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Chapter 2

ABSTRACT

The vascular endothelium is a highly specialized barrier that controls passage of
fluids and migration of cells from the lumen into the vessel wall. Endothelial cells
assist leukocytes to extravasate and despite the variety in the specific mechanisms
utilized by different leukocytes to cross different vascular beds, there is a general
principle of capture, rolling, slow rolling, arrest, crawling, and ultimately diapedesis
via a paracellular or transcellular route. In atherosclerosis, the barrier function of the
endothelium is impaired leading to uncontrolled leukocyte extravasation and vascular
leakage. This is also observed in the neovessels that grow into the atherosclerotic
plaque leading to intraplaque hemorrhage and plaque destabilization. This review
focuses on the vascular endothelial barrier function and the interaction between
endothelial cells and leukocytes during transmigration. We will discuss the role
of endothelial dysfunction, transendothelial migration of leukocytes and plaque
angiogenesis in atherosclerosis.
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1. INTRODUCTION

The vascular endothelial lining is highly specialized and acts as a semi-confluent
barrier controlling passage of fluids and migration of leukocytes from the lumen
into the vessel wall. Under inflammatory conditions, endothelial cells (ECs) can
assist leukocytes to leave the circulation to migrate into the underlying tissue to
fight invading pathogens [1,2]. Under pathophysiologic conditions, such as chronic
inflammation and atherosclerosis, ECs are activated and the barrier function of the
endothelium becomes impaired, leading to uncontrolled leukocyte migration and
vascular leakage [3,4]. Atherosclerosis starts with EC activation mainly due to lipid
mediators such as oxidized low density lipoprotein (ox-LDL), which upregulates
the expression of endothelial adhesion receptors such as intercellular adhesion
molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1). Consequently,
immune cells enter the subendothelial tissue initiating plaque formation. At later
stages of plaque development, immune cells can also enter the plaque through
vessels growing into the plaque [5,6]. These plaque neovessels are often immature
with a limited barrier function [7] leading to increased immune cell transmigration
and intraplaque hemorrhage. This results in plaque instability, ultimately leading to
rupture and the progression of cardiovascular diseases, such as stroke, myocardial
infarction (Ml), or peripheral artery disease (PAD).

This review summarizes current knowledge on how the endothelium forms a
semi-permeable barrier and how the endothelium assists the immune cells in their
journey into the underlying tissue. We will discuss the role of endothelial dysfunction
in plaque angiogenesis and its contribution to the development of atherosclerosis in
different vascular beds.

2. THE ENDOTHELIAL BARRIER FUNCTION

The vascular endothelium lines the inner layer of the blood vessel and actively controls
extravasation of fluids, ions, molecules, and leukocytes [8]. The integrity of the
endothelium is maintained by intercellular junctions to prevent vascular leakage [9].
These cell-cell junctions consist of protein complexes that are part of the adherens
junctions (AJs), gap junctions (GJs), tight junctions (TJs), and additional other adhesion
receptors such as CD31/Platelet Endothelial Cell Adhesion Molecule—1 (PECAM-1),
which can be disrupted during EC activation (Figure 1). GJs are formed by connexin-
mediated transmembrane channels allowing direct communication between ECs via
the passage of ions and small signaling molecules [10]. In contrast, AJs and TJs form
adhesion structures that control paracellular permeability [8]. The organization of
such EC junctions varies within the vascular tree depending on the tissue-specific
function of the endothelium [11,12].
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Figure 1. The endothelium under (patho)physiologic conditions.

(A) Tight junctions, made by occludins, claudins, and JAMs, together with adherens junctions,
formed by VE-cadherin, PECAM-1 and CD99 control endothelial barrier function by maintaining
interendothelial junctions. Endothelial cells are connected to the vascular ECM, pericytes and VSMCs
via N-cadherin and other interactions. N-cadherin activates Trio, Rac1 and also directly induces
assembly of VE-cadherin junctions. Trio, as well as VE-PTP, inhibits RhoA. Additionally, VE-PTP
prevents phosphorylation and subsequently degradation of VE-cadherin. NO is formed aiming to
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maintain a laminar flow together with the functional and intact glycocalyx. (B) Endothelial cells can
become activated by disturbed flow and inflammatory mediators. VEGF activates VEGFR2 leading to
internalization and degradation of VE-cadherin and TLR-activation results in NF-kB-activation. This
mediates upregulation of adhesion molecules and cytokine/interferon production. This ultimately
leads to leukocyte transmigration, vascular permeability, matrix degradation and angiogenesis.
AJs—adherens junctions; DAMPs—damage associated molecular patterns; ECs—endothelial
cells; ECM—extracellular matrix; eNOS—endothelial nitric oxide; ICAM-1—intracellular adhesion
molecule-1; JAMs—junctional adhesion molecules; MMPs—matrix metallo proteinases; NO—
nitric oxide; ox-LDL—oxidized low-density lipoproteins; PAMPs—pathogen-associated molecular
patterns; PECAM-1—platelet endothelial cell adhesion molecule-1; TJs—tight junctions; TLR—Toll-
like receptor; VCAM-1—vascular adhesion molecule-1; VE-cadherin—vascular endothelial-cadherin;
VEGF—vascular endothelial growth factor; VEGFR2—VEGF receptor 2; VE-PTP—vascular endothelial
protein tyrosine phosphatase; VSMCs—vascular smooth muscle cells.

2.1. Tight Junctions

TJs control permeability of ions and small molecules and are most prominent in the
blood-brain barrier (BBB) and the inner blood-retinal barrier where permeability
is restricted [13]. TJs are mainly comprised of the receptors occludin, claudins and
junctional adhesion molecules (JAMs) [14]. Claudin-5 is crucial for maintaining BBB-
integrity in mice [15]. Adhesion molecules contribute to endothelial integrity through
interaction with neighboring cells and induction of intracellular signaling, via their
cytoplasmic domains and their extracellular domain [16]. TJ-proteins are linked to the
actin cytoskeleton via the adaptor proteins Zonula Occludens (Z0) 1, 2, and 3 as well
as other protein complexes [17]. Interestingly, bidirectional signaling has been found
between Z0-1 and JAM-A. This regulates junctional localization of both molecules
suggesting their involvement in upstream regulation of TJ assembly [18]. In addition,
the assembly of TJs is dependent on formation of AJs [19] and changes in TJs are
coordinated with changes in AJs [20].

2.2. Adherens Junctions

AJs are cadherin-based adhesions that provide mechanical strength to cell-cell
junctions. Vascular Endothelial (VE)-cadherin has extracellular binding domains
and a cytoplasmic domain that is connected to the actin cytoskeleton through
interaction with catenins. VE-cadherin, together with PECAM-1-based adhesions,
provides mechanical strength to the endothelial junctions [21,22]. Intracellularly,
p120-catenin binds to the membrane-proximal cytoplasmic domain of VE-cadherin
and promotes cadherin clustering by reducing turnover, whereas B/y-catenins
bind to the membrane-distal cytoplasmic domain, recruiting a-catenin which
binds actin filaments and is therefore crucial for AJ stabilization [23,24]. Mice
with a genetically engineered VE-cadherin-a-catenin fusion construct, unable to
dynamically mediate this interaction, were resistant to vascular endothelial growth
factor (VEGF)- and histamine-induced vascular leakage [25]. VE-cadherin promotes
the formation of functional TJs through upregulation of claudin-5, [20] whereas the
tight junction molecule JAM-C decreases endothelial integrity by targeting VE-
cadherin, highlighting the complexity of the interplay between different junctional
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proteins [26]. The adhesion of VE-cadherin is controlled by phosphorylation and
dephosphorylation on specific tyrosine residues [27]. In response to vascular
permeability stimulators, such as VEGF and bradykinin, the tyrosine residues of VE-
cadherin become phosphorylated (Y685 and Y658), resulting in instable AJs and an
increased vascular permeability [28]. Interestingly, dephosphorylation of Y731 of
VE-cadherin results in increased leukocyte transmigration [29,30]. It is important to
note that leukocyte transendothelial migration (TEM) and vascular permeability are
in fact uncoupled processes. During leukocyte TEM, vascular leakage is limited by a
specialized endothelial-originated F-actin ring that acts as elastic strap surrounding
the penetrating leukocyte [4].

One way of regulating the phosphorylation status of VE-cadherin is through
the interaction with vascular endothelial protein tyrosine phosphatase (VE-PTP).
VE-PTP binds through its extracellular domain to VE-cadherin and reduces tyrosine
phosphorylation of VE-cadherin. This promotes the adhesive function of VE-cadherin
by reducing its internalization independently of the phosphatase activity of VE-PTP.
Thus, VE-PTP promotes the endothelial barrier and reduces vascular permeability
[31,32]. VE-PTP can also influence Rho GTPase activity at AJs [32]. The family of Rho
GTPases (e.g., RhoA) is crucial for the regulation of the endothelial barrier function
as well as angiogenesis, as they control EC adhesion structures through cytoskeletal
remodeling [33]. Rho GTPases are activated by guanine-nucleotide exchange factors
(GEFs) and have different functions varying from improving cell-cell junction stability
to mediating cell migration. VE-PTP inhibits binding of RhoGEF GEF-H1 to the small
GTPase RhoA and decreases RhoA activity at AJs. As a consequence, local tension
is lost resulting in more stable junctions and improved barrier function [32]. Trio,
another RhoGEF, can bind to VE-cadherin during junction (re-)formation, and locally
activate the small GTPase Rac1. Increased Rac1 activity at junction regions promotes
the stabilization of VE-cadherin-based adhesions and thereby increasing the barrier
function [34].

Another important endothelial cell-cell junction protein is PECAM-1. PECAM-
1 is a transmembrane glycoprotein expressed on ECs, platelets, and several
leukocyte-subsets [35]. Intracellular signaling occurs via phosphorylation of Ig-
like immunoreceptor tyrosine-based inhibition motifs resulting in recruitment of
Src Homology 2 phosphatases and interfering with tyrosine kinase pathways [36].
This affects various intracellular signaling molecules and pathways such as ICAM-
1, interleukin (IL)-1B signaling, thereby affecting processes such as cell survival,
shear stress and barrier integrity [37]. PECAM-1 can also promote endothelial
junction stability through dephosphorylation of B-catenin [38]. It was found that
ECs expressing PECAM-1 exhibited improved steady-state barrier function and
more rapidly restored barrier integrity following perturbation, compared to PECAM-
1 deficient ECs [35]. PECAM-1, together with VE-cadherin and VEGF receptor 2
(VEGFR2) forms a mechanosensory complex controlling responsiveness to flow [39].
The function of PECAM-1 in flow can impact downstream NF-«kB activation, integrins,
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small GTPase RhoA signaling, actin polymerization, and thus the formation of stress
fibers [39,40]. PECAM-1"- mice cannot activate NF-kB and downstream inflammatory
genes in regions of disturbed flow [39].

2.3. Tissue-Specific Endothelium

Depending on the anatomical locations within the vascular tree, the endothelium can
be relatively leaky (capillaries/venules) or not (arteries). In addition, depending on
the organ-specific function of the endothelium, it can be continuous (e.g., brain) or
fenestrated (e.g., kidney/glands), allowing for more or less extravasation respectively,
depending on TJs and AJs [41,42]. Transit through fenestrated endothelium is limited
to micro-molecules only and is controlled by e.g., blood flow, the basement membrane
and glycocalyx [41]. The glycocalyx is a highly charged layer coving the luminal side
of the endothelium functioning as a vascular barrier as well as a mechanotransducer
regulating vascular tone [43]. The basal side of ECs is connected to the basement
membrane, rich in laminin and type IV collagen, which strengthen the endothelium
and can control extravasation of fluids in, e.g., the BBB [44]. In addition to paracellular
permeability, ECs control transcellular transport of (macro)molecules such as
lipoproteins.

Capillaries are also surrounded by pericytes which are multipotent perivascular
cells. The EC-pericyte interaction is important to regulate EC proliferation, vessel
tone and endothelial barrier function. Loss of pericyte coverage on the vascular
endothelium is associated with excessive angiogenesis and BBB disruption, leading
toincreased plasma leakage [45,46]. Signaling between pericytes and ECs can occur
through N-cadherin, which forms heterotypic adhesions between ECs and surrounding
cells such as pericytes and VSMC and involves Trio signaling [47]. In addition, this
intercellular communication also occurs via paracrine secretion of growth factors,
such as VEGF, which increase leukocyte transmigration and angiogenesis [48].

The interstitial extracellular matrix (ECM), together with the basement membrane,
forms the vascular ECM giving the endothelium structural and mechanical strength,
necessary to resist hemodynamic forces on the vessel wall [49]. The endothelium
also interacts with the vascular ECM. Collagens and fibronectin are the major
components of the vascular ECM, in which also vascular smooth muscle cells (VSMCs)
are embedded. ECM components can modulate the phenotype of vascular cells.
During angiogenesis, ECs interact with type | collagen, resulting in upregulation of
P-selectin and monocyte chemoattractant protein-1 (MCP-1) via ERK1/2 dependent
mechanisms, which contribute to enhanced leukocyte attachment [50]. VSMCs
contribute to the endothelial barrier function by providing resistance to mechanical
stress, partly by synthesizing ECM, as well as regulating vascular tone [51]. In addition
to the barrier function, the endothelium is responsible for regulating the vasomotor
tone, maintaining a normal blood pressure, and consequently upholding laminar
flow. Disturbed flow leads to increased permeability and is strongly correlated with
atherosclerosis [52,53].
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2.4, Vasomotor Function

Vasomotor tone is maintained by the release of numerous dilators and constrictors of
which nitric oxide (NO) is the most important [54]. ECs metabolize L-arginine via the
endothelial isoform of NO synthase (eNOS) to form NO, a process that is subject to
both transcriptional and post-translational regulation [55]. Continuous exposure of
the endothelium to risk factors such as hyperlipidemia, hypertension, smoking, shear
stress, or inflammation leads to eNOS impairment [56]. Decreased NO availability
results in inflammatory EC activation by upregulation of adhesion molecules such
as ICAM-1 and VCAM-1, NF-kB mediated cytokine expression and disruption of the
anti-thrombotic surface of the ECs. Other endothelium-derived vasodilators include
prostacyclin and bradykinin. Bradykinin stimulates release of NO, prostacyclin, and
the production of tissue plasminogen activator linking endothelial dysfunction to
fibrinolysis. The endothelium also produces vasoconstrictor substances such as the
very potent endothelin and angiotensin Il which are counteracted by NO. Angiotensin
Ilis also an antioxidant and enhances endothelin production and both stimulate VSMC
proliferation, thereby contributing to atherosclerotic lesion formation [57].

3. ENDOTHELIAL ACTIVATION AND LEUKOCYTE
TRANSENDOTHELIAL MIGRATION

Ox-LDL, damage associated molecular patterns (DAMPS), and pathogen associated
molecular patterns (PAMPs), as well as disturbed flow can activate the endothelium
[58,59] in part by upregulation of Toll-like receptors (TLRs). TLR downstream signaling
results in induction of the NF-kB-pathway, and downstream cytokine (a.0. TNF-a and
MCP-1) and interferon production [60,61]. This, in turn, mediates the upregulation of
adhesion molecules such as VCAM-1 and ICAM-1 [62—-64]. Targeting this pathway could
therefore decrease the inflammatory response and reduce leukocyte transmigration.
NF-kB-pathway blockade resulted in decreased leukocyte TEM and TNF-a-induced
expression of adhesion molecules [65,66]..

Inflammatory cytokines and chemokines, such as TNF-a that are secreted by
activated ECs can recruit leukocytes to sites of inflammation and initiate the process
of leukocyte transmigration [67]. Furthermore, inflammatory activation of ECs
triggers redistribution and upregulation of adhesion molecules such as JAM-A in vitro
as well in vivo [68,69]. Upregulation and redistribution of adhesion molecules from
EC junctions to the apical side of the EC mediates the inflammatory response [70].

Internalization of junctional adhesion molecules also regulates leukocyte TEM.
In response to inflammatory stimuli, VE-cadherin-based junctions are disrupted,
disassembled, and internalized from the membrane into the cytosol and ultimately
degraded leading to increased vascular permeability and increased leukocyte
transmigration [71]. In vitro it has been shown that ox-LDL promotes monocyte
transmigration partially through downregulating VE-cadherin function and weakening
of endothelial junctions [72].
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Adhesion of leukocytes to and migration across the vessel wall into the underlying
tissue occurs constitutively, but the frequency can increase in response to various
stimuli and different conditions, such as endothelial activation, dysfunction, and
inflammation [73]. Despite the variety in the specific mechanisms utilized by different
leukocytes to cross different vascular beds, there is a general principle of capture,
rolling, slow rolling, arrest, crawling, and ultimately diapedesis via a paracellular or
transcellular route [1,74].

3.1. Finding Sites of Extravasation

Adhesion molecules expressed on ECs (e.g., selectins, CAMs), or chemokines
and chemoattractants as well as shear stress can guide leukocytes to sites of
extravasation. Presence of shear stress is mandatory for lymphocyte TEM in
vitro [75]. Disturbance of flow results in disruption of VE-cadherin and B-catenin-
mediated cell-cell junctions at cell borders [76]. Cytokines such as TNF-a released
by circulating leukocytes stimulate neutrophil transmigration [77]. Prolonged
exposure to inflammatory cytokines, upregulates expression of selectins, ICAM-1
and VCAM-1 on the EC surface [74]. For firm leukocyte attachment, activation of
integrins is required. Lymphocyte function-associated antigen 1 (LFA-1, expressed
by all leukocytes) and macrophage antigen 1 (Mac1, expressed by myeloid cells)
are the most important integrins. Inflammatory cytokines, together with P- and
E-selectin, caninduce conformational changes of these integrins enabling leukocytes
to interact with adhesion molecules promoting slow rolling and firm adhesion [78,79].
Lymphocytes, especially T cells, share some of the recruitment mechanisms with
other leukocytes, but also have distinct mechanisms for extravasation. In response to
specific major histocompatibility complex (MHC) molecules and cytokines, e.g., IL-12,
T cells express different chemokine receptors and selectin ligands to acquire active
and migratory phenotypes [74]. Interestingly, ECs can function as antigen presenting
cells that also express costimulatory and co-inhibitory molecules as well as cytokines
that can lead to activation of T cells [80].

Following firm adhesion, leukocytes crawl on the vascular endothelium, which
has been suggested to enable adhering cells to find optimal sites for extravasation.
Neutrophil crawling is strictly Mac1-dependent [81], whereas monocyte crawling can
be Mac1- as well as LFA-1-dependent [82,83].

3.2. Opening Endothelial Cell Junctions

Once leukocytes are guided to sites of extravasation, “docking structures” are
formed that strongly correlate with leukocyte diapedesis and are therefore termed
transmigratory cups [84,85]. These structures are enriched for ICAM-1 and VCAM-1
and consist of actin-rich membranes that can form microvilli-like protrusions, which
“grasp” the leukocytes [86]. (Figure 2) The formation of these endothelial structures
depends onintracellular ICAM-1 engagement and subsequent downstream activation
of small GTPase RhoG through the RhoGEF SGEF [87]. Trio induces formation of
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docking structures through activation of RhoG and Rac1. Reducing Trio activity
resulted in decreased leukocyte transmigration [88].

ol | cukocyte

Figure 2. Leukocyte and static bead transmigration.

Protrusive membranes (Endothelial protrusions, indicated by the arrowheads) arise from the
apical endothelial surface and surround a leukocyte (left image) or a static bead (right image). The
protrusions are believed to assist the leukocyte on its way through and limit vascular leakage. The
image on the left may represent a transcellular event with the leukocyte on its way through the
endothelial cell border, although the openings at the endothelial level may also suggest that this is
a paracellular event. Bar on the left image, 10 pm.

There are two ways for leukocyte TEM: either through the EC body, i.e.,
transcellular, or through intercellular junctions, i.e., paracellular. Although it has
been observed in vitro and in vivo that most leukocytes migrate paracellularly, the
transcellular route is also used [84,89]. Various cell surface receptors are involved in
diapedesisincluding JAMs, VE-cadherin, and PECAM-1. Leukocytes expressing LFA-1
can bind to endothelial JAM-A and blockade of JAM-A reduced T cell TEM under both
physiological and inflammatory conditions [90]. Moreover, JAM-A has been shown to
be upregulated in human and mouse atherosclerotic plaques [91]. JAM-C interacts
with leukocyte Mac-1 and prevents reverse transmigration of neutrophils [92] and,
together with JAM-A, mediates polarization signals that facilitate neutrophil TEM
[89,93].

As established, PECAM-1, is expressed on ECs, platelets, and leukocytes, but
has distinct functions on each cell type. Antibodies blocking endothelial PECAM-1
increase vascular permeability [94] and it was therefore assumed that increasing
PECAM-1 expression could reduce vascular permeability and thus leukocyte TEM
by increasing cell-cell junction stability. However, PECAM-1 also inhibits activation
of platelets and leukocytes [95]. PECAM-1-deficient mice have an excessive
inflammatory response and therefore exhibit increased disease severity, [96,97]
which is not only due to T cell hyperresponsiveness but also attributed to increased
vascular permeability [98]. Increasing PECAM-1 expression on ECs, therefore, is an
attractive target to inhibit leukocyte TEM, but the effects of PECAM-1 agonizing
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antibodies are most likely also derived from the immunomodulatory role of PECAM-
1 on leukocytes rather than solely the effect on PECAM-1 expressed by ECs.

CD99 is a heavily glycosylated transmembrane protein that is expressed on
leukocytes and ECs and is involved in leukocyte transmigration. Blocking of CD99
results in decreased migration of monocytes and neutrophils [99,100]. Specifically,
blocking of CD99 resulted in arrest of both neutrophils and monocytes within EC
junctions, whereas blockade of PECAM-1 resulted in arrest on the apical surface
of the endothelium [99,100]. Different adhesion molecules act sequentially during
diapedesis since deletion or blockade of ICAM-2, JAM-A, PECAM-1, and CD99 leads
to arrest of leukocytes at different steps of TEM [99,101].

As previously established, VE-cadherin plays a central role in diapedesis.
Preventing the dissociation of VE-PTP from VE-cadherin inhibits induction of vascular
permeability and consequently leukocyte TEM [102]. Leukocyte-EC interaction can
trigger this dissociation, thus promoting diapedesis. Interestingly, VEGF, can also
trigger VE-PTP and VE-cadherin dissociation [103].

3.3. Leukocyte Migration into the Vessel Wall

After migration through the endothelial monolayer, which occurs within 2-5 min,
leukocytes need to pass the endothelial basement membrane, which takes 20—-30 min
[104,105]. Although this indicates that passage across the basement membraneis a
key rate-limiting step, this process is poorly understood [106]. It has been suggested
that migration takes place at sites of the basement membrane that express low
laminin and collagen IV [106—108]. Laminin 511 inhibits leukocyte transmigration
by increasing junctional VE-cadherin and Laminin a5 was found to selectively
inhibit T cell TEM through inhibition of T cell integrins [106,109]. Upon exposure to
inflammatory cytokines and angiogenic factors, ECs produce matrix-degrading
enzymes, such as matrix metalloproteinases (MMPs), resulting in decreased ECM
protein content, which favors leukocyte TEM. For example, activity of a disintegrin
and metalloproteinase (ADAM) 10 is required for leukocyte TEM [110]. Evidence
also suggests that transmigrating leukocytes induce remodeling of the basement
membrane via their proteases such as neutrophil elastase, but the exact mechanisms
are not yet discovered [108,111].

3.4.Vascular Bed Specific TEM

Like leukocyte TEM under physiologic condition, TEM under inflammatory conditions
is condition-specific, which is derived from EC heterogeneity. Single cell analysis
of murine ECs from 11 tissues has identified 78 EC subclusters [112]. This analysis
revealed that the tissue rather than the vascular bed determines EC heterogeneity,
with capillary ECs exhibiting more tissue-specific variation than arterial and venous
ECs. This is to be expected as exchange of nutrients primarily takes place at a
capillary level. The recent discovery of EC heterogeneity is in line with prior findings
that indicate tissue specific mechanisms for leukocyte TEM [113].

51



Chapter 2

4. ATHEROSCLEROSIS AND BARRIER FUNCTION

Endothelial dysfunction has proven to be an early marker for atherosclerosis [114].
In early stages of atherosclerosis, LDL molecules accumulate in the subendothelial
region, where these molecules are then oxidized [115]. This is a major trigger for
endothelial dysfunction, together with activation of TLRs by DAMPs. Targeting ox-LDL
or modulation of TLRs clearly influences the influx of inflammatory cells in the vessel
wall [60, 116, 177]. Ox-LDL, can cause upregulation and redistribution of, e.g., JAM-A
which promotes lesion formation and leukocyte infiltration [68]. Genetic deletion of
JAM-A on ECs reduced plaque size and monocyte and T cell presence in vivo, whereas
genetic deletion of JAM-A on leukocytes did not decrease plaque size but did reduce
monocyte and T cell presence. Moreover, transmigration of JAM-A”"monocytes over
these JAM-A"-EC was decreased ex vivo compared to JAM-A ** monocytes. This
highlights the cell-specific contributions of adhesion molecules.

Invivo EC activation and leukocyte transmigration can be inhibited by genetically
or targeted inhibition of adhesion molecules. Inhibition of VCAM-1, either by genetic
alteration or antagonizing antibodies, reduced plaque formation and infiltration
of leukocytes [118, 119]. Similarly, deficiency of ICAM-1 impaired lesion formation
and soluble ICAM-1 correlated with disease severity [120]. Genetic deletion of SGEF
resulted in decreased atherosclerosis by reducing docking structure formation
(enriched with ICAM-1) and monocyte infiltration [121]. Genetic deletion of P- and
E- selectin reduced plaque size and calcification in both early and advanced lesions
[122]. Moreover, in the downstream processes, for instance, by EC specific inhibition of
NF-kB reduced plaque formation, comparable effects such as decreased expression
of VCAM-1 on ECs and cytokines in the aorta and impaired macrophage infiltration
were observed [123].

It was found that the organization of VE-cadherin-based junctions at plaque
endothelium was disorganized and frequently discontinued compared to normal
endothelium [124]. Intriguingly, advanced plaque endothelium was found to be more
organized than early atherosclerotic plaque endothelium and have improved luminal
endothelial barrier function.

Polymorphisms of PECAM-1 are associated with endothelial dysfunction and
adverse cardiovascular events in humans [125,126]. Interestingly, PECAM-1 has
atherogenic or atheroprotective effects depending on the local hemodynamic
environment. PECAM-1 deficiency protects from plaque formation in the inner
curvature of the aortic arch (low flow) but enhances plaque formation in the
descending aorta (high laminar flow) [127-129]. Inhibition of PECAM-1 decreased NF-
kB-activation in response to atheroprone flow [128] and PECAM-1 deficiency reduced
macrophage content, under low shear conditions [127].

Part of the extracellular domain of PECAM-1 expressed on T cells can be
enzymatically shed upon T-cell receptor stimulation, whilst a juxta-membrane
extracellular sequence remains expressed. This then can still be phosphorylated
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and in contrast inhibits T cell activation upon stimulation [130]. Loss of PECAM-
1-expression on T-cells is associated with T cell hyperresponsiveness and
atherothrombotic complications in humans and mice [131]. PECAM-1-agonizing
antibodies decrease lesion formation, intraplaque hemorrhage, and intraplaque
angiogenesis by reducing T cell activation and infiltration and increasing circulating
regulatory T (T ) cells [129,132]. These T, cells have anti-inflammatory and
atheroprotective effects [133] and inhibition or depletion of T__ cells is associated
with atherosclerosis [134,135]. In contrast, other T cell subsets are known to enhance
inflammation and exhibit atherogenic effects. T helper 1 (T, 1) cells, for example,
promote atherosclerosis by secreting pro-inflammatory cytokines such as IFNy [136].
The use of immune checkpoint inhibitors, such as PD1-inhibitors, in cancer to activate
T cells, has been shown to result in cardiovascular toxicity in humans [137]. In mice,
PD1 deficiency resulted in increased atherosclerosis through exacerbated infiltration
of T cells in the lesion [138].

In addition to the previously described adhesion molecules, platelets also play
an important role in leukocyte TEM and early atherosclerosis formation. Platelets
express various adhesion molecules, such as JAM-A and PECAM-1, and can interact
with leukocytes [139]. Atherosclerotic plaque size was increased in platelet specific
JAM-A7 mice with increased macrophage and T cell content. Moreover, these platelets
exhibited increased binding capacity to leukocytes as well as increased inflammatory
activity [140]. In addition to this distinct role in leukocyte recruitment, platelets are
also needed to prevent bleeding during diapedesis. In mice with thrombocytopenia,
neutrophil diapedesis was responsible for hemorrhaging demonstrating that not only
leukocytes and ECs are involved in diapedesis but also other cells such as platelets
[141].

4.1. Plaque Hypoxia

Once monocytes passage the endothelial barrier and reach the intimal space, colony-
stimulating factor induces monocytes to phenotypically transform into macrophages
and start taking up modified LDL particles [142]. Macrophages release reactive
oxygen species (ROS) and inflammatory cytokines (a.o. TNF-a, MCP-1, IL-1, IL-6)
which contribute to the continued recruitment and activation of other leukocytes. The
activated macrophages also secrete MMPs which are clearly associated with plaque
destabilization [143]. Macrophage activation involves a lot of metabolic processes
resulting in a macrophage phenotype that is hypoxia inducible factor 1a (HIF-1a)
dependent [144,145]. Upon transformation into foam cells, macrophages may undergo
necrosis and thereby contribute to the necrotic core of advanced lesions. These
advanced lesions are characterized by an increased vessel wall thickness resulting
in regional limited oxygen exchange and thus hypoxic regions [146,147]. In a model of
vein graft atherosclerosis, hypoxia replacement therapy resulted in enhanced vein
graft patency and plaque stability via ROS mediated apoptosis of macrophages [148].
The oxygen-sensitive transcription factor HIF-1a is crucial in the adaptation to the
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local hypoxia status. HIF-1a induces transcription of hypoxia responsive genes such
as VEGF, fibroblast growth factor, cytokines, and angiopoietins (Angs). Silencing of
HIF-1a in macrophages reduces proinflammatory factors and increases macrophage
apoptosis [149]. In contrast, deficiency of HIF-1a in antigen presenting cells induces
T,1 polarization and aggravation of atherosclerosis via increased production of
inflammatory cytokines [150].

4.2. Intraplaque Angiogenesis and Intraplaque Hemorrhage

Due to the hypoxia, plaque neovessels are formed through the HIF-1a-mediated
transcription of angiogenic factors such as VEGF, to match the increased demand of
oxygen in the plaque. VEGF, and activation of VEGFR2, promotes internalization of VE-
cadherin and mediates the behavioral switch of ECs from a quiescent to an invasive
phenotype leading to proliferation and migration of ECs into the plaque [151,152]. In
turn, VE-cadherin limits VEGFR2 activation [153]. VEGF also induces ADAM10 and
ADAM17 activity in ECs, mediating VE-cadherin cleavage [154]. It is thought that
the ECs triggered by activation of VEGFR2 grow from the existing adventitial vasa
vasorum into the atherosclerotic plaque [155]. In addition, Ang2 is upregulated and
enhances angiogenesis by inducing detachment of pericytes to enable EC migration
[156]. Moreover, Ang2 antagonizes Ang1, which promotes vessel maturation by
recruiting pericytes, decreasing PECAM-1 and VE-cadherin phosphorylation. Ang2
also decreases basal and VEGF-induced permeability, thus protecting against
plasma leakage and inhibiting leukocyte TEM [155, 157]. Ang2, therefore, strongly
compromises vessel maturation, yielding plaque neovessels with diminished
structural integrity due to incomplete or absent endothelial junctions, basement
membrane detachment and poor pericyte coverage rendering high susceptibility to
vascular leakage [7]. Moreover, these ECs exhibit an activated and dysfunctional
phenotype [7]. Indeed, intraplaque angiogenesis leads to intraplaque hemorrhage
and plaque neovessels are co-localized with erythrocytes and immune cells. (Figure
3,4A) [158] In addition, erythrocytes are known to interact with the endothelium to
facilitate and enhance influx of leukocytes into the plaque [159].
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Figure 3. Pathophysiology of early and advanced atherosclerosis.

Upon transcytosis and oxidation of LDL, the endothelium becomes activated leading to leukocyte
infiltration into the vessel wall. This triggers thickening of the intimal layer, ultimately resulting in
foam cell accumulation and necrotic core formation. Hypoxia induces intra-plaque angiogenesis,
but these neovessels are often mature which leads to intraplaque hemorrhage and excessive
extravasation of leukocytes. This results in production of cytokines, growth factors and MMPs,
creating a continuous loop of plaque growth and ultimately plaque rupture. Hb—hemoglobin;
LDL—low-density lipoproteins; MMPs—metallo matrix proteinases; oxLDL—oxidized low-density
lipoproteins; VSMC—vascular smooth muscle cell.

4.3. Angiogenesis Associated Macrophages

Once extravasated, erythrocytes lyse quickly, exposing hemoglobin which attracts
monocytes and neutrophils into the plaque [160,161]. Macrophages can take up
hemoglobin by CD163 leading to a distinct, alternative, non-foam cell macrophage
phenotype [162]. These CD163* macrophages are abundantly present in human and
murine plaques expressing HIF-1a and VEGF, upregulating VCAM and associating with
intraplaque angiogenesis and vascular permeability [163,164] (Figure 4B). Genetic
analyses indicated that polymorphisms that resultin increased CD163 expression and
are arisk factor for plaque rupture [163]. Genetic deletion of CD163 in mice reduced
plaque neovascularization, intraplaque hemorrhage and plaque progression. Regions
in the plaque that exhibit active inflammation, determined by, e.g., macrophage
content and MHC2-expression, show increased microvessel density in humans [165].
In advanced human lesions, ADAM17 expressing cells colocalize with CD68+-cells
and ADAM17 is also associated with plaque-progression and neovascularization.
[153,166,167]
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Figure 4. Inflammatory cell association with plaque neovessels.

Inflammatory cells (indicated by stars) located near neovessels (indicated by arrows) in murine
atherosclerotic vein grafts (A) Hemoglobin associated CD163+ macrophages localizing near
neovessels, DAPI (blue), CD31 (green), and CD163 (red) (B) CD3+ T cells localizing near neovessels,
DAPI (blue), CD31 (green) and CD3 (red).

Extravasated inflammatory cells secrete growth factors, cytokines and MMPs,
fueling intraplaque angiogenesis creating a continuous loop of plaque growth
[168]. Intraplaque angiogenesis and consequently intraplague hemorrhage are
associated with plaque growth, instability, and ultimately rupture [169]. Targeting
neovascularization may therefore stand as a promising approach to reduce
atherosclerotic disease burden. Blockade of VEGFR2 in a murine vein graft
atherosclerosis model decreased intraplaque hemorrhage, resulting in more stable
atherosclerotic lesions with increased EC junctions with reduced macrophage content
invivo and increased pericyte coverage in vitro [164]. Adding to that, inhibition of basic
fibroblast growth factor in the same vein graft atherosclerosis model resulted in
decreased intraplaque angiogenesis and hemorrhage as well as reducing macrophage
infiltration by reducing VCAM-1 expression [170]. Interestingly, myeloid ADAM17
deficiency is pro-atherosclerotic due to reduced shedding of TNF-receptor2 leading
to sustained pro-inflammatory signaling. In contrast, endothelial ADAM17 deficiency
is atheroprotective by mechanisms yet to be elucidated [171].

4.4, Statins

Statins are currently the principal drug in prevention of coronary artery disease
(CAD) [172]. They hamper atherosclerosis progression by lowering LDL plasma levels,
[173] but they have also been found to improve EC function and reduce inflammation
[174-176]. Statins inhibit LFA-1 leading to decreased interactions with ICAM-1 and T
cell activation [176] and reduce neutrophil transmigration by reducing Rho activity
[177]. Intraplaque angiogenesis was found to be reduced in patients treated with
atorvastatin compared to non-treated patients [178]. In mice, atorvastatin reduced
neovessel formation whilst improving vessel maturation leading to decreased
intraplaque hemorrhage in vivo. Atorvastatin was shown to increase VE-cadherin
expression and pericyte coverage ex vivo and inhibit Ang2 release as well as VE-
cadherin phosphorylation in vitro [28].
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4.5. Atherosclerosis Heterogeneity

In line with EC heterogeneity, the degree of atherosclerosis differs in the various
segments of the vascular tree. In CAD, for example, several studies have shown that
proximal lesions are more frequently observed than distal lesions, possibly due to
disturbed flow [179-181]. In addition, atherosclerosis also differs across different
vascular beds. There is great distinction between intracranial (IC) and atherosclerosis
in other vascular beds. Both can lead to severe ischemic events such as stroke, Ml,
and PAD.

IC atherosclerosis develops at a later age [182], but progression occurs more
rapidly compared to the linear progression that is seen in atherosclerosis at
other vascular beds [183]. Intracranial arteries have decreased permeability due
to higher number TJs, which results in decreased susceptibility to inflammation
[184]. In rabbits, ox-LDL impaired vaso-contraction and -dilatation in the carotid
but not in the basilar artery, suggesting that IC arteries might be more resistant
to ox-LDL [185]. In addition, IC arteries have a distinct morphology, which may also
contribute to the initial resistance of IC arteries to atherosclerosis together with
EC heterogeneity [112] may also contribute to the initial resistance of IC arteries to
atherosclerosis. Vasa vasorum are initially absent IC arteries and develop only as a
result of pathophysiological vessel wall thickening [186,187].

The variety between the arterial beds adds to the different forms of atherosclerosis
(e.g., between coronary and peripheral atherosclerosis) [188]. In general, peripheral
lesions have more calcifications but have a more stable phenotype compared to
coronary lesions. In addition, peripheral lesions develop more slowly, but are more
diffuse [189,190]. The increased susceptibility to atherosclerosis of the coronary
arteries compared to peripheral arteries has been attributed to increased vasa
vasorum density in coronary arteries [191].

5. FUTURE DIRECTIONS

Restoring endothelial barrier function and consequently reducing leukocyte
transmigration could be an effective strategy to decrease atherogenesis. Moreover,
reducing endothelial dysfunction would also improve quality of the neovessels
present and consequently reduce intraplaque hemorrhage. Using local therapy
targeting vascular bed specific abnormalities could prevent plaque progression with
limited side-effects. Knowledge on endothelial dysfunction, plaque angiogenesis
and vascular bed specific atherosclerosis is limited, and more research is needed
to utilize its therapeutic potential to its fullest.
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