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Chapter 6

Conclusion and Outlook

The main goal of the research presented in this thesis was to develop solutions that
facilitate applying deep learning algorithms under annotation constraints, with appli-
cations for cell imaging and archaeological remote sensing. Throughout this research,
we targeted the challenges present for the human operator in both the annotation
and the training processes within the deep learning pipeline. To do so, we relaxed the
quality requirements placed on the expert annotators, we proposed annotation-efficient
learning paradigms, and we introduced explainability case studies. Here, we present
a summary of the main contributions of this thesis, acknowledge its limitations, and

propose future research directions.

6.1 Contributions and Limitations

In Chapter 2 we modelled three types of inconsistencies that can occur when creat-
ing annotations for cell segmentation. These inconsistencies can be considered both
annotator-related errors or deliberate relaxations of the annotation process to allow
for creating larger quantities of annotations within a fixed time budget. We considered
the effect of the omission of a certain proportion of the target cells, the inclusion of
objects other than the target cells, and the effect of inconsistent cell boundaries under
the form of exaggerated or reduced boundary delineations (called bias). We performed
gradual reductions in the annotation quality and we tested their effect on the train-
ing of three architecturally-dissimilar segmentation networks. Our results indicated
that the networks were least affected by omissions, with inclusion and bias producing

more severe degradation of the performance, especially when the cells have small foot-
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prints. These findings may allow human operators to optimize quality control efforts
by focusing on the most impactful error types, thereby enhancing the robustness of
models even when annotation resources are constrained. This contribution directly
addresses one of the annotation process bottlenecks by enabling more strategic quality
trade-offs, thus supporting the deployment of robust segmentation models with fewer
high-quality annotated samples. One inherent limitation of our study is the scope in
which it was performed. We considered three CNN architectures, three data sets, and

three types of annotation errors, which can limit the broadness of our conclusions.

Based on the findings from Chapter 2, we proposed in Chapter 3 a method that
can enhance the quality of annotations suffering from various types of inconsistencies.
Our main contribution is designing a learning pipeline for cell segmentation in which
a small data set with high-quality annotations is leveraged to train a CNN to upgrade
a low-quality annotation to a high-quality one. We achieve this by perturbing the
high-quality annotations and tasking the CNN with retrieving their initial quality.
We then use this upgrade CNN to enhance the quality of a larger set with low-quality
annotations. We showed that by combining the initial small high-quality set with the
larger set with upgraded annotations, we can train better-performing cell segmentation
CNNs than on the high-quality set alone. This approach presents a practical solution
for scaling annotated data in a cost-effective manner by reducing the need for extensive
expert annotations. By enhancing lower-quality annotations through an automated
upgrading process, our method increases the usable dataset size without a proportional
increase in human effort, contributing to the applicability of deep learning in scientific
imaging under constrained annotation budgets. This contribution aligns with the
thesis’s aim to develop annotation-efficient solutions that support the training of deep
learning networks in data-limited domains. The main limitation of our approach is
the necessity of engineering perturbations that replicate the errors expected in the
low-quality data set. Although we showed that the match between perturbations and
errors does not have to be perfect, designing them is still an additional cost in the

development of the model.

The main contribution of Chapter 4 is creating a few-shot technique particularly
suited for cell segmentation. This method fits into the general few-shot learning
pipeline while accounting for requirements specific to cell segmentation. We leverage
the high-resolution feature maps produced by MSD networks trained on the known
cell classes, which we then linearly recombine to adapt to the new class of cells. We
demonstrated that the few-shot learning paradigm can be effectively applied to cell

images, with our method surpassing other techniques designed for natural images or
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medical image segmentation. Here, we targeted the training process of the deep learn-
ing pipeline and proposed a solution that reduces the reliance of the human operator
on large quantities of annotations. The few-shot learning technique we developed re-
duced the number of labelled samples required for training new classes in the context
of cell segmentation, enabling future experimentation with data sets previously un-
suitable for learning setups. One important limitation of our method is its one-shot
performance. When trained with a single image, the results vary based on how repre-
sentative that image is for the rest of the data set. This variation, however, becomes
significantly lower when using 5 or 10 shots. Another limitation is the requirement to
have sufficient annotations for some of the cell types within a given data set in order
to train the MSD networks. This limits the applicability of our work to scenarios in

which one wants to segment new structures from an already annotated data set.

Chapter 5 contributes with an annotation process for archaeological site segmen-
tation starting from image-level annotations. We use binary annotations for image
classification, i.e., whether a site is present within an image, to train classification
models from which we employ explainability techniques to extract activation maps
that we further process to obtain site boundaries. In addition to producing cheap
annotations for segmentation, we leverage the resulting maps to perform an analysis
of the learned features by three CNNs, which can contribute to a better understanding
of the CNNs operation and, consequently, to the wider adoption of these techniques
in archaeological works. Moreover, we present a modification to an existing explain-
ability technique which produces site boundaries close to the expert estimation. We
observed differences in the image features that different architectures tend to highlight
and we also showcased the explainability techniques’ potential of highlighting biases
or mis-annotated images. This contribution tackles problems in both the annotation
and training processes and offers a dual benefit by providing a low-cost method for
segmentation annotation in archaeology while simultaneously enhancing model inter-
pretability. On one hand, alleviating the annotation scarcity facilitates the practical
introduction of deep learning in archaeological workflows as the human operator does
not need to focus much on producing annotations. On the other hand, the capacity to
derive meaningful visual explanations from CNNs facilitates a greater understanding
of model behaviour, which can build trust in the predictions of deep learning net-
works. This is important for interdisciplinary applications with non-technical fields
where model transparency and interpretability are valued. The geographical area to
which the study was applied constitutes the main limitation of this chapter. We did

not apply our techniques to images belonging to other regions which could contain
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Figure 6.1: A schematic representation of future research directions emerging from this
thesis, including enhanced annotation tools, adaptable learning methods and a focus on
explainability techniques, highlighting the necessity of continuous collaboration with domain
experts.

differently-looking sites or in which the landscape could pose more challenges in iden-

tifying a site image from a non-site one.

6.2 Outlook

Future research presents significant opportunities to streamline the advancement of
deep learning within scientific fields where the demands of annotation and training
processes pose challenges for human operators. In this section, we outline several
potential directions for alleviating the costs associated with these processes. For a
schematic representation of the envisioned directions, see Figure 6.1.

On the annotation side, one possibility emerges from combining the low-data re-
quirements and short training time of few-shot learning with the enhancement of an
upgradinig CNN into efficient annotation tools. Such tools can rely on an initial small
set of manual annotations to train a few-shot model whose predictions can be further
refined by an upgrading CNN. In this way, the expert can focus only on the most
challenging samples, while the networks would also improve as more images are being
annotated, in an active learning manner [107].

Alternatively, rather than focusing solely on increasing the throughput of the an-
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notation process, this process may be accelerated by generating extensive synthetic
segmentation datasets via generative networks, such as diffusion models, where input
conditions (e.g., text queries, class labels) can be provided with significantly reduced
human intervention compared to the generation of pixel-level segmentation annota-
tions. Additionally, low-effort human input such as textual prompting, point, or box
annotations can also be used to increase the number of available segmentation anno-
tations by leveraging the predictions of foundation models, such as segment anything
model (SAM)[83] or its more specialized variants, for instance, MedSAM [98].

On the training side, there remains a critical need for adaptable learning methods
that can effectively exploit general image features derived from data sets with abun-
dant annotations or even pseudo-annotations as in [112]. The key challenge lies in
refining these generalized feature extractors to suit the specific requirements of the
target domain. A viable solution involves embedding traditional machine learning
algorithms within deep learning pipelines. This integration combines the feature ex-
traction strength of deep learning with the efficiency and reduced data dependency of
traditional machine learning methods. As demonstrated in Chapter 4, this hybrid ap-
proach has the potential to yield highly adaptable models, addressing the limitations
posed by data scarcity in domain-specific applications.

When it comes to the detection of archaeological sites, the output of the explain-
ability techniques (activation maps) can also be leveraged to derive more information
about the sites than their boundaries. For example, by analysing their shape and
distribution, activation maps can provide information about the morphology of ar-
chaeological sites without additional human input. This can then help in further
clustering and categorization efforts.

Finally, one common theme that ties together the observations presented in this
thesis is the need to strengthen collaboration between machine learning scientists and
domain experts. Although scientific domains suffer from expensive data acquisition
and annotation processes, these disadvantages can be mitigated by including expert
knowledge directly into the development process of learning-based solutions. One
way to do so is by introducing constraints based on prior knowledge. For example,
in Chapter 5 we applied a Gaussian filter on site activations to generate accurate
segmentation masks because we had the a priori knowledge that the area of interest
contained round settlements. Thus, we were able to process the activations to better
reflect this characteristic without the need of additional data or annotations. Similar
approaches could also be applied in designing efficient annotation tools and accurate

adaptable learning methods.
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