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Chapter 5

Explainability and

Annotations with Activation

Maps

5.1 Introduction

Automating archaeological feature detection and classification on remotely sensed im-

agery is increasingly becoming possible. Until recently, the reliability of object-based

solutions, i.e., the partitioning of remote-sensing images into categories [37], suffered

from the sensitivity of algorithms to image variations, e.g., in contrast, or brightness,

or from the heterogeneity of archaeological objects as algorithms expect homogenous

entities [88]. While these methods were once considered improvements over pixel-

based classification (as early examples, see [31, 33]), object-based methods [40] could

not be fully used for automatically detecting the relevant archaeological features of

remote-sensing images.

However, a new approach is forming thanks to the fast-emerging deep learning

This chapter is based on:

S, . Vădineanu, T. Kalayci, D. M. Pelt, and K.J. Batenburg. “Convolutional Neural
Networks and Their Activations: An Exploratory Case Study on Mounded Settlements”.
Journal of Computer Applications in Archaeology, 7(1). ubiquity press (2024).
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5.1. Introduction

paradigm that intends to bypass earlier obstacles by learning definitory patterns of

the target objects directly from the data. Due to recent advancements in hardware

technology and the availability of abundant data, machine learning, especially deep

learning, algorithms have seen widespread and rapid adoption in many domains, in-

cluding archaeology. Deep learning algorithms particularly achieve state-of-the-art

performance via convolutional neural networks (CNNs) for many image processing

tasks, such as image classification.

In archaeology, Bayesian regularization and Levenberg–Marquardt algorithms have

been compared for predicting metrics of Neolithic laminar artefacts [146]. Similarly,

machine learning algorithms have been employed to cluster cultural and technologi-

cal groups within archaeological datasets [147]. Deep learning approaches have also

proven successful in detecting and segmenting archaeological structures from LiDAR

data [63] and in semi-automatically mapping archaeological topography using air-

borne laser scanning data [145]. CNNs have facilitated the detection of ”princely”

tombs [25], and have revealed shell-ring building practices by Archaic Native Ameri-

cans [38]. Additionally, deep learning-based automated analysis has been applied to

archaeo-geophysical images, enhancing the interpretation of geophysical survey data

[87].

Nevertheless, the new paradigm already signals it is not devoid of problems such as

the requirement of large quantities of high-quality annotated data, high computational

costs, and the opacity of the CNNs’ decision process. In this chapter, we highlight

two of these key issues that might benefit from further research: the annotation cost

and the explainability of network architectures. As a constructive approach to address

these issues, we present ways to link annotation and explainability problems through

visualizations, supported by exploratory statistics.

The annotation problem is particularly relevant to archaeology. While deep learn-

ing algorithms are highly effective for numerous imaging tasks, their training demands

substantial annotated data. The challenge lies in generating annotations, especially

in specialized domains such as archaeological satellite imagery, where annotations are

often created by trained experts with limited availability [15, 73]. Annotated data

scarcity becomes particularly problematic for labour-intensive tasks, such as segmen-

tation, which requires classifying the pixels within an image. Such constraints can

impede the practicality of deep learning applications. Therefore, addressing the chal-

lenge of annotated data scarcity can play an important role in the further adoption of

deep learning in archaeological research.

We also observe that achieving high accuracy is the main concern in the schol-
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Chapter 5. Explainability and Annotations with Activation Maps

arship. When provided with sufficient training data, recent deep learning models

generally produce highly accurate detection and classification results regardless of the

architecture. Yet, the influence of architectural choices over which image features con-

tribute towards a prediction receives less attention. This perceived opacity of neural

networks’ decision-making process may contribute to some research fields approaching

their use with caution. Therefore, besides alleviating the burden of extensive manual

annotation, visualizing what the most relevant image areas are for a given prediction

can build trust among practitioners. Moreover, such insights can assist the experts

in developing less biased workflows [100, 142], rectifying mis-annotated samples or

discovering new patterns in the images.

To address the two key issues outlined above, we utilize explainability techniques,

i.e., methods producing visual interpretations of a CNN’s output in relation to its

input, whose results we refer to as activation maps. Particularly, we focus on the ex-

plainability techniques producing activation maps reflecting the contribution of each

individual input pixel towards a CNN prediction. To address the annotation scarcity

and the perceived opacity of deep learning, we employ the resulting activation maps as

sources of both cheap annotations and insights into the patterns found by CNNs. We

address the annotation task by proposing an automated annotation pipeline for gen-

erating segmentation masks of archaeological sites from the activation maps extracted

with explainability techniques. We apply these techniques to trained classification

CNNs, whose training annotations are relatively cheap to produce compared to seg-

mentation masks. We also explore to what extent we can extract meaningful visual

insights from the features deemed relevant by different types of CNN architectures.

We compare the activation maps extracted from multiple network architectures and

study which parts of an archaeological feature contribute the most to the network’s

predictions. Additionally, we verify whether the highlighted features can signal the

presence of mis-annotated images or overfitting. Our integrated workflow helps us to

explore the annotation and explainability issues in tandem.

In our workflow, we employ Occlusion Maps [57], LayerCAM [73], and Guided

GradCAM [129] as explainability methods. To combat the lack of spatial resolution as-

sociated with existing techniques, we also propose an extension to Guided GradCAM.

As a case study, we map the extent of ancient settlement mounds within CORONA

satellite images in the Upper Khabur Basin of Upper Mesopotamia. We apply these

four explainability techniques to three widely used CNN architectures: VGG [132],

ResNet [66], and DenseNet [71]. Finally, we explore activation maps to localize ancient

settlement mounds using CNNs trained for binary image classification by employing
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5.2. Background

only image-level annotations.

Our aims are twofold: (i) providing an analysis of the visual cues that contribute to

CNNs’ predictions of sites from remote sensing images of the Upper Khabur Basin and

(ii) using visual cues from activation maps as sources for segmentation annotations. To

achieve these goals, we utilize existing explainability techniques and we also propose

a new method for extracting activations that better match the expert interpretation

of a site than existing works.

5.2 Background

5.2.1 The Study Area

The Upper Khabur Basin is located within the larger gently undulating plain of Upper

Mesopotamia that stretches east-west between the massive Anti-Taurus Mountains in

the north and the short mountain range called Jebel Sinjar in the south [42]. The

Abd-al Aziz mountain ridge rising across Sinjar also bounds the study area. The

primary contributor of the hydrological system is the Euphrates River. Running down

from the northwest of Lake Van at an approximate altitude of 3,500 meters, the river

significantly drops its gradient as it further moves into the Upper Mesopotamian plain,

in modern-day Syria. The Khabur Basin (Figure 5.1) takes its name from the Khabur

River, the largest tributary to the Euphrates.

In the Upper Khabur, several wadis (Aweij, Khanzir, Jaghjagh, Jarrah, Kuneizir,

and Rumeilan) run in north-south direction eventually draining to Wadi-el-Radd [42,

p. 173]. Wadi is an Arabic term denoting a valley-like morphological feature that is dry

except during periods of rainfall. Even if they were temporal and usually short-lived,

flowing water contributed to the geography and life. Therefore, they “played an im-

portant role for human societies within this area and many archaeological sites—often

tells (settlement mounds)—are located along them.” [41, p. 337] (Figure 5.2).

5.2.2 Settlement Mounds

The long-term accumulation of everyday-life cultural material through centuries re-

sults in a particular site type, called a settlement mound [126]. These are signature

settlements in southwest Asia, getting the names of tell in Arabic, tepe or chogha in

Farsi, or höyük in Turkish [101]. Yet, it is important also to note that other regions

in the world also host mounded settlements, including Greece [43] and Hungary [113].

Depending on their (post-)depositional processes, density and duration of occupation,
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Figure 5.1: We investigated mounded sites in the Upper Khabur Basin of Upper
Mesopotamia. One can see the 100-kilometre-long Sinjar mountain range in the lower-right
corner. The Abd-al Aziz mountain ridge is across the river from Sinjar. Some key settlements
in the area are shown in white. Red dots indicate the locations of other settlements discussed
in the text.

local geological and geographic conditions, and many other factors mounds exhibit con-

siderable differences. These differences, however, bear the potential for morphological

analysis [149, 23]. Mound morphology is almost always variable, but it is possible to

identify some broad trends also in our study area. Using the results of Tell Beydar

Survey [150] and Tell Hamoukar Survey [148] one may summarize site morphologies,

but only briefly and only with great generalization: due to less intense occupation,

smaller/lower mounds were formed primarily during early prehistoric times. Rapid

nucleation during the second half of the Early Bronze Age (mid-second millennium

BCE) resulted in taller and more prominent mounds. From the Late Bronze Age

onwards, including the Iron Age, less intensive occupation was attached to the now-

abandoned Early Bronze Age mounds. This new phase of nucleation added further to

morphological complexities. Lower-density occupation in later periods [97] must have

contributed less to the formation of mounds.
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5.2. Background

Figure 5.2: ”Spots” on TanDEM interferometric SAR imagery indicate settlement mounds.
They are located mainly along north-south running wadis. The large spot/site at the centre
of the image is Tell Sharisi (36.891° N, 41.365° E). In the bottom left, we see another mound,
Tell Farfara (36.825° N, 41.334° E).

5.2.3 Corona Satellite Imagery

In the study area, tell-sites can be as high as 40 meters and can attain sizes of more than

100 hectares [168]. Due to their considerable sizes and relatively defined site extents,

but also thanks to the moderately flat topography of the study area, ancient settlement

mounds are visible on remote sensing data, but notably on historical CORONA spy-

satellite imagery [119, 24]. In return, it is possible to conduct desktop surveys with

visual interpretation [23] and with additional products, such as digital elevation models

[103].

The state-of-the-art sensors resolve the ground in great detail and provide data from

non-visible portions of the spectrum. CORONA as a historical dataset, but especially

the Key Hole KH 4B series (1967–1972) contributes to landscape archaeology in other

different ways. At the very least, CORONA predates the negative impact of modern

irrigation systems, great dam projects [149, p. 12] and urban sprawl [167, p. 228] on

material culture (Figure 5.3).

In particular, the high-resolution of KH-4B (ca. 1.85 meters at Nadir) provides an

extensive coverage, mainly due to the panoramic scan. Thanks to multiple CORONA
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Figure 5.3: State-of-the-art sensors, such as WorldView-2, can resolve the ground in great
detail, on the right. CORONA provides historical evidence of land-use land-cover changes,
on the left. In this particular example, one can assess the impact of modern buildings on Tell
Beydar. Image resolutions are comparable despite the age of spy-satellite imagery.

KH-4B missions, archaeological landscapes can be investigated in time series and the

most optimal scenery can be selected for further research. Recent studies highlight

the potential of Hexagon [58, 64] and U2 imagery [65]. Yet they are still not widely

available for wide-scale analysis. Therefore, ortho-corrected CORONA is still a viable

source for exploring diverse archaeological landscapes across the globe.

5.3 Deep Learning and Activation Maps

5.3.1 Deep Learning for Image Classification

Convolutional neural networks (CNNs) explore patterns in input images through the

use of units organized as filters. These filters, forming a convolutional layer, gener-

ate intermediary images known as feature maps [92], which essentially represent the

prominence of specific features within the image. For example, a filter might empha-

size vertical edges, while another filter could identify horizontal edges, textures, and

so on. These resulting feature maps then become the input for the subsequent set of

filters in the following convolutional layer.
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Among the problems tackled with CNNs, we focus on image classification due to

its relatively cheap annotation process and widespread relevance. The classification

CNN typically comprises two main components: a convolutional part, functioning as a

feature extractor, and a fully-connected part, serving as the classifier. In the convolu-

tional part, the learned parameters correspond to the filters within the convolutional

layers, while the fully-connected part of the architecture utilizes its learned weights

to categorize the features extracted by the convolutional layers. The categorization is

performed by reweighing and combining the feature maps in order to produce a set of

class probabilities out of which the predicted class is chosen.

Different CNN architectures employ distinct strategies to produce accurate clas-

sifications, varying in aspects such as the number of layers, the filter size, and the

connectivity between layers. Despite the variety in architectural choices, many CNNs

perform similarly well across different tasks and data sets [74]. Moreover, although dif-

ferent architectures may perform similarly on a given task, their inner decision process

can vastly differ, thus influencing their explainability and utility as detection tools,

therefore, making the selection of suitable architectures a non-trivial problem.

Among the popular well-performing CNNs for the task of image classification, we

focus on VGG [132], ResNet [66], and DenseNet [71], listed in the order of their de-

velopment. All three networks showed particularly good results for the classification

of natural images on the ImageNet data set [44], with each network claiming improve-

ments over its predecessor. All three network architectures are still widely used today.

Their extensive adoption, architectural differences, and the distinctiveness of remotely

sensed imagery from natural images make a comparison between these networks worth

exploring. Moreover, such comparison intrinsically contributes to explainability stud-

ies by assessing the suitability of the different architectures as visualization tools of

relevant patterns within remote sensing archaeological data.

VGG was among the first solutions aiming to improve the classification perfor-

mance of CNNs by increasing the depth, i.e., the number of layers, of the architecture

(Figure 5.4a). This was achieved by reducing the size of the convolution kernels to

3x3, substantially decreasing the number of parameters per layer. VGG consists of

several layers where the information is processed sequentially, using the feature maps

from the previous layer as input to the next. The feature extractor architecture con-

sists of blocks of 3x3 convolution layers followed by max-pooling layers that reduce

the size of the feature maps in half by selecting from every non-overlapping group of

2x2 pixels, the pixel with the highest value. After the final max pooling layer, the

resulting feature maps are spatially flattened to sets of 1-dimensional vectors, which
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Figure 5.4: Schematic representations of VGG16 (a), ResNet34 (b), and DenseNet121 (c).
The values above a block of layers correspond to the number of layers within a block. The
values below the blocks refer to the number of filters each layer has.

are passed to the classifier.

ResNet is a CNN architecture that focuses on training a larger number of layers

than VGG (Figure 5.4b). It achieves this by creating alternative paths that allow

for the output of a layer to skip being processed by the immediately following layers.
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The unprocessed output is then added to the result of the sequential path. In this

way, the network focuses on learning the additions (residuals) that need to be applied

to the input such that the relevant features are extracted for classification. This

approach allows increasing the number of convolutional layers, enabling the network

to learn more complex features. Apart from the alternative paths, ResNet differs from

VGG by how it reduces the spatial dimensions of its feature maps since it replaces

max-pooling layers with strided convolutions, i.e., instead of sliding the convolutional

filter on the image/feature map with a step of one pixel, the step size is increased

according to the stride value. After the last set of convolutions, the resulting feature

maps are aggregated into a set of 1-dimensional vectors by passing the final feature

maps through a global average pooling layer, which reduces a map to the average of

the values across all its spatial dimensions. Averaging instead of flattening the final

feature maps has the benefit of making the architecture independent of the image size,

since the size of the input to the fully connected layer is dictated by the size of the

channel dimension of the last convolutional layer, rather than the spatial shape of the

feature map after passing the image through the convolutional and pooling layers.

DenseNet also provides a solution for training a large number of layers by devel-

oping connections that pass all the feature maps that were created by previous layers

to all subsequent layers (Figure 5.4c). The architecture is composed of dense blocks,

which aggregate the feature maps from all their convolutional layers, and transition

blocks which provide both spatial as well as channel-wise dimensionality reduction.

Similar to ResNet, the network makes use of global average pooling to make the tran-

sition from the feature extractor to classifier, while relying on average pooling instead

of strided convolution for the dimensionality reduction of the feature maps.

There is already a significant number of archaeological case studies using these spe-

cific network architectures. However, limited literature is available that considers the

rationale behind choosing one architecture type over another. For instance, Albrecht

et al. [6] use a VGG to classify archaeological features on LiDAR data. They report

they chose VGG because “this approach is accurate and flexible for the archeologist’s

needs” [6, p. 18]. Similarly, Somrak et al. [136] aim to detect archaeological features

on Airborne Laser Scanning (ALS) data using VGG. They used this type of architec-

ture mainly because “[t]here have been previous uses of the VGG network” [136, p. 7].

Verschoof-van der Vaart et al. [154, p. 7] provide more specific reasoning for their

choice of the VGG architecture as it “performs better than most shallower networks

and needs significantly less memory than some deeper networks, while yielding compa-

rable results.”. Patrucco and Setragno [115, p. 19] decided to deploy DenseNet since
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”[t]his network allows using fewer channels for each layer, thus having fewer training

parameters and a smaller network”. Trier, Cowley and Waldeland [144] identified the

problem early on. They deploy ResNet18, but also state that “the development of

‘general purpose’ archaeological CNNs is desirable if the discipline as a whole is to

make better use of the methodology.” [144, p. 168].

It is also common to use multiple networks and compare results. When multiple

networks are used, the major aim is to compare accuracies, leaving little room for

advancing research on explainability. Abellán et al. [1, p. 4] use “six architectures to

test the accuracy in classifying tooth marks”. In another study, researchers worked

with seven deep learning models and their choice for the network was based on the

ranking of these models [48]. Bonhage et al. [18] further solidify the accuracy problem

by asking “what level of accuracy would be required from automated systems to be

acceptable for a specific purpose.”.

Overall, it appears that when scholars work with a single architecture, there is

relatively more discussion on the reasons behind choosing that network. Nevertheless,

the rationale behind their choice tends to remain implicit, restricting interpretability.

Comparative approaches focus mainly on the accuracy of the results these networks

can produce and make limited contribution to our understanding of how different ar-

chitectures can be exploited to retrieve more information about the data itself. Using

explainability techniques can benefit the scholarship as they contribute to understand-

ing whether the image features deemed as relevant by the networks have intuitive

explanations.

5.3.2 Explainability Techniques

Despite their proven capabilities in increasingly difficult tasks, one major challenge

that the current CNNs are facing is a lack of interpretability of their predictions.

Consequently, the applicability and reliability of these solutions can be distrusted.

In response to this, multiple techniques have been developed to explain the decision

process undertaken by CNNs before generating a prediction. In the context of image

classification, where the prediction takes the form of class probabilities, these explain-

ability techniques have the added benefit of providing localization information of the

most relevant image sections that influenced the prediction of the CNN.

We selected three such techniques, namely Occlusion Maps (OM) [57], Gradient-

Weighted Class Activation Maps (GradCAM) [129], and LayerCAM [73]. In our work,

we also propose a localization technique based on Guided GradCAM [129]. All the
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selected methods have the benefit of being independent of the type of CNN being

used, offering good flexibility for experimenting with multiple neural network archi-

tectures. Additionally, all techniques produce easily-interpretable output under the

form of activation maps, i.e., images of the same shape as the input image whose pixel

values reflect the contribution of the input image’s pixels towards the prediction of

the network.

The working principle behind OM is that covering relevant sections within an

image should drastically impact the classification result of the CNN, while covering

background areas should influence the results less. Therefore, in order to find these

relevant sections, a window is slid on top of the image with all the pixels within the

window area being occluded (their values are set to 0). For every window position,

the occluded image is set as input to the trained neural network and the difference

in classification probability between the non-occluded and the occluded image is reg-

istered. After a complete pass throughout the image, the result is a 2-dimensional

array of probability differences, where the highest differences denote the location of

the relevant image sections.

A more invasive approach is proposed by GradCAM, which relies on processing

the feature maps given by the last convolutional layer of a CNN. In general, after the

training process, the initial layers of the CNN “learn” to recognize low-level features,

such as edges, while the final layers recognize high-level features, e.g., the archaeolog-

ical mound itself. Considering this, by analysing the output of the last layer before

classification, the resulting feature maps should highlight the position of the most rel-

evant features for the classification task. However, the information within the feature

maps must be aggregated into one activation map that reflects the contribution of an

image feature to the network’s prediction. Therefore, the feature maps are weighed by

their gradient with respect to the prediction result and their sum produces the final

activation map.

A related technique is employed by LayerCAM, where the activation maps can

similarly be extracted and weighed them by their gradients. However, as opposed to

GradCAM, which performs this process only for the last convolutional layer, Layer-

CAM produces an intermediary activation map for every convolutional block within

the network’s architecture. The resulting intermediary maps are linearly combined to

produce the final activation map, with higher weights assigned to the intermediary

maps extracted from the later blocks of the network.

One common disadvantage that the three aforementioned techniques share is that

their activation maps come at the cost of spatial resolution. Since OM aggregates
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results for covering an entire area within an image and since it is not computationally

feasible to slide the window every pixel, the resulting activation map is of a lower

resolution than the input image. We can make similar observations both for GradCAM

and LayerCAM which rely on the feature maps generated by the last convolutional

layer of the CNN. Due to the image downscaling within the CNN, these feature maps

have far lower spatial resolution than the input image, making the resulting activation

maps also suffer from this lack of resolution.

Guided GradCAM proposes a solution for inferring high-resolution activations in

the form of the individual contribution of each pixel towards the prediction. The

image is first passed through the CNN, and then the resulting feature maps are passed

backwards from the last layers towards the first ones. This process generates activation

images containing clusters of pixels whose high values signify the presence of relevant

features. However, these high-valued pixels are sparsely distributed, which makes

delimiting the relevant features difficult. To ensure contiguous activations, we develop

an addition to this method which we detail in Section 5.4.2.

Besides adding to the interpretability of the model’s decision-making process, the

activation maps can be thresholded to automatically create pseudo-annotations for

more labour-intensive tasks such as the segmentation of the site area, i.e., the sepa-

ration of the site from the surrounding area. The availability of cheap annotations

can thus facilitate more experimentation with existing data sets and the development

of more complex tools whose training would require prohibitive amounts of expert

annotations. For instance, the generation of an image-level annotation for a classifi-

cation task requires far less effort compared to creating a segmentation mask for the

same image since the image-level label can be attributed after a relatively quick visual

inspection, whereas a segmentation annotation involves the careful delineation of the

site boundary. Thus, for existing classification data sets the generation of pseudo-

annotations for segmentation would allow training segmentation algorithms with little

intervention from domain experts.

5.4 Methodology

5.4.1 Data Preparation

For the study, we acquired CORONA KH-4B data from the CORONA Atlas & Ref-

erencing System [26]. Images from DS1105-1025 (November 1968) and DS1102-1025

(December 1967) cover the entirety of the Khabur Basin. For the initial desktop
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survey, first, we orthorectified CORONA imagery and mosaicked them to generate a

seamless coverage of the Khabur Basin. Second, we visually confirmed the location

of 300 settlement mounds on CORONA. We also randomly picked 300 points to ex-

plore ‘no-site’ landscapes, and visually confirm areas that did not contain a settlement

mound (Figure 5.5). Next, a custom-built script visited ‘Site’ and ‘No-Site’ locations

and clipped a square chunk (1000 pixels x 1000 pixels) around each target. Image

chunks were contrast stretched between 0 and 255 to exploit 8-bit data depth fully.

In the following step, we augmented data through rotation, swirling, and clipping.

First, we rotated each chunk in cardinal directions to make four scenes available from

Figure 5.5: The binary classification scheme in this analysis. A CORONA image chunk
with a site (left) and an image chunk with no indication of a mounded settlement (right).

the same area. Second, using the scikit-image Python package [152], we swirled all

rotated images with a radius of 400 and with the parameter randomly determined

from a uniform distribution with lower boundary of -2 and upper boundary of +2.

These parameters ensure the pseudo-target generation mainly swirls the original site

while keeping the background as intact as possible. With swirling, we aimed to mimic

the relatively circular nature of sites; mounded settlements tend to have more circular

footprints than rectangular site types. In the end, eight image chunks (four rotated

and four swirled) with 1000 x 1000-pixel dimensions are further clipped into smaller

pieces with 400 x 400-pixel dimensions. The clipping strategy involved “moving” the

sites in four corners as well as keeping them at the centre of a scene. In doing so,

the aim was to represent different parts of the immediate surroundings of the sites in

additional images (Figure 5.6). This final clipping operation generated 40 images per
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Figure 5.6: Four (out of 40) samples from the augmentation process are presented here.
(a) the initial clip of a mound as documented on CORONA imagery, (b) clipping and rotation
moves the site to the upper right corner while revealing a different background context, (c)
rotated as in sub-figure b, but also moved to top left corner and swirled, (d) a different set
of rotation, clipping, and swirling.

site. Therefore, we were able to gather 12,000 (40x300) image sets (binary code: 1)

for ‘sites’; and for ‘no-sites’ (binary code: 0). In total, 24,000 images were available

for training.

5.4.2 Proposed Pipeline

For this work, summarized in Figure 5.7, we aim to utilize activation maps to de-

rive cheap annotations that can be used for a site segmentation task as well as to

formulate interpretations of the relevant areas within the images that are triggering

the prediction of a network. We begin by training classification CNNs on image-level
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Figure 5.7: Workflow. We train CNNs for classifying whether a site is present or not in
an image. We embed the trained CNN into explainability frameworks which we can use to
both produce a segmentation mask of the site or to analyse the important image features
highlighted by the network.

binary annotations, where a positive annotation signifies the presence of a site, and

a negative annotation denotes the absence of the site from the input image. We uti-

lize PyTorch [114] implementations of the three network architectures [99]. We treat

the site detection as a binary classification task where the input to the network is

a single-channel grayscale image and the output is a 2-valued vector, with the first

value indicating the probability that no site is present in the image, while the second

value indicates the opposite probability. We split our data into training and validation

with an 80/20 ratio. For every type of architecture, we train 5 networks with different

initialisations and a different random split of the data. During training, if we observe

no improvement in the validation score for 10 consecutive epochs, we stop the process.

We use the binary cross-entropy as the loss function, and we update the parameters

with ADAM optimization algorithm [82].

Generating Activation Maps

After training, we include the trained networks in the explainability tools which pro-

duce an activation map. To get more stable activation maps, we average the results

from multiple initializations of the same CNN architecture. Also, for each initializa-

tion, we create a different random split between the training and validation images.

We utilized Captum [85], a model interpretability library for PyTorch models to gen-

erate Occlusion Maps and to perform Guided GradCAM, whereas for GradCAM and
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LayerCAM we developed our implementations based on the original papers. In all

cases, the results given by the explainability methods take the form of images, where

a pixel value denotes the probability that the corresponding pixel from the input image

belongs to a relevant region for the classification task.

Figure 5.8: We propose an extension to the Guided GradCAM in order to tackle the
reduced spatial resolution problem. Adding a Gaussian filter and a logistic function enhances
image features that are comparable to annotations.

In addition, to address the lack of resolution of the activations generated by Occlu-

sion Maps, GradCAM, and LayerCAM and the sparsity of Guided GradCAM activa-

tions, we propose an extension of the latter that aims to provide smoothness in acti-

vation areas, while maintaining the resolution of Guided GradCAM, which we present

in Figure 5.8. We apply a Gaussian filter to smooth the pixel values of the activation

image, therefore creating continuous activation areas. This, however, comes with the

caveat of widening the gap in value between high-activation and low-activation areas,

which can lead to a pessimistic estimation of the relevant image features. We compen-

sate for this by passing the filtered activation image through a logistic function which

creates a nonlinear rescaling of the pixel values such that previously low-activation

areas would receive higher values. For visualizing the relevant features, we translate

the activation map into a heatmap which we then overlap on top of the input image

(see Figure 5.7). This results in a more straightforward analysis of the image features.

Here, we make observations based on visual interpretation. The aim is to build

qualitative knowledge for how three different network architectures (VGG, ResNet,

DenseNet) ‘learn’ what a settlement mound is, highlighted by four different activation

techniques (Occlusion Map, GradCAM, LayerCAM, and our method based on Guided

GradCAM). Our workflow includes selecting representative examples from the overall

data set and exploring the activation maps on remotely sensed data.

From Activation Map to Segmentation Mask

After obtaining the activation maps, we process them to obtain segmentation masks.

In order to do this, we translate the smooth probability landscapes provided by the

activation map into hard area borders by utilizing conditional random fields (CRF)
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Figure 5.9: Example of an expert annotation (a), the segmentation mask derived from
it (b), the automatically derived segmentation mask (c), the intersection of the expert and
automatic masks (d), with green, yellow, and orange pixels representing true positives, false
negatives, and false positives, respectively, and the intersection of expert and automatic
boundaries (e).

[139]. The CRF considers both pixel probabilities from the activation map and the

similarity between neighbouring pixels from the input image and outputs a binary

image where the foreground corresponds to areas within the image occupied by rel-

evant features and the background covers the rest of the image. An example of a

segmentation mask generated from an activation map is shown in Figure 5.7.

We analyse the suitability of the segmentation masks produced by CRF both qual-

itatively and quantitatively by comparing them with site delineations provided by a

domain expert. The human annotation process included drawing mound boundaries

as they appear to the expert on CORONA images (Figure 5.9a). While site delin-

eation is a subjective process, mound formation produced footprints easier to trace

than many other site types and morphologies. City walls around some of these settle-

ments also helped the annotation. To produce a quantitative analysis, we first binarize

the human-annotated image such that the pixels within the boundary are assigned the

value of 1, while the rest are assigned 0, creating a mask ready for further analysis

(Figure 5.9b).

We then compute the Dice similarity score [45] between the binarized human an-

notation and the masks produced by the conditional random field (CRF) (Figure 5.9c)

to assess the suitability of the automatically generated masks as annotations for seg-

mentation. The equation describing the Dice score is presented in

Dice =
2× TP

2× TP + FP + FN
(5.1)

where TP, FP, FN, refers to the number of true positive, false positive, and, respec-

tively, false negative pixels between the binarized ground truth and the prediction

(example in Figure 5.9d). For the qualitative comparison, we use the output of the
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CRF to generate a boundary which we overlay, together with the human-generated

one, on top of the input image (Figure 5.9e).

5.5 Results

5.5.1 Classification Performance

Since our primary aim is to explore activation maps in relation to future annotations,

we only briefly mention overall model performances. We evaluated the performance

by computing the precision and the recall. These metrics are computed based on

the true positives (TP), false positives (FP), and false negatives (FN), calculated in

the context of binary image classification, i.e., they count image-level class labels,

rather than pixels. The precision reflects the proportion of relevant samples that the

classification model is able to find, i.e., the proportion of correctly predicted sites

among all site predictions (precision = TP / (TP + FP)). The recall, on the other

hand, shows the ability of the model to find all relevant samples in the data set, i.e.,

the proportion of correctly predicted sites among all images with sites (recall = TP /

(TP + FN)).

Network Precision Recall
VGG16 0.9996 0.9962
ResNet34 0.9994 0.9983

DenseNet121 0.9994 0.9976

Table 5.1: Validation set performance of the different architectures.

In Table 5.1, we report the classification results on the validation set of the three

networks. It appears that all networks learned a good fit for the data, being able to

correctly classify (‘site’ or ‘no-site’) for almost all the images. All networks present

similar precision, with ResNet34 showing a larger recall than the other two —albeit

only very slightly. It appears that a simple augmentation technique could generate

powerful classifier models with similar performances in the study area. Nevertheless,

the models are trained for a very specific site type within a particular geography.

Therefore, these models’ generalizability is an open question; transfer learning is be-

yond the scope of this chapter. On the other hand, trained networks may equally

perform in areas with similar relatively flat morphologies hosting settlements with

mound morphologies, such as Neolithic Thessaly [7, 118].
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Figure 5.10: Two sites with simple (a) and complex (b) morphologies.

5.5.2 Analysis of Activation Maps

To assess the interpretability of the selected network architectures, we perform a visual

analysis of the activation maps produced for sites with both simple (Figure 5.10a) and

complex (Figure 5.10b) morphologies.

We begin by analysing the activations of the simple morphology (Figure 5.11).

The Occlusion Map and our method fit well to the human interpretation of a site

boundary for all three networks. GradCAM and LayerCAM activations exceed the

site boundaries, especially for DenseNet. DenseNet produces wider activation areas,

owing to its approach of aggregating information from multiple layers, thus being

activated by a wider set of image features than the other two architectures. GradCAM

is of particular interest since the highly activated area appears to have no immediate

connections with the shape or the shadow, the two prime indications of a mound for

the annotator.

Studying a more complex morphology reveals that activations can be discontinuous.

In the current example, the site is dotted with modern structures, potentially adding

complexity to network training. All three architectures are activated more in the north

(Figure 5.12). Incidentally, this portion is cluttered less by later human occupation. It

is also possible that the shadow generated more contrast against the background for the

high-level features, resulting in a northerly activation. Finally, we note that only VGG

is successful in identifying the smaller mound at the lower-left corner. Conforming with
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Figure 5.11: Activations of a single conical mound (36.832° N, 40.229° E). The red line
corresponds to the expert annotation.

the previous example, the Occlusion Map and our method provide the activations that

match more closely the human intuition for this smaller and circular feature.

The activations of both types of sites show that, across all network architectures,

the predictions were influenced by actual archaeological features within the images.

For instance, in Figure 5.11 all activations are centred on the small conical mound,

whereas, in Figure 5.12, parts of the elevated area of the site are highlighted by all

explainability techniques.

5.5.3 Activations as Sources of Annotations

For this experiment, we use the conditional random field (CRF) to process the ac-

tivation maps into site segmentation masks. For ease of comparison with the expert

annotations, we represent these masks as boundaries applied on top of the input image.

Besides visual inspection, we also numerically assess the quality of these automatically

generated masks by measuring their Dice similarity score relative to the expert anno-

tations. We report two examples, for simple and complex morphologies. The expert
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Figure 5.12: A feature of interest with a mound morphology (36.652° N, 40.270° E). Only
the north end is clear of built environment, coinciding with most of the activations. The
mound is surrounded by now dried out catchment of a branch of the Euphrates River system.
This soil appears very dark on CORONA imagery. The red line corresponds to the expert
annotation.

annotation (red polygon) and the results of activation mapping processed by CRF

(blue polygon) are overlaid on CORONA imagery.

For a simple conical morphology, but with a more elongated extension, the network

architectures variably estimate the site boundaries. We notice that the boundary

generated with our method shows the highest overlap with the human annotation for

all three networks, but especially for VGG and DenseNet (Figure 5.13).

The example is more telling when we study a more complex morphology and back-

ground (Figure 5.14). Adding to the complexity is how the site is represented on

CORONA imagery. Image boundaries cut some parts of the site as it does not fit

into the predetermined image chunk. Jakoby [72] discusses if Tell Mosti with a ‘cup-

and-saucer’ shape exhibits morphological characteristics of a Kranzhügel type [135].

To bypass the site representation problem, the human annotation only considered the

‘cup’ as the ‘site’. Once again, our method is able to determine the extents of the
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Figure 5.13: A conical mound (36.639° N, 40.977° E) and its model predictions. Note
how they all miss the rectangular site just next to the mounded settlement. The red line
corresponds to the expert annotation, while the blue line is the predicted boundary.

site, but only for DenseNet and ResNet. These networks are clearly archaeology ag-

nostic, but still conforming with the visible boundaries of the ‘cup’. We discuss the

image-cutting site boundaries in the next section as we evaluate biases in the training

dataset.

Network Occlusion Maps GradCAM LayerCAM Our Method
VGG16 0.4483 0.4083 0.6043 0.5928
ResNet34 0.4826 0.5149 0.4041 0.5954

DenseNet121 0.4514 0.3537 0.213 0.6185
Mean Values 0.46 0.43 0.41 0.60
Variances 0.0004 0.0067 0.0383 0.0002

Table 5.2: Dice similarity between the predicted and annotated site area over the entire
data set. The bold values represent the highest score achieved per network.
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Figure 5.14: Tell Mosti (36.624° N, 41.615° E) exhibits a more complex case. Please note
the actual site is larger than the digitized/annotated “crown”. The image extent cuts the
site due to its size. The red line corresponds to the expert annotation, while the blue line is
the predicted boundary.

Finally, we provide a quantitative analysis to show an overview of the quality of

the generated masks over the entire data set. We report the Dice similarity scores

between the predicted boundary and the annotation in Table 5.2. We observe that

although all three networks perform similarly for the classification task, their ability to

delineate the boundary of an archaeological site differs. The variations in performance

possibly stem from architectural differences between networks, as well as from the type

of explainability method we employed. One notable exception is given by our method,

which shows the least amount of variation between Dice scores across networks. Also,

the masks generated from processing the activations of our method produce the highest

individual score for DenseNet and better average performance across all architectures

than the masks generated from the other explainability techniques. Thus, our exten-

sion to the Guided GradCAM appears to be a robust annotation generator for the

given training data set collected from this particular geography.
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Figure 5.15: Different activation maps for DenseNet. Please note how our extended Guided
GradCAMmethod identifies some parts of the cup of the site matching the human annotation.
The slightly activated area in the right left is much more pronounced in GradCAM and
LayerCAM. The red line corresponds to the expert annotation.

5.6 Discussion

Here, we present the activation maps of multiple sites with varying morphologies, and

we discuss the potential of the activations as sources for cheap annotation. We also de-

rive interpretations of these activations to understand how different CNN architectures

learned to distinguish archaeological sites.

We start our discussion using the previous example from Tell Mosti. As we dis-

cussed above, the human annotation only included the ‘cup’ of the site, so there is a

clear mismatch between human annotation and model estimation for the most part.

It is only that our proposed addition to the Guided GradCAM estimates an area close

to human interpretation, but GradCAM and LayerCAM reveal a high-activation area

in the lower-right corner of the image (Figure 5.15). To investigate, we explored a

high-resolution digital elevation model of Tell Mosti (Figure 5.16). Overall, higher

elevations roughly overlap with the results of activation maps. In this particular case,

we observe the benefit of analysing the activation maps since they indicated the south-

eastern extension, which the expert missed since it is not immediately visible on the

CORONA imagery.

To showcase how activation maps may relate to non-circular site morphologies, we

selected Tell Jamilo (Figure 5.17a) and Tell Hadi (Figure 5.17b) which present compa-

rable morphologies. The orientations differ but their tangled morphologies are similar.

The activation maps of both sites show that VGG predictions are more strongly trig-

gered by round features, a characteristic that many mounds within our data set share.

We observe a similar pattern for VGG in the activation map of Figure 5.12. This

reliance on round features can be due to the loss of context information after each

pooling operation is performed from one group of layers to the next. On the other

side, ResNet and DenseNet still retain context information even in the deeper layers
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Figure 5.16: The digital elevation model of Tell Mosti highlights the elevated core of the
site. Manual annotation considers only the highest eastern blob but misses the entire core.

by using skip and, respectively, dense connections in their architectures, making their

activations a promising source for generating segmentation masks.

Furthermore, we explore single conical and complex morphologies in the same

image chunk. Figure 5.18 contains two sites in the same image frame, the larger

more complex one being identified as Tell al-Shur [128]. Because the sites are close

to each other, small CORONA image chunks covered both. We initially identified

them as different sites, so the script created one image case for each site with greatly

overlapping backgrounds.

In the first instance (Figure 5.18a), the larger site with more complex morphology

is at the centre and the smaller conical site is slightly to the right. We observe that

DenseNet is able to highlight both sites with GradCAM and LayerCAM, matching the

human interpretation. Also, our method is particularly convincing as an annotation

source since it activates both sites at the same time with relatively good coverage

of the archaeological features without including much of the surrounding landscape.

The same couple produces different activations when the central focus is shifted (Fig-

88



Chapter 5. Explainability and Annotations with Activation Maps

Figure 5.17: Activations generated with our method for Tell Jamilo (36.683° N,40.607° E)
(a) and Tell Hadi. (36.870° N,41.865° E) (b).

ure 5.18b). As in the previous case, the circular site is represented almost in entirety.

However, it appears as Tell al-Shur lost significance in the activations. It is possible

that all three networks learned that a mound should be circular, and our swirling

augmentation further emphasized circularity. It may be also possible that models

were influenced from the location of Tell al-Shur within the image. In this case, the

site is located at the edge of the image, suggesting that the contribution of a site to

the prediction in a multi-site image is dependent on the site’s position within that

image. This is expected since the networks are trained for classification, which does

not incentivize the activation of all archaeological features present in an image, but

rather of the strongest visual cue, which, in this case, is the circular small mound.

When both sites are fully included in the image but shifted upwards from the centre

(Figure 5.18c), we notice similar activation patterns as in Figure 5.18a. This mainly

shows the invariance to image shifts, a general characteristic of CNNs due to their

usage of pooling layers. The difference from the activations in Figure 18b shows that

this invariance still requires the relevant image features to be entirely present in the

image.

Throughout our analysis of activation maps, we noticed that LayerCAM, through

its aggregation of activations from multiple layers, produces the widest coverage of

the archaeological features, which proves especially useful when multiple sites are

present in an image. GradCAM, by focusing only on the final layer, trims this wider

context which results in more focused activations, but at the cost of ignoring some

89



5.6. Discussion

Figure 5.18: Different activations of Tell al-Shur (36.845° N, 40.458° E) with a complex
morphology and a nearby conical site. Different augmentations of the same region are acti-
vated in different ways.
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archaeological features, as is the case for ResNet in Figure 5.18. The Occlusion Maps

mainly highlight differences in elevation, by signalling shaded areas as discriminatory

features. This technique, however, suffers from a high computational cost, as it requires

a new network prediction for every position of the occlusion window, its output is of low

resolution, and it also requires choosing a window size, since small occlusion windows

may not significantly change the prediction score. Our method generally produces

activation maps that include even less of the surrounding landscape than GradCAM

which enable a clearer observation of the relevant archaeological features within the

images. Moreover, given their sharp boundaries, the activation maps generated with

our method can become a strong basis for producing annotations for segmentation as

also indicated by the results in Table 5.2.

When it comes to the network architectures, we notice that VGG seems to rely less

on context, i.e., image features characterizing the whole site, focusing more on general

features, such as roundness. On the other hand, ResNet and DenseNet appear to base

their predictions on increasingly more contextual information due to their connec-

tions that forward information from previous layers to the following ones, while VGG

lacks this characteristic. This wider coverage of the archaeological site by ResNet and

DenseNet activations can mean that these two architectures may show better adapt-

ability than VGG to changes in site morphology when, for instance, the geographical

area changes.

5.7 Conclusion

Exploring how different networks are activated for mounded settlements proved to be

a fruitful exercise. The study generated voluminous data, and we followed a particular

path in interpreting experiment results. Therefore, the topic is open, and many other

inferences can be made. Our aim has not been to develop a “best-practice guide”

with detailed accuracy statistics and thresholds. Inferences we made in this chapter

depended upon our CORONA-specific training dataset with a specific site morphology.

The results we reported here are not benchmarks for any network or an activation

method. The settlement mound has a particular morphology uniquely contextualized

in Upper Mesopotamia. Therefore, our interpretations are specific to the training

dataset, and we try to avoid making broad statements. However, experimenting with

network architectures using different activation techniques appears to be a fruitful

exercise and the workflow may be generalizable.

Our work, while only emphasizing coarse associations between settlement mor-
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phology and periodization, opens the door to more detailed and systematic analyses

through the application of deep learning. The widespread presence of mounds sug-

gests an opportunity to extend computer-assisted morphological analysis, with our

study serving as a step in that direction. Additionally, our approach finds utility

in a detection mechanism, where users can observe highlighted regions as potential

archaeological sites within large geographical areas.

Furthermore, we showcase the potential of using activation maps as the basis

for producing cheap annotations, which, with the incorporation of corrections, either

through user intervention in an active learning setup [123] or automatic adjustments

[159], can contribute to refining predictions and improving the overall accuracy of al-

gorithms for site delineations. For this particular region, we observed that DenseNet

in conjunction with our modified version of Guided GradCAM produces the most ac-

curate site annotations. Moreover, DenseNet’s usage of wide contextual information

may indicate good robustness to potential changes in the site’s morphology and in its

surrounding landscape.

Finally, despite our initial focus on settlement mounds and exclusion of periodiza-

tion concerns in our preliminary experiments, our method holds promise as a potential

deep learning-based expert helper system for assisting desktop surveys. Additionally,

the integration of Digital Elevation Models (DEM) into the workflow could amplify

our method’s potential for morphological classification, presenting a versatile tool for

archaeological analyses. Also, to better assess the applicability of this study, we aim

to expand it by including a more diverse set of site morphologies.
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