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Chapter 3

Upgrading Low-Quality

Annotations

3.1 Introduction

Deep-learning algorithms have been providing effective solutions for many tasks, con-

tributing to the advancement of domains such as speech recognition [77] and computer

vision [157]. One important computer vision task that is being tackled with such al-

gorithms is image segmentation [106], a process that labels each pixel into categories,

e.g., background and various cell types. However, deep-learning models require large

quantities of annotated data for training. In addition, the provided annotations should

also be of high quality. Specifically, the annotations should be accurate by providing

information that reflects the reality within the input, and be complete, meaning that

they provide all the information required for the given task, e.g., all pixels from an

image have an associated label in a segmentation task.

For many biomedical imaging tasks, including cell imaging [61], the annotations

are created manually by domain experts. Due to the limited availability of experts,
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3.1. Introduction

the annotation process is often tedious [176], limiting the capacity for annotating the

large quantities of data required by deep-learning algorithms. As a result, the general

adoption of deep learning for such specialized domains may be considerably hindered.

An annotation process with fewer quality constraints could significantly reduce the

burden on expert annotators, enabling them to produce annotated images within a

shorter time frame. For instance, when creating segmentation masks, the boundary

of every cell in the image has to be carefully delineated. By providing coarser delin-

eations, only annotating a subset of all cells, or relying on automatic but inaccurate

segmentation tools based on classical image processing, a much faster annotation pro-

cess can be achieved. However, training directly on low-quality annotations harms the

performance of cell segmentation deep-learning algorithms [158]. Thus, it becomes ap-

parent that a solution that leverages inaccurate annotations to expand costly training

data sets can greatly benefit the adoption of deep learning for cell segmentation.

Learning from imperfect or missing labels due to annotation constraints is a long-

standing issue associated with machine-learning tasks. In the case of cell segmen-

tation, obtaining large amounts of labelled data requires time-consuming efforts by

experts with specialized knowledge of the task. One field concerned with this problem

is weakly-supervised learning, where the aim is to train deep-learning algorithms to

produce complete segmentation masks by only providing the models with partial an-

notations. Such techniques usually vary in the amount of information that is present

in the annotations, which can include bounding boxes [121], rough sketches of shape

contours [21], geometrical shape descriptors in the form of centre points and lines [102],

or partially-annotated segmentation areas [117]. Despite their promising results, these

techniques are generally tailored towards a single type of inconsistency, which can

limit their applicability.

Directly accounting for labelling errors, implicit consistency correction methods

compensate for inaccuracies in the annotated input during the training process by,

for instance, reducing the influence of gradients coming from segmentation areas of

lower confidence [105], by using a teacher–student architecture [69] to change the label

of less confident areas in the annotation mask [177], or by using adversarial training

to only annotate high-confidence areas of unlabelled data [109]. On the other hand,

explicit consistency correction solutions provide fine adjustments to the output of

trained deep-learning models [34, 10, 29, 161]. Similarly to weakly supervised tech-

niques, these methods lack a broad applicability and their utilization depends rigidly

on custom architectures. When it comes to improving the provided labels, Yang et al.

[172] developed a solution for iteratively adjusting the manual annotations of retinal
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Chapter 3. Upgrading Low-Quality Annotations

vessels by employing generative adversarial networks. Their framework, however, only

produces small adjustments, relies on a relatively large amount of high-quality anno-

tations, and may suffer from the challenges associated with generative models, e.g.,

mode collapse and convergence failure [32].

Also concerned with annotation scarcity, few-shot segmentation aims to segment

new query images by leveraging information from relatively few support images with a

limited amount of annotations. However, these approaches generally require additional

training tasks with a large set of semantic classes [56, 55] whose annotations can be

costly to obtain. The need for manual annotations can also be avoided by employing

general foundation models such as the Segment Anything Model (SAM) [83], or cell-

specific models such as Cellpose [137]. However, although the applicability of such

models is not confined to a single image modality or cell type, they do not generalize

well to images outside their vast training pool. For instance, the SAM is not accurate

when the targets have weak boundaries [98], which can be the case with cell images

[4], whereas Cellpose is sensitive to variations in the texture of the objects [137]. This

may make these general solutions less suitable than techniques trained for a specific

cell type.

In summary, although there are many methods designed for improving deep-learning

segmentation with incorrect or incomplete labels, these solutions generally tackle spe-

cific types of inconsistencies, e.g., boundary uncertainty, require custom architectures

or training schemes, or have considerable annotation requirements for additional train-

ing tasks. In this chapter, we present a method designed to be applied to a wide set

of inconsistencies, with low data requirements and a flexible training scheme allowing

for a straightforward integration in other pipelines. We propose a framework for ef-

fectively obtaining large amounts of high-quality training data with limited required

human annotation time for the task of cell segmentation. Our approach is based on

manually annotating a small training set of high quality, which we then enlarge with

a much larger set with low-quality annotations (possibly produced with considerably

less human effort). In order to leverage the low-quality annotations, we train a convo-

lutional neural network to learn the mapping for upgrading a low-quality annotation

to a high-quality one by presenting it with both high-quality annotations as well as

low-quality versions of these annotations. We create multiple types of erroneous anno-

tations by perturbing the high-quality annotations with a function that approximates

potential errors resulting from a low-quality annotation process. Moreover, we show

that this perturbation function does not need to exactly replicate the annotation errors

present in the low-quality annotations in order for a good mapping to be trained. The
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3.2. Materials and Methods

training process requires pairs of perturbed annotations with their corresponding im-

ages as input for the upgrade network with the unperturbed, high-quality annotations

as targets. We apply the learned mapping to the large low-quality set to enhance its

annotations. Finally, we combine the initial small set of well-annotated data together

with the larger set with upgraded annotations and use them for training accurate

deep-learning models for the task of cell segmentation. By separating the inconsis-

tency correction step, i.e., the upgrading of annotations, from the segmentation step,

we enable our framework to tackle a wide array of inconsistencies and we facilitate its

integration into other segmentation pipelines.

3.2 Materials and Methods

3.2.1 Data Sets

Synthetic Data

We opted to use synthetic data to study most aspects of our method since their

ground truth annotations do not suffer from the inconsistencies a human annotator

may induce. Thus, we can be confident that such external factors do not influence

the outcomes of our experiments. Also, to isolate the effect of a particular type of

inconsistency in the low-quality set, we apply perturbation functions (see Section 3.2.2)

throughout the experimentation with synthetic data. We employ three data sets [140],

which consist of microscopy images of HL60 nuclei cells, granulocytes, and both cell

types, respectively, produced by a virtual microscope [166] extracted from the Masaryk

University Cell Image Collection (https://cbia.fi.muni.cz/datasets) (accessed

on 15.06.2023). Each data set consists of 30 volumes of 129 slices, each containing

565× 807 16-bit pixels. We filtered the volumes by eliminating the slices with empty

labels, which resulted in differently-sized volumes, averaging 84 slices per volume.

In addition, 25 volumes were used for training, while 5 volumes were kept only for

testing. In Figure 3.1, we show sample slices and their corresponding high-quality

annotations of the synthetic data sets. Since they are organized in volumes, we want

to avoid selecting high-quality annotations of adjacent slices since such samples show

little variation in their input and may be less informative when training the upgrade

network than more distant slices. Consequently, we sample by subdividing a volume

into a number of sections equal to the number of slices we want to select. We then

select the middle slice of each section, thus ensuring an equidistant separation between

slices. Additionally, when we sample from multiple volumes, we similarly partition
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Chapter 3. Upgrading Low-Quality Annotations

each volume, but we select every next slice from a section belonging to a different

volume in a circular manner. For instance, when taking a total of 5 slices from 5

volumes, the first slice will be selected from the centre of section 1 from volume 1, the

second from section 2 of volume 2 and so on.

(a) HL60 (b) Granulocytes (c) Combined

Figure 3.1: Sample slices and their corresponding high-quality annotations for the synthetic
data sets we considered for analysis. The slices are produced with a virtual microscope [166].

Real Data

We also employ two manually-annotated data sets: the EPFL Hippocampus data set

[95] and a large-scale data set for colonic nuclear segmentation called Lizard [59].

The EPFL data set is comprised of a training and a testing volume, each containing

165 slices of 768 × 1024 8-bit grayscale pixels. This set of images, obtained using

focused ion beam scanning electron microscopy, is commonly used for benchmarking

mitochondria segmentation algorithms, whose monitoring can provide, for instance,

insights into the development of neurodegenerative diseases [84]. The Lizard data set

contains histology RGB images of colon tissue of varying sizes with instance labels

for each cell. Among the six cell types annotated in this data set, we selected the

most prevalent category, i.e., epithelial cells, as our target and the remaining cells as

background objects. This choice allows us to test our method on the largest number

of samples, which ensures that we obtain the most statistically significant results.

We split the images into 500 × 500 patches, with 100 pixels overlapping between

patches and removed patches that did not contain epithelial cells. We partitioned the

resulting set into 1209 training and 288 testing patches. In this case, we assume the
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corresponding provided ground-truth annotations to be of high quality. For each data

set, we select a small subset of samples for which we keep the high-quality annotations

while perturbing the annotations of the remaining samples to generate the low-quality

set. This perturbation step is performed only once per annotated image.

3.2.2 Method

In Figure 3.2, we illustrate an overview of our method. We consider a high-quality

annotation process that produces labels in a slow and costly manner and a low-quality

annotation process, yielding labels faster and cheaper. Within a given time frame,

the processes would generate a small data set with high-quality labels and a larger

lower-quality set. We apply perturbations to the well-annotated labels and we use

the perturbed labels together with their corresponding images as input to train an

upgrade model. We employ the upgrade model to enhance the labels of the larger

data set, which we use in conjunction with the well-annotated samples to train the

final segmentation model.

Discover the world at Leiden University

LQ
labels

HQ
labels

upgrade model

upgraded
labels

HQ
labels

DATA

no
labels

segm
entation training

slow & costly
HQ labeling

fast & cheap
LQ labeling

perturb

train

pair

Figure 3.2: Workflow. We train the upgrade model on a small set with high-quality labels.
We apply the trained model to upgrade the low-quality labels of a larger set. We enlarge the
initial high-quality set with the upgraded labels and we use the combined set for segmentation
training.

Background

We apply our framework to the segmentation task of 2-dimensional vector-valued (e.g.,

RGB, grayscale) images. In this chapter, we define an image as a matrix of pixels x ∈
RN×M×C , where N , M , and C represent the number of rows, columns, and channels,

respectively. The goal of segmentation is to create a mapping from a given input x to

the target y ∈ ZN×M in order to provide a separation between the different entities

within that image. Essentially, a label is attributed to each pixel according to the entity

that it belongs to. When using deep learning for image segmentation, this mapping is
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Chapter 3. Upgrading Low-Quality Annotations

approximated using convolutional neural networks (CNNs), fδ : RN×M×C → RN×M ,

which require a set of image-target pairs X = {(x1, y1), (x2, y2), . . . , (xNt , yNt)}, to
train their parameters, δ. The process of training neural networks usually involves

successive predictions based on the input x and adjusting the parameters such that

the loss between the predictions and the labels is minimized. In order to achieve the

desired results, the network requires well-annotated training samples. We describe the

annotation process that produced high-quality labels as the output of the high-quality

annotator,

AHQ : RN×M×C → AHQ, (3.1)

that receives an input image x and produces a label that belongs to the set of high-

quality annotations, AHQ, i.e., it is both complete and correct. Such an annotation

can be the result of a consensus between multiple experts or can require a slow and

careful delineation of the shape of each element in x by a single expert. Additionally,

we define the set of well-annotated images, XHQ = {(x,AHQ(x))}, needed to train

the network parameters,

δ̂ = argmin
δ

∑
(x,y)∈XHQ

L(fδ(x), y), (3.2)

where L is a loss function. Due to their large parameter count, these models are

generally prone to overfitting and therefore require large quantities of well-annotated

samples.

Perturbation-Removal Framework

Since producing a sufficient number of high-quality annotations may prove unfeasible

for cell segmentation, the required annotations may be supplied via a less rigorous

annotation process. A low-quality annotation process would, for instance, result from

an individual expert who quickly produces the annotation, without spending additional

time on finer shape details or on removing ambiguities. Also, for setups that require

consensus, the label can come from a single expert, a person in training, or a non-

expert, thus reducing the annotation costs. Alternatively, the low-quality annotations

can even be the product of traditional segmentation techniques (e.g., thresholding,

graph cut [14], Otsu [111]) or machine-learning-based algorithms, removing the need

for a human annotator in this stage of the process. For instance, one easily-applicable

strategy to produce low-quality annotations is to simply train a segmentation network
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on the few available high-quality samples and then use its predictions on the remaining

unannotated samples as low-quality annotations. We define the low-quality annotator

ALQ : RN×M×C → ALQ, (3.3)

as a function that produces labels that are either incorrect or incomplete or both, thus,

being included in the set of low-quality annotations, ALQ.

Training solely with low-quality annotations generally leads to inaccurate results

[158]. Thus, we propose a solution to enhance the quality of a larger set of low-

quality annotations, which we utilize to enlarge an initially small set of high-quality

annotations. Our framework requires a small number of well-annotated images, XHQ,

together with a substantially larger set of images and their low-quality annotations,

XLQ = {(x,ALQ(x))}, with |XHQ| < |XLQ|. We aim to enhance ALQ(x) to AHQ by

finding the upgrade function

U : (RN×M×C ,ALQ) → AHQ, (3.4)

which translates an annotation of the input image created by the low-quality annotator

to an annotation belonging to the space of high-quality annotations. In order to create

both high- and low-quality versions of annotations, we utilize a perturbation function

that aims to approximate the unknown mapping from a high-quality annotation to a

low-quality one. We handcraft function

P : AHQ → ALQ, (3.5)

which applies perturbations to a high-quality annotation to create an annotated image

that approximates a faster, but lower-quality, annotation process. The choice for such

a function can vary by task and data set, with implementations that can include

heuristics or even learning the perturbations from the data. In our work, we assume

that we can approximate the perturbation function, P , by implementing a custom

stochastic version of it. Additionally, we assume that the function U that maps the

low-quality label to a high-quality one is a learnable function. We employ the high-

quality set to generate many (x, P (AHQ(x))) pairs. Given the stochastic nature of

our chosen perturbation function, we can generate multiple perturbed versions of the

same high-quality annotation; thus, we only require a small number of (x,AHQ(x))

pairs. We utilize the generated pairs to train an upgrade network, uθ, parametrized
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by θ, which approximates U by finding

θ̂ = argmin
θ

∑
(x,AHQ(x))∈XHQ

L(uθ(x, P (AHQ(x))), AHQ(x)), (3.6)

where L is a loss function. After training uθ, we apply it to our lower-quality set.

In this way, we enhance the low-quality annotations, which results in the pairs

(x, uθ(x,A
LQ(x))) of input images and upgraded annotations. Finally, we use both

the enhanced (x, uθ(x,A
LQ(x))) pairs and the initial high-quality (x,AHQ(x)) pairs

as training samples for our final segmentation task. Therefore, our segmentation CNN

fδ will be obtained as

δ̂ = argmin
δ

(
∑

(x,y)∈XHQ

L(fδ(x), y)+ (3.7)

∑
(x,y)∈XLQ

L(fδ(x), uθ̂(x, y))).

Algorithm 1 shows the pseudocode of a segmentation pipeline that makes use of

our upgrade network. The requirements of our framework are (1) a small set with

high-quality annotations, (2) a larger set with low-quality annotations, and (3) a

perturbation function. The objective of this pipeline is to obtain the parameters δ

of a well-trained segmentation network. We initially train the upgrade network uθ

only on the high-quality data XHQ, whose labels we perturb with the previously

selected perturbation function, P . We aim here to obtain predictions from input

images and perturbed labels that match the high-quality annotations as closely as

possible. After estimating the parameters of uθ, we apply it to XLQ, whose images

and resulting upgraded annotations we employ, in conjunction with XHQ, to estimate

the parameters δ of a segmentation network.

Producing Low-Quality Annotations

We designed our method for the task of binary cell segmentation, where the object of

interest is a single type of cell. In order to apply our perturbation function, we require

the instance label of every cell in the image. Therefore, considering E cells in image

x, we define L ⊂ Z as the set of all cell instance labels, with |L| = E. Our label then

becomes
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Algorithm 1 Upgrade Framework

Require: XHQ, XLQ, P return δ
(1) Train the upgrade network uθ:

for (x, y) ∈ XHQ do
Perturb y: P (y)
Predict upgraded label: uθ(x, P (y))
Compute loss: L(uθ(x, P (y)), y)

end for
Estimate θ̂ according to Equation (3.6)

(2) Upgrade low-quality set and expand segmentation training data:

for (x, y) ∈ XLQ do
Upgrade low-quality label: uθ(x, y)

end for
Estimate δ̂ according to Equation (3.7)

ynm =

{
i, if xnm belongs to cell i ∈ L,
0, otherwise

(3.8)

1 ≤ n ≤ N, 1 ≤ m ≤ M.

We apply three types of perturbations (omission, inclusion, and bias), introduced

in [158], which are designed to reflect the incompleteness and inaccuracy of the cell

segmentation masks resulting from an annotation process with fewer resources. For

instance, a much shorter annotation time can be spent by using segmentation masks

that only contain a proportion of the total cells present in the image. Moreover,

allowing for inconsistencies in cell recognition in the form of inclusions can also reduce

the time an annotator spends choosing which cells to include in the segmentation

mask. Finally, by eliminating the need to provide correct cell border delineations, we

can expect a boost in the annotation speed.

Omission Perturbation. We randomly select a subset of S ≤ E of cell instance

labels LS ⊆ L, whose size is chosen such that it satisfies the omission rate rω = S
E .

Our perturbation function, therefore, becomes
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P (y)nm =

{
0, if xnm belongs to cell i ∈ LS ,

ynm, otherwise
(3.9)

1 ≤ n ≤ N, 1 ≤ m ≤ M.

Inclusion Perturbation. Given an image x and Λ ⊂ Z, a set of instance labels of

other objects belonging to x (L∩Λ = ∅), we perform inclusion by randomly selecting

a subset ΛS ⊆ Λ of the objects, whose size S ≤ F satisfies the inclusion rate rϕ = S
F .

Hence, we apply the perturbation as

P (y)nm =

{
j, if xnm belongs to shape j ∈ ΛS ,

ynm, otherwise
(3.10)

1 ≤ n ≤ N, 1 ≤ m ≤ M.

Bias Perturbation. We model the inconsistency in border delineation by performing

morphological operations [130] on the cell labels. We employ dilation operations, D, to

enlarge the cell area and erosion operations, E, to shrink the cell area. The operation is

randomly chosen and the impact of the operation is controlled by factor q that controls

the number of iterations, with a 3× 3 all-ones matrix as the fixed structural element,

for which we perform the chosen operation. This bias severity constant, randomly

picked between 1 and qmax, indicates the largest allowed number of iterations. As a

result, the perturbation is formed either as

P (y) = Eq(y) or P (y) = Dq(y). (3.11)

where Eq and Dq denote q iterations of erosion and dilation, respectively.

Given the relatively ill-defined distinction between low-quality and high-quality

annotations, we will further consider as low-quality annotations only the ones affected

by large degrees of perturbations, i.e., 70% omission, 70% inclusion, a bias of 6, or a

combination of perturbations. Thus, we only consider as low-quality the annotations

that significantly diverge from the gold standard. In Figure 3.3, we illustrate an exam-

ple of an annotation where all three perturbation types are present and highlighted.

Alternatively, we investigate the case where the low-quality annotator ALQ would not

imply any human effort. This can happen when ALQ are produced by a segmentation
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network trained on the small number of samples in the high-quality set AHQ. In this

case, the generation of low-quality annotations is disentangled from the perturbations

that we apply when training the upgrade network.

3.2.3 Experimental Setup

We designed our experimental setup around a PyTorch [114] implementation of UNet

[125]. UNet features an encoder–decoder architecture with skip connections between

the encoding layers and the decoding layers of the same spatial resolution. We em-

ployed 4 convolutional blocks in the encoder and 4 in the decoder, with a block contain-

ing 2 convolutional and 2 batch normalisation layers. We treat both the segmentation

and upgrade tasks as binary pixel-wise classification tasks. Thus, the output of the

network in both cases is a two-channel image with the first channel’s pixels being 0

if they belong to the foreground and 1 if they belong to the background, with the

opposite holding true for the second channel. All activations between layers are ReLU

functions, with the exception of the last layer, where the output is processed by a

soft-max function. We train the network until there is no improvement in the vali-

dation score for 10 consecutive epochs, at which point we only keep the model with

the highest score. Our loss function is the Dice loss, and we update the network’s

parameters according to ADAM optimization algorithm [82], with a learning rate of

10−5 and a batch size of 4. We partition our data into training and testing with

an additional 80/20 split of the training data into training and validation. Finally,

we present our results by reporting the Sørensen–Dice coefficient computed over the

entire test set and averaged over 5 runs. We validated our comparisons by using the

Wilcoxon non-parametric test [124].

3.3 Results

We performed a series of experiments to analyze various aspects of our proposed

framework. In Section 3.3.1, we use the synthetic data sets with objective ground truth

to measure the quality gain of upgraded annotations under various sets of assumptions.

On the same data sets, we also evaluate the benefits of expanding the segmentation

training data with upgraded annotations in terms of segmentation performance and

annotation cost (Section 3.3.2). Furthermore, in Section 3.3.3, we validate our previous

observations on real manually-annotated data. Lastly, we show, in Section 3.3.4, a case

study of an application where our solution can be integrated to improve the prediction
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(a) Input image (b) HQ annotation (c) LQ annotation

(d) Omission (e) Inclusion (f) Bias

Figure 3.3: An example of the perturbations applied to the high-quality annotations.
Figure (a) presents an input image from the combined data set, where the HL60 cells are
the target cells and the granulocytes are the included cells. The high-quality annotation
corresponding to the input is shown in (b). The low-quality version of the annotation shown
in (c) is affected by 50% omission, 50% inclusion, and a bias of 6. The omission perturbation
is represented by the orange omitted cells in Figure (d), inclusion by the red shapes in (e),
and bias by the magenta contours in (f).

quality of a segmentation network trained with insufficient samples.

3.3.1 Analysis of the Upgrade Network

To assess the optimal training set size for the upgrade network uθ, we created various

training sets by varying both the total number of annotated slices and the number of

volumes from which the annotated slices were selected. The models were trained to

upgrade annotations affected by 70% omission, 70% inclusion, and a bias of 6, respec-

tively. The results presented in Figure 3.4 show that the upgrade network requires

just 5 well-annotated slices to improve the quality of the annotations, regardless of

the applied perturbation. We also notice that the resulting quality of the upgraded

annotations plateaus quickly to Dice values > 0.9. We report the optimal number of

training slices for different perturbations together with the corresponding Dice score

of the upgraded annotations in Table 3.1.
So far, we assumed that we can perfectly model the errors affecting the low-quality
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Figure 3.4: The Dice similarity with the ground truth test set of the upgraded annotations
as a function of the total number of slices used for training and the number of volumes from
which the slices were selected for the HL60 cells (represented using a different colour). The
coloured dots represent the experimental results, while the coloured dashed lines are showing
the general trend of the results. The straight dash-dotted line represents the average Dice
similarity with the ground truth test set of the perturbed annotations before the upgrade.

Table 3.1: The Dice similarity with the ground truth test set of the annotations affected
by perturbation and the upgraded annotations, as well as of the predictions produced by seg-
mentation networks trained only on the high-quality data, on the high-quality data together
with the data with upgraded annotations, and results of using thresholding as baseline. In
each row, the largest value is highlighted in bold. The training setup indicates the data set on
which the upgrade network was trained, as well as the total number of slices used for training
and the number of volumes from which the slices were selected. The cell types marked with
an asterisk come from the combined synthetic data set.

Training setup
for upgrade network

Quality of
training annotations

Quality of
segmentation network

Training data
Perturbation Data Vols. Slices LQ Upg. HQ HQ + upg. HQ + LQ LQ only Thrs.

70% omission
HL60 10 10 0.462 0.939 0.823 0.929 0.311 0.311 0.887
gran. 10 80 0.495 0.92 0.892 0.894 0.41 0.414 0.732

70% inclusion
HL60* 10 10 0.925 0.992 0.913 0.962 0.891 0.89 0.892
gran.* 10 10 0.381 0.98 0.856 0.898 0.364 0.353 0.214

bias 6
HL60 10 10 0.857 0.909 0.823 0.923 0.931 0.933 0.887
gran. 10 40 0.675 0.865 0.868 0.877 0.827 0.81 0.732

30% om. 30% inc.
bias 4

HL60* 10 10 0.71 0.929 0.913 0.934 0.739 0.745 0.892
gran.* 10 10 0.54 0.86 0.856 0.854 0.505 0.5 0.214

annotations with our perturbation functions. However, in practice, it might be difficult

to exactly match the type and severity of the perturbations present in the data. To

account for that, we relax this assumption by allowing a mismatch between the error

generated by the perturbation functions and the errors in XLQ. In Table 3.2, we

report the effect of such mismatch on the performance of the upgrade network when

the annotations of XLQ contain 30% omission, 30% inclusion, and a bias severity of

4, respectively. We observe that, even when not reaching the highest Dice scores,

the upgraded annotations show high Dice scores when uθ is trained on the highest

perturbation level. This implies that varying the presence of a large proportion of the

cell masks can be more beneficial for training uθ than aiming to exactly match the
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Table 3.2: The Dice similarity with the ground truth test set of the upgraded network
trained on various degrees of perturbations. The perturbations present in the low-quality set
are 30% omission, 30% inclusion, and a bias severity of 4, respectively. For each perturbation
type, the highest score is highlighted in bold.

Training perturbation for upgrade network
Omission Inclusion Bias

20% 30% 50% 20% 30% 50% 2 4 6
HL60 0.955 0.972 0.952 0.973 0.972 0.986 0.915 0.918 0.926
gran. 0.838 0.86 0.93 0.984 0.98 0.981 0.821 0.837 0.884

amount of error present in the XLQ.

In addition to the perturbation function, another essential requirement of our so-

lution is the presence of a high-quality set of annotations for training uθ. Since we

use synthetic data, the quality of this set is ideal, which, however, is not expected

from manual annotations for many reasons, including inter-observer variability [13]

or limited available resources. We model these inaccuracies by introducing moder-

ate amounts of perturbations into the high-quality set. Figure 3.5 illustrates that

the upgrade networks trained on the larger HL60 cells are robust to imperfect HQ

annotations, whereas the ones trained on granulocytes are more sensitive due to the

comparatively smaller footprint of the cells. Thus, the same amount of perturbation

affects the quality of the granulocytes annotations more drastically than that of HL60

cells. Despite allowing for a moderate amount of omission and inclusion perturbations,

the networks trained on granulocytes show a sharp drop in performance for bias since

this type of perturbation introduces the greatest variation in shape relative to cell size

among the two data sets.

We compare our solutions with works tackling the issue of training biomedical

image segmentation models with imperfect or incomplete annotations. We selected
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Figure 3.5: The Dice similarity with the ground truth test set of the upgraded annotations
as a function of the perturbation level present in the high-quality training set of the upgrade
network. The vertical bars correspond to the standard deviation of the results.
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3.3. Results

Table 3.3: The Dice similarity with the ground truth test set of the predictions produced
by three different segmentation networks designed for training with incomplete/noisy annota-
tions. The models were trained on 10 volumes of the combined set of HL60 and granulocytes
with the HL60 cells as the target cells. The upgrade network of our method was trained
using 20 well-annotated slices, which were also included in the training set of the other two
methods. For each perturbation, the highest score is highlighted in bold.

Perturbation
Method 70% omission 70% inclusion bias 6

Partial Labelling [117] 0.906 0.859 0.803
Confident Learning [177] 0.381 0.888 0.947

Ours 0.923 0.962 0.916

techniques that employ full-size segmentation masks for training and that apply cor-

rections to these masks to either fill incomplete areas or remove incorrect ones. Also,

although we compare the selected methods for all our perturbation types, it is impor-

tant to note that Partial Labeling [117] was designed for setups closer to omission than

the other perturbations, whereas Confident Learning [177] tackles uncertain areas at

the border of the masked areas resembling more our bias perturbation. In Table 3.3,

we observe that our method generates comparable results with Partial Labeling for

omission and Confident Learning for bias perturbation. However, among all three per-

turbation types, our framework performs consistently better than the other solutions,

showing wider applicability to different types of inconsistency.

3.3.2 Segmentation Improvements

In Section 3.3.1, we investigated the capability of the upgrade network to improve the

quality of annotations affected by errors. In this section, we are analysing whether

adding the upgraded annotations to the training set results in improved segmentation

performance and reduced overall annotation costs. In Table 3.1, we report different

scenarios under which XHQ and XLQ can be used to train networks for segmentation.

Given an initial data set with low-quality annotations, we can use it directly as a

training set for segmentation (LQ only column in Table 3.1). We can also spend

additional resources on improving the quality of a small number of annotations and

utilize them in conjunction with the low-quality set (column HQ + LQ) or we can

employ the high-quality set alone for training (column HQ). Finally, we can use our

framework for upgrading the low-quality annotations and, together withXHQ, forming

a larger training set of improved quality for the segmentation network (column HQ +

upgraded). In order to ensure that the synthetic data cannot be easily segmented based
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on the pixel intensity levels, we use as baseline a simple thresholding solution in which

the input images are segmented by selecting a threshold via grid search with a step

of 1% of the maximum pixel intensity. For each data set, we select a single threshold

that yields the highest Dice score on the training set. The low baseline results in

Table 3.1 reflect the complexity of the simulated data sets. Our results show that,

for most cases where uθ improved the quality of annotations, the addition of samples

with upgraded annotations translated into a higher segmentation performance of the

final segmentation network on the test data.

From Table 3.1, we observed that adding the upgraded annotations to the train-

ing set results in better segmentation. However, this performance gain resulted from

upgrading a large number of low-quality annotations, which may also prove difficult

to produce in practice. To account for this, we perform an experiment analysing the

trade-off between annotation cost and performance. For a fixed number of slices, we

select 10% of them to have high-quality annotations, while the rest have low-quality

annotations. We apply our framework to this set of slices and compare against seg-

mentation networks trained with low-quality annotations, i.e., 0% high-quality slices,

and against segmentation networks trained on high-quality slices only, i.e., 100% high-

quality slices. We define the annotation cost as the equivalent number of low-quality

annotations that would be produced with the same effort as a given annotation. For

instance, for a low-quality annotation, the equivalent number of low-quality annota-

tions is 1, while for a high-quality annotation, this number will differ depending on the

particularities of the task, such as the data sets or the experience of the annotators,

as is the case with works comparing annotation costs in the literature [133, 36]. For

illustration purposes, we consider the equivalent number of low-quality annotations

for a high-quality annotation to be 5. We observe in Figure 3.6 that, except for bias

perturbation, the segmentation networks trained with our framework are the most

cost-effective option for reaching the highest Dice scores. When it comes to bias, the

variation in cell size induced in the training set with low-quality annotations forces

the network to learn an “average” cell size that matches more closely the ground

truth in the test set. However, in cases where the bias is more systematic, we expect

a considerable drop in performance for the networks trained only with low-quality

labels.
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Figure 3.6: The Dice similarity with the ground truth test set of the segmentation networks
as a function of annotation cost. The results in Figure (a) correspond to the HL60 data set
where the low-quality annotations suffered from 70% omission, the results in Figure (b)
correspond to the combined data set with HL60 cells as targets and 70% inclusion in the
low-quality annotations, and the results in Figure (c) correspond to the HL60 data set with
a bias of 6 in the low-quality annotations.

3.3.3 Enhancing Manual Annotations

In Section 3.3.1, we showed that the upgrade network is able to improve low-quality

annotations of synthetic images under various circumstances. Here, we expand our

analysis by validating our observations on real cell images. We integrate the two de-

scribed real data sets in a scenario emulating the process experts may undertake to

enhance the quality of their annotations. Our goal is to assess whether the quality

gains reported in Table 3.1 can be similarly reproduced on real manually-annotated

data. We consider a setup where the constraints on the annotation process are accu-

rately captured by the perturbation functions used during the training of the upgrade

network. With omission, we model an expert that deliberately ignores most cells in

an image, focusing only on 30% of them. Inclusion allows for the presence of other

structures that, for instance, can result from using networks trained on other cell data

sets, or from foundation models. Bias would allow the annotator to either focus on the

“core” of the cell, as shown in Figures 3.7m,o, or on the wider cell area without rigor-

ously delineating the boundaries. Figure 3.7 shows the results of the upgrade network

trained on 24% of the training samples of EPFL, and on 20% of Lizard’s, respectively.

We notice, both qualitatively and quantitatively, that our solution can successfully

upgrade annotations affected by high perturbation levels, requiring a relatively low

number of high-quality annotations for real, more complex data sets. Also, the large

quality increase for omission and bias highlights the potential of our framework to ex-

pand the size of cell data sets with relatively low effort for producing the low-quality

annotations.
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Dice LQ: 0.464 Dice upgraded: 0.827 

Dice LQ: 0.872 Dice upgraded: 0.921 

Dice LQ: 0.547 Dice upgraded: 0.861 

(a) Input image  EPFL (b) Ground truth EPFL 

(e) LQ annotation (f) Upgraded annotation

(i) LQ annotation (j) Upgraded annotation

(m) LQ annotation (n) Upgraded annotation
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Figure 3.7: An example of perturbations applied to the real data sets paired with upgraded
annotations. Figures (a–d) show the input image paired with its corresponding ground truth
for EPFL and Lizard. Figures (e–h), (i–l), and (m–p) present the perturbed-upgraded
annotation pairs for 70% omission, 70% inclusion, and a bias of 6, respectively. The results
below the images represent the Dice similarity between the ground truth, the low-quality
annotations, and the upgraded annotations, respectively. Both metrics were computed on
the entire test set.

3.3.4 Case Study: Upgrading Low-Quality Predictions

We showcase here an example where the upgrade network can be applied in a scenario

requiring no manual annotation cost for producing the low-quality annotations. In this

case, XHQ can be employed to train a segmentation network whose predictions can

then be further used as the cheap annotations of XLQ. We consider the predictions

of a segmentation network trained with 10 well-annotated samples of Lizard data set

in a setup similar to [161]. We use the same XHQ for training our upgrade network.
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(a) Input image (b) Ground truth (c) Perturbed annotation (d) LQ annotation (e) Upgraded annotation

Dice LQ: 0.5288 Dice upgraded: 0.6448

Figure 3.8: An example of an application where our framework can upgrade the predictions
of a segmentation network trained on insufficient data. Figures (a,b) show the Lizard input
image together with the corresponding ground truth. Figure (c) is an example of a perturbed
annotation used during the training of the upgrade network. Figure (d) shows a low-quality
annotation produced by the segmentation network with its upgraded version presented in
Figure (e). The results below the images represent the Dice similarity between the ground
truth, the low-quality annotations, and the upgraded annotations, respectively. Both metrics
were computed on the entire test set.

We opted for a set of perturbations that would guide uθ to compensate for prediction

inaccuracies that we visually assessed. At each training iteration, we perform a 50%

omission, followed by the inclusion of 10% of the segments extracted by Felzenszwalb’s

algorithm [54] to emulate missing or mispredicted structures. We add salt and pepper

noise with a 10% probability to mimic the observed gaps in the segmented area as

well as the small clusters of false positive pixels that can be noticed in Figure 3.8d.

Finally, the resulting label is subjected to bias perturbation with a bias of 6 to guide

the upgrade network towards better delineation of cell boundaries. The results, shown

in Figure 3.8, demonstrate the potential of our method to refine the predictions of an

undertrained segmentation network. We achieve a 22% improvement in the quality

of the predictions without requiring additional supervision. Moreover, by visually in-

specting the results, we notice that uθ achieves good separation between the individual

shapes, a property not captured by the Dice score metric. These delineated shapes

can then be used, for instance, to facilitate a further instance segmentation step.

3.4 Discussion

Our results reported in Table 3.1 indicate that, with as few as 10 well-annotated im-

ages, we can improve low-quality annotations to a level comparable with the gold

standard. In addition, as can be seen in Figure 3.4, the performance of the upgrade

network relative to the size of the high-quality data set follows a logarithmic trend.

Therefore, continuously increasing the size of XHQ will not generate meaningful im-
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provements. By knowing the logarithmic trend of the performance of uθ, the end user

of our framework would benefit from being able to decide more easily when enough

high-quality data has been gathered and annotated, since, once uθ performs well for a

certain size of XHQ, little improvement can be expected when the size of the training

is increased. Furthermore, we showed that the upgrade network produced positive re-

sults for all considered cell data sets. The only requirements are a small high-quality

set of annotations, a separate larger set of low-quality annotations, and a perturbation

function that can map a high-quality annotation to multiple lower-quality versions of

it, resembling the quality within the low-quality set. Since our requirements are inde-

pendent of the data set, we expect our method to also work on other image modalities

where our assumptions are met. This also applies to data collected in the three-

dimensional regime, such as tomography. In this case, our framework can be applied

on each individual slice separately.

We observed that using both the upgraded annotations of the low-quality set

together with the small well-annotated set generally results in higher segmentation

scores. Moreover, we noticed that the highest Dice scores are obtained when the

upgrade model is both trained with and applied to annotations perturbed with 70%

omission, 70% inclusion, or a bias of 6. We also saw in Figure 3.6 that our framework

can be a cost-effective solution to increase the performance of segmentation networks

when the annotation time is a constraint. Moreover, by comparing with other works

targeting the enhancement of imperfect annotations, we showed that our upgrade net-

work can handle a wider variety of perturbations than existing techniques. Thus, our

solution is well-suited for being embedded into an annotation process with limited

resources, rather than for fine-tuning, where there is a wide gap between the cost

of producing a low-quality annotation and the cost of producing a high-quality one.

For instance, for automatically-produced annotations by a non-learning algorithm, the

only costly requirement would be to manually enhance a small proportion of them,

on which the upgrade network can be trained. Moreover, as shown in Figure 3.8, our

solution is flexible enough to be used for upgrading predictions of a network trained

with insufficient data. These upgraded predictions can then be used to enlarge the

existing data set or be further adjusted by experts, reducing the overall annotation

time.
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We also noticed the benefit of training for high perturbation levels, i.e., 70% omis-

sion, 70% inclusion, and a bias of 6, when we tested the robustness of our solution

with respect to discrepancies between the perturbation levels used to train the up-

grade network and the perturbation levels in the low-quality set. In Table 3.2, we saw

that, generally, when we train for the highest perturbation level we reach compara-

ble, or higher, performance than when training on the same perturbation applied to

generate the low-quality set. Since, in practice, the annotation inaccuracies can have

a systematic, i.e., annotator-specific, component and a random component, it may

prove impossible to exactly model these inaccuracies through perturbations. Thus,

the robustness to discrepancies in perturbation levels shown by our framework can

indicate its potential applicability in practical scenarios. We additionally showed that

our framework is robust to reductions in the quality of XHQ. Figure 3.5 shows that

we can expect a relatively small drop in performance when we moderately reduce the

quality of the well-annotated set. This observation may imply that the annotation

process of XHQ can become less costly, e.g., requiring fewer experts per high-quality

annotation, while still being able to produce annotations to train a well-performing

upgrade network. However, the less information is present in an annotation, e.g., small

cell areas, the more sensitive the framework becomes to inconsistencies.

Given that we focused solely on cell segmentation, we are unable to conclude with

certainty whether or not our framework is applicable to other image segmentation ap-

plications where the goal would diverge from the cell segmentation setup, for instance

by requiring the segmentation of a single contiguous target object. However, consid-

ering that our framework does not demand a specific type of annotation, as long as

sufficient realistic low-quality versions of the high-quality annotations can be created

with enough variety between them, we expect the upgrade network to still be applica-

ble. Despite this, further experimentation is required to ensure that our requirements

are met by other segmentation applications. Another limitation presented by our work

is the lack of integration of the third dimension for volumetric data sets. This can be

tackled in the future by, for instance, employing an architecture with 3D convolutions

as the upgrade network. Finally, throughout our experimentation, we upgraded only

annotations suffering from high levels of inconsistencies, while ignoring the fine-tuning

of less severe cases. We expect our upgrade network to not perform similarly well

on such cases, given that the small errors would not allow for much variation in the

generation of the low-quality versions of the annotations. This would then impede

the network from learning a generalizable mapping from a low-quality annotation to

a high-quality one.
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3.5 Conclusions

We presented our framework for enlarging training data sets with limited human an-

notation costs by only requiring a small set of data with high-quality annotations and

a larger set with low-quality annotations that would require little or no human an-

notation effort. We utilize a small high-quality data set whose annotation quality is

reduced for providing it as input to an upgrade network that learns the mapping from

a low-quality annotation to a high-quality one. We then use the upgrade network to

enhance the annotation quality of the larger low-quality set.

We observed that our solution is applicable to at least three types of annotation

inconsistencies (omission, inclusion, and bias), that it is robust to changes in the

annotation quality of the training set, and that it can have wider applicability than

existing works. We showed that our work can be applied to enhance the low-quality

predictions of a network trained on an insufficient number of samples. Finally, we

showed that the networks trained on data sets enlarged by our method present higher

segmentation scores than only training on high-quality data.
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