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2 Theory 
In the previous chapter the theoretical framework for molecular modelling in 

surface science was briefly discussed and somewhat brushed over in light of 

summarising the scope and main results of this thesis. However, the complete 

framework of theory required to accurately model chemical reactions, even for 

“simple” diatomic molecules, is far from trivial and comes with a large set of 

interwoven complexities. This chapter will discuss the needed theoretical 

framework more comprehensively such that the methods and new results of 

Chapters 3-5 may be understood more clearly. Constructing this framework is 

done in three major sections. Section 2.1 will discuss the starting point for any 

and all a priori chemical models and will discuss the first major approximation 

needed to reduce complexity and facilitate the splitting of the framework into 

the next two sections. The first of these two sections (Section 2.2) will discuss 

the theory needed for describing the electrons in the chemical reaction, and the 

second (Section 2.3) will consider the procedures for modelling the atoms 

(nuclei) and how to setup the initial conditions for the motion of diatomic 

molecules. 

 

2.1 First steps and the Born-Oppenheimer 

approximation 

Let us begin by taking a major step back: we know that chemically relevant 

matter in the universe will consist of three major building blocks: electrons, 

protons, and neutrons. Therefore,  put simply, chemical interactions, i.e., 

chemistry, will be due to interactions of these three building blocks. Luckily, for 

most chemical cases the neutrons and protons are clustered together into the 

atomic nucleus and we can simplify this to the interactions of the negatively 

charged electrons with the positively charged atomic nuclei. Nevertheless, this 

still results in major hurdles we need to overcome. The first problem is that 

particles with masses as small as electrons, and sometimes light atomic nuclei 

as well, cannot be described as just point charges or particles, but require a 

wavefunction description to describe their behaviour accurately. Put differently, 

we need quantum mechanics to describe them10. The wave-like nature of these 

particles brings with it uncertainties about the locations and states of the 
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particles10,64. Furthermore, any system that contains three or more interacting 

particles will become very difficult or even impossible to solve exactly because 

the state of one particle will often depend on the states of all other particles but 

the states of all the others are dependent on the state of this same one particle, 

also referred to as the many-body problem10,112,164.  

 

In this thesis, we will not dwell further on the “why” of quantum mechanics, 

which, although very interesting, goes far beyond the scope of this thesis. 

Nevertheless, the rest of this chapter, and arguably this whole thesis, is 

concerned more with the “how” of quantum mechanics for our specific 

problems.  

 

To start, the quantum mechanical counter-part to the classical second 

Newtonian law of motion, i.e., the change of a system with time, for a system of 

N non-relativistic particles with zero spin (more about that in Section 2.2.2) is 

defined by the time-dependent Schrödinger equation165: 

 
iℏ
𝜕

𝜕𝑡
Ψ(𝑟, t) = 𝐻̂Ψ(𝑟, t) 

(2.1). 

Here Ĥ is the (Hermitian) Hamiltonian operator, ℏ = ℎ/2𝜋, h is Planck’s 

constant, t is time, 𝑟 is the complete spatial (coordinate) vector of all N particles, 

and Ψ is the function describing the complete system in a waveform, hereafter 

referred to as the wavefunction. The Hamiltonian (Ĥ ) operator describes the 

energy of the system and will take a different form depending on the particles in 

the system10,112,118,164,165. Different observables, like position or momentum, are 

described by different operators. Furthermore, the wavefunction (Ψ ) needs to 

adhere to a few requirements. First, it needs to be single-valued. Second, it 

needs to be square-integrable. Third, it and its derivative function need to be 

continuous everywhere. Furthermore, probabilities of finding the particles in 

particular regions at a certain time t are given by the integral166: 

 
∫|Ψ(𝑟, t)|2𝑑𝑟 

(2.2). 

If the region comprises the entire space this integral is equal to 1. Lastly, note 

that |Ψ(𝑟, t)|2 in Equation 2.2 describes the probability density of the system. 
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In chemistry, we are mostly interested in the energy of the system. The N particle 

Hamiltonian operator for energy can be split into two major components, the 

kinetic energy operator (𝑇̂) and the potential energy operator (𝑉̂), such that:  

 Ĥ = 𝑇̂ + 𝑉̂ (2.3). 

If there is no external force or torque on the system, e.g., no electric or magnetic 

field is applied, then the potential energy can be described by the Coulomb 

interaction between all the particles in the system. Then, the Hamiltonian for the 

energy of a chemical system with N particles is described by 

 
Ĥ = −∑

ℏ2

2𝑚𝑖
∇𝑖
2

𝑁

𝑖=1⏟        
𝑇̂

+
1

2
∑∑

1

4𝜋𝜀0

𝑞𝑖𝑞𝑗

|𝑟𝑖 − 𝑟𝑗|

𝑁

𝑖≠𝑗

𝑁

𝑖=1⏟              
𝑉̂

 
(2.4). 

Here mi is the mass of particular particle i, ∇𝑖
2 is the Laplacian operator for 

particle i (when using Cartesian spatial coordinates: the sum of the three 

unmixed second-order partial derivatives to the Cartesian coordinates), ε0 is the 

electric constant or vacuum permittivity, qi the charge of particle i, and 𝑟𝑖 is the 

three-dimensional Cartesian position vector of particle i.  

 

It follows from Equation 2.4 that the Hamiltonian in the Schrödinger equation is 

not explicitly dependent on time (t ), and thus, if the wavefunction Ψ(𝑟, t) is a 

non-degenerate eigenfunction of this Hamiltonian (Eq. 2.4) we can make the 

“product ansatz”, i.e., the wavefunction can be taken as a product of two 

independent parts: 

 Ψ(𝑟, t) = Ψ(𝑡)Ψ(𝑟) (2.5). 

The time dependency of Equation 2.5 can then be described by 

 Ψ(𝑡) = 𝐶𝑒±𝑖𝐸𝑡 (2.6). 

Equation 2.6 shows us that the time dependence of the energy of a system is 

given by a phase-factor in the complex plane This phase-factor can be divided 

out to arrive at the time-independent Schrödinger equation, or commonly just 

referred to as the Schrödinger equation: 

 𝐻̂Ψ(𝑟) = 𝐸Ψ(𝑟) (2.7). 

 

More generally, the expectation value for the total energy (⟨𝐸⟩) of a system that 

is described by the wavefunction Ψ(𝑟) is described analogous to Eq. 2.2 by 

 
⟨𝐸⟩  = ∫Ψ∗(𝑟)𝐻̂Ψ(𝑟)𝑑𝑟 

(2.8). 
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Furthermore, Equation 2.8 is often written as 

 ⟨𝐸⟩  = ⟨Ψ|𝐻̂|Ψ⟩ (2.9), 

using the Bra-Ket or Dirac notation, which is a shorter method of writing the 

integral167, and will henceforth also be used.  

 

We can break down the Hamiltonian even further. That is, we know that the only 

relevant interactions in chemical systems are those of the N number of electrons 

and M number of atomic nuclei, thus, we can split the Hamiltonian into the 

relevant parts such that: 

 
Ĥ = −∑

ℏ2

2𝑚𝑒
∇𝑖
2

𝑁

𝑖=1

−∑
ℏ2

2𝑀𝐼
∇𝐼
2

𝑀

𝐼=1

 

−∑∑
𝑍𝐼𝑞𝑒

2

4𝜋𝜀0|𝑟𝑖 − 𝑅⃗⃗𝐼|

𝑀

𝐼=1

𝑁

𝑖=1

+∑∑
𝑞𝑒
2

4𝜋𝜀0|𝑟𝑖 − 𝑟𝑗|

𝑁

𝑗>𝑖

𝑁

𝑖=1

+∑∑
𝑍𝐼𝑍𝐽𝑞𝑒

2

4𝜋𝜀0|𝑅⃗⃗𝐼 − 𝑅⃗⃗𝐽|

𝑀

𝐽>𝐼

𝑀

𝐼=1

 

(2.10) 

Although it may look like we only made Equation 2.4 longer, Equation 2.10 has a 

few benefits. First, the mass (me) and charge (qe) of electrons are well-defined 

constants, such that we only need the mass (MI) and the number of protons (ZI) 

of the nuclei in the system to proceed. Moreover, note that we limit the number 

of calculations by avoiding double-counting the pair interactions (in Equation 2.4 

this is compensated by the 1/2). Lastly, the operator is now clearly split into five 

different “types” of energy. Namely, the kinetic energies of the electrons and the 

nuclei, the attractive force between the negatively charged electrons and 

positively charged nuclei, the repulsion between the nuclei, and the repulsion 

between electrons. The use of atomic units will make it possible to simplify 

Equation 2.10 further. In this unit system, all the natural constants in the 

Hamiltonian are taken equal to 1, reducing the writing of constants that would 

otherwise be required168.  

 

Equations 2.7 and 2.10 show us “what” we have to solve to fully describe the 

energy of a chemical system but it does not show us “how”. For instance, in the 

Hamiltonian, the Coulomb potential operator is a function of all the distances 

between the particles and in quantum mechanics (when solving for the energy 

of the system) the particle locations cannot be exactly defined because of their 
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delocalised wave-like nature10,112,118,164. Additionally, finding a suitable (eigen-) 

wavefunction to properly describe a chemical system is not trivial. Lastly, there 

is also still the many-body problem that will need to be addressed as well. 

However, setting up Equation 2.10 like this will allow us to make the first 

important fundamental approximation to start working on the “how” of 

quantum mechanics in chemical systems. This is the Born-Oppenheimer 

approximation (BOA)117.  

 

The BOA means that we decouple the motion of the electrons from the motion 

of the nuclei, which is often allowed because the nuclei have a mass of at least 

three orders of magnitude higher than the electrons. The handwaving argument 

is that the electrons can “instantly” move and adjust to any motion of the nuclei. 

For a complete and detailed derivation of the BOA, the reader is referred to Refs. 
117,119. However, for this thesis, it is convenient to note that the BOA results in 

splitting the quantum mechanical problem into two, such that we have to first 

solve the electronic problem: 

 𝐻̂𝐸𝑙𝑒𝑐Ψ(𝑟𝐸𝑙𝑒𝑐;  𝑅⃗⃗𝑛𝑢𝑐) = 𝐸𝐸𝑙𝑒𝑐(𝑅⃗⃗𝑛𝑢𝑐)Ψ(𝑟𝐸𝑙𝑒𝑐; 𝑅⃗⃗𝑛𝑢𝑐) (2.11), 

where the electronic energy (EElec) is still dependent on the parametric position 

of the nuclei (𝑅⃗⃗𝑛𝑢𝑐) as the electronic Hamiltonian is now (using atomic units) 

 
𝐻̂𝐸𝑙𝑒𝑐 = −∑

1

2
∇𝑖
2

𝑁

𝑖=1

−∑∑
𝑍𝐼

|𝑟𝑖 − 𝑅⃗⃗𝐼|

𝑀

𝐼=1

𝑁

𝑖=1

+∑∑
1

|𝑟𝑖 − 𝑟𝑗|

𝑁

𝑗>𝑖

𝑁

𝑖=1

 
(2.12). 

𝐸𝐸𝑙𝑒𝑐(𝑅⃗⃗𝑛𝑢𝑐) has a set of solutions which represent the different electronic 

states. Often, and especially in this thesis, we are only interested in the ground-

state solution, i.e., the lowest energy solution. Then, by applying the BOA and 

thus completely neglecting the, often small, coupling between the motion of 

electrons and nuclei112 we can, for every value of 𝑅⃗⃗𝑛𝑢𝑐, i.e., for every possible 

geometry of the nuclei, compute the potential energy for the nuclei with: 

 𝑉̂𝑃𝑜𝑡(𝑅⃗⃗𝑛𝑢𝑐) = 𝐸𝐸𝑙𝑒𝑐(𝑅⃗⃗𝑛𝑢𝑐) + 𝐸𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛(𝑅⃗⃗𝑛𝑢𝑐)

= 𝐸𝐸𝑙𝑒𝑐(𝑅⃗⃗𝑛𝑢𝑐) +∑∑
𝑍𝐼𝑍𝐽

|𝑅⃗⃗𝐼 − 𝑅⃗⃗𝐽|

𝑀

𝐽>𝐼

𝑀

𝐼=1

 

(2.13), 

such that we can now solve the Schrödinger equation for the nuclei separately 

using our resulting potential energy surface (PES) for the movement of the nuclei 

such that: 
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 [𝑇̂𝑁𝑢𝑐 + 𝑉̂𝑃𝑜𝑡(𝑅⃗⃗𝑛𝑢𝑐)] Φ(𝑅⃗⃗𝑛𝑢𝑐) = 𝐸𝑇𝑜𝑡𝑎𝑙  Φ(𝑅⃗⃗𝑛𝑢𝑐) (2.14). 

Note, that the use of a PES is also possible without necessarily applying the BOA, 

however, in this work, the BOA is the foundation of all PESs used in Chapters 3,4 

and 5.  

 

In the end, the consequence of the BOA is that we are now able to separately 

solve two “easier” problems instead of one more complicated one. That is, for 

every “snapshot” of the positions of the nuclei we need to find the energy of the 

resulting electronic structure. The electronic structure energy gives us the 

potential energy of the nuclei such that we can calculate either the total energy 

of the chemical system or we can use the potential energy to calculate where 

and how the nuclei are going to move in time. Even more powerful is that, at 

least for this thesis, the atomic nuclei are all considered “heavy”. Therefore, we 

even resort to treating the motion of the nuclei with classical mechanics112 (see 

Section 2.3). Thus, we only need to proceed with using quantum mechanics to 

build the PES for the nuclei, i.e., for a good approximation of the systems 

described in this thesis quantum mechanics is only required to solve the 

electronic structure of the system. There are known scenarios where the BOA 

cannot be applied, i.e., where the coupling between the motion of nuclei and 

electrons cannot be neglected59–61,169–171. These scenarios will be discussed in 

later chapters when needed.  

 

2.2 The electronic structure 

The electronic state has been separated from the rest of the system, specifically 

the motion of the nuclei, by applying the BOA and this has simplified our 

problem to a certain degree. Yet, the major challenges of  “how” still remain, 

however, for the this section these challenges are limited to those of the 

electrons in the system. This section will discuss the basics of how electronic 

structure calculations can be done. It will first show that there is a strategy we 

can employ to find the best possible approximation for the electronic 

wavefunction (Section 2.2.1). Then, we will briefly discuss the basics of Hartree-

Fock wavefunction-based solutions to the electronic structure(2.2.2), and the 

method employed to solve the resulting eigenvalue equations to come to a 

converged electronic energy (2.2.3). After this, we will pivot to Density 
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Functional Theory (DFT) (2.2.4 and 2.2.5) as an alternative approach to solving 

the electronic Schrödinger equation. Thereafter, the discussion will move to the 

DFT implementation that is best for periodic systems (2.2.6).  

 

2.2.1 The variational theorem 

The exact wavefunctions for systems with at least two atoms and more than one 

electron, which interact, are not known, so the only path to solving the 

electronic structure problem is by trying a so-called “trial wavefunction”, or 

Ψ̃(𝑟). Fortunately, we can use the Hermitian nature of the Hamiltonian operator 

to come up with a strategy for finding the best possible trial wavefunction. By 

selecting a trial wavefunction that maintains the required boundary conditions 

of the system and adheres to the wavefunction demands of Section 2.1, we can 

prove that the expectation value of the energy for that trial wavefunction must 

always be larger than or equivalent to the true ground state energy of the 

system, i.e., 

 ⟨𝐸(Ψ̃(𝑟))⟩ ≥ 𝐸0(Ψ(𝑟)) (2.15). 

Equation 2.15 is easily proven by expressing the trial wavefunction as a linear 

combination, i.e., as a superposition, of all possible eigenfunctions of the 

electronic Hamiltonian and calculating the resulting expectation value using 

Equation 2.8. 

 

In the end, the result of Equation 2.15 means that we can now formulate a 

strategy for optimising our wavefunctions. That is, the lower the expectation 

value of the energy of the system, the better the trial wavefunction is as an 

approximation of the true wavefunction of that system (as long as the boundary 

conditions remain satisfied). Thus, for any trial wavefunction that fulfils the 

normalisation constraint and that is dependent on a defined set of parameters 

we can optimise that trial wavefunction by minimising the expectation value of 

the energy as a function of those trial wavefunction parameters. This procedure 

is referred to as the variational method and Eq. 2.15 as the variational 

theorem10,112,118,164.   
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2.2.2 Building a wavefunction 

Randomly trying trial wavefunctions and minimising their energy expectation 

value may still not be an optimal approach to finding a good trial wavefunction. 

It may, however, be a good idea to use solutions for more easily solvable systems 

as a basis for our trial wavefunction. It so happens that the Hamiltonian is fully 

separatable and the Schrödinger equation is exactly solvable in the context of a 

one-electron system that also adheres to the BOA, like an H atom, He+ ion, etc.10. 

The resulting one-electron wavefunctions, or orbitals, could then serve as a basis 

for the much harder multi-electron system. This means that for a system of N 

electrons and M nuclei, it may be possible to start constructing a trial 

wavefunction by starting with a system of N non-interacting electrons such that 

the electrons in the wavefunction can be separated by the product ansatz, 

similar to Equation 2.5, i.e., we would describe the wavefunction of the system 

with 

 
Ψ𝐻𝑃(𝑟; 𝑅⃗⃗) =∏ψ𝑖(𝑟𝑖; 𝑅⃗⃗)

𝑁

𝑖=1

 
(2.16). 

Equation 2.16 is also referred to as the Hartree product (HP) 

wavefunction10,112,118,164,168 . The benefit of the product ansatz of the HP is that 

we could then express the Hamiltonian as a sum of N one-electron Hamiltonians, 

i.e.,  

 
𝐻̂ =∑ℎ̂𝑖

𝑁

𝑖=1

 
(2.17). 

Here each one-electron Hamiltonian ℎ̂𝑖 would then satisfy the N one-electron 

Schrödinger equations 

 ℎ̂𝑖ψ𝑖(𝑟𝑖; 𝑅⃗⃗) = 𝜀𝑖ψ𝑖(𝑟𝑖; 𝑅⃗⃗) (2.18). 

Then, using the HP for the wavefunction, it follows that the Schrödinger equation 

for the complete electronic system would be expressed as 

 
𝐻̂Ψ𝐻𝑃(𝑟; 𝑅⃗⃗) =∑𝜀𝑖

𝑁

𝑖=1

Ψ𝐻𝑃(𝑟; 𝑅⃗⃗) 
(2.19). 

In a real system of N electrons there will be a repulsive force between all the 

electrons, i.e., the N number of electrons do interact with each other. However, 

to maintain the ease of solving N one-electron systems this repulsive force can 

be approximated as the electronic repulsion force on any one electron i, as a 
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mean field force created by all other N-1 electrons. This mean-field 

approximation will then result in the following expression for the one-electron 

Hamiltonians:  

 
ℎ̂𝑖 = −

1

2
∇𝑖
2 −∑

𝑍𝐼

|𝑟𝑖 − 𝑅⃗⃗𝐼|

𝑀

𝐼=1

+∑∫
|ψ𝑗(𝑟𝑗; 𝑅⃗⃗)|

2

|𝑟𝑖 − 𝑟𝑗|
𝑑𝑟𝑗

𝑁

𝑗≠𝑖

 
(2.20). 

It can be shown that the HP of Equation 2.16 will still be an eigenfunction of the 

one-electron Hamiltonian of Equation 2.20. Still, the mean-field force is 

dependent on the one-electron wavefunctions of all other electrons in the 

system but each of those one-electron wavefunctions will have to be optimised, 

using variational calculus, with their “own” one-electron Hamiltonian which will, 

in turn, be dependent on the wavefunctions of all other electrons. It is here that 

the infamous many-body problem clearly shows up. Luckily, Hartree168 came up 

with an iterative solution strategy to this problem that we will discuss more in 

Section 2.2.3, making the mean-field approximation a useful approach to deal 

with and ‘solve’ electron interactions.  

 

Note that in Equation 2.20 we need to loop over all other electrons to compute 

the mean-field repulsion force but this does mean we are systematically double 

counting our electron-electron interaction thus, to compute the total energy of 

a HP(-like) solution to a many-electron system we would need to apply a 

Coulombic interaction correction: 

 
𝐸𝐻𝑃 =∑𝜀𝑖

𝑁

𝑖=1

−
1

2
∑∑∫∫

|ψ𝑖(𝑟𝑖; 𝑅⃗⃗)|
2
|ψ𝑗(𝑟𝑗; 𝑅⃗⃗)|

2

|𝑟𝑖 − 𝑟𝑗|
𝑑𝑟𝑗 𝑑𝑟𝑗

𝑁

𝑗≠𝑖

𝑁

𝑖=1

 
(2.21). 

 

At this point, we need to address a larger elephant in the room. The Hartree 

product is still not a great approximation for electrons as it ignores a few key 

features of the electron10. The first key feature is the Pauli exclusion principle172 

which states that no two electrons can have the same set of quantum numbers. 

This feature can be addressed by adding the electronic spin-function into the 

wavefunction. Electron spin it not only added to address the Pauli exclusion 

principle and the spin of an electron is also observed, but for more details on the 

“what, why, and how” of electron spin the reader is referred to Refs. 10,112,164. For 

this thesis, it is important to note that a spin coordinate Si needs to be added to 



Getting the electrons right for O2-on-metal systems 

 40 

the wavefunction such that an N electron (HP-like) wavefunction would take the 

form: 

 
Ψ𝐻𝑃−𝑙𝑖𝑘𝑒(𝑟,  𝑆⃗⃗⃗; 𝑅⃗⃗) =∏ψ𝑖(𝑟𝑖; 𝑅⃗⃗)𝜎(𝑆𝑖)

𝑁

𝑖=1

 
(2.22). 

Here 𝜎(𝑆𝑖) is an eigenfunction of the 𝑆̂𝑧 spin operator with only two eigenvalues, 

i.e., ±ħ/2 (or ±1/2 in atomic units), and its two orthonormal eigenfunctions are 

often denoted as α and β.   

 

However, Equation 2.22 is still not a good approximated wavefunction as we also 

need to account for two other important physical features of electrons. Namely, 

electrons are non-distinguishable, i.e., we cannot tell one apart from the other, 

and most importantly, we need to adhere to the fact that electrons are fermions. 

Crucially, this means that the total wavefunction needs to be anti-symmetric, 

i.e., if we were to exchange two electrons in our wavefunction then the 

wavefunction would need to change sign. These demands may seem a little 

arbitrary when we describe them here so briefly, and the “why” thereof is a very 

interesting piece of physics but entirely out of scope for this work, so here it is 

convenient to take these features as given assertions and proceed. For further 

clarification, the reader is encouraged to read to Refs. 10,173.   

 

To satisfy all three assertions, discussed above, the N-electron wavefunction 

needs to take the form of a Slater determinant (SD)118,174 instead of an HP 

wavefunction or the spin-modified HP wavefunction of Equation 2.22. An N-

electron SD takes the following form: 

 Ψ𝑆𝐷(𝑟,  𝑆⃗⃗⃗; 𝑅⃗⃗)

=
1

√𝑁! |
|

χ1(𝑟1, 𝑆1; 𝑅⃗⃗) χ2(𝑟1, 𝑆1; 𝑅⃗⃗) ⋯ χ𝑁(𝑟1, 𝑆1; 𝑅⃗⃗)

χ1(𝑟2, 𝑆2; 𝑅⃗⃗) χ2(𝑟2, 𝑆2; 𝑅⃗⃗) ⋯ χ𝑁(𝑟2, 𝑆2; 𝑅⃗⃗)

⋮ ⋮ ⋱ ⋮

χ1(𝑟𝑁, 𝑆𝑁; 𝑅⃗⃗) χ2(𝑟𝑁, 𝑆𝑁; 𝑅⃗⃗) … χ𝑁(𝑟𝑁, 𝑆𝑁; 𝑅⃗⃗)

|
| 

(2.23), 

in which, analogously to Equation 2.22, each spin-orbital is defined by 

 χ𝑖(𝑟𝑖, 𝑆𝑖; 𝑅⃗⃗) = φ𝑖(𝑟𝑖; 𝑅⃗⃗)𝜎(𝑆𝑖) (2.24). 

In the Slater determinant every electron i can be contained in each occupied 

spin-orbital (χ), as we cannot distinguish between electrons. Moreover, the SD 
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enforces that the exchange of two electrons (i and j) results in a sign change of 

the SD-wavefunction.  

 

Fulfilling the three assertions means that the wavefunction has gotten more 

complicated and that the Coulombic electron interaction in the Hamiltonian 

requires a compensation component for the possible exchange of electrons, i.e., 

we need to subtract the exchange energy from the Coulomb potential in the 

Hamiltonian. The proof for this can be found in Refs. 112,118. In the end, this means 

that the N-electron, M-nuclei (BOA, one-electron) Fock operator, as it is called, 

will (in atomic units) take a slightly different form to accommodate for this 

exchange compensation. This form is  

 
𝑓𝑖
𝐻𝐹 = −

1

2
∇𝑖
2 −∑

𝑍𝐼

|𝑟𝑖 − 𝑅⃗⃗𝐼|

𝑀

𝐼

 

+∑∫
|χ𝑗(𝑟𝑗, 𝑆𝑗; 𝑅⃗⃗)|

2

|𝑟𝑖 − 𝑟𝑗|
𝑑𝑟𝑗

𝑁

𝑗≠𝑖⏟              
𝐽(𝑟𝑖,𝑆𝑖;𝑅⃗⃗)

−∑χ𝑗(𝑟𝑖, 𝑆𝑖; 𝑅⃗⃗)∫
χ𝑗(𝑟𝑗, 𝑆𝑗; 𝑅⃗⃗)χ𝑖(𝑟𝑗, 𝑆𝑗; 𝑅⃗⃗)

|𝑟𝑖 − 𝑟𝑗|
𝑑𝑟𝑗

𝑁

𝑗≠𝑖⏟                            
𝐾̂(𝑟𝑖,𝑆𝑖;𝑅⃗⃗)

 

(2.25). 

Here 𝐽(𝑟𝑖, 𝑆𝑖; 𝑅⃗⃗) is the Coulomb operator and 𝐾̂(𝑟𝑖, 𝑆𝑖; 𝑅⃗⃗) is the exchange 

operator. The Fock operator has the Slater determinant as eigenfunction and the 

resulting eigenvalues of this operator are the orbital energies of the system 

where the set of N eigenfunction problems that come from this are called the 

Hartree-Fock (HF) equations. Similar to the Hartree operator we employ a mean-

field theory to describe the electronic interactions with each other. Lastly, the 

total energy of the chemical system is now given by  

 E𝑝𝑜𝑡
𝐻𝐹 (𝑟, 𝑆; 𝑅⃗⃗)

=∑⟨χ𝑖(𝑟𝑖, 𝑆𝑖; 𝑅⃗⃗)|−
1
2∇𝑖

2 − ∑
𝑍𝐼

|𝑟𝑖 − 𝑅⃗⃗𝐼|
𝑀
𝐼 |χ𝑖(𝑟𝑖, 𝑆𝑖; 𝑅⃗⃗)⟩

𝑁

𝑖=1

+∑∑(2⟨χ𝑖(𝑟𝑖, 𝑆𝑖; 𝑅⃗⃗)|𝐽(𝑟𝑖, 𝑆𝑖; 𝑅⃗⃗)|χ𝑗(𝑟𝑗, 𝑆𝑗; 𝑅⃗⃗)⟩

𝑁/2

𝑗=1

𝑁

𝑖=1

− ⟨χ𝑖(𝑟𝑖, 𝑆𝑖; 𝑅⃗⃗)|𝐾̂(𝑟𝑖, 𝑆𝑖; 𝑅⃗⃗)|χ𝑗(𝑟𝑗, 𝑆𝑗; 𝑅⃗⃗)⟩) + 𝐸𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛(𝑅⃗⃗) 

(2.26). 
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We can parametrize the spin-orbitals in the SD-wavefunction (Equation 2.24) 

and then optimise them using the variational theorem (Section 2.2.1). The 

parametrisation can be done in many different ways but often the orbital 

wavefunctions in a molecular system are set up as a linear combination of all 

contributing atom-centred wavefunctions (or atomic orbitals (AO)).  

 
χ𝑖(𝑟𝑖, 𝑆𝑖; 𝑅⃗⃗) =∑𝑐𝑘,𝑖𝜙𝑘(𝑟𝑖, 𝑆𝑖; 𝑅⃗⃗)

𝐾

𝑘

 
(2.27). 

The atom-centred wavefunctions (𝜙𝑘), are themselves normally constructed via 

another linear combination of basis functions that represent the shapes of the 

atom-centred wavefunctions (or AOs). These basis functions come in collections 

that are called basis sets, and these sets can be based on so-called Gaussian-

type orbitals112,175, Slater-type orbitals112,176, Numerical orbitals112,164,177, or in 

principle any other type that will fulfil the required constraints. The choice of 

basis set will influence the results of the electronic structure calculations, where 

the general trend is that a larger, more complex, and more complete basis set 

will improve the results, but increase the demands of the electronic structure 

calculation. In the following chapters, a very different type of basis sets are used. 

These types are constructed with an entirely different philosophy and method in 

mind and these will be discussed in more detail in Sections 2.2.4, 2.2.5, and 

2.2.6. 

 

2.2.3 Solving the electronic structure 

At this point, we have a description of the multi-electron wavefunction and a 

strategy to optimise that wavefunction via the variational method. Still, we need 

to find a way to solve the “chicken-egg problem”, or many-body problem, that 

arose from applying the mean-field theory in the one-electron operator, the Fock 

operator, and the HF equations. 

 

To start, an initial guess of the wavefunction can be made for any initial 

configuration or geometry of the system, i.e., nuclei positions. This guessed 

wavefunction is used to construct the mean-field theory (Hartree-Fock or any 

other) many-body operator. This initial operator, with the initial guess of the 

wavefunction, is used to optimise the wavefunction it works on, i.e., the 

wavefunction is minimised with respect to the total energy via the variational 
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theorem. Then, the optimised wavefunction of this new iteration is used to 

construct a new mean-field operator, which in turn is used to re-optimise the 

wavefunction for the next iteration. Then the resulting energy of the new 

wavefunction is tested against the energy of the previous iteration. If these 

energies are the same (within a certain threshold) then the calculation is 

considered converged and is stopped. Otherwise, the procedure is repeated, i.e. 

the new wavefunction will make a new operator, will make a new wavefunction, 

and is tested against the previous energy again. The process is continued until 

the energy is self-consistent, i.e., the value essentially does not change anymore 

between iterations. This is why this method is referred to as the self-consistent-

field (SCF) method. A simplified flowchart of a SCF procedure is shown in Figure 

2.1.  

 

The procedure as described above, and shown in Figure 2.1, is in reality 

somewhat more complicated and especially optimising the parameters in the 

wavefunction is far from trivial. For a more complete understanding, the reader 

is encouraged to read Refs. 112,118. However, for our purposes, we now have a 

complete picture of how to “solve” the electronic structure for multi-electron 

atoms and molecules. A good example of this method in practice for the “simple” 

H2 molecule was published already in 1971 by Dewar et al. 120.  

 

Lastly, we must note that the HF method does not yield the exact electronic 

energy of a molecular system. We have thus far neglected the tendency of 

electrons to correlate, that is, the movement of electrons is also influenced by 

the presence and movement of other electrons individually and not by their 

average overall momentum112. This, in turn, influences the total energy of the 

system. This is why correlation energy is usually defined as the residual energy 

difference between the converged Hartree-Fock energy and the exact energy of 

the system.  The correlation energy can be included via methods like full 

configuration interaction112,120, but these are computationally very demanding 

and out-of-scope for this work. Moreover, in Sections 2.2.4. and 2.2.5. a different 

method of including some correlation effects within a different electronic 

structure method is discussed. 
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Figure 2.1: Simplified flow chart of the self-consistent-field method in optimising a wavefunction 
in the HF-theory (or other Wavefunction) method. 
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2.2.4 Density functional theory, Hohenberg-Kohn and Kohn-

Sham 

An observant reader may have picked up on two crucial points in the previous 

section. First, the complexity of the wavefunction is, thus far, very dependent on 

the number of electrons, such that a larger chemical system with many electrons 

quickly becomes unmanageable. Second, the basis functions for the 

wavefunction are all atom-centred. This makes our solution inherently 

atomically localised. This is a logical approach for molecules because the 

electrons are only spread over certain orbitals, and even though overlapping 

orbitals can share electrons over many orbitals, the electron density tends to be 

high only in the vicinity of the atomic nuclei. However,  as discussed in Chapter 

1, there are two different phases to molecule-surface systems, the first is the 

molecule in the gas-phase and the second is the metal solid. The electronic 

structure of a metal is very delocalised, such that electrons are, in principle, 

spread over the entire metal, forming electronic bands of electrons rather than 

isolated electronic levels. It is not hard to imagine that using an atom-centred 

wavefunction method to describe such an electronic structure may not be ideal. 

Furthermore, the computational scaling in HF methods is not very favourable. 

Computational scaling is the change in the amount of time the calculation would 

take if the size of the chemical system is changed. In the case of “cheap” 

wavefunction methods like HF, the scaling nevertheless tends to be O(N4), 

meaning a system that has two times the number of electrons will need sixteen 

times more time to be solved. However, most wavefunction methods that go 

beyond HF, i.e., which try to improve the electronic correlation, tend to scale 

with O(N5) or even higher. Thus, a different approach may be needed.  

 

It may, therefore, be fruitful to use an approach where we can describe the 

electronic energy with a concept that makes the calculations scale better and 

could possibly even amount to an observable. The concept that fits these criteria 

is the electronic density (see also Section 1.2.4). Such a different approach to 

calculating electronic structures comes in the form of density functional theory 

(DFT).  
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The density of the electrons of a system can be directly related to the total 

number of electrons in that system (N): 

 
𝑁 = ∫𝜌(𝒓)𝑑𝒓 

(2.28), 

where this integral goes over all space, and ρ is the electron density as a function 

of r, which is a three-dimensional position vector, indicated with boldface to 

avoid confusion with 𝑟 (which is the complete position vector of all electrons in 

the system). The use of electron density is intuitive, for instance, the maxima in 

density could indicate the likely locations of electrons. Another benefit would be 

that any solution would no longer be dependent on 4N dimensions, that is the 

three spatial and spin dimensions, but instead, it would depend on just the three 

spatial coordinates of the electron density. This may, in turn, help to reduce both 

the complexity and the scaling of electronic structure methods.  

 

These possibilities seem potentially useful though a mapping to an electron 

density would need to be proven to be possible. For that, we have to turn to the 

work of Hohenberg and Kohn121. They were able to prove that the electron 

ground state density must determine the so-called “external potential”, thus 

determine the Hamiltonian and thus determine the energy of the system. Here 

the external potential is defined as: 

 
𝑣𝑒𝑥𝑡(𝒓) =∑

𝑍𝐼

|𝒓 − 𝑅⃗⃗𝐼|

𝑀

𝐼=1

 
(2.29), 

That is, the external potential is defined as the attractive Coulomb force that the 

nuclei apply to the electron (density). The rest of the Hamiltonian, as seen in 

Equation 2.12, is governed by the number of electrons in the system (where the 

electrons are undistinguishable), and this is already directly related to the 

density via Equation 2.28. Thus, it only needs to be proven that the external 

potential is directly determined by the electron density.  

 

This proof is done via reductio ad absurdum, i.e., the contrary results in 

impossibilities, and the proof is rather straightforward. Conversely, two different 

external potentials vext
a and vext

b, both describe the same (nondegenerate) 

ground state electron density ρ0. With both external potentials, different 

Hamiltonians, 𝐻̂𝑎 and 𝐻̂𝑏, will be associated, which both would have their 
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associated eigenfunctions and eigenvalues Ψ0a, Ψ0b, E0
a, and E0

b. Then the 

variational theorem(2.2.1) would say that: 

 𝐸0
𝑎 < ⟨Ψ0

𝑏|𝐻̂𝑎|Ψ0
𝑏⟩ (2.30). 

This can be rewritten to: 

 𝐸0
𝑎 < ⟨Ψ0

𝑏|𝐻̂𝑎 + 𝐻̂𝑏 − 𝐻̂𝑏|Ψ0
𝑏⟩ (2.31) 

 𝐸0
𝑎 < ⟨Ψ0

𝑏|𝑣𝑒𝑥𝑡
𝑎 − 𝑣𝑒𝑥𝑡

𝑏 |Ψ0
𝑏⟩ + 𝐸0

𝑏 (2.32) 

The external potential operators are one-electron operators thus Eq. 2.32 can be 

expressed as a function of the ground state density ρ0 

 
𝐸0
𝑎 < ∫[𝑣𝑒𝑥𝑡

𝑎 (𝒓) − 𝑣𝑒𝑥𝑡
𝑏 (𝒓)]𝜌0(𝒓)𝑑𝒓 + 𝐸0

𝑏 
(2.33) 

Then, this same procedure can be done for the ground state energy of b such 

that: 

 
𝐸0
𝑏 < ∫[𝑣𝑒𝑥𝑡

𝑏 (𝒓) − 𝑣𝑒𝑥𝑡
𝑎 (𝒓)]𝜌0(𝒓)𝑑𝒓 + 𝐸0

𝑎 
(2.34) 

Now adding the two inequalities of Eqs. 2.33 and 2.34 will result in: 

 
𝐸0
𝑎 + 𝐸0

𝑏 < ∫[𝑣𝑒𝑥𝑡
𝑎 (𝒓) − 𝑣𝑒𝑥𝑡

𝑏 (𝒓)]𝜌0(𝒓)𝑑𝒓 + 𝐸0
𝑏

+∫[𝑣𝑒𝑥𝑡
𝑏 (𝒓) − 𝑣𝑒𝑥𝑡

𝑎 (𝒓)]𝜌0(𝒓)𝑑𝒓 + 𝐸0
𝑎 

(2.35) 

 
𝐸0
𝑎 + 𝐸0

𝑏 < ∫[𝑣𝑒𝑥𝑡
𝑎 (𝒓) − 𝑣𝑒𝑥𝑡

𝑏 (𝒓) + 𝑣𝑒𝑥𝑡
𝑏 (𝒓) − 𝑣𝑒𝑥𝑡

𝑎 (𝒓)]𝜌0(𝒓)𝑑𝒓

+ 𝐸0
𝑏 + 𝐸0

𝑎 

(2.36) 

Which will result in the following impossibility:  

 𝐸0
𝑎 + 𝐸0

𝑏 < 𝐸0
𝑏 + 𝐸0

𝑎 (2.37) 

Thus, a non-degenerate ground state density must determine a uniquely 

associated external potential, Hamiltonian and energy(Hohenberg-Kohn I, HK I) 
121. Further work112,118 has even shown HK I also holds for exited electron 

densities. Nevertheless, for this thesis, the ground state is already sufficient.  

 

To effectively utilise HK I to describe electronic energies we need to prove that 

the variational theorem also holds for the use of an electron density, as we 

otherwise have no way of optimising the density function.  Luckily Hohenberg 

and Kohn have produced a second theorem that proves just that, i.e., the 

electron density that minimises the total energy is the exact ground state 

density121. Proving this is rather trivial keeping in mind that any density of a non-

degenerate ground state will correspond to a unique wavefunction and energy  
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(HK I) so that for a trial density (𝜌̃) and corresponding trial wavefunction (Ψ̃[𝜌̃]) 

we have: 

 𝐸[𝜌̃] = ⟨Ψ̃[𝜌̃]|𝐻̂0[𝜌̃]|Ψ̃[𝜌̃]⟩ ≥ ⟨Ψ0[𝜌0]|𝐻̂0[𝜌0]|Ψ0[𝜌0]⟩ = 𝐸0[𝜌0] (2.38) 

 𝐸[𝜌̃] ≥ 𝐸0[𝜌0] (2.39) 

As such we can optimise the density of our system by minimising the total energy 

of the system (Hohenberg-Kohn II, HK II). There is a small caveat that changing 

certain approximations in the Hamiltonian (see Section 2.2.5.) may break with 

the variational theorem, but that is due to the introduction approximations in 

the Hamiltonian, and not because the variational theorem does not hold112.  

 

A major difficulty remains though. Yes, a mapping from density to Hamiltonian 

to wavefunction and energy must exist (HK I), however,  there is no basis for what 

such a mapping would be as the proof for the mapping is done via reductio ad 

absurdum. So even though it is possible to map the energy to the density, we are 

still not able to do so exactly. Nevertheless, there are clever tricks that can be 

used to achieve very good approximations with such mappings, and it was the 

trick of Kohn and Sham122 that resulted in the most widely used variant of DFT. 

 

Kohn-Sham (KS) DFT is constructed by initially taking a fictitious system of N non-

interacting electrons that has the same ground-state electronic density as the 

real system, where the N electrons do interact. Kohn and Sham proposed that 

this is possible because electron density mapping is defined by the number of 

electrons and the external potential (HK I), which are taken the same for both 

systems. Here KS used that the exact eigenvalue problems for N non-interacting 

electrons can be computed exactly (see also 2.2.2). In reality, electrons do 

interact with each other but this can, in the Kohn-Sham framework, be corrected 

by adding a correction term to the total energy of the non-interacting electrons. 

As such, the total energy is no more than the sum of the energy of the non-

interacting electrons and the addition of a correction such that the energy 

functional (i.e., a function that is a function of another function) will be 

described in full by112,118,122:  

 𝐸[𝜌(𝒓)] = 𝑇𝑛𝑜𝑛−𝑖[𝜌(𝒓)] + 𝑉𝑛𝑢𝑐[𝜌(𝒓)] + 𝑉𝐶𝑒𝑒[𝜌(𝒓)]

+ Δ𝑇𝑖[𝜌(𝒓)] + Δ𝑉𝑄𝑒𝑒[𝜌(𝒓)]⏟                
𝐸𝑥𝑐[𝜌(𝒓)]

 

(2.40). 
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Here the terms are, in order of appearance: the non-interacting electronic 

kinetic energy, the nuclear-electron attractive Coulombic force, i.e., the external 

potential; the classical electron-electron Coulomb interaction; the correction on 

the kinetic energy term including electronic correlation; and the quantum 

correction to the electronic interaction including the electron exchange energy. 

The last two terms are generally combined into one collection of unknowns that 

is referred to as the exchange-correlation functional (𝐸𝑥𝑐[𝜌(𝒓)])
122. This term 

may also include other corrections to the non-interacting electron system, like a 

self-interaction correction112.  

 

For the non-interacting electrons, the exact eigenfunction is the Slater 

determinant (see Equation 2.23) but now built up using the one-electron KS 

orbitals. The corresponding electron density is 

 
𝜌(𝒓) =∑⟨𝜒𝑖|𝜒𝑖⟩

𝑁

𝑖=1

 
(2.41). 

Here 𝜒𝑖  are the KS-orbitals, which are similar, but not equal, to the AOs used in 

Equation 2.23. We can now represent the energy functional in atomic units as112: 

 

𝐸[𝜌(𝒓)] =∑((⟨𝜒𝑖|−
1
2∇𝑖

2|𝜒𝑖⟩) − ⟨𝜒𝑖| ∑ (
𝑍𝐼

|𝒓𝑖 − 𝑅⃗⃗𝐼|
)𝑀

𝐼=1 |𝜒𝑖⟩)

𝑁

𝑖=1

 

+∑(⟨𝜒𝑖|
1
2 ∫

𝜌(𝒓′)
|𝒓𝑖 − 𝒓

′|
𝑑𝒓′ |𝜒𝑖⟩)

𝑁

𝑖=1

+ 𝐸𝑥𝑐[𝜌(𝒓)] 

(2.42). 

This will mean it is now possible to start solving, and also optimising, a set of N 

number of one-electron non-interacting eigenvalue equations of the form: 

 ℎ̂𝑖
𝐾𝑆𝜒𝑖 = 𝜀𝑖𝜒𝑖  (2.43), 

where the one-electron Kohn Sham Hamiltonian is given by: 

 
ℎ̂𝑖
𝐾𝑆 = −

1

2
∇𝑖
2 −∑(

𝑍𝐼

|𝒓𝑖 − 𝑅⃗⃗𝐼|
)

𝑀

𝐼=1

+∫
𝜌(𝒓′)

|𝒓𝑖 − 𝒓
′|
𝑑𝒓′ + 𝑉𝑥𝑐[𝜌(𝒓)] 

(2.44), 

and in which  

 
𝑉𝑥𝑐[𝜌(𝒓)] =

𝛿𝐸𝑥𝑐[𝜌(𝒓)]

𝛿𝜌(𝒓)
 

(2.45) 

is the functional derivative of the exchange-correlation energy as presented in 

2.42112.  
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From this point on, solving the known parts of the KS equations is very similar to 

the wavefunction approach as discussed in 2.2.2 and 2.2.3, and from Equation 

2.42 it is obvious that yet another self-consistent field-based approach will be 

required. To reiterate, the Hamiltonian determines the density but requires a 

density to be determined first. Thus, one has to: guess, improve,  and reuse the 

density until it no longer changes. Solving the unknown exchange-correlation 

part (Vxc) of the energy functional (hereafter referred to as density functional, or 

DF)  is, however, still far from trivial. Luckily, in the KS approach, the unknowns 

are reduced to a smaller fraction of the total value and any error made there will 

influence the final result less than trying to come up with one whole new answer 

for a density energy mapping. The majority of research and studies done to 

improve the quality of DFT are all to try and find a better approximation to this 

Vxc. Some of the more common approaches will be discussed in the next section. 

 

2.2.5 Exchange-correlation functional approximations 

The exact form of the Exc is not known, but it stands to reason that this term will, 

just like the one-electron potential, depend on the electron density. Thus, Exc is 

often expressed as an integral over a product of the density and the so-called 

“energy-density” εxc(this is not required but is a common notational method)112. 

In this frame, Exc is described by: 

 
𝐸𝑥𝑐[𝜌(𝒓)] = ∫𝜌(𝒓)𝜀𝑥𝑐[𝜌(𝒓)]𝑑𝒓 

(2.46). 

Here the energy density functional is often split up into contributions from 

exchange and correlation112,118: 

 𝜀𝑥𝑐[𝜌(𝒓)] = 𝜀𝑥[𝜌(𝒓)] + 𝜀𝑐[𝜌(𝒓)] (2.47). 

However, again this is not always the case112, and it should be reiterated that the 

Exc DF is meant to compensate for more than just exchange and correlation 

energy, for instance for an error due to electrons interacting with themselves 

(which occurs in the construction of the density). Additionally, splitting up the 

exchange-correlation functional also does not mean that the actual 

contributions are necessarily properly split, as the exact form of the Exc DF is not 

known112,118,173. 

 

Nevertheless, there now is a starting point for approximating the Exc DF. The 

simplest and most logical starting point is to let the exchange-correlation be 
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dependent on a single value of the electron density at a given location, i.e., to 

let there be a local dependency on the density in Eqs. 2.46 and 2.47. This is 

referred to as the local density approximation (LDA). An example of local density 

exchange energy is the Slater exchange based on the uniform electron 

gas112,178,179: 

 

𝜀𝑥[𝜌(𝒓)] = −
9𝛼

8
(
3

𝜋
)

1
3
 𝜌(𝒓)

1
3 

(2.48), 

where α can take either the value 1 or 2/3180,181, depending on the underlying 

derivation (see Ref. 112 for more information). Setting up the correlation 

contribution has generally always been a far more arduous task, and quickly goes 

beyond the scope of this work and the reader is referred to the works of 182–187 

for detailed derivations on that end. 

 

It is at this time a good moment to discuss that the LDA can also work for 

calculations where the electrons have to be spin polarised, i.e., when there are 

unpaired electrons in the mix. The electron spin density is simply given by the 

normalised spin polarization factor112: 

 
𝜁(𝒓) =

𝜌𝛼(𝒓) − 𝜌𝛽(𝒓) 

𝜌𝛼(𝒓) + 𝜌𝛽(𝒓)
=
𝜌𝛼(𝒓) − 𝜌𝛽(𝒓) 

𝜌(𝒓)
 

(2.49), 

where ρα is the α-spin density and ρβ is the β-spin density. At this point, the 

exchange-correlation energy density can be expressed as a function of the total 

electron density and the spin polarisation such that112: 

 𝜀𝑥𝑐[𝜌(𝒓), 𝜁(𝒓)] 

= 𝜀𝑥𝑐[𝜌(𝒓)] + (𝜀𝑥𝑐
𝑆𝑝𝑖𝑛[𝜌(𝒓)]  

− 𝜀𝑥𝑐[𝜌(𝒓)]) (
(1 + 𝜁(𝒓))

4
3 + (1 − 𝜁(𝒓))

4
3 − 2

2(2
1
3 − 1)

) 

(2.50), 

where 𝜀𝑥𝑐
𝑆𝑝𝑖𝑛[𝜌(𝒓)] is the energy density functional based on the uniform 

electron gas of electrons with all uniform spin, and 𝜀𝑥𝑐[𝜌(𝒓)] is the regular 

ground state energy density. Equations 2.49 and 2.50 show that the addition of 

spin into DFT will make the formulation more complicated. Because it requires 

the evaluation of the uniform spin exchange-correlation energy functional it also 

slightly increased computational demands, though not by much. For the sake of 

clarity in formulation, the spin density terms will from now on not be discussed 
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in detail, but it is good to have noted that using spin densities is possible and will 

be used in Chapters 3-5. 

 

The LDA is a local approximation to Exc. When locally approximating any function, 

a Taylor expansion may quickly come to mind. As such, a common next step in 

improving the exchange-correlation energy is to go beyond the dependence on 

the local value of the density and to also include a dependence on the local first-

order derivative, i.e., gradient, of the density. This brings us to the generalised 

gradient approximation (GGA) to the exchange-correlation DF. Exc can now be 

expressed as: 

 
𝐸𝑥𝑐[𝜌(𝒓), ∇𝜌(𝒓)] = ∫𝜌(𝒓)𝑓[𝜌(𝒓), ∇𝜌(𝒓)]𝑑𝒓 

(2.51), 

where the function f can take some different forms but is often112 set as: 

 

𝑓[𝜌(𝒓), ∇𝜌(𝒓)] = 𝜀𝑥𝑐
𝐿𝐷𝐴[𝜌(𝒓)] + Δ𝜀𝑥𝑐 [

|∇𝜌(𝒓)|

𝜌(𝒓)
4
3

] 

(2.52). 

However, it should be noted that the precise implementations of GGA DFs vary 

greatly. It is not uncommon for semi-empirical parameters to be introduced into 

the exchange-correlation DF to improve the description for certain systems. For 

an example of a GGA DF without the use of such parameters, the reader is 

strongly encouraged to read the work behind the PW91188 and/or PBE154 DF, 

which are some of the most commonly applied DFs, and the PBE DF is also used 

further in Chapters 3-5. Going even beyond the GGA, it is possible to take the 

Taylor expansion further, with limited returns, to start using the second-order 

derivative of the density as well. These types of DFs are then referred to as meta-

GGA (mGGA) DFs112. These types of DFs are moving beyond the scope of this 

thesis. 

 

A quite different approach to improving the exchange-correlation description is 

to use the fact that we have a potentially more precise description for the 

exchange energy based on the HF wavefunction method (Equation 2.25, Section 

2.2.2). Since the density in KS-DFT is often based on Slater-like eigenfunctions, 

computing the exact exchange using the 𝐾̂(𝑟𝑖, 𝑆𝑖; 𝑅⃗⃗) operator (see Eq. 2.25 and 

2.26) is possible. Mixing this associated exact exchange with the semi-local 

exchange-correlation energy amounts to the use of a so-called hybrid functional. 

Note that this will increase computational demands moving from the worst-case 
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DFT scenario of O(N3)112,118 to a worst-case of O(N4) scaling112,118. Additionally, 

the exchange-correlation energy is not just a correction for the exchange energy 

and cannot be cleanly split into two separate contributions112. Thus, replacing 

the entire semi-local exchange contribution with exact exchange does not 

necessarily yield any improvement over GGA DFs. As such, the exact exchange is 

mixed into the (usually GGA) DFT exchange with a certain fraction(α)112: 

 𝐸𝑥𝑐
𝐻𝑦𝑏𝑟𝑖𝑑

= 𝛼𝐸𝑥
𝐻𝐹 + (1 − 𝛼)𝐸𝑥

𝐷𝐹𝑇 + 𝐸𝑐
𝐷𝐹𝑇 (2.53). 

One of the most straightforward global hybrid DFs, which uses PBE as the GGA 

backbone, is the PBE0 DF where α is set to a value of 1/4152,153. Finally, it should 

be noted that the global description of exact exchange is not accurate for larger-

range Coulombic systems like metals where the interaction between electrons 

needs to be screened at long range156,189–194. To accommodate this range-

separated, or screened exchange, hybrids have been developed where the exact 

exchange energy is only active at short range and is fully replaced with semi-local 

exchange at long range, see also Chapters 3, 4 and 5.  

 

Analogously to hybrid DFs, it is also possible to replace the correlation 

contribution with better approximations of non-local correlation energies. 

Specific non-local correlation functionals are capable of approximately 

describing the long-range like Van der Waals (VdW) dispersion interaction182. 

However, such improvements again come with additional computational 

demands. Furthermore, it is possible to combine the two concepts of exact 

exchange and long-range correlation interaction into a single DF. In Chapters 4 

and 5 we have done exactly that with a screened hybrid DF, HSE156,189,190 and the 

VdW-DF2 correlation DF183,195. These two chapters go into more detail about the 

implementation and the DF so there is no need to repeat that here, though it 

should be noted that the combination of these different DFs is not necessarily 

internally consistent. Only recently, work has been done to try and build an 

internally consistent combination of exact exchange and non-local correlation, 

and an example of such a DF is VdW-DF-ahcx194.  
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2.2.6 Periodic boundary conditions, plane waves, Bloch’s 

theorem, and pseudopotentials 

A proper description of metal surfaces will require a large number of atoms. 

Smaller clusters of atoms will inevitably exhibit nanoparticle behaviour. This type 

of behaviour, though interesting, is not what we want when describing a 

macroscopic metal surface. A clever way to resolve this is by imposing so-called 

periodic boundary conditions (PBC). In a PBC environment, a given unit cell is 

constructed and images of that unit cell are repeated infinite times in two or all 

three dimensions. This means that only the atoms in the cell need to be 

simulated but the images of the cell do ensure that atoms on the edges of the 

cell still “feel” like they are part of an infinite ensemble112. In mathematical 

terms, PBC in three dimensions means that for any potential: 

 𝑉(Χ⃗⃗) = 𝑉(Χ⃗⃗ + 𝐴) (2.54) 

 𝐴 = 𝑛1𝑎⃗1 + 𝑛2𝑎⃗2 + 𝑛3𝑎⃗3 (2.55), 

where Χ⃗⃗ are Cartesian coordinates within the cell, the ni integers and the ai cell-

vectors in  3D Cartesian space with a given orthogonal component spanning the 

repeating unit cell (the three lattice vectors do not need to be fully orthogonal). 

A downside is that the atoms in the cell interact with the periodic images of 

themselves, which if the cell is not large enough may cause artefacts in the 

results112. 

 

Most solid compounds, except for amorphous solids, can inherently be 

described by a given repeating cell. For simple non-alloy metals such unit cells 

can be constructed from a single atom placed inside a box spanned by three 

distinctly sized vectors spanning three-dimensional space. For a (metal) surface, 

this becomes more difficult as the periodicity will be broken in at least one 

direction. The interface between the bulk metal and the vacuum creates a 

discontinuity that needs to be dealt with. The simplest solution is to create PBC 

only in the direction of the surface-plane (See Figure 2.2A for an FCC(111) 

surface example, the surface-plane is indicated by the U, V-plane), excluding the 

surface normal (i.e., the Z-axis). This does require the resulting surface “slab” to 

be thick enough to properly simulate the underlying metal bulk, and it also 

means that the slab has two surfaces, one on the top side (higher Z) and one on 

the bottom side of the slab. If an electronic structure code will allow for this, 
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then this type of setup will work well enough for atomic orbital-based 

approaches. If the code does not allow for axis selective PBC (like two-

dimensional PBC) then the other option is to include a large vacuum along the 

Z-axis such that the slab cannot interact, or hardly interacts with its periodic 

images. An example of such a setup can be found in Figure 2.2B. For this thesis, 

a computer program was used that imposed PBC in all three dimensions, for 

reasons that will be discussed below. Thus, in this thesis, all metal slabs will be 

separated with a minimum of 10 Å vacuum. Further slab-specific details can be 

found in the method sections of the relevant chapters. 

 

 
Figure 2.2: Schematic description of a periodic metal FCC(111) surface. Purple shades indicate the 
original atoms in the repeating cell, grey depicts periodic images and red arrows indicate the 
relevant axes where the red dashed lines close the repeating unit, red dots show the periodic 
images of the cell translated to different locations; A: periodicity in the surface (U,V-) plane; B: 
periodicity along the surface normal (Z axis) for a 4 layer surface slab, including the layer of vacuum 
in-between surfaces. 

PBC allow for an elegant trick to ease the description of the electrons in a 

periodic potential (like that of metals) via Bloch’s theorem181. This theorem 

states that any eigenfunction of the Schrödinger equation in a periodic potential 

can be expressed as a plane wave such that:  

 𝜓𝑘⃗⃗(𝒓) = 𝜇𝑘⃗⃗(𝒓)𝑒
𝑖𝑘⃗⃗𝒓 (2.56). 

In Equation 2.56 𝜇𝑘⃗⃗(𝒓) is a periodic function that obeys the periodicity of the 

lattice, i.e., the potential as defined in Equation 2.54, and 𝑘⃗⃗ is a wave vector in 
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the first Brillouin zone. The Brillouin zone is the reciprocal version of the periodic 

unit cell.  

 

Using Bloch’s theorem the KS-orbitals, as defined in Equations 2.41 and 2.42, and 

for a given sample point in k-space, the KS-orbital can be expanded as a Fourier-

series, i.e., plane wave basis set, such that: 

 𝜒𝑖,𝑘⃗⃗(𝒓) = 𝑁∑𝑐𝑖,𝑘(𝐺⃗)𝑒
𝑖(𝑘⃗⃗+𝐺⃗)𝒓

𝐺⃗

 (2.57). 

Here N is the normalisation constant ci,k are the expansion coefficients, and 𝐺⃗ 

are reciprocal lattice vectors. For an infinite sampling of the reciprocal lattice this 

series is exact, however, computationally the series is limited by a discretisation 

over a k-space grid and a “cut-off” energy such that: 

 1

2
|𝑘⃗⃗ + 𝐺⃗|

2
≤ 𝐸𝑐𝑢𝑡−𝑜𝑓𝑓 

(2.58). 

In practice, this means that the k-point grid and cut-off energy need to be chosen 

wisely to ensure proper sampling of the periodic electronic state and thereby 

ensure convergence of the total energy. Put simply, more k-points mean more 

plane waves and a higher cut-off energy also means more plane waves. More 

plane waves mean that the basis set further approaches the limit of the exact 

solution, but at a greater computational cost.  

 

The plane wave basis set is quite useful for efficiently describing the periodic 

nature of metals and for describing the highly delocalised electrons in the 

metals. However, it comes with a certain computational cost. For one, the plane 

wave approach means periodicity needs to be ensured in all three dimensions 

and that the size of the vacuum separating the slabs (see above) will increase 

the periodic unit cell size thus increasing the number of plane waves required. 

That is, in a plane-wave electronic structure method we “pay” computational 

costs for the size of the vacuum. An additional downside is the large costs 

associated with hybrid DFs as solving the exact exchange operator (Eq. 2.25) 

using plane waves can be a rather demanding task. Lastly, the description of 

larger atoms, that is atoms with many electrons, and thus many nodes in the 

wavefunction of valence electrons (because of orthogonality demands) can 

quickly require very large basis sets to properly describe the highly oscillatory 

behaviour of such wavefunctions.  
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The complexity of the basis set for many-electron atoms can be reduced by the 

use of pseudopotentials196,197. The idea is that the electrons close to the nuclei 

of heavy, many-electron atoms, also referred to as the “core-electrons”, are not 

chemically relevant. Therefore a more simplistic description of those electrons 

and the resulting effective potential can be used to limit the size of the basis set 

for the valence electrons. Pseudopotentials additionally allow for the inclusion 

of relativistic effects of the core-electrons. Thus far, relativistic effects have not 

been discussed in this thesis, and the reader is referred to Ref. 198 for more 

information. Briefly, electrons close to the nuclei move fast enough that such 

effects will start to influence the electronic structure. The use of 

pseudopotentials incorporating such effects is a way to approximately include 

these effects without altering the electronic structure method.  

 

A principal idea behind pseudopotentials is that the chemically relevant valence 

electrons do not interact with the full charge of the nuclei as the electrons in 

between the nuclei and the valence electrons shield, or screen, the charges of 

the nuclei and the core-electrons. Also, the core-electrons do not affect the 

chemistry much. As such we can describe the nuclei and core electrons by one, 

different, effective potential with a given ‘core’ radius rc. The nuclei and the core-

electrons within this core radius are no longer distinctly described but are 

described by a pseudo-potential. This will simplify the calculation with the 

wavefunction describing the valence electrons, as it no longer needs to be made 

orthogonal to wavefunctions describing the core-electron wavefunctions. (see 

Figure 2.3 for a schematic drawing).  

 

 

 



Getting the electrons right for O2-on-metal systems 

 58 

 
Figure 2.3: Schematic drawing of a pseudopotential and how it compares to a real potential. 
Pseudo potential and wavefunction in red, real potential and wavefunction in light blue. The 
horizontal axis measures the distance of the electron to the nucleus. The shading serves as a guide 
to the eye. 

 

To ensure that the chemical state of the atom is not altered pseudopotentials 

are usually constrained such that the wavefunction and potential outside of rc is 

described the same as the real wavefunction and potential. Furthermore, the 

pseudopotentials are often norm-conserving, meaning that the norm of the 

pseudo-wavefunction is kept the same as that of its real counterpart, i.e., 

 
∫|Ψ𝑟𝑒𝑎𝑙|

2𝑑𝑟 = ∫|Ψ𝑝𝑠𝑒𝑢𝑑𝑜|
2
𝑑𝑟 

(2.59). 

However, to further reduce the basis set size this last constraint is not always 

adhered to. The electronic structure calculations in the following chapters have 

all used a slightly different approach with the same aim, namely the Projector 

Augmented Wave (PAW)199 method to describe the core-electrons. In this 

method, a linear transformation is used to transform the rapidly oscillating (KS)-

wavefunction near the core of the atom to a smooth function. This is done in 

such a way that the wavefunction is only transformed within the cutoff radius, 

similar to other pseudopotentials. However, in the PAW method, there is no 
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norm-conserving. Furthermore, all-electron observables can still be computed 

with the PAW method by simply reversing the linear transformation. The finer 

details of PAW pseudopotentials are outside the scope of this thesis but further 

reading is available at Refs. 199,200. 

 

2.2.7 From electronic structure to potential energy surface 

All of the last six sub-sections put together mean that it is possible to calculate 

accurate electronic energies (within the DF approximation) for a given geometry 

of the nuclei. This still leaves two possible classes of methods to use this 

electronic structure to compute any motion of the nuclei, i.e., to simulate the 

chemistry that occurs. The first and maybe the most straightforward class of 

methods is ab initio or Born-Oppenheimer molecular dynamics (AIMD/BOMD). 

In this approach, the forces on the nuclei are calculated from the electronic 

structure “on-the-fly”. Whenever the nuclei are at a given position the electronic 

structure is computed, which will, in turn, govern the potential and forces on the 

nuclei (see Section 2.3). The AIMD/BOMD approach may at face value seem 

logical but it comes with large computational demands when thousands of 

molecular trajectories need to be simulated because each trajectory then 

requires hundreds of electronic structure calculations in sequence. As such, for 

lower dimensional systems, i.e., smaller molecules, there is a more efficient class 

of methods. 

 

When dealing with a limited number of degrees of freedom (DOF) it may be 

more efficient to pre-compute the electronic structure for a large grid of 

molecular geometries as a function of the DOFs of the system and use 

interpolative techniques or fitting to form a continuous energy representation. 

Put differently, a potential energy surface (PES) is computed in advance, after 

which, this PES is used to solve the equations of motion efficiently. Note that 

with more degrees of freedom, this approach may quickly become less efficient, 

as the initial sampling of geometries to form the PES will grow fast with the 

number of degrees of freedom.  

 

In the following chapters, all molecular dynamics (MD) calculations are limited 

to that of diatomic molecules whilst the metal surface is kept static. Thus, the 
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calculations are limited to six dimensions, see Chapters 3, 4, and 5 for the 

relevant breakdown of the DOF. For such a setup the construction of a PES is 

most efficient. In this thesis, the discreet electronic structure energies are turned 

into a continuous PES description based on the corrugation-reducing procedure 

(CRP)201,202. In the CRP the six-dimensional (6D) molecule-metal potential energy 

(V6D) is set up such that:  

 
𝑉6𝐷(Γ⃗) = 𝐼6𝐷(Γ⃗) +∑𝑉𝑙

3𝐷(𝛾⃗𝑙)

2

𝑙=1

 
(2.60) 

 
𝑉𝑙
3𝐷(𝛾⃗𝑙) = 𝐼

3𝐷(𝛾⃗𝑙) + ∑ 𝑉𝑙,𝑚
1𝐷(𝑑𝑙𝑚)

𝑀

𝑚=1

 
(2.61). 

Here Γ⃗ are the six coordinates of the molecule, 𝛾⃗𝑙 the three coordinates of the 

atom l (which can be calculated from Γ⃗), dlm is the distance between the atom l 

of the diatomic molecule and a surface atom m, the total number of metal 

surface atoms taken into account is M, I6D is the molecular six-dimensional 

interpolation function, I3D is the atomic three-dimensional interpolation 

function, and V1D is the one-dimensional corrugation reduction function. V1D is 

fitted to the atom-surface interaction of a geometry in which atom l is put above 

a top surface atom and its distance to the surface atom is varied. This procedure 

is set up to ease the interpolation procedure, produce a six-dimensional function 

(I6D) that contains less corrugation than V6D and is, therefore, easier to 

interpolate, and thereby limit the number of electronic structure calculations 

needed to construct a smooth PES. Put differently it reduces the number of 

oscillations that will occur in the interpolation functions when only a limited 

amount of electronic structure data is available. This procedure has been 

developed previously and in this thesis it is only further applied, thus the 

procedure is described in more detail in the following Refs. 201–204.  

 

2.3 The nuclear motion and initial conditions 

The potential energy surface that results from the electronic structure 

calculations as discussed in Section 2.2 can be used directly to influence the 

movement of the nuclei via Newtonian physics. It is generally assumed that the 

atomic nuclei, with the possible exception of the nuclei of hydrogen or helium, 

tend to be too heavy for the quantum mechanical effects associated with their 
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motion to be relevant. Moreover, the mass difference between the electrons and 

the nuclei is so large that the motion of the nuclei can be approximated by the 

motion of the atom as a whole. Therefore, the acceleration of any atom, i.e., 

atomic nucleus, I with atomic mass MI will be given by: 

 
𝑎⃗𝐼 (𝑅⃗⃗𝐼(𝑡)) =

−∇𝐼𝑉𝐼
𝐸𝑙𝑒𝑐[𝑅⃗⃗(𝑡)]

𝑀𝐼
=
𝑑2𝑅⃗⃗𝐼(𝑡)

𝑑𝑡2
 

(2.62). 

The acceleration at a given time t can be used to update the positions of the 

atoms with a given time step Δt via a simple Taylor expansion truncated at the 

second order in the position: 

 
𝑅⃗⃗𝐼(𝑡 + ∆𝑡) = 𝑅⃗⃗𝐼(𝑡) +

𝑑𝑅⃗⃗𝐼(𝑡)

𝑑𝑡
∆𝑡 +

1

2!

𝑑2𝑅⃗⃗𝐼(𝑡)

𝑑𝑡2
∆𝑡2 

(2.63). 

This can be rewritten as 

 
𝑅⃗⃗𝐼(𝑡 + ∆𝑡) = 𝑅⃗⃗𝐼(𝑡) + 𝑣⃗𝐼(𝑡)∆𝑡 +

−∇𝐼𝑉𝐼
𝐸𝑙𝑒𝑐[𝑅⃗⃗(𝑡)]

2𝑀𝐼
∆𝑡2 

(2.64). 

Here 𝑣⃗𝐼(𝑡) is the velocity of an atom I and the potential energy determining the 

force working on the atom at a given time t is dependent on the positions of all 

other atoms in the system at that same time t. There are several methods to 

effectively solve the time propagation in nuclear dynamics, the most famous 

perhaps being the velocity-Verlet algorithm205.  In this thesis however, a more 

complicated algorithm, the Burlisch–Stoer algorithm206,  is used to improve 

numerical stability as one needs to be careful with selecting the size of the 

timestep (Δt) when the gradient of the PES changes fast with the change of 

positions of the atoms, i.e., when the gradient of the acceleration is far away 

from zero. The algorithm used for this thesis is discussed in some more depth in 

Section 2.3.1 below. After that, Section 2.3.2 will discuss the sampling of the 

initial molecular conditions used to start the MD trajectories.  

 

2.3.1 Burlisch–Stoer algorithm 

In this thesis, the time propagation for the MD trajectories is all done using the 

Burlisch–Stoer algorithm (BuSA)206. The exact functionality of this algorithm is 

out of the scope of this work, and the reader is referred to 207 for a detailed 

overview. However, below a few key points will be briefly discussed to give an 

inkling of the procedure and its benefits. The BuSA works by implementing 
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Hamiltonian mechanics for propagating nuclear motion. This means that de 

change of position of an atom in time will be governed by: 

 𝑑𝑅⃗⃗

𝑑𝑡
=
𝜕𝐻̂(𝑅⃗⃗, 𝑃⃗⃗)

𝜕𝑃⃗⃗
 

(2.65), 

while its change of momentum is determined by 

 𝑑𝑃⃗⃗

𝑑𝑡
= −

𝜕𝐻̂(𝑅⃗⃗, 𝑃⃗⃗)

𝜕𝑅⃗⃗
 

(2.66), 

 

in which 

 
𝐻̂(𝑅⃗⃗, 𝑃⃗⃗) =

𝑃⃗⃗2

2𝑀⏟
𝑇̂

+ 𝑉̂(𝑅⃗⃗) 
(2.67). 

Here 𝑃⃗⃗ is the momentum vector of all atoms in the system, 𝑉̂ is the potential as 

defined by the electronic structure and M is the mass of the respective atom. 

From 2.65-2.67, it follows that206,207: 

 𝑑𝑅⃗⃗

𝑑𝑡
=
𝜕𝑇̂(𝑃⃗⃗)

𝜕𝑃⃗⃗
=
𝑃⃗⃗

𝑀
= 𝑣⃗ 

(2.68), 

 𝑑𝑃⃗⃗

𝑑𝑡
= −

𝜕𝑉̂(𝑅⃗⃗)

𝜕𝑅⃗⃗
 

(2.69). 

In the end, Hamiltonian mechanics is a reformulation of the previously 

mentioned Newtonian mechanics but for the BuSA it is the more useful 

formalism. Additionally, it turns one second-order differential equation into two 

separate first-order differential equations.  

 

The BuSA uses the above equations to propagate the atoms in time via a 

predictor-corrector method. In such an integration method there are always two 

distinct steps, the first is to use an arbitrary fit to previous function values and 

derivatives to extrapolate the value of the next function value. The second step 

will use an interpolative method, often based on the predicted value, to improve 

the initial fit approximation.  

 

In the BuSA this procedure is along the following lines206. First, an initial large 

time step S is chosen such that a new position for 𝑡 + 𝑆 is extrapolated (updating 

velocities where required with Equation 2.68) by subdividing S into N smaller 

sub-steps sn and using Richardson extrapolation208 to find 
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 𝑅⃗⃗(𝑡2) = 𝑅⃗⃗(𝑡1 + 𝑆) (2.70), 

by extrapolating Nmax times: 

 𝑅⃗⃗(𝑡𝑖+𝑛) = 𝑅⃗⃗(𝑡𝑖 + 𝑠𝑛) (2.71). 

These results can then be fitted to a rational function to estimate an error of the 

Richardson extrapolation. If the error is not yet sufficiently small the number of 

substeps Nmax is increased such that over time: 

 𝑠𝑛 → 0 ⋀ 𝑁𝑚𝑎𝑥 → ∞ (2.72). 

The more steps used in the Richardson extrapolation the more accurate it will 

be208. In practise the extrapolation error will eventually fall below a preset 

threshold for a given amount of substeps and the approximation is stopped 

there, or a maximum number of iterations (itermax = 9)209 is reached. In this last 

scenario, the initial timestep S may have been too large and is halved after which 

the process is repeated. If the first scenario is encountered the solution to the 

differential equations (Eqs. 2.65 and 2.66) will have been found for the next point 

in time, and a new step size S for the next step will be chosen based on209: 

 
𝑆𝑛𝑒𝑤 = {

1.5𝑆;                           𝑖𝑓: 𝑖𝑡𝑒𝑟 ≤ 6

0.6𝑖𝑡𝑒𝑟−0.6 ∗ 1.5𝑆;   𝑖𝑓: 𝑖𝑡𝑒𝑟 > 6
 

(2.73). 

This way the step size of the time integration will always adapt to the gradient of 

the potential, i.e., if the potential is very steep or, more generally, shows many 

oscillations, the timestep will be reduced until accurate results are obtained, or 

a minimum size threshold is reached resulting in an error message. If the 

potential is, however, shallow and “stable” then the timestep can be increased 

in size again. This algorithm allows us to mitigate the risks associated with the 

choice of a poor, constant, timestep for the MD. 

 

2.3.2 Initial conditions of diatomic molecules 

Equation 2.63 has two parameters that define the starting location and velocity, 

or kinetic energy of the atoms, which can be derived from known or chosen 

initial conditions of the atoms. All dynamics calculations in this thesis are quasi-

classical trajectory (QCT) calculations210,211. This means that the molecule is 

propagated through time classically but the initial conditions of the molecule are 

defined according to the quantisation of the rovibrational states of the molecule. 

As a result of this, the initial condition of the molecule will include zero point 

energy (ZPE)173. The translational kinetic energy of the entire molecule is not 
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quantised and can be selected according to a few different methods depending 

on the type of experiment that is being simulated or the experimental data that 

is available, see the respective chapters for more details. 

 

Rovibrational initial conditions, however, are defined via three quantum 

numbers v, j, and mj. The population distribution of these states is governed by 

model simulations of the diatomic molecules, and the states are populated 

according to input settings like rotational and/or vibrational temperatures. The 

population of a given v, j state is given by: 

 
𝐹𝑣,𝑗 =

2𝑗 + 1

𝑍(𝑇𝑣𝑖𝑏 , 𝑇𝑟𝑜𝑡)
𝑒
−
𝐸𝑣,𝑗=0−𝐸𝑣=0,𝑗=0

𝑘𝐵𝑇𝑣𝑖𝑏 𝑒
−
𝐸𝑣,𝑗−𝐸𝑣,𝑗=0
𝑘𝐵𝑇𝑟𝑜𝑡  

(2.74). 

Here Z(Tvib, Trot) is the partition function for given vibrational and rotational 

temperatures, Ev,j
  is the energy of a given (v, j) state, and Tvib and Trot are the 

vibrational and rotational temperatures. In molecular beam experiments (see 

Section 1.2.4) these temperatures are related to the nozzle temperature. Initial 

intramolecular distances and momenta are computed from a quasi-classical full-

cycle vibrational simulation of the molecule in the gas-phase. The rotational 

state is selected according to the rotational population of the initial angular 

momentum which is defined by 

 𝐿 = ℏ√𝑗(𝑗 + 1) (2.75), 

and the orientation of L is randomly sampled with the constraint that  

 cos(𝜃𝐿) =
𝑚𝑗

√𝑗(𝑗 + 1)
 (2.76). 

Here θL is the angle between L and the surface normal. The mj states are all 

sampled with equal probability as these states are degenerate for homonuclear 

diatomic molecules in the absence of a magnetic field. It must be noted that, 

depending on the nuclear spin statistics of the diatomic molecule in question, 

not all j states are allowed, e.g., even j states are not permitted for O2
173. Put very 

briefly this is due to the combination of the Pauli principle, as also briefly 

discussed in Section 2.2.2, and the fact that undistinguishable nuclei may get 

interchanged in the rotation of a molecule. That is, nuclei have their own spin, 

which depending on the number of protons and neutrons in the nuclei can be 

either integral or fractional, i.e., the nucleus will behave like a fermion or a 

boson. This means the sign of the wavefunction has to either change sign (like 

with electrons, i.e. fermions) or remain the same (for bosons) when two nuclei 
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are interchanged by the rotation. This means that certain types of rotational 

transitions and rotation states may be less occupied (for H2) or completely 

forbidden (for O2). The details of this are beyond the scope of this thesis and the 

reader is referred to Ref. 173 for a more detailed explanation. Chapter 3 includes 

a table in Section 3.2.5 with the rovibrational occupations for an O2 beam of Tvib 

= 300 K and Trot = 9 K. The temperature conditions, i.e., Tvib and Trot, are consistent 

in all three further chapters of this thesis. Further details of the initial conditions 

of the molecules in QCT dynamics are given in the respective chapters. 

 

Lastly, although in the initial conditions of the molecule, quantisation is taken 

into account in QCT, the classical time propagation means that quantisation may 

be lost and energy may leak from states where this would normally not be 

allowed. This generally does not happen in the QCT for a diatomic molecule in 

isolation but this may occur when the molecule is interacting with other 

molecules or with a metal surface. 

  




