined in Equation 2.54, and k is a wave vector in
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the first Brillouin zone. The Brillouin zone is the reciprocal version of the periodic
unit cell.

Using Bloch’s theorem the KS-orbitals, as defined in Equations 2.41 and 2.42, and
for a given sample point in k-space, the KS-orbital can be expanded as a Fourier-
series, i.e., plane wave basis set, such that:

Xz () = NZ ¢ (6)ei(E+E)r (2.57).
¢

Here N is the normalisation constant c;x are the expansion coefficients, and G
are reciprocal lattice vectors. For an infinite sampling of the reciprocal lattice this
series is exact, however, computationally the series is limited by a discretisation
over a k-space grid and a “cut-off” energy such that:

1,5 2 (2.58).
5 |k + G| < Ecueops

In practice, this means that the k-point grid and cut-off energy need to be chosen
wisely to ensure proper sampling of the periodic electronic state and thereby
ensure convergence of the total energy. Put simply, more k-points mean more
plane waves and a higher cut-off energy also means more plane waves. More
plane waves mean that the basis set further approaches the limit of the exact
solution, but at a greater computational cost.

The plane wave basis set is quite useful for efficiently describing the periodic
nature of metals and for describing the highly delocalised electrons in the
metals. However, it comes with a certain computational cost. For one, the plane
wave approach means periodicity needs to be ensured in all three dimensions
and that the size of the vacuum separating the slabs (see above) will increase
the periodic unit cell size thus increasing the number of plane waves required.
That is, in a plane-wave electronic structure method we “pay” computational
costs for the size of the vacuum. An additional downside is the large costs
associated with hybrid DFs as solving the exact exchange operator (Eq. 2.25)
using plane waves can be a rather demanding task. Lastly, the description of
larger atoms, that is atoms with many electrons, and thus many nodes in the
wavefunction of valence electrons (because of orthogonality demands) can
quickly require very large basis sets to properly describe the highly oscillatory
behaviour of such wavefunctions.
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The complexity of the basis set for many-electron atoms can be reduced by the
use of pseudopotentials®®!%’, The idea is that the electrons close to the nuclei
of heavy, many-electron atoms, also referred to as the “core-electrons”, are not
chemically relevant. Therefore a more simplistic description of those electrons
and the resulting effective potential can be used to limit the size of the basis set
for the valence electrons. Pseudopotentials additionally allow for the inclusion
of relativistic effects of the core-electrons. Thus far, relativistic effects have not
been discussed in this thesis, and the reader is referred to Ref. *® for more
information. Briefly, electrons close to the nuclei move fast enough that such
effects will start to influence the electronic structure. The use of
pseudopotentials incorporating such effects is a way to approximately include
these effects without altering the electronic structure method.

A principal idea behind pseudopotentials is that the chemically relevant valence
electrons do not interact with the full charge of the nuclei as the electrons in
between the nuclei and the valence electrons shield, or screen, the charges of
the nuclei and the core-electrons. Also, the core-electrons do not affect the
chemistry much. As such we can describe the nuclei and core electrons by one,
different, effective potential with a given ‘core’ radius r.. The nuclei and the core-
electrons within this core radius are no longer distinctly described but are
described by a pseudo-potential. This will simplify the calculation with the
wavefunction describing the valence electrons, as it no longer needs to be made
orthogonal to wavefunctions describing the core-electron wavefunctions. (see
Figure 2.3 for a schematic drawing).
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Figure 2.3: Schematic drawing of a pseudopotentval and how it compares to a real potential.
Pseudo potential and wavefunction in red, real potential and wavefunction in light blue. The
horizontal axis measures the distance of the electron to the nucleus. The shading serves as a guide
to the eye.

To ensure that the chemical state of the atom is not altered pseudopotentials
are usually constrained such that the wavefunction and potential outside of r; is
described the same as the real wavefunction and potential. Furthermore, the
pseudopotentials are often norm-conserving, meaning that the norm of the
pseudo-wavefunction is kept the same as that of its real counterpart, i.e.,

2 2.59).
fllpreallzdr = f|wpseudo| dr ( )

However, to further reduce the basis set size this last constraint is not always
adhered to. The electronic structure calculations in the following chapters have
all used a slightly different approach with the same aim, namely the Projector
Augmented Wave (PAW)'° method to describe the core-electrons. In this
method, a linear transformation is used to transform the rapidly oscillating (KS)-
wavefunction near the core of the atom to a smooth function. This is done in
such a way that the wavefunction is only transformed within the cutoff radius,
similar to other pseudopotentials. However, in the PAW method, there is no
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norm-conserving. Furthermore, all-electron observables can still be computed
with the PAW method by simply reversing the linear transformation. The finer
details of PAW pseudopotentials are outside the scope of this thesis but further

reading is available at Refs, 199200,

2.2.7 From electronic structure to potential energy surface

All of the last six sub-sections put together mean that it is possible to calculate
accurate electronic energies (within the DF approximation) for a given geometry
of the nuclei. This still leaves two possible classes of methods to use this
electronic structure to compute any motion of the nuclei, i.e., to simulate the
chemistry that occurs. The first and maybe the most straightforward class of
methods is ab initio or Born-Oppenheimer molecular dynamics (AIMD/BOMD).
In this approach, the forces on the nuclei are calculated from the electronic
structure “on-the-fly”. Whenever the nuclei are at a given position the electronic
structure is computed, which will, in turn, govern the potential and forces on the
nuclei (see Section 2.3). The AIMD/BOMD approach may at face value seem
logical but it comes with large computational demands when thousands of
molecular trajectories need to be simulated because each trajectory then
requires hundreds of electronic structure calculations in sequence. As such, for
lower dimensional systems, i.e., smaller molecules, there is a more efficient class
of methods.

When dealing with a limited number of degrees of freedom (DOF) it may be
more efficient to pre-compute the electronic structure for a large grid of
molecular geometries as a function of the DOFs of the system and use
interpolative techniques or fitting to form a continuous energy representation.
Put differently, a potential energy surface (PES) is computed in advance, after
which, this PES is used to solve the equations of motion efficiently. Note that
with more degrees of freedom, this approach may quickly become less efficient,
as the initial sampling of geometries to form the PES will grow fast with the
number of degrees of freedom.

In the following chapters, all molecular dynamics (MD) calculations are limited
to that of diatomic molecules whilst the metal surface is kept static. Thus, the
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calculations are limited to six dimensions, see Chapters 3, 4, and 5 for the
relevant breakdown of the DOF. For such a setup the construction of a PES is
most efficient. In this thesis, the discreet electronic structure energies are turned
into a continuous PES description based on the corrugation-reducing procedure
(CRP)*1292 |n the CRP the six-dimensional (6D) molecule-metal potential energy
(V2P) is set up such that:

i R (2.60)
ver(F) = 1 (F) + ) VPG
=1

M (2.61).
VPG = PG + ) ViR (dim)
m=1

Here T are the six coordinates of the molecule, y; the three coordinates of the

atom I (which can be calculated from l:), dim is the distance between the atom /
of the diatomic molecule and a surface atom m, the total number of metal

[P is the molecular six-dimensional

surface atoms taken into account is M,
interpolation function, P°° is the atomic three-dimensional interpolation
function, and V*? is the one-dimensional corrugation reduction function. V*? is
fitted to the atom-surface interaction of a geometry in which atom /is put above
a top surface atom and its distance to the surface atom is varied. This procedure
is set up to ease the interpolation procedure, produce a six-dimensional function
(1°) that contains less corrugation than V% and is, therefore, easier to
interpolate, and thereby limit the number of electronic structure calculations
needed to construct a smooth PES. Put differently it reduces the number of
oscillations that will occur in the interpolation functions when only a limited
amount of electronic structure data is available. This procedure has been
developed previously and in this thesis it is only further applied, thus the

procedure is described in more detail in the following Refs. 201204,

2.3 The nuclear motion and initial conditions

The potential energy surface that results from the electronic structure
calculations as discussed in Section 2.2 can be used directly to influence the
movement of the nuclei via Newtonian physics. It is generally assumed that the
atomic nuclei, with the possible exception of the nuclei of hydrogen or helium,
tend to be too heavy for the quantum mechanical effects associated with their
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motion to be relevant. Moreover, the mass difference between the electrons and
the nuclei is so large that the motion of the nuclei can be approximated by the
motion of the atom as a whole. Therefore, the acceleration of any atom, i.e.,
atomic nucleus, I with atomic mass M, will be given by:

L —v,VElc[R(t)]  d2R,(t (2.62).
&I(R,(t))= IIMI[ ()]z dtIZ()

The acceleration at a given time t can be used to update the positions of the

atoms with a given time step At via a simple Taylor expansion truncated at the
second order in the position:

, . dR;(t) 1 d2R,(t) (2.63).
R,(t + At) = R, (t At + ———= At?
1(t + At) () + dt TS
This can be rewritten as
. L —V,VEec[R(¢ (2.64).
R,(t + AD) = B, (0) + B, (DAt + —— R At?

2M,

Here 7;(t) is the velocity of an atom / and the potential energy determining the
force working on the atom at a given time t is dependent on the positions of all
other atoms in the system at that same time t. There are several methods to
effectively solve the time propagation in nuclear dynamics, the most famous

205 |n this thesis however, a more

perhaps being the velocity-Verlet algorithm
complicated algorithm, the Burlisch—Stoer algorithm?°®, is used to improve
numerical stability as one needs to be careful with selecting the size of the
timestep (At) when the gradient of the PES changes fast with the change of
positions of the atoms, i.e., when the gradient of the acceleration is far away
from zero. The algorithm used for this thesis is discussed in some more depth in
Section 2.3.1 below. After that, Section 2.3.2 will discuss the sampling of the

initial molecular conditions used to start the MD trajectories.

2.3.1 Burlisch—Stoer algorithm

In this thesis, the time propagation for the MD trajectories is all done using the
Burlisch—Stoer algorithm (BuSA)?%. The exact functionality of this algorithm is
out of the scope of this work, and the reader is referred to 2%’ for a detailed
overview. However, below a few key points will be briefly discussed to give an
inkling of the procedure and its benefits. The BuSA works by implementing
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Hamiltonian mechanics for propagating nuclear motion. This means that de
change of position of an atom in time will be governed by:

dR _0H(R,P) (2.65),
dt 9P
while its change of momentum is determined by
dP _ 0H(R,P) (2.66),
dt~ 8R
in which
.. P2 (2.67).
H(RP) = @ +V(R)
T

Here P is the momentum vector of all atoms in the system, I/ is the potential as
defined by the electronic structure and M is the mass of the respective atom.
From 2.65-2.67, it follows that2052%7;

dR _oT(F) P | (2.68),
it gp M '
dP_ 9V(R) (2.69).
dt R

In the end, Hamiltonian mechanics is a reformulation of the previously
mentioned Newtonian mechanics but for the BuSA it is the more useful
formalism. Additionally, it turns one second-order differential equation into two
separate first-order differential equations.

The BuSA uses the above equations to propagate the atoms in time via a
predictor-corrector method. In such an integration method there are always two
distinct steps, the first is to use an arbitrary fit to previous function values and
derivatives to extrapolate the value of the next function value. The second step
will use an interpolative method, often based on the predicted value, to improve
the initial fit approximation.

In the BuSA this procedure is along the following lines?®. First, an initial large
time step S is chosen such that a new position for t 4+ S is extrapolated (updating
velocities where required with Equation 2.68) by subdividing S into N smaller
sub-steps s, and using Richardson extrapolation?® to find
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R(ty) = R(t; + 95) (2.70),

by extrapolating Nmqx times:

R(tisn) = R(ti + ) (2.72).
These results can then be fitted to a rational function to estimate an error of the
Richardson extrapolation. If the error is not yet sufficiently small the number of
substeps Nmqx is increased such that over time:

Sp = 0A Npgy = © (2.72).
The more steps used in the Richardson extrapolation the more accurate it will
be?%®, In practise the extrapolation error will eventually fall below a preset
threshold for a given amount of substeps and the approximation is stopped
there, or a maximum number of iterations (itermex = 9)**° is reached. In this last
scenario, the initial timestep S may have been too large and is halved after which
the process is repeated. If the first scenario is encountered the solution to the
differential equations (Egs. 2.65 and 2.66) will have been found for the next point
in time, and a new step size S for the next step will be chosen based on?%:

1.5S; if:iter <6 (2.73).

new = {0.6iter—°-6 * 1.55; if:iter > 6

This way the step size of the time integration will always adapt to the gradient of
the potential, i.e., if the potential is very steep or, more generally, shows many
oscillations, the timestep will be reduced until accurate results are obtained, or
a minimum size threshold is reached resulting in an error message. If the
potential is, however, shallow and “stable” then the timestep can be increased
in size again. This algorithm allows us to mitigate the risks associated with the
choice of a poor, constant, timestep for the MD.

2.3.2 Initial conditions of diatomic molecules

Equation 2.63 has two parameters that define the starting location and velocity,
or kinetic energy of the atoms, which can be derived from known or chosen
initial conditions of the atoms. All dynamics calculations in this thesis are quasi-
classical trajectory (QCT) calculations?®2!, This means that the molecule is
propagated through time classically but the initial conditions of the molecule are
defined according to the quantisation of the rovibrational states of the molecule.
As a result of this, the initial condition of the molecule will include zero point
energy (ZPE)'3. The translational kinetic energy of the entire molecule is not
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guantised and can be selected according to a few different methods depending
on the type of experiment that is being simulated or the experimental data that
is available, see the respective chapters for more details.

Rovibrational initial conditions, however, are defined via three quantum
numbers v, j, and m;. The population distribution of these states is governed by
model simulations of the diatomic molecules, and the states are populated
according to input settings like rotational and/or vibrational temperatures. The
population of a given v, j state is given by:
2j+1 . EV-J=£B7§;:0,J=0€ Ev}iBfrlZJ:O (2.74).

Z(Tvib; Trot)

Here Z(Tus, Trot) is the partition function for given vibrational and rotational
temperatures, E,; is the energy of a given (v, j) state, and T, and T, are the

Fyj=

vibrational and rotational temperatures. In molecular beam experiments (see
Section 1.2.4) these temperatures are related to the nozzle temperature. Initial
intramolecular distances and momenta are computed from a quasi-classical full-
cycle vibrational simulation of the molecule in the gas-phase. The rotational
state is selected according to the rotational population of the initial angular
momentum which is defined by

L=hJjG+1 (2.75),
and the orientation of L is randomly sampled with the constraint that
m.
COS(BL) — ] (276)

GG+ D
Here &, is the angle between L and the surface normal. The m; states are all
sampled with equal probability as these states are degenerate for homonuclear
diatomic molecules in the absence of a magnetic field. It must be noted that,
depending on the nuclear spin statistics of the diatomic molecule in question,
not all j states are allowed, e.g., even j states are not permitted for 0,'73. Put very
briefly this is due to the combination of the Pauli principle, as also briefly
discussed in Section 2.2.2, and the fact that undistinguishable nuclei may get
interchanged in the rotation of a molecule. That is, nuclei have their own spin,
which depending on the number of protons and neutrons in the nuclei can be
either integral or fractional, i.e., the nucleus will behave like a fermion or a
boson. This means the sign of the wavefunction has to either change sign (like
with electrons, i.e. fermions) or remain the same (for bosons) when two nuclei
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are interchanged by the rotation. This means that certain types of rotational
transitions and rotation states may be less occupied (for Hz) or completely
forbidden (for O,). The details of this are beyond the scope of this thesis and the
reader is referred to Ref. 172 for a more detailed explanation. Chapter 3 includes
a table in Section 3.2.5 with the rovibrational occupations for an O, beam of Ty
=300K and T,,: =9 K. The temperature conditions, i.e., T,i» and T,,t, are consistent
in all three further chapters of this thesis. Further details of the initial conditions
of the molecules in QCT dynamics are given in the respective chapters.

Lastly, although in the initial conditions of the molecule, quantisation is taken
into account in QCT, the classical time propagation means that quantisation may
be lost and energy may leak from states where this would normally not be
allowed. This generally does not happen in the QCT for a diatomic molecule in
isolation but this may occur when the molecule is interacting with other
molecules or with a metal surface.
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