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Chapter 2

Annotation Errors in Cell

Segmentation

2.1 Introduction

Image segmentation, i.e., the labelling of relevant features in images, has been an im-
portant topic for the computer vision community [62]. In recent years, the use of deep
convolutional neural networks for image segmentation has become increasingly popu-
lar [3]. Although such algorithms are able to achieve similar performance to human
annotators on certain tasks [51], they are heavily dependent on both the quantity and
the quality of the training data. The importance of quality is especially prominent
in the context of segmentation, where the annotation process is time-consuming and
often requires domain-expert knowledge (e.g., in medical imaging). One important
issue that arises is the high variability between expert annotators when segmenting
anatomical structures from medical images [13, 94, 175]. For instance, the segmenta-
tion of multiple sclerosis poses difficulties to many experts since the lesion area can

vary in size, shape or location [174], inducing high inter- and intra-observer variabil-
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2.1. Introduction

ity [22]. Also, there can be a considerable amount of disagreement between experts
when defining the segmentation border of the optic nerve head in retinal images [49].
These annotation dissimilarities can mean that the manually annotated labels used
for segmentation may deviate from the ground truth, which can negatively impact the

accuracy of the supervised machine learning models.

In order to compensate for such inconsistencies, various label fusion techniques,
e.g., STAPLE [165], VoteNet [47], have been proposed to extract an approximation of
the ground truth from multi-expert annotations. However, such methods often require
multiple opinions for the same data, a process that is costly and slow. In addition to the
effort that the research community is putting into alleviating the label inconsistency
issue, it is also important to study the actual impact that such label imperfections
are causing to the segmentation algorithms. The benefits of such a study are twofold.
Firstly, the engineers who use existing deep learning solutions when developing tools
would learn whether they can reduce the expert time on annotations by admitting
lower quality labels and still achieving the desired results. Secondly, the developers of
deep learning techniques can be provided with insights indicating ways to design more

robust algorithms with respect to annotation errors.

While the literature proposes multiple methods to mitigate the effect of annota-
tion errors in image segmentation, there are few works evaluating the concrete impli-
cations of these errors. In particular, [179] develop a measurement of label quality
in the context of semantic segmentation of synthetic urban street view scenes. They
apply various levels of simplifications to the segmentation masks of the scene and use
a modified version of FusionNet [120] and FCN16 [131] to generate the predictions.
Their results emphasized the need for a large set of coarsely annotated images rather
than strongly controlling the label quality. However, the study assumes the imme-
diate availability of a large pool of unannotated images with an inexpensive coarse
annotation process, which is often impossible to achieve in medical imaging, where
even creating coarse labels requires a certain extent of expertise. [67] emulated three
types of perturbations on a liver segmentation data set [17]. The errors included the
application of random offsets, shifts and flips of pixel labels applied to the annotation
images, while the evaluation was performed for UNet [125], SegNet [11] and FCN32
[131]. The selection of errors was further diversified by [156] with their work on an
MRI brain tumour data set [68]. They made use of elastic transformations, random
crops of the tumour area, constant shifts and random permutations between slices and
their labels. Consequently, they observed the effects of the perturbations for multiple

learning paradigms based on a UNet backbone. Both studies introduce errors present-
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(a) Input image (b) Actual GT (c) Perturbed GT

(d) Omlssmn (e) Inclusion

mnm

Figure 2.1: Example of our proposed perturbations. Figure (a) shows an input image where
the HL60 cells are the target objects and the granulocytes form the background objects. The
unmodified ground truth is shown in (b), and its perturbed version in (c). The errors are
highlighted in (d) — omission/orange, (e) — inclusion/red and (f) — bias/purple.

ing plausible occurrence scenarios. However, each of them is performed on a single
manually-annotated data set, whose labels can already be subjected to the errors the
authors try to model.

In this chapter, we extend previous works by introducing three error-emulation
techniques applied to three different data sets. So far, the current annotation error
studies on biomedical images have been focusing on segmentation tasks of unitary
objects (e.g., organs, tumours). Such objects are limiting most error emulation ap-
proaches to create perturbations only at the border of the object’s label. We deviate
from this approach by proposing an analysis of sparsely distributed objects in the con-
text of cell segmentation. This enables us to not only induce errors at the border of
the objects, but also to emulate errors concerning entire regions, such as the complete
removal or addition of cells. In addition, we address the shortcomings of using manual
annotations as ground truth by employing two perfectly-annotated synthetic data sets
of HL60 and granulocytes [140] and validate our observations on manually-annotated
microscopy images [153]. Moreover, we expand the current analysis by incorporating

a network whose architecture diverges from the usual encoder-decoder paradigm.

2.2 Background and Methodology

Our analysis is focused on the segmentation task of 2-dimensional vector-valued (e.g.,
RGB) images, denoted as arrays of pixels z € RV*MXC where N, M, C represent
the number of rows, columns and channels, respectively. The aim is to find a mapping

from z to an output y € ZN¥*M that subdivides the image into disjoint sets of pixels,
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2.2. Background and Methodology

each set corresponding to a certain category. In our work, we address the problem of
binary cell segmentation by separating only one class of objects from the background.
Suppose the image 2 contains E cells. For each cell i we define the cell label I as the
binary image in which the pixels belonging to that cell are set to one and all other

pixels set to zero:

l;m _ 1, if x,,, belongs to cell i V1<n<N 1<m<M. (2.1)
0, otherwise
Given the set of all cell labels £ = {I*,12,... 1"}, a target image for training can be
constructed by:
y=>_1 (2.2)

lel

In order to approximate the desired mapping, we employ convolutional neural
networks (CNNs) by passing the input image through a series of successive operations,
called layers. The networks are given a set of input images X = {z1,x2,...,2y,} and
the predicted output Yy = {91,92,...,9n,} is compared against the target output
Y = {y1,vy2,...,yn, } with the goal of minimizing a loss function.

Annotation errors. As the true output usually comes from manual annotation, it
becomes subjected to human errors, which can hinder the training of CNNs. We model
such inconsistencies and separate them into three categories (shown in Figure 2.1) as
follows:

Omission Errors. Typical stained tissue scans can include tens or even hundreds
of cells of different shapes and sizes [46]. When creating segmentation masks for such
diverse and populated images, it is possible that an expert annotator may uninten-
tionally ignore a certain proportion of the relevant cells. We call such absence of
cell annotations omission errors and we develop a systematic method of altering the
ground truth mask by removing a ratio of the present cells from the label set £. An
example of cell removal is showcased in Figure 2.1(d). We define £5 C £ as a random
subset of size S < E, where S is chosen to satisfy the omission rate r,, = % The label
after omission is comprised of the binary labels corresponding to the remaining cells
yv = Zleﬁ\ﬁs L.

Inclusion Errors. Another issue that can arise in tissue scans is the accidental
annotation of cells belonging to the wrong category. In such cases, an annotator
might sometimes include some fundamentally different cells due to their proximity or

apparent resemblance to the correct cells. We incorporate this inclusion error into
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our analysis with various amounts of severity, which correspond to the amount of
“wrong” cells that we choose to include in the label set. One such case is presented
in Figure 2.1(e). We define A = {A, A% ... A} as a set of binary labels for other
objects within 2 and A% C A as a random subset of size S < F, where S is chosen to
satisfy the inclusion rate ry = % The resulting subset is then added to the label set
L before creating the final label y? = Y ieruas b

Bias Errors. Another important factor that deserves attention is the ambiguity
that is often present when delimiting the cell borders. Often, it is difficult for anno-
tators to precisely distinguish the true outline of cells. This can lead to annotations
that deviate from the gold standard (ground truth), inducing bias into the data. Such
biases can manifest in the form of creating cell labels that excessively cover the actual
cell surface, as can be observed in Figure 2.1(f). Moreover, the opposite can also hap-
pen, when the annotator “shrinks” the corresponding label relative to the true area of
the cell. We consider both cases in our study and we also control the amount of bias
we introduce by expanding and reducing the sizes of the cell labels that are present
in our data sets. In order to model the annotation bias, we employ morphological
operations [130]. Specifically, we simulate excessively covering cells by applying a di-
lation operation & to the target image y a number of ¢ times, where ¢ is randomly
chosen between 1 and qpax. Similarly, we simulate the shrinking of cells by applying

an erosion operation © ¢ times, where ¢ is randomly chosen between 1 and g ax-

2.3 Experiments

2.3.1 Experimental Setup

In this work, we considered three types of convolutional neural networks based on

their wide adoption and distinctive characteristics. Our selected networks include:

e UNet [125] — encoder/decoder architecture, decoder with transposed convolu-

tions, direct connections between the encoder and decoder;

e SegNet [11] — encoder/decoder architecture, decoder with unpooling, no con-

nections between the encoder and decoder;

e Mixed-scale dense network (MSD [116]) — densely connected architecture,
dilated convolutions.

We performed our experiments using PyTorch [114] implementations of our chosen

network architectures, while keeping their structure, e.g., the number of layers, similar
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to their original implementation. For our two-class segmentation problem, the true
output will be a two-channel image, where a pixel on the first channel is 1 if it corre-
sponds to a pixel of the background and 0 otherwise, while the reverse is true for the
second channel. A soft-max activation is used on the output of the final layer, while
all intermediate layers are paired with a ReLU function. We aim to minimize the Dice
loss by using ADAM optimizer [82] while training the network for 20 epochs on the
synthetically-generated data and for 50 on the manually-annotated images, the latter
epoch count being larger due to the increased complexity of the images. After each
epoch, the model is tested on a validation set selected as a separate portion of 30%
from the training data and the model with the lowest validation score is kept. Our
qualitative metric is the Sgrensen—Dice coefficient, which we compute for the entire
test set and average over 10 runs. Moreover, whenever a network reaches an untrain-
able state, i.e., it only segments the background, we discard the model and restart
training with a different initialization. The performance comparisons were validated

using Wilcoxon tests [124].

2.3.2 Synthetic Data

These experiments were conducted on simulated microscopy images of HL60 nuclei
cells and granulocytes [140]. The images obtained from the Masaryk University Cell
Image Collection! were generated by a virtual microscope [166]. An image-label sam-
ple pair for each data set is shown in Figure 2.2. The different sizes and position
distributions of the two cell types make them good candidates for our analysis since
the same generated perturbation can affect them differently. This will enable us to
apply our observations to a broader variety of cells. For each category of cells, the data
set consists of 30 volumes, each volume being separated into 129 slices of 565x807 16-
bit pixels. We used 25 volumes for training, while 5 were kept for testing. We selected
the slices that had a non-empty label, resulting in an average number of 84 slices per
volume. For these data sets, we assume having one annotator per volume, thus, we
emulate the errors once per volume.

Omnission errors. We perform the omission for r,, € {10%, 20%, 30%, 50%, 70%}.
The results presented in Figures 2.2(e,h) show that this category of errors has limited
impact on the networks’ performance when we consider moderate cases (r,, < 30%).
MSD and UNet show similar robust behaviour to moderate omissions, while SegNet

presents a pronounced downward trend, with a 10% reduction in Dice score for 30%

Thttps://cbia.fi.muni.cz/datasets
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(a) HL60 image (b) HL60 label (c) Granulocytes image  (d) Granulocytes label

(f) Inclusion for HL60 (g) Bias for HL60
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Figure 2.2: Example images and results for the synthetic data sets. Figures (a,b) and
(c,d) show image/label pairs of simulated microscopy slices. (e—j) show the Dice score of
trained networks on the test set as a function of perturbation severity, for HL60 cells (e-g)
and granulocytes (h—j). Results are shown for: omission (e,h), inclusion (f,i), and bias errors
(g,j). The shade around the curves corresponds to the standard deviation of the results.

omission, relative to no omission. For relatively large omissions (r, > 30%), MSD
maintains a relatively low reduction in performance even for r, = 70%. However, this
comes with the caveat that, for omissions above 30%, the training process of MSD
occasionally collapses to an untrainable state. Both the training instability and the
limited reduction in accuracy for large omission rates of MSD are a consequence of its
design. The low number of parameters required by MSD might enable it to be less
prone to overfitting on the wrongly labelled data, but also to become less stable when

the label quality is substantially deteriorated.

Inclusion errors. In order to add inclusion perturbations, we merge the volumes
of the HL60 nuclei cells and the granulocytes, while defining one data set to be the
main one, with its labels being £, while the other one becomes secondary, with its
labels being A. In our experiments, we have r4, € {10%,20%, 30%, 50%, 70%}. Fig-
ures 2.2(f, i) illustrate that the inclusion perturbation results in different behaviours

for the models, depending on the data set it is applied to. In the case of HL60, SegNet

25



2.3. Experiments

(a) Samples from the real data set
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0.82 0.80

0.75

0.80 F/'\\ 2070
=]

0.65

078 *\//4\*\* P

0.55
0 10 20 30 50 70 0 10 20 30 50 70 0 2 4 6
rol%] ro %) Gmax

ice

di

Figure 2.3: Example images and results for the manually-annotated data set. Figure (a)
shows image/label pairs of stained-tissue images. Figures (b—d) show the Dice score of
trained networks on the test set as a function of perturbation severity. Results are shown for:
omission (b), inclusion (c), and bias errors (d). The shade around the curves corresponds to
the standard deviation of the results.

presents a slow decreasing trend until r4, = 30%, while UNet and MSD appear to be
unaffected by the moderate inclusion. Also, since the granulocytes occupy a much
smaller area in each slice than the HL60 cells, their addition into the latter’s volume
does not heavily impact the models even for 70% inclusion, resulting in a loss in per-
formance of less than 1%. Moreover, Figure 2.2(i) shows that wrongly including large
objects into the segmentation mask severely impacts all networks’ capabilities, with

an average Dice score drop of 23% for every 10% increase in rg.

Bias errors. For this type of perturbation, we performed our analysis by choosing
gmax from {2, 4, 6}. Figures 2.2(g,j) show that introducing label bias through ran-
dom morphological operations creates a descending trend for all network architectures.
However, this trend presents different magnitudes depending on the data set. In the
case of HL60 cells, we observe a decrease in Dice score of up to 5%, while for granulo-
cytes the performance drops to 19%. This decline is a consequence of the much smaller
footprint of the granulocytes’ labels in relation to the background. Thus, mistakes in
the outline of smaller cells are more costly than for their larger counterpart. In addi-
tion, we notice here that MSD and UNet perform similarly on the synthetic images,
with SegNet lagging behind, by 6% and 10% on average for HL60 (Figure 2.2(g)) and
granulocytes (Figure 2.2(j)), respectively.
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2.3.3 Manually-Annotated Data

Following the observations drawn from the synthetic data we aim to extend them to a
segmentation task of manually-annotated stained tissue images. We selected the data
set belonging to MoNuSAC 2020 challenge [153], which contains H&E stained tissue
images belonging to multiple organs. The data were gathered with the purpose of
performing automatic cell segmentation, which can provide crucial information about
the organ’s health. This data set is comprised of 310 8-bit images of various sizes
containing four types of cells: epithelial, lymphocytes, macrophages and neutrophils.
Among these types, we selected the epithelial cells to be the target of our task, while
considering the rest as background. The selection was motivated by the larger presence
of the epithelial cells on a both per-image and per-data-set basis. Hence, we are left
with 96 images for training and 37 for testing. Moreover, due to the varying size of
the images, an extra preprocessing step was performed. The step involved separating
each image into 256 x256 patches using a sliding window technique while allowing for
an overlap of 64 pixels between patches. A few samples of the selected patches are
shown in Figure 2.3(a). Also, given the variability in size, quality and provenience of
the data, we assume an individual annotator for every single image. Thus, we will

apply our perturbation framework to each image separately.

The omission and bias-inducing processes are performed similarly to the synthetic
data. For inclusion, we choose the main type of cells to be epithelial, while the
lymphocytes form the secondary category. We chose lymphocytes since their pairing
with epithelial cells is the most prevalent in the data set. We show the experimental
results in Figures 2.3(b—d). In the case of omission, one notable difference from the
synthetic data is the slight performance gap between MSD and the UNet/SegNet pair
for r, < 30%. Nonetheless, this gap decreases the more error we allow, showing
MSD to plateau at 77% Dice score until we remove 50% of the cell labels, while the
other networks are severely affected (18% and 26% reduction for UNet and SegNet,
respectively). When it comes to inclusion, the segmentation performance, similarly to
the HL60 cells, appears to be rather unaffected by wrongly labelled additional cells
until 30% inclusion. Moreover, the larger rates (>50%) inflict a more modest loss in
the Dice score compared to the HL60 volumes due to the poorer fit the models have
on real data. Since their learned parameters may not be a perfect fit for the data, the
models can allow small perturbations of their input without suffering large losses. The
bias on epithelial cells shows UNet and SegNet to develop an increasing gap from MSD,

which reaches a 22% reduction in Dice score for qua.x = 6. Here, MSD appears to suffer
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from the lack of complexity since this data set presents a more complex background
with high variability between images, impeding, thus, a very good distinction of the
correct cells. This tendency is further exacerbated by the perturbations applied to the

cells” masks.

2.4 Conclusion

Understanding the consequences of labelling errors is of great importance for the field
of biomedical image segmentation. Our study provided insights into meaningful issues
that can be present in the annotation process for cell segmentation. We emulated
three different labelling errors (omission, inclusion and bias) for two perfectly-labelled
synthetic data sets and one manually-annotated data set and observed their impact on
the results of three networks. We found that wrongly including large objects into the
segmentation labels drastically decreases the quality of the predictions, while smaller
objects are filtered out more easily when moderately included (r, < 30%). We also
observed that, even in low amount, the presence of bias deteriorates the predictions for
all cell types, especially for relatively smaller cells such as granulocytes and epithelial
cells. Finally, we observed that moderate omissions (r, < 30%) present a negligible
impact to both MSD an UNet, with the latter slightly outperforming the former on
the manually-annotated data set. However, for larger omissions, MSD still retains
a competitive Dice score. This robustness to omissions can be exploited in settings
where the expert annotator would be required to label just a portion of the present
cells, significantly reducing the annotation costs. Also, MSD could be used to pre-

process training labels for more complex, but noise-sensitive, learning algorithms.
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