

Exploring senescent chondrocytes during aging: sleeper AGEnts of osteoarthritis

Boone, I.

Citation

Boone, I. (2025, October 17). Exploring senescent chondrocytes during aging: sleeper AGEnts of osteoarthritis. Retrieved from https://hdl.handle.net/1887/4273547

Version: Publisher's Version

Licence agreement concerning inclusion

License: of doctoral thesis in the Institutional

Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4273547

Note: To cite this publication please use the final published version (if applicable).

Exploring senescent chondrocytes during aging:Sleeper AGEnts of osteoarthritis

- 1. Identifying senescence endotypes through blood-based metabolites, rather than relying on trial-and-error approaches, is essential to enhance clinical trial success and enable more effective, personalized treatments. (**This thesis**)
- 2. Sports that exert high-impact mechanical stress on joint tissues can induce chondrocyte senescence, increasing the risk of developing osteoarthritis. (**This thesis**)
- To understand cellular senescence in tissues composed of post-mitotic cells like chondrocytes or neurons, the field must move beyond proliferative cell models and prioritize systems that accurately reflect the unique biology of post-mitotic cells. (This thesis; Sapieha, P. et al. Trends in cell biology, 2018, 28(8), 595-607.)
- 4. Human joint-on-chip systems faithfully mimic the physiologically relevant bone-cartilage interface in vitro and can be experimentally perturbed to model osteoarthritis-like damage. As such, they represent a promising alternative to traditional mouse models, aligning with the 3Rs principle and growing societal demand for more ethical and human-relevant research approaches. (This thesis; Lin, Z. et al. Frontiers in bioengineering and biotechnology, 2019, 7: 411.)
- Miniaturized human neo-cartilage organoids offer a scalable and physiologically relevant platform for high-throughput drug testing, enabling sufficient sample sizes for statistically relevant outcomes. (This thesis)
- The accumulation of senescent cells and their secretory phenotype (SASP), that occurs
 due to mechanical and cellular stress, drives osteoarthritis risk particularly in preserved
 articular cartilage. (This thesis; McCulloch, Kendal et al. Aging cell, 2017, 16.2: 210-218)
- 7. Osteoarthritis and cellular senescence represent distinct biological processes. (This thesis)
- 8. Triiodothyronine (T3) contributes to terminal maturation of chondrocytes, a hallmark of osteoarthritis pathophysiology. This underscores the thyroid hormone signaling pathway as a promising target for disease-modifying therapies in osteoarthritis. (This thesis; Korthagen, N. M., et al. Arthritis Research & Therapy, 2024, 26.1: 91; Zhao, Jinlong, et al. Scientific Reports, 2024, 14.1: 13924)
- 9. Increased funding for interdisciplinary research is crucial; it fosters innovative approaches and can significantly advance progress within established research fields. (**This thesis**)
- 10. "Success is not final, failure is not fatal: It is the courage to continue that counts." Winston Churchill Scientific research is filled with setbacks, uncertainties, and slow progress. Embracing resilience and continuing to push forward despite challenges during a PhD journey is what ultimately drives meaningful contributions to the field.