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Chapter 4

Few-Shot Cell Segmentation

4.1 Introduction

Recently, deep learning (DL) has become an integral part of many imaging tasks,
showing accurate results for problems such as image segmentation [106], a process
that labels every pixel of an image into categories. Despite their potential, DL solu-
tions are less applicable in scenarios where the annotated data are scarce [16], such
as medical or biological image segmentation. These settings require trained experts
to produce the annotations needed to train DL algorithms. Few-shot learning (FSL)
techniques present potential solutions for these data-scarce domains by exploiting su-
pervised information from a data-rich source task to adapt to the target task by only
utilizing a limited number of labelled samples of the target task [163]. Despite the ap-
parent suitability for cell segmentation, there is a lack of research targeting few-shot
segmentation of new structures in cell data sets when other labelled structures are
available. Moreover, the particularities of cell imaging make existing few-shot medical
image segmentation approaches [160, 127, 138] unsuitable for cell segmentation. Thus,
there is a need for a few-shot segmentation method targeted towards cell segmentation.

In FSL, we assume the availability of a relatively large amount of annotated samples
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4.1. Introduction

for a source task as a training set. For a different target task, only a few annotated
samples are available, called the support set. The challenge is to effectively derive
unique representations for the target task from the support set. Subsequently, these
representations are leveraged to predict unlabelled samples, known as the query set.
Given its broad definition, tackling the FSL problem can include domain adaptation
[81, 39], image augmentation [27], or visual prompting [79]. Here, we focus on semantic
segmentation, where the goal is to segment structures with limited annotations within
a data set, leveraging sufficient annotations for other classes of structures. Such a
scenario may prove especially suitable for cell segmentation, since, besides requiring
domain expert annotators, the number of structures to be annotated within an image
is large and the process is tedious due to the varying cell size. Additionally, adapting
from one cell type to another may be possible with the limited amount of annotations

involved in FSL due to morphological similarities among certain cells.

Despite the promising applicability of FSL techniques to cell segmentation, there is
a limited amount of research targeting few-shot segmentation of new classes in cell data
sets. Segmenting new classes with FSL is, however, more widely attempted in medical
imaging. In this case, one technique that many works rely on is attention-guided
segmentation [127, 55, 170], where the activations generated from the support images
are used to weigh the activations of the query images. Another popular category of
works uses prototype learning [160, 141, 112], where prototype vectors learned from
the support set are compared against the features extracted from the query images to
generate predictions. Although these approaches perform well in organ segmentation,
where the structures are relatively large, morphologically dissimilar, and located in
relatively fixed positions, they are not entirely suitable for cell segmentation, where
structures do not necessarily fit into the aforementioned pattern. For instance, one
difference from organ segmentation lies in the varying cell positions within tissues.
This affects attention-based FSL methods since guiding the segmentation of the query
based on the attention provided by the support requires alignment between the target
structures from these images. This alignment issue is also acknowledged in [122],
which motivates the authors to employ the prototype learning paradigm. Prototype
learning solutions compare prototype vectors against the feature maps generated in
the last layers of an encoder, which results in low-resolution predictions. This can
hinder the segmentation of cell microscopy images, which generally contain clusters
of cells, since the lack of resolution would not allow for the delineation the individual
cells within the clusters. Besides the methods designed for few-shot medical image

segmentation, there are many developed for natural images [122, 173, 90]. However,
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Chapter 4. Few-Shot Cell Segmentation

their applicability has not been extensively explored for (bio)medical imaging.

In this chapter, we propose a novel few-shot segmentation solution designed for cell
segmentation. We train mixed-scale dense (MSD) networks [116] as feature extractors
on the training set and then we use the support set to learn a linear combination of
the extracted features that can be applied to segment a new class of entities. We
account for limitations of previous works, such as the low resolution of the prototype-
learning predictions, by producing features of the same spatial dimensions as the
input image. Moreover, unlike attention-guided methods, we do not require similar
positioning between support and query structures since we disentangle the adaptation
step on the support from the query prediction. Also, since we only learn a low number
of weights for the linear combination, the adaptation step can be performed rapidly,

enabling easier prototyping.

4.2 Background and Methodology

Legend
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Figure 4.1: Workflow. We train feature extractors on the known classes. Consequently,
we extract feature maps from the support set to learn a recombination for predicting the new
class. Lastly, we apply the learned recombination to the query images.

We consider the case of segmentation of 2D vector-valued images, e.g., RGB or
grayscale, where the aim is to learn a mapping from a matrix of pixels with L rows,
M columns, and C' channels z € REXMXC tg the target y € ZX*M | where each pixel

of y has a value reflecting the entity it belongs to. One method of approximating
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this is with convolutional neural networks (CNNs) f5 : REXMXC _ REXMXN

¢, where
N, is the number of classes and whose parameters § are learned from a training set

Xtr = {(mlvyl)a (‘r27y2)7 ceey (thrvyNtr)}v with Ntr = |Xtr"

Few-shot image segmentation requires an initial training set Xy, with the set of
classes Ct,, which is used to train the model’s parameters. The model is employed
to predict a new set of classes Cie : Cie N Cyy = B by only relying on K annotated
samples (shots) for each of the new N classes (ways), where N = |C}|, making the
segmentation task an N-way K-shot problem. For the remainder of this chapter, we
will consider 1-way segmentation problems, i.e., the binary segmentation of the new
class. The K annotated shots comprise the support set X, = {(zs,ys)} from which
the model distils knowledge about the new class to produce a segmentation of the

unannotated query set X, = {z4}.

For our method, summarized in Figure 4.1, we consider feature extractor CNNs
capable of generating feature maps at the same spatial resolution as the input image.
We train the feature extractors on the classes known in the training set. Specifically,
in this work, we train a binary segmentation model for each of these known classes.
Consequently, we use the feature maps of the images from the support set generated
by the trained feature extractors to learn a set of weights for recombining the maps
to predict the new class. Finally, we employ the feature extractors and the learned
weights to predict the query images. In this work, we choose MSD networks [116] as
feature extractors. MSD bypasses the need for downscaling and upscaling the feature
maps for capturing features at different scales by replacing standard convolutional
kernels with dilated convolutions [70]. Since each feature map has the same spatial
dimensions as the input image, this network can localize well the individual cells,
generating activation areas that correspond to the actual position and shape of the
cells within the image. Preserving the spatial dimensions of the feature maps also
enables the network to densely connect its layers, allowing MSD to produce accurate
results with relatively few trainable parameters. The low parameter count implies
that MSD is less prone to overfitting [158], making it a well-suited feature extractor

for data-scarce domains, such as medical image or cell segmentation.

We decompose the feature extractor network fs5 into a feature maps generator g
and a predictor o.. Therefore, we have fs = o. o g4, where g : RIXMXC _y RLxMxC’
uses the parameters ¢ to generate C’ feature maps from the input image and o, :

REXMxC" _y RLXMxNe parametrized by €, outputs the prediction from the feature
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maps, with ¢ Ue = . We begin by training the feature extractor on the training set:

¢,¢=argmin > L(oc(ge(x)), ), (4.1)

e (z,y) EX¢r

where L is a loss function. Consequently, we employ the feature maps generator to
learn the weights W € RS and intercept b € R of a perceptron in the few-shot
adaptation step:

bW =argmin Y L(a(b+gz(x) - W), y) + AW |2, (4.2)
bW
’ (xay)eXs

where o : REXM — REXM g an element-wise activation function. The ||[W||s regular-
ization term is included because we noticed its benefit in 1-shot cases, where overfitting
can become more likely. Equation 4.2 enables us to create a new linear combination
of the feature maps, suitable for the new class in the support set. Finally, we apply
the weights to predict the query images as §j = O'(/b\+ ga(x) . W) Vo € Xq.

When utilizing a cross-entropy loss, Equation 4.2 becomes a logistic regression
task [108] for which highly efficient implementations are available [53]. For other
loss functions, e.g., Dice loss, we use a second-order optimizer, which has several
advantages compared to first-order approaches (e.g., faster convergence and better
robustness to hyperparameter settings [171]). Second-order optimizers are typically
not suitable for deep learning due to their high computational costs when optimizing
a large number of parameters. However, the number of weights of our perceptron is
relatively low, making second-order optimization a viable choice. Since second-order
optimization methods perform best when the initial guess of the parameters is close

to the optimum [12], we use logistic regression to provide this initial guess.

4.3 Experiments

4.3.1 Experimental Setup

We implemented our experiments in PyTorch [114]. For training the feature extractors,
we partition our data into training and validation with an 80/20 ratio and stop the
training when the validation score does not improve for more than 10 consecutive
epochs. We use the Dice loss function and ADAM [82] optimizer. For obtaining the
perceptron’s weights W and intercept b, we employ BFGS [169] with Dice loss as the

objective function. We choose the regularization parameter in Equation 4.2 by visually
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4.3. Experiments

Method ABD-MRI* ABD-CT* Lizard' MoNuSACT
PANet 46.75 28.95 10.08 27.77
SE-Net 47.45 39.242 10.16 23.12
GCN-DE 67.3 61.73 19.04 21.79
SSL-ALPNet 70.12 65.05 6.01 18.59
BAM - - 5.4 9.77
Ours - - 48.76 48.27

Table 4.1: The average Dice score [%] on the test set of state-of-the-art medical and natural
image few-shot segmentation models. *: Results taken from [170]. {: Results generated by
following the open-source implementation of the methods.

assessing the predictions of several random selections of support and query images.
The optimization stops when the gradient norm is lower than 107°. To report the
results, we use the Dice coefficient on a separate test set, using 5 instances of trained

feature extractors with 10 randomly sampled support sets (50 results) per experiment.

4.3.2 Data

We chose Lizard [59] and MoNuSAC [153] segmentation data sets, containing, respec-
tively, 291 (191 train, 100 test) and 410 (310 train, 100 test) 8-bit RGB H&E stained
tissue images of various sizes. From Lizard, we keep epithelial (E), connective (C),
lymphocyte (L), and plasma (P) classes, whereas from MoNuSAC we use epithelial
(E), lymphocyte (L), macrophage (M), and neutrophil (N). For both data sets, we
separate each image into multiple 256 x256 patches via a sliding window technique
with a stride of 64 pixels. Additionally, to show the performance of the FSL methods
designed for medical image segmentation, we use ABD-CT from [89] (30 3D CT scans
with 1755 slices) and ABD-MRI from [80] (20 3D MRI scans with 492 slices). From
both data sets, we report the results on four classes: liver, spleen, left kidney, and

right kidney.

4.3.3 Results

Existing Works on Cell Segmentation. We used open-source implementations,
provided by their respective authors, of SE-Net [127] and PANet [160], two methods
that constitute the seminal works in medical imaging for attention-guided few-shot seg-
mentation, and for prototype learning, respectively, as well as of GCN-DE [138] and
SSL-ALPNet [112], two well-performing derivations of SE-Net and PANet, respec-
tively. Also, we explore the results of BAM [90], a recent method with state-of-the-art
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Figure 4.2: Visual comparison of predictions of epithelial cells from Lizard by methods
designed for natural and/or medical image segmentation, and our method.

results for natural image segmentation. We applied these techniques on the cell data
sets whose results we report in Table 4.1. The results on ABD-MRI and ABD-CT,
taken from [170], correspond to a one-shot setting, while for Lizard and MoNuSAC we
used five shots in the support set for PANet, BAM, GCN-DE and our method, while
for SE-Net and SSL-ALPNet, we employed one support image since these methods
do not allow pairing a query image with multiple support images. Since BAM has
not been applied to medical imaging, we do not show results for it on ABD-MRI and
ABD-CT. We notice that although these methods show good results for the task they
were designed for, i.e., few-shot organ segmentation, their performances do not trans-
late to few-shot cell segmentation. In this context, they achieve considerably lower
scores compared to our method. Figure 4.2 shows a qualitative comparison between
the aforementioned methods and our solution on the Lizard data set where the un-
known class is the epithelial cell type. The other cell classes were used during training.
For the methods allowing multiple shots, we used five. For the others, we used one
shot. In Figure 4.2, we only show the support image common to all methods. We
observe that SE-Net, GCN-DE, and BAM show difficulties in adapting to the new cell
type. SE-Net segments most cell-like structures within the query image, whereas the
predictions of GCN-DE and BAM contain structures belonging to the cell types from
the training set. The prototype-based solutions, i.e., PANet and SSL-ALPNet, show
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Figure 4.3: Figures (a, b) show the Dice score of our method for different numbers of
shots and feature maps. The orange line shows the average Dice score on the test set of the
models trained on all labelled data. The data points reflect the median Dice score on the test
set, while the shaded area is defined by the first and the third quartiles.

comparatively better adaptability. PANet includes a region with the epithelial cells
in its predictions, with the same area also covered by SSL-ALPNet. However, both
methods present relatively large areas of false positive segmentation. In this example,
our method shows the best coverage of the target cells, while introducing the least
amount of false positives.

Performance Analysis. For this experiment, we trained feature extractors of 25,
50, and 100 layers, on three classes, while selecting 1, 5, and 10 images whose labels
we include in the support set. We trained the feature extractors as individual binary
segmentation networks, each covering one of the classes; four binary segmentation
networks in total. For every target class, we include the feature extractors trained on
the other classes within the few-shot adaptation step. We present the results generated
by the feature extractor trained on the target class as an upper-bound baseline. The
results reported in Figure 4.3 show that offering the perceptron more features for
recombination, i.e., training deeper feature extractors, generally results in improved
Dice score, especially for higher numbers of shots. This behaviour is expected, since
a richer set of features means more flexibility in choosing a more general combination
separating the new cell type from the other structures in the image. Also, we notice

that, due to the random nature of the few-shot allocation, adapting the perceptron
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Optimization Lizard MoNuSAC

E L C P E L M N

Logistic [%)] 61.37 50.26  34.57 32.48 49.1 63.63 37.6 37.54
BFGS [%] 64.66 53.89 40.27 36.21 | 51.86 64.45 39.18 37.57

Table 4.2: Median Dice score results on the test with weights trained by logistic regression
and further refined by BFGS.

on only one shot is detrimental to its performance because of the risk of picking a less
representative or less informative support image, such as an image with a small amount
of annotated cells. This issue is reflected in the large blue-shaded areas corresponding
to 1-shot results, showing high variability in the performance of our method. However,
when utilizing 5 shots, we notice more robust results that are less affected by the
chosen support set. Also, since we learn the perceptron’s weights using a second-order
optimizer, the adaptation step is performed quickly, averaging 9 seconds on a Nvidia
RTX 3070 GPU, allowing eventual flaws in choosing the support set to be quickly
detected and corrected in practice.

Few-Shot Adaptation Choice. We assessed the benefit of utilizing the weights
obtained via logistic regression as a starting point for a second-order optimization
algorithm with Dice loss. We conducted the experiments by randomly selecting 5
support images of the target class on which the perceptron was trained via logistic
regression. Consequently, we employed BFGS to optimize the resulting weights with
the Dice loss as the optimization function. Table 4.2 illustrates that the additional
optimization step is beneficial for the performance of our method with an average Dice
score gain of 10.14% for Lizard and 2.8% for MoNuSAC.

4.4 Conclusion

Cell segmentation is an important annotation-scarce task that can benefit from few-
shot learning, but for which existing methods are unsuitable. Here, we present a novel
few-shot segmentation method designed to account for the particularities of cell seg-
mentation, such as the varying position of the target structures and their proximity to
each other. To achieve this, we utilize the high-resolution feature maps generated by
MSD networks [116], trained on the known classes, as input to a perceptron, which we
adapt to the few shots of the new class. We showed that our method can be success-
fully applied to cell images, requiring as little as five annotated images in the support

set for producing Dice scores less than 20% lower than of models trained on several
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hundred annotated images. In the future, we aim to improve the reliability of our
solution by exploring other types of feature extractors, incorporating additional reg-
ularization techniques, or using ensemble methods. Moreover, to better contextualize
our results, we intend to provide additional comparisons with popular fully-supervised
cell segmentation methods such as UNet [125] and Hover-Net [60].

Besides being used as a standalone cell segmentation tool, our solution can also be
embedded into an active learning setup where the quick adaptation step would enable
the user to immediately choose an appropriate support set where its predictions can
constitute the base for a further refinement step, e.g. as in [159]. In both cases,
our method can significantly reduce the amount of training annotations necessary for
costly segmentation tasks. For instance, within a semi-automated annotation tool,
our solution can produce initial suggestions of annotations, which can then quickly be
corrected by experts, while a fully-supervised model trains in the background on the

rectified annotations such as in [61].

62





