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Chapter 1

Introduction

Image segmentation is a computer vision task where an image is partitioned into mul-

tiple segments or regions. The goal is to assign each pixel in the image to a specific

object or region, enabling the categorization of different parts of the image, such as

distinguishing objects from the background. This can take the form of finding tumours

in medical images [9], identifying traffic signs in self-driving cars [78], or environmental

monitoring [75]. Initially, this operation would be performed manually by delineating

the border of each segment within the image. However, given the tediousness of this

process, there has been a significant push for automating it, with thresholding [76],

i.e., the categorization of pixels based on their intensity values, being a first step in

this direction (see Figure 1.1 for an overview of the main developments in segmenta-

tion techniques). Thereafter came methods such as region-based segmentation [164]

and clustering [30] which based the categorization of one pixel on the intensities of

the neighbouring pixels. With the advent of machine learning, better performance

was achieved by hand-crafting image features and learning the segmentation from the

data and its associated ground truth [162, 96, 134], commonly referred to as annota-

tions. Currently, deep learning solutions based on convolutional neural networks [106]

produce state-of-the-art results [131, 125, 28] in image segmentation, relinquishing

the need for hand-crafted features. However, despite their impressive performance,

machine learning, and especially deep learning, techniques require vast amounts of

annotated images which are often created manually, making the annotation process a

persistent bottleneck [8].

Deep learning is a subset of machine learning that uses artificial neural networks to

learn patterns from the data. A network consists of multiple layers of neurons, where
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Figure 1.1: The evolution of image segmentation techniques showcased on the segmentation
of a cell image. Figure (a) shows a segmentation pipeline for manual thresholding, Figure
(b) corresponds to region-based thresholding, Figure (c) to clustering-based methods, while
Figures (d) and (e) illustrate predictions of supervised machine learning and deep learning
models, respectively. The red contour corresponds to the ground truth annotation. The input
cell image is a crop from Lizard nuclear segmentation data set [59].
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Figure 1.2: Deep learning pipeline from data to trained model and its associated challenges
for the human operator.

each layer processes the input data and extracts increasingly complex features. Early

layers capture general features such as edges in images, while deeper layers recognize

more abstract patterns, for instance, objects. During training, the network requires

various examples of input data and ground truth, adjusting its internal parameters

to minimize errors. In this way, the network improves its ability to make accurate

predictions. In the context of image segmentation, the input data requirement involves

the procurement of large collections of images, whereas the annotations consist of pixel-

level labels created for every image. A typical supervised deep learning pipeline from

the data to the trained model, illustrated in Figure 1.2, consists of an annotation

process and a training process.

For segmentation tasks relying on general knowledge, for instance, scene segmen-

tation for self-driving cars [178], the annotation requirement is largely surmounted by

the large number of available data sets and by the relative ease with which new data

can be annotated, e.g., via crowdsourcing [35]. However, this requirement becomes

significantly more demanding in scientific domains. Here, annotations must be cre-

ated or verified by trained domain experts who are in limited supply. As a result,

the adoption of deep learning in these specialized fields progresses more slowly than

in general-knowledge domains. To overcome this, it becomes necessary to develop

solutions that reduce the burden placed on expert annotators. Considering the deep

learning pipeline from Figure 1.2, such solutions can target the annotation process,

the training process, or both. On the annotation side, innovative methods are needed

to increase the volume of data that can be annotated within a fixed time frame, while

preserving their quality. Concurrently, on the training side, there is a demand for

networks with transparent learning processes that require less annotated data while

still delivering competitive results.

This thesis represents a collection of solutions focusing on streamlining the anno-

tation and training processes for segmentation tasks in two scientific domains with

expensive annotation processes, namely cellular imagery and archaeological remote

sensing. We tailor methods leveraging the particularities of each domain to increase

3
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the number of available annotations and to train networks at reduced annotation costs.

In this chapter, we first describe in Section 1.1 the interplay between the versatility

of deep learning solutions and the necessity of expert knowledge, we then provide an

overview of the fields of cell imaging and archaeological remote sensing, presented in

Section 1.2 and Section 1.3, respectively. In Section 1.4, we then introduce the fun-

damentals of deep learning methods for computational imaging, with an emphasis on

segmentation. Lastly, in Section 1.5, we present the research questions that shape the

scope of this thesis.

1.1 Learning Methods and Expert Knowledge

The past two decades have seen a paradigm shift in computational problem-solving,

particularly in fields such as image segmentation. Traditionally, each application do-

main required the algorithms to be tailored specifically to the unique characteristics

and challenges of the problem at hand. For instance, segmentation algorithms for

medical imaging [5] would differ from those used in autonomous vehicles [50] or envi-

ronmental monitoring [19]. These domain-specific solutions often demanded significant

manual effort and expertise, limiting their adaptability to different fields.

The advent of data-driven techniques, particularly deep neural networks (DNNs),

has significantly changed this landscape. Unlike traditional methods, DNNs provide a

generic framework for learning features directly from data, without the need for hand-

crafted rules. This capability allows researchers to develop solutions that are broadly

applicable, with minimal customization for specific domains. However, this flexibility

comes with a caveat: the success of these methods depends on collaboration between

computer scientists and domain experts. Domain experts play an important role in

defining the key problems to be solved, curating high-quality data, and interpreting

the results generated by the neural networks.

This interplay between generic computational frameworks and domain-specific ex-

pertise is exemplified by initiatives such as the Society, Artificial Intelligence and Life

Sciences (SAILS) of Leiden University. SAILS is a university-wide interdisciplinary

program aiming to disseminate the usage of artificial intelligence throughout the vari-

ous disciplines within Leiden University. Its projects bring together data, algorithms,

and domain experts in collaborative research efforts. This thesis is part of the SAILS

initiative, leveraging its multidisciplinary framework to address challenges in image

segmentation for cellular imaging and archaeological remote sensing.
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1.2 Cell Imaging

Segmentation Cell feature 
analysis

Drug-induced changes

Cell counting Diagnosis

Cell line

Chemically perturbed cell line

Segmentation(a)

(b)

Figure 1.3: Applications of cell segmentation in biomedical research. Figure (a) illustrates
the use of segmentation for cell counting, an important step in health diagnostics. Figure (b)
demonstrates its application in drug discovery, where segmented cell structures are analysed
to assess drug-induced changes. The cell boundary figure and crop in (a) are adapted from
[59], and the cell shapes and their segmentations in (b) are from [86].

Cell imaging comprises a set of techniques that enable the visualization and anal-

ysis of cellular structures and their dynamics. By monitoring cells’ behaviour over

prolonged periods of time, researchers can understand how cells react to changes in

the local environment or how they respond to various stimuli. This capability is im-

portant for advancing efforts in understanding disease pathology and in drug discovery

[155] (see Figure 1.3 for an illustrative example). For instance, by tracking the com-

plete blood count from a patient’s sample, i.e., counting the white cells, red cells and

platelets, the doctors can assess the overall health of that patient [143]. In addition,

by tracking the changes appearing in targeted cells, experts can assess the effectiveness

of new drugs [86]. For such tasks, the researchers require a good delineation of the

cell structures of interest, i.e., cell segmentation, whose manual completion, however,

implies tedious work from medical experts. Hence, oftentimes deep learning is per-

ceived as a viable alternative [52]. Given the high annotation demands of deep learning

and the challenges in obtaining these annotations—particularly for cell segmentation,

where each cell must be individually identified and its shape precisely outlined—many

off-the-shelf algorithms, which perform well in domains with abundant annotated data,

are not directly applicable in this context.
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Segmentation
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Size

Pattern
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Figure 1.4: The segmentation of archaeological sites as a first step towards a more de-
tailed characterization of the sites within a given area. The aerial images are obtained from
CORONA Atlas & Referencing System [26].

1.3 Archaeological Remote Sensing

Archaeological remote sensing is a suite of non-invasive techniques used to detect,

map, and analyse archaeological sites and features from a distance, without disturbing

the ground. These techniques involve the detection of physical and chemical proper-

ties of the Earth’s surface, which can indicate the presence of archaeological mate-

rials or features such as buried settlements, roads or changes in vegetation patterns

caused by human activity [20]. One such task is the identification of settlements from

aerial or satellite imagery, which involves the careful analysis of the surrounding land-

scape before assessing whether a certain image feature represents a settlement. By

analysing the distribution patterns of these settlements as well as the local variations

in their morphology, the archaeological researchers can gain insights into ”the emer-

gence, development, and organization of the first complex human societies.” [104].

Here, similarly to cells, the segmentation of the sites can help in extracting morpho-

logical patterns which can then be further used to categorize the sites (see Figure 1.4

for an example). Many times, especially in the same geographical area, these set-

tlements share similar visual characteristics, but their widespread distribution makes

their manual identification tedious. Here too deep learning can bring considerable

advantages by performing the detection of sites in a (semi-)automatic way. Although

crowdsourcing is increasingly being used in annotating large archaeological data sets,

the involvement of non-experts often leads to issues with data quality [110]. Thus,

similar limitations to cell imaging apply here as well with the addition that archae-

ological research typically receives less funding than the research of medical sciences

[151].
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1.4 Deep Learning

1.4.1 Machine Learning for Imaging Tasks

Within a machine learning pipeline, an image is typically represented as a real-valued

array of pixels x ∈ X ⊂ RN×M×C , where X is the input space, N and M represent

the number of rows and columns, respectively, and C corresponds to the number of

channels. Coloured images have C = 3, corresponding to the red, green and blue

channels, whereas grayscale images contain only one channel. The goal is to find

the mapping f : X → Y from the input space X to the output space Y. Machine

learning algorithms approximate this mapping with a parametrized function fδ, whose

parameters δ are learned from the set of training images X ⊂ X paired with the

corresponding expected output Y ⊂ Y. Unlike the input space X , whose shape is

generally fixed, the shape of the output varies depending on the imaging task. For

instance, for image classification, where the goal is to categorize images in k different

classes, the output space becomes Y = Rk. Here, the model learns to predict a

vector of k probabilities with the highest one providing the predicted class. When

it comes to image segmentation with k classes (segments), Y = RN×M×k. Similarly

to classification, a probability vector is produced with probabilities for each of the k

classes. However, in this case, a classification vector is generated for each pixel of the

input image.

1.4.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) have experienced widespread adoption in re-

cent years, owing to their state-of-the-art performance and remarkable versatility

across various imaging tasks [91, 93]. This type of neural network is comprised of

filters organized in layers which are applied to the input image generally in a sequen-

tial manner, i.e., the output of a set of filters (layer) becomes the input to the next.

Each layer i creates an intermediate image zi ∈ RNi×Mi×Ci , called a feature map,

that reflects the importance of certain image features. The shape of zi can change

depending on the desired spatial dimensions and the number of filters (Ci) that the

layer contains. The feature map zji from filter j of layer i is obtained as

zji = σ(

ci−1∑
l=0

(zli−1 ⊛ hl
ij) + bij), (1.1)

7
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Figure 1.5: Example of how a feature map is obtained for a filter j in the first layer of a
CNN with a coloured image as input. Each of the three channels of the input is convolved
with a corresponding set of weights of the filter, the results are summed, a bias term is added
and a non-linear function is applied to the summation result. This process is repeated for
every filter of the layer. The input cell image is a crop from Lizard nuclear segmentation
data set [59].

where each channel of the previous feature map zli−1 is convolved with a corresponding

set of weights of the filter hl
ij ∈ δ and the results are summed across all channels of the

previous layer. After adding the bias term bij ∈ δ, an activation function σ, oftentimes

the rectified linear unit (ReLU) [2], is applied to introduce non-linearity, allowing the

network to capture more complex patterns. A schematic representation of this process

is presented in Figure 1.5.

In a supervised setup, in order to estimate the CNN parameters δ̂, a training

step is performed wherein the CNN’s predictions of a set of input images, called the

training set X, are compared against the ground truth output Y via a loss function

L : X × Y → R. The goal is to find the optimal parameters

δ̂ = argmin
δ

∑
(x,y)∈X×Y

L(fδ(x), y) (1.2)

that minimize the loss. Due to the high number of parameters and the non-linearity

8
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introduced by the activation functions, analytical solutions are difficult to apply to

CNNs. Hence, the optimization step usually involves an optimization algorithm, such

as ADAM [82], which iteratively adjusts the parameters by using the partial derivatives

of L with respect to them. Given that the training step is performed on a finite, and

often small, subset of X , a good fit on the training data does not guarantee the

same performance on unseen images. Thus, to avoid such discrepancy, referred to as

overfitting, a separate set, called validation set, can be employed. In this way, the

optimization is still performed on the training set, while the performance of the CNN

will be evaluated on the validation set, with the parameters being updated only if this

results in a lower error on the validation set.

1.4.3 Challenges for the Human Operator

Although, when successfully trained, deep learning networks offer substantial benefits

in automating image segmentation, obtaining these advantages comes with challenges

for the human operators both during the annotation and training processes. These

challenges are visually represented in Figure 1.2.

Firstly, not only is the large-scale annotation of images for segmentation a time-

consuming task but it can also result in inconsistencies being introduced due to, for

instance, fatigue, low image quality, or the ambiguity of the segmented structures. In

many specialized domains, there can be a lack of consensus between experts when it

comes to defining the category of an object, e.g., whether it is an archaeological site

or a hill. Moreover, disagreements can also appear when defining the boundary of

structures, for instance, when delineating cell nuclei from the surrounding cytoplasm.

Thus, the effort required in annotating a data set and the potential errors it may

contain pose significant apriori challenges to the deployment of deep learning by the

human operator.

Secondly, training deep learning networks is a process that typically is susceptible

to overfitting which can be caused by insufficient training data. Thus, an already

annotated set of images does not guarantee a successful training process. Additionally,

even after being successfully trained, the adoption of deep learning is challenged also by

the opacity of its decision process. Due to the large number of parameters (generally, in

the order of millions) involved in generating the output of deep learning networks, the

steps undergone for producing it cannot be traced in a way comprehensible to humans.

This can hinder trust and limit the integration of deep learning in less technical fields

such as archaeology.

9
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1.5 Research Questions

In this thesis, we address these challenges by focusing on segmentation tasks where

the integration of standard deep-learning networks is suboptimal due to the limited

availability of annotated samples. We propose solutions targeting both the annotation

and the training processes with applications in cellular imaging and archaeological

remote sensing.

An overview of the chapters of this thesis together with the research questions that

they answer is presented below.

10
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Figure 1.6: Our first research question examines the consequences of errors in the anno-
tation process.

Research question 1. How do different types of annotation errors impact the per-

formance and robustness of deep learning models in the task of cell segmentation?

It is commonly assumed that, when training deep learning networks, errors in anno-

tations can severely degrade their performance, given the sensitivity of these networks

to input quality (emphasized in orange in the deep learning pipeline in Figure 1.6).

The annotations for cell segmentation are susceptible to errors which can be difficult

to find and correct. Thus, understanding the specific impact of various annotation

errors would allow us to develop more robust deep-learning networks or decide which

inconsistencies require the most care to be prevented.

In Chapter 2, we analyse the impact of annotation inconsistencies on deep-learning-

based cell segmentation. We introduce perturbations (see Figure 1.7) to emulate errors

typical to the annotation of cells and we measure how they affect the performance of

different network architectures designed for segmentation.

(a) Input image (c) Perturbed GT(b) Actual GT

(d) Omission (e) Inclusion (f) Bias

Figure 1.7: Example of the perturbations we perform. Figures (a, b) were generated with
a virtual microscope from [166].
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Figure 1.8: Our second research question focuses on reducing the human effort required
for producing annotations.

Research question 2. To what extent can we reduce the human effort required

for cell segmentation annotation by using a convolutional neural network to improve

lower-quality annotations?

Given the labour-intensive nature of cell segmentation, reducing manual anno-

tation effort is crucial for expanding deep-learning applications in biomedical fields

(emphasized in orange in the deep learning pipeline in Figure 1.8). One promising

approach is to relax the strict quality standards traditionally applied to annotations,

thereby enabling a greater volume of annotated samples within a fixed time frame.

However, these lower-quality annotations may not be immediately suitable for direct

training of segmentation networks and may require refinement to be fully effective

during training.

In Chapter 3, we propose a solution to enhance the annotation process by reducing

the human effort in training deep learning algorithms. We achieve this by automati-

cally enhancing the quality of noisy annotations, produced with low effort. We propose

a learning pipeline in which a CNN is trained to upgrade low-quality annotations. For

(a) Input image (b) Ground truth 

(c) LQ annotation (d) Upgraded annotation

70
%

 o
m

is
si
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%
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cl
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bi
as

 6

(e) LQ annotation (f) Upgraded annotation (g) LQ annotation (h) Upgraded annotation

Dice LQ: 0.464 Dice upgraded: 0.827 Dice LQ: 0.872 Dice upgraded: 0.921 Dice LQ: 0.547 Dice upgraded: 0.861 

Figure 1.9: Example of perturbed annotations and their corresponding upgraded versions.
Figures (a, b) are from [59].
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this, we employ a small set of well-annotated samples whose annotations we perturb,

similarly to Chapter 2, such that the CNN can learn a mapping from different ver-

sions of low-quality annotations to high-quality ones. We then use the initial set with

high-quality annotations together with the upgraded noisy annotations to train seg-

mentation networks on this larger combined set. In Figure 1.9, we show different types

of perturbations applied to annotations together with the results after applying the

upgrading CNN.
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Figure 1.10: Our third research question is aimed at reducing the data requirements for
training deep learning models.

Research question 3. To what extent can the few-shot learning paradigm be effec-

tively applied to cell microscopy image segmentation?

An alternative approach to reducing the human effort in applying deep learning

to specialized domains is to design algorithms that require less data than traditional

CNNs (emphasized in orange in the deep learning pipeline in Figure 1.10). Few-shot

learning, which aims to perform tasks with minimal labelled data, shows promise in

addressing data scarcity in cell microscopy. However, its applicability to cell segmen-

tation is uncertain due to particularities inherent to cell imagery compared to natural

images where few-shot learning is more commonly applied.
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Figure 1.11: The quality of the segmentation against the number of shots and the number
of features used. The orange line shows the average Dice score on the test set of the models
trained on all labelled data. The points represent the median value across 50 experiments,
while the shaded area is defined by the first and third quartiles.
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In Chapter 4, we target the training process by proposing a new few-shot technique

specifically tailored for cell segmentation. We leverage existing annotations for certain

classes of cells to train feature extractor networks, which we then use to segment

new cell classes using low amounts (≤ 10) of annotations of the new class, called

shots. While designing our few-shot algorithm, we consider requirements specific to

cell segmentation such as the need for precise delineation between the cell instances

and the relative similarity between the structures that are present in cell images. We

study the performance of our algorithm on two data sets, each with four cell types,

with the results shown in Figure 1.11. The graph shows the segmentation performance

against the complexity of the feature extractors, with promising results for as little as

5 annotated images.
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Unlabelled
Data

Training
Data

DL 
Model

Annotation
Process

TediousError-prone

Training
Process

OpaqueData-hungry

Figure 1.12: The final two research questions respectively tackle the tediousness of the
annotation process and the opacity involved in training deep learning networks.

Research question 4A. What insights into the learning process of different net-

work architectures can be obtained from analysing activation maps in the context of

archaeological site classification in Upper Mesopotamia?

Research question 4B. To what extent can activation maps be used as sources of

annotation for site segmentation?

In addition to the difficulty of creating annotated data sets, another challenge as-

sociated with deep learning in scientific domains is the relative reluctance with which

these algorithms are perceived (emphasized in orange in the deep learning pipeline in

Figure 1.13: The activation maps of 3 CNNs (rows) given by 3 explainability techniques
and our method (columns). The red line shows the expert delineation of the site. The site
image is from [26].
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Chapter 1. Introduction

Figure 1.14: Site boundaries derived from the output of the explainability techniques (in
blue) compared to the expert annotations (in red). The site image is from [26].

Figure 1.12). Due to their lack of traceability, deep learning predictions may not be

trusted, particularly when the operator is unfamiliar with the neural network architec-

ture and its operating principles. This reluctance is especially present in fields such as

archaeology, which, as part of the non-exact sciences, relies heavily on interpretation

and contextual understanding.

In Chapter 5, we tackle in tandem both problems associated with the usage of

deep learning in archaeological research: the difficulty in explaining the results a

CNN produces and the high cost of creating annotations for segmentation tasks. We

explore how explainability techniques can enhance model interpretability and reduce

annotation costs by applying these methods to three deep-learning architectures. We

train the networks to classify whether an archaeological site is present in an image, a

task for which the annotations are relatively cheap to produce. We then employ the

activation maps, i.e., the output of the explainability techniques shown in Figure 1.13,

both as sources of annotations (see Figure 1.14) for site segmentation and to analyze

the visual cues that influence the networks’ predictions. In addition, we develop a

new method for creating activation maps specifically designed to produce accurate

boundaries for this type of site.
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Chapter 2

Annotation Errors in Cell

Segmentation

2.1 Introduction

Image segmentation, i.e., the labelling of relevant features in images, has been an im-

portant topic for the computer vision community [62]. In recent years, the use of deep

convolutional neural networks for image segmentation has become increasingly popu-

lar [3]. Although such algorithms are able to achieve similar performance to human

annotators on certain tasks [51], they are heavily dependent on both the quantity and

the quality of the training data. The importance of quality is especially prominent

in the context of segmentation, where the annotation process is time-consuming and

often requires domain-expert knowledge (e.g., in medical imaging). One important

issue that arises is the high variability between expert annotators when segmenting

anatomical structures from medical images [13, 94, 175]. For instance, the segmenta-

tion of multiple sclerosis poses difficulties to many experts since the lesion area can

vary in size, shape or location [174], inducing high inter- and intra-observer variabil-

This chapter is based on:

S, . Vădineanu, D. M. Pelt, O. Dzyubachyk, and K.J. Batenburg. “An analysis of the
impact of annotation errors on the accuracy of deep learning for cell segmentation”.
International Conference on Medical Imaging with Deep Learning (pp. 1251-1267).
PMLR (2022).
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ity [22]. Also, there can be a considerable amount of disagreement between experts

when defining the segmentation border of the optic nerve head in retinal images [49].

These annotation dissimilarities can mean that the manually annotated labels used

for segmentation may deviate from the ground truth, which can negatively impact the

accuracy of the supervised machine learning models.

In order to compensate for such inconsistencies, various label fusion techniques,

e.g., STAPLE [165], VoteNet [47], have been proposed to extract an approximation of

the ground truth from multi-expert annotations. However, such methods often require

multiple opinions for the same data, a process that is costly and slow. In addition to the

effort that the research community is putting into alleviating the label inconsistency

issue, it is also important to study the actual impact that such label imperfections

are causing to the segmentation algorithms. The benefits of such a study are twofold.

Firstly, the engineers who use existing deep learning solutions when developing tools

would learn whether they can reduce the expert time on annotations by admitting

lower quality labels and still achieving the desired results. Secondly, the developers of

deep learning techniques can be provided with insights indicating ways to design more

robust algorithms with respect to annotation errors.

While the literature proposes multiple methods to mitigate the effect of annota-

tion errors in image segmentation, there are few works evaluating the concrete impli-

cations of these errors. In particular, [179] develop a measurement of label quality

in the context of semantic segmentation of synthetic urban street view scenes. They

apply various levels of simplifications to the segmentation masks of the scene and use

a modified version of FusionNet [120] and FCN16 [131] to generate the predictions.

Their results emphasized the need for a large set of coarsely annotated images rather

than strongly controlling the label quality. However, the study assumes the imme-

diate availability of a large pool of unannotated images with an inexpensive coarse

annotation process, which is often impossible to achieve in medical imaging, where

even creating coarse labels requires a certain extent of expertise. [67] emulated three

types of perturbations on a liver segmentation data set [17]. The errors included the

application of random offsets, shifts and flips of pixel labels applied to the annotation

images, while the evaluation was performed for UNet [125], SegNet [11] and FCN32

[131]. The selection of errors was further diversified by [156] with their work on an

MRI brain tumour data set [68]. They made use of elastic transformations, random

crops of the tumour area, constant shifts and random permutations between slices and

their labels. Consequently, they observed the effects of the perturbations for multiple

learning paradigms based on a UNet backbone. Both studies introduce errors present-

20



Chapter 2. Annotation Errors in Cell Segmentation

(a) Input image (c) Perturbed GT(b) Actual GT

(d) Omission (e) Inclusion (f) Bias

Figure 2.1: Example of our proposed perturbations. Figure (a) shows an input image where
the HL60 cells are the target objects and the granulocytes form the background objects. The
unmodified ground truth is shown in (b), and its perturbed version in (c). The errors are
highlighted in (d) – omission/orange, (e) – inclusion/red and (f) – bias/purple.

ing plausible occurrence scenarios. However, each of them is performed on a single

manually-annotated data set, whose labels can already be subjected to the errors the

authors try to model.

In this chapter, we extend previous works by introducing three error-emulation

techniques applied to three different data sets. So far, the current annotation error

studies on biomedical images have been focusing on segmentation tasks of unitary

objects (e.g., organs, tumours). Such objects are limiting most error emulation ap-

proaches to create perturbations only at the border of the object’s label. We deviate

from this approach by proposing an analysis of sparsely distributed objects in the con-

text of cell segmentation. This enables us to not only induce errors at the border of

the objects, but also to emulate errors concerning entire regions, such as the complete

removal or addition of cells. In addition, we address the shortcomings of using manual

annotations as ground truth by employing two perfectly-annotated synthetic data sets

of HL60 and granulocytes [140] and validate our observations on manually-annotated

microscopy images [153]. Moreover, we expand the current analysis by incorporating

a network whose architecture diverges from the usual encoder-decoder paradigm.

2.2 Background and Methodology

Our analysis is focused on the segmentation task of 2-dimensional vector-valued (e.g.,

RGB) images, denoted as arrays of pixels x ∈ RN×M×C , where N , M , C represent

the number of rows, columns and channels, respectively. The aim is to find a mapping

from x to an output y ∈ ZN×M that subdivides the image into disjoint sets of pixels,
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each set corresponding to a certain category. In our work, we address the problem of

binary cell segmentation by separating only one class of objects from the background.

Suppose the image x contains E cells. For each cell i we define the cell label li as the

binary image in which the pixels belonging to that cell are set to one and all other

pixels set to zero:

linm =

{
1, if xnm belongs to cell i

0, otherwise
∀ 1 ≤ n ≤ N, 1 ≤ m ≤ M. (2.1)

Given the set of all cell labels L = {l1, l2, . . . , lE}, a target image for training can be

constructed by:

y =
∑
l∈L

l (2.2)

In order to approximate the desired mapping, we employ convolutional neural

networks (CNNs) by passing the input image through a series of successive operations,

called layers. The networks are given a set of input images X = {x1, x2, . . . , xNt
} and

the predicted output Ŷ = {ŷ1, ŷ2, . . . , ŷNt
} is compared against the target output

Y = {y1, y2, . . . , yNt
} with the goal of minimizing a loss function.

Annotation errors. As the true output usually comes from manual annotation, it

becomes subjected to human errors, which can hinder the training of CNNs. We model

such inconsistencies and separate them into three categories (shown in Figure 2.1) as

follows:

Omission Errors. Typical stained tissue scans can include tens or even hundreds

of cells of different shapes and sizes [46]. When creating segmentation masks for such

diverse and populated images, it is possible that an expert annotator may uninten-

tionally ignore a certain proportion of the relevant cells. We call such absence of

cell annotations omission errors and we develop a systematic method of altering the

ground truth mask by removing a ratio of the present cells from the label set L. An

example of cell removal is showcased in Figure 2.1(d). We define LS ⊆ L as a random

subset of size S ≤ E, where S is chosen to satisfy the omission rate rω = S
E . The label

after omission is comprised of the binary labels corresponding to the remaining cells

yω =
∑

l∈L\LS l.

Inclusion Errors. Another issue that can arise in tissue scans is the accidental

annotation of cells belonging to the wrong category. In such cases, an annotator

might sometimes include some fundamentally different cells due to their proximity or

apparent resemblance to the correct cells. We incorporate this inclusion error into
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Chapter 2. Annotation Errors in Cell Segmentation

our analysis with various amounts of severity, which correspond to the amount of

“wrong” cells that we choose to include in the label set. One such case is presented

in Figure 2.1(e). We define Λ = {λ1, λ2, . . . , λF } as a set of binary labels for other

objects within x and ΛS ⊆ Λ as a random subset of size S ≤ F , where S is chosen to

satisfy the inclusion rate rϕ = S
F . The resulting subset is then added to the label set

L before creating the final label yϕ =
∑

l∈L∪ΛS l.

Bias Errors. Another important factor that deserves attention is the ambiguity

that is often present when delimiting the cell borders. Often, it is difficult for anno-

tators to precisely distinguish the true outline of cells. This can lead to annotations

that deviate from the gold standard (ground truth), inducing bias into the data. Such

biases can manifest in the form of creating cell labels that excessively cover the actual

cell surface, as can be observed in Figure 2.1(f). Moreover, the opposite can also hap-

pen, when the annotator “shrinks” the corresponding label relative to the true area of

the cell. We consider both cases in our study and we also control the amount of bias

we introduce by expanding and reducing the sizes of the cell labels that are present

in our data sets. In order to model the annotation bias, we employ morphological

operations [130]. Specifically, we simulate excessively covering cells by applying a di-

lation operation ⊕ to the target image y a number of q times, where q is randomly

chosen between 1 and qmax. Similarly, we simulate the shrinking of cells by applying

an erosion operation ⊖ q times, where q is randomly chosen between 1 and qmax.

2.3 Experiments

2.3.1 Experimental Setup

In this work, we considered three types of convolutional neural networks based on

their wide adoption and distinctive characteristics. Our selected networks include:

• UNet [125] – encoder/decoder architecture, decoder with transposed convolu-

tions, direct connections between the encoder and decoder;

• SegNet [11] – encoder/decoder architecture, decoder with unpooling, no con-

nections between the encoder and decoder;

• Mixed-scale dense network (MSD [116]) – densely connected architecture,

dilated convolutions.

We performed our experiments using PyTorch [114] implementations of our chosen

network architectures, while keeping their structure, e.g., the number of layers, similar
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to their original implementation. For our two-class segmentation problem, the true

output will be a two-channel image, where a pixel on the first channel is 1 if it corre-

sponds to a pixel of the background and 0 otherwise, while the reverse is true for the

second channel. A soft-max activation is used on the output of the final layer, while

all intermediate layers are paired with a ReLU function. We aim to minimize the Dice

loss by using ADAM optimizer [82] while training the network for 20 epochs on the

synthetically-generated data and for 50 on the manually-annotated images, the latter

epoch count being larger due to the increased complexity of the images. After each

epoch, the model is tested on a validation set selected as a separate portion of 30%

from the training data and the model with the lowest validation score is kept. Our

qualitative metric is the Sørensen–Dice coefficient, which we compute for the entire

test set and average over 10 runs. Moreover, whenever a network reaches an untrain-

able state, i.e., it only segments the background, we discard the model and restart

training with a different initialization. The performance comparisons were validated

using Wilcoxon tests [124].

2.3.2 Synthetic Data

These experiments were conducted on simulated microscopy images of HL60 nuclei

cells and granulocytes [140]. The images obtained from the Masaryk University Cell

Image Collection1 were generated by a virtual microscope [166]. An image-label sam-

ple pair for each data set is shown in Figure 2.2. The different sizes and position

distributions of the two cell types make them good candidates for our analysis since

the same generated perturbation can affect them differently. This will enable us to

apply our observations to a broader variety of cells. For each category of cells, the data

set consists of 30 volumes, each volume being separated into 129 slices of 565×807 16-

bit pixels. We used 25 volumes for training, while 5 were kept for testing. We selected

the slices that had a non-empty label, resulting in an average number of 84 slices per

volume. For these data sets, we assume having one annotator per volume, thus, we

emulate the errors once per volume.

Omission errors. We perform the omission for rω ∈ {10%, 20%, 30%, 50%, 70%}.
The results presented in Figures 2.2(e,h) show that this category of errors has limited

impact on the networks’ performance when we consider moderate cases (rω ≤ 30%).

MSD and UNet show similar robust behaviour to moderate omissions, while SegNet

presents a pronounced downward trend, with a 10% reduction in Dice score for 30%

1https://cbia.fi.muni.cz/datasets
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(a) HL60 image (b) HL60 label (c) Granulocytes image (d) Granulocytes label

(e) Omission for HL60 (f) Inclusion for HL60 (g) Bias for HL60

(h) Omission for granulocytes (i) Inclusion for granulocytes (j) Bias for granulocytes

Figure 2.2: Example images and results for the synthetic data sets. Figures (a,b) and
(c,d) show image/label pairs of simulated microscopy slices. (e–j) show the Dice score of
trained networks on the test set as a function of perturbation severity, for HL60 cells (e–g)
and granulocytes (h–j). Results are shown for: omission (e,h), inclusion (f,i), and bias errors
(g,j). The shade around the curves corresponds to the standard deviation of the results.

omission, relative to no omission. For relatively large omissions (rω > 30%), MSD

maintains a relatively low reduction in performance even for rω = 70%. However, this

comes with the caveat that, for omissions above 30%, the training process of MSD

occasionally collapses to an untrainable state. Both the training instability and the

limited reduction in accuracy for large omission rates of MSD are a consequence of its

design. The low number of parameters required by MSD might enable it to be less

prone to overfitting on the wrongly labelled data, but also to become less stable when

the label quality is substantially deteriorated.

Inclusion errors. In order to add inclusion perturbations, we merge the volumes

of the HL60 nuclei cells and the granulocytes, while defining one data set to be the

main one, with its labels being L, while the other one becomes secondary, with its

labels being Λ. In our experiments, we have rϕ ∈ {10%, 20%, 30%, 50%, 70%}. Fig-

ures 2.2(f, i) illustrate that the inclusion perturbation results in different behaviours

for the models, depending on the data set it is applied to. In the case of HL60, SegNet
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(a) Samples from the real data set

(b) Omission for epithelial (c) Inclusion for epithelial (d) Bias for epithelial

Figure 2.3: Example images and results for the manually-annotated data set. Figure (a)
shows image/label pairs of stained-tissue images. Figures (b–d) show the Dice score of
trained networks on the test set as a function of perturbation severity. Results are shown for:
omission (b), inclusion (c), and bias errors (d). The shade around the curves corresponds to
the standard deviation of the results.

presents a slow decreasing trend until rϕ = 30%, while UNet and MSD appear to be

unaffected by the moderate inclusion. Also, since the granulocytes occupy a much

smaller area in each slice than the HL60 cells, their addition into the latter’s volume

does not heavily impact the models even for 70% inclusion, resulting in a loss in per-

formance of less than 1%. Moreover, Figure 2.2(i) shows that wrongly including large

objects into the segmentation mask severely impacts all networks’ capabilities, with

an average Dice score drop of 23% for every 10% increase in rϕ.

Bias errors. For this type of perturbation, we performed our analysis by choosing

qmax from {2, 4, 6}. Figures 2.2(g,j) show that introducing label bias through ran-

dom morphological operations creates a descending trend for all network architectures.

However, this trend presents different magnitudes depending on the data set. In the

case of HL60 cells, we observe a decrease in Dice score of up to 5%, while for granulo-

cytes the performance drops to 19%. This decline is a consequence of the much smaller

footprint of the granulocytes’ labels in relation to the background. Thus, mistakes in

the outline of smaller cells are more costly than for their larger counterpart. In addi-

tion, we notice here that MSD and UNet perform similarly on the synthetic images,

with SegNet lagging behind, by 6% and 10% on average for HL60 (Figure 2.2(g)) and

granulocytes (Figure 2.2(j)), respectively.
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2.3.3 Manually-Annotated Data

Following the observations drawn from the synthetic data we aim to extend them to a

segmentation task of manually-annotated stained tissue images. We selected the data

set belonging to MoNuSAC 2020 challenge [153], which contains H&E stained tissue

images belonging to multiple organs. The data were gathered with the purpose of

performing automatic cell segmentation, which can provide crucial information about

the organ’s health. This data set is comprised of 310 8-bit images of various sizes

containing four types of cells: epithelial, lymphocytes, macrophages and neutrophils.

Among these types, we selected the epithelial cells to be the target of our task, while

considering the rest as background. The selection was motivated by the larger presence

of the epithelial cells on a both per-image and per-data-set basis. Hence, we are left

with 96 images for training and 37 for testing. Moreover, due to the varying size of

the images, an extra preprocessing step was performed. The step involved separating

each image into 256×256 patches using a sliding window technique while allowing for

an overlap of 64 pixels between patches. A few samples of the selected patches are

shown in Figure 2.3(a). Also, given the variability in size, quality and provenience of

the data, we assume an individual annotator for every single image. Thus, we will

apply our perturbation framework to each image separately.

The omission and bias-inducing processes are performed similarly to the synthetic

data. For inclusion, we choose the main type of cells to be epithelial, while the

lymphocytes form the secondary category. We chose lymphocytes since their pairing

with epithelial cells is the most prevalent in the data set. We show the experimental

results in Figures 2.3(b–d). In the case of omission, one notable difference from the

synthetic data is the slight performance gap between MSD and the UNet/SegNet pair

for rω < 30%. Nonetheless, this gap decreases the more error we allow, showing

MSD to plateau at 77% Dice score until we remove 50% of the cell labels, while the

other networks are severely affected (18% and 26% reduction for UNet and SegNet,

respectively). When it comes to inclusion, the segmentation performance, similarly to

the HL60 cells, appears to be rather unaffected by wrongly labelled additional cells

until 30% inclusion. Moreover, the larger rates (≥50%) inflict a more modest loss in

the Dice score compared to the HL60 volumes due to the poorer fit the models have

on real data. Since their learned parameters may not be a perfect fit for the data, the

models can allow small perturbations of their input without suffering large losses. The

bias on epithelial cells shows UNet and SegNet to develop an increasing gap from MSD,

which reaches a 22% reduction in Dice score for qmax = 6. Here, MSD appears to suffer
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from the lack of complexity since this data set presents a more complex background

with high variability between images, impeding, thus, a very good distinction of the

correct cells. This tendency is further exacerbated by the perturbations applied to the

cells’ masks.

2.4 Conclusion

Understanding the consequences of labelling errors is of great importance for the field

of biomedical image segmentation. Our study provided insights into meaningful issues

that can be present in the annotation process for cell segmentation. We emulated

three different labelling errors (omission, inclusion and bias) for two perfectly-labelled

synthetic data sets and one manually-annotated data set and observed their impact on

the results of three networks. We found that wrongly including large objects into the

segmentation labels drastically decreases the quality of the predictions, while smaller

objects are filtered out more easily when moderately included (rϕ ≤ 30%). We also

observed that, even in low amount, the presence of bias deteriorates the predictions for

all cell types, especially for relatively smaller cells such as granulocytes and epithelial

cells. Finally, we observed that moderate omissions (rω ≤ 30%) present a negligible

impact to both MSD an UNet, with the latter slightly outperforming the former on

the manually-annotated data set. However, for larger omissions, MSD still retains

a competitive Dice score. This robustness to omissions can be exploited in settings

where the expert annotator would be required to label just a portion of the present

cells, significantly reducing the annotation costs. Also, MSD could be used to pre-

process training labels for more complex, but noise-sensitive, learning algorithms.
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Chapter 3

Upgrading Low-Quality

Annotations

3.1 Introduction

Deep-learning algorithms have been providing effective solutions for many tasks, con-

tributing to the advancement of domains such as speech recognition [77] and computer

vision [157]. One important computer vision task that is being tackled with such al-

gorithms is image segmentation [106], a process that labels each pixel into categories,

e.g., background and various cell types. However, deep-learning models require large

quantities of annotated data for training. In addition, the provided annotations should

also be of high quality. Specifically, the annotations should be accurate by providing

information that reflects the reality within the input, and be complete, meaning that

they provide all the information required for the given task, e.g., all pixels from an

image have an associated label in a segmentation task.

For many biomedical imaging tasks, including cell imaging [61], the annotations

are created manually by domain experts. Due to the limited availability of experts,

This chapter is based on:

S, . Vădineanu, D. M. Pelt, O. Dzyubachyk, and K.J. Batenburg. “Reducing Manual An-
notation Costs for Cell Segmentation by Upgrading Low-Quality Annotations”. Journal
of Imaging, 10(7), 172. MDPI (2024).
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the annotation process is often tedious [176], limiting the capacity for annotating the

large quantities of data required by deep-learning algorithms. As a result, the general

adoption of deep learning for such specialized domains may be considerably hindered.

An annotation process with fewer quality constraints could significantly reduce the

burden on expert annotators, enabling them to produce annotated images within a

shorter time frame. For instance, when creating segmentation masks, the boundary

of every cell in the image has to be carefully delineated. By providing coarser delin-

eations, only annotating a subset of all cells, or relying on automatic but inaccurate

segmentation tools based on classical image processing, a much faster annotation pro-

cess can be achieved. However, training directly on low-quality annotations harms the

performance of cell segmentation deep-learning algorithms [158]. Thus, it becomes ap-

parent that a solution that leverages inaccurate annotations to expand costly training

data sets can greatly benefit the adoption of deep learning for cell segmentation.

Learning from imperfect or missing labels due to annotation constraints is a long-

standing issue associated with machine-learning tasks. In the case of cell segmen-

tation, obtaining large amounts of labelled data requires time-consuming efforts by

experts with specialized knowledge of the task. One field concerned with this problem

is weakly-supervised learning, where the aim is to train deep-learning algorithms to

produce complete segmentation masks by only providing the models with partial an-

notations. Such techniques usually vary in the amount of information that is present

in the annotations, which can include bounding boxes [121], rough sketches of shape

contours [21], geometrical shape descriptors in the form of centre points and lines [102],

or partially-annotated segmentation areas [117]. Despite their promising results, these

techniques are generally tailored towards a single type of inconsistency, which can

limit their applicability.

Directly accounting for labelling errors, implicit consistency correction methods

compensate for inaccuracies in the annotated input during the training process by,

for instance, reducing the influence of gradients coming from segmentation areas of

lower confidence [105], by using a teacher–student architecture [69] to change the label

of less confident areas in the annotation mask [177], or by using adversarial training

to only annotate high-confidence areas of unlabelled data [109]. On the other hand,

explicit consistency correction solutions provide fine adjustments to the output of

trained deep-learning models [34, 10, 29, 161]. Similarly to weakly supervised tech-

niques, these methods lack a broad applicability and their utilization depends rigidly

on custom architectures. When it comes to improving the provided labels, Yang et al.

[172] developed a solution for iteratively adjusting the manual annotations of retinal
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vessels by employing generative adversarial networks. Their framework, however, only

produces small adjustments, relies on a relatively large amount of high-quality anno-

tations, and may suffer from the challenges associated with generative models, e.g.,

mode collapse and convergence failure [32].

Also concerned with annotation scarcity, few-shot segmentation aims to segment

new query images by leveraging information from relatively few support images with a

limited amount of annotations. However, these approaches generally require additional

training tasks with a large set of semantic classes [56, 55] whose annotations can be

costly to obtain. The need for manual annotations can also be avoided by employing

general foundation models such as the Segment Anything Model (SAM) [83], or cell-

specific models such as Cellpose [137]. However, although the applicability of such

models is not confined to a single image modality or cell type, they do not generalize

well to images outside their vast training pool. For instance, the SAM is not accurate

when the targets have weak boundaries [98], which can be the case with cell images

[4], whereas Cellpose is sensitive to variations in the texture of the objects [137]. This

may make these general solutions less suitable than techniques trained for a specific

cell type.

In summary, although there are many methods designed for improving deep-learning

segmentation with incorrect or incomplete labels, these solutions generally tackle spe-

cific types of inconsistencies, e.g., boundary uncertainty, require custom architectures

or training schemes, or have considerable annotation requirements for additional train-

ing tasks. In this chapter, we present a method designed to be applied to a wide set

of inconsistencies, with low data requirements and a flexible training scheme allowing

for a straightforward integration in other pipelines. We propose a framework for ef-

fectively obtaining large amounts of high-quality training data with limited required

human annotation time for the task of cell segmentation. Our approach is based on

manually annotating a small training set of high quality, which we then enlarge with

a much larger set with low-quality annotations (possibly produced with considerably

less human effort). In order to leverage the low-quality annotations, we train a convo-

lutional neural network to learn the mapping for upgrading a low-quality annotation

to a high-quality one by presenting it with both high-quality annotations as well as

low-quality versions of these annotations. We create multiple types of erroneous anno-

tations by perturbing the high-quality annotations with a function that approximates

potential errors resulting from a low-quality annotation process. Moreover, we show

that this perturbation function does not need to exactly replicate the annotation errors

present in the low-quality annotations in order for a good mapping to be trained. The
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training process requires pairs of perturbed annotations with their corresponding im-

ages as input for the upgrade network with the unperturbed, high-quality annotations

as targets. We apply the learned mapping to the large low-quality set to enhance its

annotations. Finally, we combine the initial small set of well-annotated data together

with the larger set with upgraded annotations and use them for training accurate

deep-learning models for the task of cell segmentation. By separating the inconsis-

tency correction step, i.e., the upgrading of annotations, from the segmentation step,

we enable our framework to tackle a wide array of inconsistencies and we facilitate its

integration into other segmentation pipelines.

3.2 Materials and Methods

3.2.1 Data Sets

Synthetic Data

We opted to use synthetic data to study most aspects of our method since their

ground truth annotations do not suffer from the inconsistencies a human annotator

may induce. Thus, we can be confident that such external factors do not influence

the outcomes of our experiments. Also, to isolate the effect of a particular type of

inconsistency in the low-quality set, we apply perturbation functions (see Section 3.2.2)

throughout the experimentation with synthetic data. We employ three data sets [140],

which consist of microscopy images of HL60 nuclei cells, granulocytes, and both cell

types, respectively, produced by a virtual microscope [166] extracted from the Masaryk

University Cell Image Collection (https://cbia.fi.muni.cz/datasets) (accessed

on 15.06.2023). Each data set consists of 30 volumes of 129 slices, each containing

565× 807 16-bit pixels. We filtered the volumes by eliminating the slices with empty

labels, which resulted in differently-sized volumes, averaging 84 slices per volume.

In addition, 25 volumes were used for training, while 5 volumes were kept only for

testing. In Figure 3.1, we show sample slices and their corresponding high-quality

annotations of the synthetic data sets. Since they are organized in volumes, we want

to avoid selecting high-quality annotations of adjacent slices since such samples show

little variation in their input and may be less informative when training the upgrade

network than more distant slices. Consequently, we sample by subdividing a volume

into a number of sections equal to the number of slices we want to select. We then

select the middle slice of each section, thus ensuring an equidistant separation between

slices. Additionally, when we sample from multiple volumes, we similarly partition
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each volume, but we select every next slice from a section belonging to a different

volume in a circular manner. For instance, when taking a total of 5 slices from 5

volumes, the first slice will be selected from the centre of section 1 from volume 1, the

second from section 2 of volume 2 and so on.

(a) HL60 (b) Granulocytes (c) Combined

Figure 3.1: Sample slices and their corresponding high-quality annotations for the synthetic
data sets we considered for analysis. The slices are produced with a virtual microscope [166].

Real Data

We also employ two manually-annotated data sets: the EPFL Hippocampus data set

[95] and a large-scale data set for colonic nuclear segmentation called Lizard [59].

The EPFL data set is comprised of a training and a testing volume, each containing

165 slices of 768 × 1024 8-bit grayscale pixels. This set of images, obtained using

focused ion beam scanning electron microscopy, is commonly used for benchmarking

mitochondria segmentation algorithms, whose monitoring can provide, for instance,

insights into the development of neurodegenerative diseases [84]. The Lizard data set

contains histology RGB images of colon tissue of varying sizes with instance labels

for each cell. Among the six cell types annotated in this data set, we selected the

most prevalent category, i.e., epithelial cells, as our target and the remaining cells as

background objects. This choice allows us to test our method on the largest number

of samples, which ensures that we obtain the most statistically significant results.

We split the images into 500 × 500 patches, with 100 pixels overlapping between

patches and removed patches that did not contain epithelial cells. We partitioned the

resulting set into 1209 training and 288 testing patches. In this case, we assume the
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corresponding provided ground-truth annotations to be of high quality. For each data

set, we select a small subset of samples for which we keep the high-quality annotations

while perturbing the annotations of the remaining samples to generate the low-quality

set. This perturbation step is performed only once per annotated image.

3.2.2 Method

In Figure 3.2, we illustrate an overview of our method. We consider a high-quality

annotation process that produces labels in a slow and costly manner and a low-quality

annotation process, yielding labels faster and cheaper. Within a given time frame,

the processes would generate a small data set with high-quality labels and a larger

lower-quality set. We apply perturbations to the well-annotated labels and we use

the perturbed labels together with their corresponding images as input to train an

upgrade model. We employ the upgrade model to enhance the labels of the larger

data set, which we use in conjunction with the well-annotated samples to train the

final segmentation model.

Discover the world at Leiden University

LQ
labels

HQ
labels

upgrade model

upgraded
labels

HQ
labels

DATA

no
labels

segm
entation training

slow & costly
HQ labeling

fast & cheap
LQ labeling

perturb

train

pair

Figure 3.2: Workflow. We train the upgrade model on a small set with high-quality labels.
We apply the trained model to upgrade the low-quality labels of a larger set. We enlarge the
initial high-quality set with the upgraded labels and we use the combined set for segmentation
training.

Background

We apply our framework to the segmentation task of 2-dimensional vector-valued (e.g.,

RGB, grayscale) images. In this chapter, we define an image as a matrix of pixels x ∈
RN×M×C , where N , M , and C represent the number of rows, columns, and channels,

respectively. The goal of segmentation is to create a mapping from a given input x to

the target y ∈ ZN×M in order to provide a separation between the different entities

within that image. Essentially, a label is attributed to each pixel according to the entity

that it belongs to. When using deep learning for image segmentation, this mapping is
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approximated using convolutional neural networks (CNNs), fδ : RN×M×C → RN×M ,

which require a set of image-target pairs X = {(x1, y1), (x2, y2), . . . , (xNt , yNt)}, to
train their parameters, δ. The process of training neural networks usually involves

successive predictions based on the input x and adjusting the parameters such that

the loss between the predictions and the labels is minimized. In order to achieve the

desired results, the network requires well-annotated training samples. We describe the

annotation process that produced high-quality labels as the output of the high-quality

annotator,

AHQ : RN×M×C → AHQ, (3.1)

that receives an input image x and produces a label that belongs to the set of high-

quality annotations, AHQ, i.e., it is both complete and correct. Such an annotation

can be the result of a consensus between multiple experts or can require a slow and

careful delineation of the shape of each element in x by a single expert. Additionally,

we define the set of well-annotated images, XHQ = {(x,AHQ(x))}, needed to train

the network parameters,

δ̂ = argmin
δ

∑
(x,y)∈XHQ

L(fδ(x), y), (3.2)

where L is a loss function. Due to their large parameter count, these models are

generally prone to overfitting and therefore require large quantities of well-annotated

samples.

Perturbation-Removal Framework

Since producing a sufficient number of high-quality annotations may prove unfeasible

for cell segmentation, the required annotations may be supplied via a less rigorous

annotation process. A low-quality annotation process would, for instance, result from

an individual expert who quickly produces the annotation, without spending additional

time on finer shape details or on removing ambiguities. Also, for setups that require

consensus, the label can come from a single expert, a person in training, or a non-

expert, thus reducing the annotation costs. Alternatively, the low-quality annotations

can even be the product of traditional segmentation techniques (e.g., thresholding,

graph cut [14], Otsu [111]) or machine-learning-based algorithms, removing the need

for a human annotator in this stage of the process. For instance, one easily-applicable

strategy to produce low-quality annotations is to simply train a segmentation network
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on the few available high-quality samples and then use its predictions on the remaining

unannotated samples as low-quality annotations. We define the low-quality annotator

ALQ : RN×M×C → ALQ, (3.3)

as a function that produces labels that are either incorrect or incomplete or both, thus,

being included in the set of low-quality annotations, ALQ.

Training solely with low-quality annotations generally leads to inaccurate results

[158]. Thus, we propose a solution to enhance the quality of a larger set of low-

quality annotations, which we utilize to enlarge an initially small set of high-quality

annotations. Our framework requires a small number of well-annotated images, XHQ,

together with a substantially larger set of images and their low-quality annotations,

XLQ = {(x,ALQ(x))}, with |XHQ| < |XLQ|. We aim to enhance ALQ(x) to AHQ by

finding the upgrade function

U : (RN×M×C ,ALQ) → AHQ, (3.4)

which translates an annotation of the input image created by the low-quality annotator

to an annotation belonging to the space of high-quality annotations. In order to create

both high- and low-quality versions of annotations, we utilize a perturbation function

that aims to approximate the unknown mapping from a high-quality annotation to a

low-quality one. We handcraft function

P : AHQ → ALQ, (3.5)

which applies perturbations to a high-quality annotation to create an annotated image

that approximates a faster, but lower-quality, annotation process. The choice for such

a function can vary by task and data set, with implementations that can include

heuristics or even learning the perturbations from the data. In our work, we assume

that we can approximate the perturbation function, P , by implementing a custom

stochastic version of it. Additionally, we assume that the function U that maps the

low-quality label to a high-quality one is a learnable function. We employ the high-

quality set to generate many (x, P (AHQ(x))) pairs. Given the stochastic nature of

our chosen perturbation function, we can generate multiple perturbed versions of the

same high-quality annotation; thus, we only require a small number of (x,AHQ(x))

pairs. We utilize the generated pairs to train an upgrade network, uθ, parametrized
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by θ, which approximates U by finding

θ̂ = argmin
θ

∑
(x,AHQ(x))∈XHQ

L(uθ(x, P (AHQ(x))), AHQ(x)), (3.6)

where L is a loss function. After training uθ, we apply it to our lower-quality set.

In this way, we enhance the low-quality annotations, which results in the pairs

(x, uθ(x,A
LQ(x))) of input images and upgraded annotations. Finally, we use both

the enhanced (x, uθ(x,A
LQ(x))) pairs and the initial high-quality (x,AHQ(x)) pairs

as training samples for our final segmentation task. Therefore, our segmentation CNN

fδ will be obtained as

δ̂ = argmin
δ

(
∑

(x,y)∈XHQ

L(fδ(x), y)+ (3.7)

∑
(x,y)∈XLQ

L(fδ(x), uθ̂(x, y))).

Algorithm 1 shows the pseudocode of a segmentation pipeline that makes use of

our upgrade network. The requirements of our framework are (1) a small set with

high-quality annotations, (2) a larger set with low-quality annotations, and (3) a

perturbation function. The objective of this pipeline is to obtain the parameters δ

of a well-trained segmentation network. We initially train the upgrade network uθ

only on the high-quality data XHQ, whose labels we perturb with the previously

selected perturbation function, P . We aim here to obtain predictions from input

images and perturbed labels that match the high-quality annotations as closely as

possible. After estimating the parameters of uθ, we apply it to XLQ, whose images

and resulting upgraded annotations we employ, in conjunction with XHQ, to estimate

the parameters δ of a segmentation network.

Producing Low-Quality Annotations

We designed our method for the task of binary cell segmentation, where the object of

interest is a single type of cell. In order to apply our perturbation function, we require

the instance label of every cell in the image. Therefore, considering E cells in image

x, we define L ⊂ Z as the set of all cell instance labels, with |L| = E. Our label then

becomes
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Algorithm 1 Upgrade Framework

Require: XHQ, XLQ, P return δ
(1) Train the upgrade network uθ:

for (x, y) ∈ XHQ do
Perturb y: P (y)
Predict upgraded label: uθ(x, P (y))
Compute loss: L(uθ(x, P (y)), y)

end for
Estimate θ̂ according to Equation (3.6)

(2) Upgrade low-quality set and expand segmentation training data:

for (x, y) ∈ XLQ do
Upgrade low-quality label: uθ(x, y)

end for
Estimate δ̂ according to Equation (3.7)

ynm =

{
i, if xnm belongs to cell i ∈ L,
0, otherwise

(3.8)

1 ≤ n ≤ N, 1 ≤ m ≤ M.

We apply three types of perturbations (omission, inclusion, and bias), introduced

in [158], which are designed to reflect the incompleteness and inaccuracy of the cell

segmentation masks resulting from an annotation process with fewer resources. For

instance, a much shorter annotation time can be spent by using segmentation masks

that only contain a proportion of the total cells present in the image. Moreover,

allowing for inconsistencies in cell recognition in the form of inclusions can also reduce

the time an annotator spends choosing which cells to include in the segmentation

mask. Finally, by eliminating the need to provide correct cell border delineations, we

can expect a boost in the annotation speed.

Omission Perturbation. We randomly select a subset of S ≤ E of cell instance

labels LS ⊆ L, whose size is chosen such that it satisfies the omission rate rω = S
E .

Our perturbation function, therefore, becomes
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P (y)nm =

{
0, if xnm belongs to cell i ∈ LS ,

ynm, otherwise
(3.9)

1 ≤ n ≤ N, 1 ≤ m ≤ M.

Inclusion Perturbation. Given an image x and Λ ⊂ Z, a set of instance labels of

other objects belonging to x (L∩Λ = ∅), we perform inclusion by randomly selecting

a subset ΛS ⊆ Λ of the objects, whose size S ≤ F satisfies the inclusion rate rϕ = S
F .

Hence, we apply the perturbation as

P (y)nm =

{
j, if xnm belongs to shape j ∈ ΛS ,

ynm, otherwise
(3.10)

1 ≤ n ≤ N, 1 ≤ m ≤ M.

Bias Perturbation. We model the inconsistency in border delineation by performing

morphological operations [130] on the cell labels. We employ dilation operations, D, to

enlarge the cell area and erosion operations, E, to shrink the cell area. The operation is

randomly chosen and the impact of the operation is controlled by factor q that controls

the number of iterations, with a 3× 3 all-ones matrix as the fixed structural element,

for which we perform the chosen operation. This bias severity constant, randomly

picked between 1 and qmax, indicates the largest allowed number of iterations. As a

result, the perturbation is formed either as

P (y) = Eq(y) or P (y) = Dq(y). (3.11)

where Eq and Dq denote q iterations of erosion and dilation, respectively.

Given the relatively ill-defined distinction between low-quality and high-quality

annotations, we will further consider as low-quality annotations only the ones affected

by large degrees of perturbations, i.e., 70% omission, 70% inclusion, a bias of 6, or a

combination of perturbations. Thus, we only consider as low-quality the annotations

that significantly diverge from the gold standard. In Figure 3.3, we illustrate an exam-

ple of an annotation where all three perturbation types are present and highlighted.

Alternatively, we investigate the case where the low-quality annotator ALQ would not

imply any human effort. This can happen when ALQ are produced by a segmentation
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network trained on the small number of samples in the high-quality set AHQ. In this

case, the generation of low-quality annotations is disentangled from the perturbations

that we apply when training the upgrade network.

3.2.3 Experimental Setup

We designed our experimental setup around a PyTorch [114] implementation of UNet

[125]. UNet features an encoder–decoder architecture with skip connections between

the encoding layers and the decoding layers of the same spatial resolution. We em-

ployed 4 convolutional blocks in the encoder and 4 in the decoder, with a block contain-

ing 2 convolutional and 2 batch normalisation layers. We treat both the segmentation

and upgrade tasks as binary pixel-wise classification tasks. Thus, the output of the

network in both cases is a two-channel image with the first channel’s pixels being 0

if they belong to the foreground and 1 if they belong to the background, with the

opposite holding true for the second channel. All activations between layers are ReLU

functions, with the exception of the last layer, where the output is processed by a

soft-max function. We train the network until there is no improvement in the vali-

dation score for 10 consecutive epochs, at which point we only keep the model with

the highest score. Our loss function is the Dice loss, and we update the network’s

parameters according to ADAM optimization algorithm [82], with a learning rate of

10−5 and a batch size of 4. We partition our data into training and testing with

an additional 80/20 split of the training data into training and validation. Finally,

we present our results by reporting the Sørensen–Dice coefficient computed over the

entire test set and averaged over 5 runs. We validated our comparisons by using the

Wilcoxon non-parametric test [124].

3.3 Results

We performed a series of experiments to analyze various aspects of our proposed

framework. In Section 3.3.1, we use the synthetic data sets with objective ground truth

to measure the quality gain of upgraded annotations under various sets of assumptions.

On the same data sets, we also evaluate the benefits of expanding the segmentation

training data with upgraded annotations in terms of segmentation performance and

annotation cost (Section 3.3.2). Furthermore, in Section 3.3.3, we validate our previous

observations on real manually-annotated data. Lastly, we show, in Section 3.3.4, a case

study of an application where our solution can be integrated to improve the prediction
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(a) Input image (b) HQ annotation (c) LQ annotation

(d) Omission (e) Inclusion (f) Bias

Figure 3.3: An example of the perturbations applied to the high-quality annotations.
Figure (a) presents an input image from the combined data set, where the HL60 cells are
the target cells and the granulocytes are the included cells. The high-quality annotation
corresponding to the input is shown in (b). The low-quality version of the annotation shown
in (c) is affected by 50% omission, 50% inclusion, and a bias of 6. The omission perturbation
is represented by the orange omitted cells in Figure (d), inclusion by the red shapes in (e),
and bias by the magenta contours in (f).

quality of a segmentation network trained with insufficient samples.

3.3.1 Analysis of the Upgrade Network

To assess the optimal training set size for the upgrade network uθ, we created various

training sets by varying both the total number of annotated slices and the number of

volumes from which the annotated slices were selected. The models were trained to

upgrade annotations affected by 70% omission, 70% inclusion, and a bias of 6, respec-

tively. The results presented in Figure 3.4 show that the upgrade network requires

just 5 well-annotated slices to improve the quality of the annotations, regardless of

the applied perturbation. We also notice that the resulting quality of the upgraded

annotations plateaus quickly to Dice values > 0.9. We report the optimal number of

training slices for different perturbations together with the corresponding Dice score

of the upgraded annotations in Table 3.1.
So far, we assumed that we can perfectly model the errors affecting the low-quality
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Figure 3.4: The Dice similarity with the ground truth test set of the upgraded annotations
as a function of the total number of slices used for training and the number of volumes from
which the slices were selected for the HL60 cells (represented using a different colour). The
coloured dots represent the experimental results, while the coloured dashed lines are showing
the general trend of the results. The straight dash-dotted line represents the average Dice
similarity with the ground truth test set of the perturbed annotations before the upgrade.

Table 3.1: The Dice similarity with the ground truth test set of the annotations affected
by perturbation and the upgraded annotations, as well as of the predictions produced by seg-
mentation networks trained only on the high-quality data, on the high-quality data together
with the data with upgraded annotations, and results of using thresholding as baseline. In
each row, the largest value is highlighted in bold. The training setup indicates the data set on
which the upgrade network was trained, as well as the total number of slices used for training
and the number of volumes from which the slices were selected. The cell types marked with
an asterisk come from the combined synthetic data set.

Training setup
for upgrade network

Quality of
training annotations

Quality of
segmentation network

Training data
Perturbation Data Vols. Slices LQ Upg. HQ HQ + upg. HQ + LQ LQ only Thrs.

70% omission
HL60 10 10 0.462 0.939 0.823 0.929 0.311 0.311 0.887
gran. 10 80 0.495 0.92 0.892 0.894 0.41 0.414 0.732

70% inclusion
HL60* 10 10 0.925 0.992 0.913 0.962 0.891 0.89 0.892
gran.* 10 10 0.381 0.98 0.856 0.898 0.364 0.353 0.214

bias 6
HL60 10 10 0.857 0.909 0.823 0.923 0.931 0.933 0.887
gran. 10 40 0.675 0.865 0.868 0.877 0.827 0.81 0.732

30% om. 30% inc.
bias 4

HL60* 10 10 0.71 0.929 0.913 0.934 0.739 0.745 0.892
gran.* 10 10 0.54 0.86 0.856 0.854 0.505 0.5 0.214

annotations with our perturbation functions. However, in practice, it might be difficult

to exactly match the type and severity of the perturbations present in the data. To

account for that, we relax this assumption by allowing a mismatch between the error

generated by the perturbation functions and the errors in XLQ. In Table 3.2, we

report the effect of such mismatch on the performance of the upgrade network when

the annotations of XLQ contain 30% omission, 30% inclusion, and a bias severity of

4, respectively. We observe that, even when not reaching the highest Dice scores,

the upgraded annotations show high Dice scores when uθ is trained on the highest

perturbation level. This implies that varying the presence of a large proportion of the

cell masks can be more beneficial for training uθ than aiming to exactly match the
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Table 3.2: The Dice similarity with the ground truth test set of the upgraded network
trained on various degrees of perturbations. The perturbations present in the low-quality set
are 30% omission, 30% inclusion, and a bias severity of 4, respectively. For each perturbation
type, the highest score is highlighted in bold.

Training perturbation for upgrade network
Omission Inclusion Bias

20% 30% 50% 20% 30% 50% 2 4 6
HL60 0.955 0.972 0.952 0.973 0.972 0.986 0.915 0.918 0.926
gran. 0.838 0.86 0.93 0.984 0.98 0.981 0.821 0.837 0.884

amount of error present in the XLQ.

In addition to the perturbation function, another essential requirement of our so-

lution is the presence of a high-quality set of annotations for training uθ. Since we

use synthetic data, the quality of this set is ideal, which, however, is not expected

from manual annotations for many reasons, including inter-observer variability [13]

or limited available resources. We model these inaccuracies by introducing moder-

ate amounts of perturbations into the high-quality set. Figure 3.5 illustrates that

the upgrade networks trained on the larger HL60 cells are robust to imperfect HQ

annotations, whereas the ones trained on granulocytes are more sensitive due to the

comparatively smaller footprint of the cells. Thus, the same amount of perturbation

affects the quality of the granulocytes annotations more drastically than that of HL60

cells. Despite allowing for a moderate amount of omission and inclusion perturbations,

the networks trained on granulocytes show a sharp drop in performance for bias since

this type of perturbation introduces the greatest variation in shape relative to cell size

among the two data sets.

We compare our solutions with works tackling the issue of training biomedical

image segmentation models with imperfect or incomplete annotations. We selected
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Figure 3.5: The Dice similarity with the ground truth test set of the upgraded annotations
as a function of the perturbation level present in the high-quality training set of the upgrade
network. The vertical bars correspond to the standard deviation of the results.
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Table 3.3: The Dice similarity with the ground truth test set of the predictions produced
by three different segmentation networks designed for training with incomplete/noisy annota-
tions. The models were trained on 10 volumes of the combined set of HL60 and granulocytes
with the HL60 cells as the target cells. The upgrade network of our method was trained
using 20 well-annotated slices, which were also included in the training set of the other two
methods. For each perturbation, the highest score is highlighted in bold.

Perturbation
Method 70% omission 70% inclusion bias 6

Partial Labelling [117] 0.906 0.859 0.803
Confident Learning [177] 0.381 0.888 0.947

Ours 0.923 0.962 0.916

techniques that employ full-size segmentation masks for training and that apply cor-

rections to these masks to either fill incomplete areas or remove incorrect ones. Also,

although we compare the selected methods for all our perturbation types, it is impor-

tant to note that Partial Labeling [117] was designed for setups closer to omission than

the other perturbations, whereas Confident Learning [177] tackles uncertain areas at

the border of the masked areas resembling more our bias perturbation. In Table 3.3,

we observe that our method generates comparable results with Partial Labeling for

omission and Confident Learning for bias perturbation. However, among all three per-

turbation types, our framework performs consistently better than the other solutions,

showing wider applicability to different types of inconsistency.

3.3.2 Segmentation Improvements

In Section 3.3.1, we investigated the capability of the upgrade network to improve the

quality of annotations affected by errors. In this section, we are analysing whether

adding the upgraded annotations to the training set results in improved segmentation

performance and reduced overall annotation costs. In Table 3.1, we report different

scenarios under which XHQ and XLQ can be used to train networks for segmentation.

Given an initial data set with low-quality annotations, we can use it directly as a

training set for segmentation (LQ only column in Table 3.1). We can also spend

additional resources on improving the quality of a small number of annotations and

utilize them in conjunction with the low-quality set (column HQ + LQ) or we can

employ the high-quality set alone for training (column HQ). Finally, we can use our

framework for upgrading the low-quality annotations and, together withXHQ, forming

a larger training set of improved quality for the segmentation network (column HQ +

upgraded). In order to ensure that the synthetic data cannot be easily segmented based
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on the pixel intensity levels, we use as baseline a simple thresholding solution in which

the input images are segmented by selecting a threshold via grid search with a step

of 1% of the maximum pixel intensity. For each data set, we select a single threshold

that yields the highest Dice score on the training set. The low baseline results in

Table 3.1 reflect the complexity of the simulated data sets. Our results show that,

for most cases where uθ improved the quality of annotations, the addition of samples

with upgraded annotations translated into a higher segmentation performance of the

final segmentation network on the test data.

From Table 3.1, we observed that adding the upgraded annotations to the train-

ing set results in better segmentation. However, this performance gain resulted from

upgrading a large number of low-quality annotations, which may also prove difficult

to produce in practice. To account for this, we perform an experiment analysing the

trade-off between annotation cost and performance. For a fixed number of slices, we

select 10% of them to have high-quality annotations, while the rest have low-quality

annotations. We apply our framework to this set of slices and compare against seg-

mentation networks trained with low-quality annotations, i.e., 0% high-quality slices,

and against segmentation networks trained on high-quality slices only, i.e., 100% high-

quality slices. We define the annotation cost as the equivalent number of low-quality

annotations that would be produced with the same effort as a given annotation. For

instance, for a low-quality annotation, the equivalent number of low-quality annota-

tions is 1, while for a high-quality annotation, this number will differ depending on the

particularities of the task, such as the data sets or the experience of the annotators,

as is the case with works comparing annotation costs in the literature [133, 36]. For

illustration purposes, we consider the equivalent number of low-quality annotations

for a high-quality annotation to be 5. We observe in Figure 3.6 that, except for bias

perturbation, the segmentation networks trained with our framework are the most

cost-effective option for reaching the highest Dice scores. When it comes to bias, the

variation in cell size induced in the training set with low-quality annotations forces

the network to learn an “average” cell size that matches more closely the ground

truth in the test set. However, in cases where the bias is more systematic, we expect

a considerable drop in performance for the networks trained only with low-quality

labels.
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Figure 3.6: The Dice similarity with the ground truth test set of the segmentation networks
as a function of annotation cost. The results in Figure (a) correspond to the HL60 data set
where the low-quality annotations suffered from 70% omission, the results in Figure (b)
correspond to the combined data set with HL60 cells as targets and 70% inclusion in the
low-quality annotations, and the results in Figure (c) correspond to the HL60 data set with
a bias of 6 in the low-quality annotations.

3.3.3 Enhancing Manual Annotations

In Section 3.3.1, we showed that the upgrade network is able to improve low-quality

annotations of synthetic images under various circumstances. Here, we expand our

analysis by validating our observations on real cell images. We integrate the two de-

scribed real data sets in a scenario emulating the process experts may undertake to

enhance the quality of their annotations. Our goal is to assess whether the quality

gains reported in Table 3.1 can be similarly reproduced on real manually-annotated

data. We consider a setup where the constraints on the annotation process are accu-

rately captured by the perturbation functions used during the training of the upgrade

network. With omission, we model an expert that deliberately ignores most cells in

an image, focusing only on 30% of them. Inclusion allows for the presence of other

structures that, for instance, can result from using networks trained on other cell data

sets, or from foundation models. Bias would allow the annotator to either focus on the

“core” of the cell, as shown in Figures 3.7m,o, or on the wider cell area without rigor-

ously delineating the boundaries. Figure 3.7 shows the results of the upgrade network

trained on 24% of the training samples of EPFL, and on 20% of Lizard’s, respectively.

We notice, both qualitatively and quantitatively, that our solution can successfully

upgrade annotations affected by high perturbation levels, requiring a relatively low

number of high-quality annotations for real, more complex data sets. Also, the large

quality increase for omission and bias highlights the potential of our framework to ex-

pand the size of cell data sets with relatively low effort for producing the low-quality

annotations.
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(a) Input image  EPFL (b) Ground truth EPFL 

(e) LQ annotation (f) Upgraded annotation

(i) LQ annotation (j) Upgraded annotation
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Figure 3.7: An example of perturbations applied to the real data sets paired with upgraded
annotations. Figures (a–d) show the input image paired with its corresponding ground truth
for EPFL and Lizard. Figures (e–h), (i–l), and (m–p) present the perturbed-upgraded
annotation pairs for 70% omission, 70% inclusion, and a bias of 6, respectively. The results
below the images represent the Dice similarity between the ground truth, the low-quality
annotations, and the upgraded annotations, respectively. Both metrics were computed on
the entire test set.

3.3.4 Case Study: Upgrading Low-Quality Predictions

We showcase here an example where the upgrade network can be applied in a scenario

requiring no manual annotation cost for producing the low-quality annotations. In this

case, XHQ can be employed to train a segmentation network whose predictions can

then be further used as the cheap annotations of XLQ. We consider the predictions

of a segmentation network trained with 10 well-annotated samples of Lizard data set

in a setup similar to [161]. We use the same XHQ for training our upgrade network.
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(a) Input image (b) Ground truth (c) Perturbed annotation (d) LQ annotation (e) Upgraded annotation

Dice LQ: 0.5288 Dice upgraded: 0.6448

Figure 3.8: An example of an application where our framework can upgrade the predictions
of a segmentation network trained on insufficient data. Figures (a,b) show the Lizard input
image together with the corresponding ground truth. Figure (c) is an example of a perturbed
annotation used during the training of the upgrade network. Figure (d) shows a low-quality
annotation produced by the segmentation network with its upgraded version presented in
Figure (e). The results below the images represent the Dice similarity between the ground
truth, the low-quality annotations, and the upgraded annotations, respectively. Both metrics
were computed on the entire test set.

We opted for a set of perturbations that would guide uθ to compensate for prediction

inaccuracies that we visually assessed. At each training iteration, we perform a 50%

omission, followed by the inclusion of 10% of the segments extracted by Felzenszwalb’s

algorithm [54] to emulate missing or mispredicted structures. We add salt and pepper

noise with a 10% probability to mimic the observed gaps in the segmented area as

well as the small clusters of false positive pixels that can be noticed in Figure 3.8d.

Finally, the resulting label is subjected to bias perturbation with a bias of 6 to guide

the upgrade network towards better delineation of cell boundaries. The results, shown

in Figure 3.8, demonstrate the potential of our method to refine the predictions of an

undertrained segmentation network. We achieve a 22% improvement in the quality

of the predictions without requiring additional supervision. Moreover, by visually in-

specting the results, we notice that uθ achieves good separation between the individual

shapes, a property not captured by the Dice score metric. These delineated shapes

can then be used, for instance, to facilitate a further instance segmentation step.

3.4 Discussion

Our results reported in Table 3.1 indicate that, with as few as 10 well-annotated im-

ages, we can improve low-quality annotations to a level comparable with the gold

standard. In addition, as can be seen in Figure 3.4, the performance of the upgrade

network relative to the size of the high-quality data set follows a logarithmic trend.

Therefore, continuously increasing the size of XHQ will not generate meaningful im-

48



Chapter 3. Upgrading Low-Quality Annotations

provements. By knowing the logarithmic trend of the performance of uθ, the end user

of our framework would benefit from being able to decide more easily when enough

high-quality data has been gathered and annotated, since, once uθ performs well for a

certain size of XHQ, little improvement can be expected when the size of the training

is increased. Furthermore, we showed that the upgrade network produced positive re-

sults for all considered cell data sets. The only requirements are a small high-quality

set of annotations, a separate larger set of low-quality annotations, and a perturbation

function that can map a high-quality annotation to multiple lower-quality versions of

it, resembling the quality within the low-quality set. Since our requirements are inde-

pendent of the data set, we expect our method to also work on other image modalities

where our assumptions are met. This also applies to data collected in the three-

dimensional regime, such as tomography. In this case, our framework can be applied

on each individual slice separately.

We observed that using both the upgraded annotations of the low-quality set

together with the small well-annotated set generally results in higher segmentation

scores. Moreover, we noticed that the highest Dice scores are obtained when the

upgrade model is both trained with and applied to annotations perturbed with 70%

omission, 70% inclusion, or a bias of 6. We also saw in Figure 3.6 that our framework

can be a cost-effective solution to increase the performance of segmentation networks

when the annotation time is a constraint. Moreover, by comparing with other works

targeting the enhancement of imperfect annotations, we showed that our upgrade net-

work can handle a wider variety of perturbations than existing techniques. Thus, our

solution is well-suited for being embedded into an annotation process with limited

resources, rather than for fine-tuning, where there is a wide gap between the cost

of producing a low-quality annotation and the cost of producing a high-quality one.

For instance, for automatically-produced annotations by a non-learning algorithm, the

only costly requirement would be to manually enhance a small proportion of them,

on which the upgrade network can be trained. Moreover, as shown in Figure 3.8, our

solution is flexible enough to be used for upgrading predictions of a network trained

with insufficient data. These upgraded predictions can then be used to enlarge the

existing data set or be further adjusted by experts, reducing the overall annotation

time.

49



3.5. Discussion

We also noticed the benefit of training for high perturbation levels, i.e., 70% omis-

sion, 70% inclusion, and a bias of 6, when we tested the robustness of our solution

with respect to discrepancies between the perturbation levels used to train the up-

grade network and the perturbation levels in the low-quality set. In Table 3.2, we saw

that, generally, when we train for the highest perturbation level we reach compara-

ble, or higher, performance than when training on the same perturbation applied to

generate the low-quality set. Since, in practice, the annotation inaccuracies can have

a systematic, i.e., annotator-specific, component and a random component, it may

prove impossible to exactly model these inaccuracies through perturbations. Thus,

the robustness to discrepancies in perturbation levels shown by our framework can

indicate its potential applicability in practical scenarios. We additionally showed that

our framework is robust to reductions in the quality of XHQ. Figure 3.5 shows that

we can expect a relatively small drop in performance when we moderately reduce the

quality of the well-annotated set. This observation may imply that the annotation

process of XHQ can become less costly, e.g., requiring fewer experts per high-quality

annotation, while still being able to produce annotations to train a well-performing

upgrade network. However, the less information is present in an annotation, e.g., small

cell areas, the more sensitive the framework becomes to inconsistencies.

Given that we focused solely on cell segmentation, we are unable to conclude with

certainty whether or not our framework is applicable to other image segmentation ap-

plications where the goal would diverge from the cell segmentation setup, for instance

by requiring the segmentation of a single contiguous target object. However, consid-

ering that our framework does not demand a specific type of annotation, as long as

sufficient realistic low-quality versions of the high-quality annotations can be created

with enough variety between them, we expect the upgrade network to still be applica-

ble. Despite this, further experimentation is required to ensure that our requirements

are met by other segmentation applications. Another limitation presented by our work

is the lack of integration of the third dimension for volumetric data sets. This can be

tackled in the future by, for instance, employing an architecture with 3D convolutions

as the upgrade network. Finally, throughout our experimentation, we upgraded only

annotations suffering from high levels of inconsistencies, while ignoring the fine-tuning

of less severe cases. We expect our upgrade network to not perform similarly well

on such cases, given that the small errors would not allow for much variation in the

generation of the low-quality versions of the annotations. This would then impede

the network from learning a generalizable mapping from a low-quality annotation to

a high-quality one.
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3.5 Conclusions

We presented our framework for enlarging training data sets with limited human an-

notation costs by only requiring a small set of data with high-quality annotations and

a larger set with low-quality annotations that would require little or no human an-

notation effort. We utilize a small high-quality data set whose annotation quality is

reduced for providing it as input to an upgrade network that learns the mapping from

a low-quality annotation to a high-quality one. We then use the upgrade network to

enhance the annotation quality of the larger low-quality set.

We observed that our solution is applicable to at least three types of annotation

inconsistencies (omission, inclusion, and bias), that it is robust to changes in the

annotation quality of the training set, and that it can have wider applicability than

existing works. We showed that our work can be applied to enhance the low-quality

predictions of a network trained on an insufficient number of samples. Finally, we

showed that the networks trained on data sets enlarged by our method present higher

segmentation scores than only training on high-quality data.

51





Chapter 4

Few-Shot Cell Segmentation

4.1 Introduction

Recently, deep learning (DL) has become an integral part of many imaging tasks,

showing accurate results for problems such as image segmentation [106], a process

that labels every pixel of an image into categories. Despite their potential, DL solu-

tions are less applicable in scenarios where the annotated data are scarce [16], such

as medical or biological image segmentation. These settings require trained experts

to produce the annotations needed to train DL algorithms. Few-shot learning (FSL)

techniques present potential solutions for these data-scarce domains by exploiting su-

pervised information from a data-rich source task to adapt to the target task by only

utilizing a limited number of labelled samples of the target task [163]. Despite the ap-

parent suitability for cell segmentation, there is a lack of research targeting few-shot

segmentation of new structures in cell data sets when other labelled structures are

available. Moreover, the particularities of cell imaging make existing few-shot medical

image segmentation approaches [160, 127, 138] unsuitable for cell segmentation. Thus,

there is a need for a few-shot segmentation method targeted towards cell segmentation.

In FSL, we assume the availability of a relatively large amount of annotated samples

This chapter is based on:

S, . Vădineanu, D. M. Pelt, O. Dzyubachyk, and K.J. Batenburg. “From Feature Maps
to Few-Shot Cell Segmentation”. International Workshop on Medical Optical Imaging
and Virtual Microscopy Image Analysis. Springer Nature (2025).
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for a source task as a training set. For a different target task, only a few annotated

samples are available, called the support set. The challenge is to effectively derive

unique representations for the target task from the support set. Subsequently, these

representations are leveraged to predict unlabelled samples, known as the query set.

Given its broad definition, tackling the FSL problem can include domain adaptation

[81, 39], image augmentation [27], or visual prompting [79]. Here, we focus on semantic

segmentation, where the goal is to segment structures with limited annotations within

a data set, leveraging sufficient annotations for other classes of structures. Such a

scenario may prove especially suitable for cell segmentation, since, besides requiring

domain expert annotators, the number of structures to be annotated within an image

is large and the process is tedious due to the varying cell size. Additionally, adapting

from one cell type to another may be possible with the limited amount of annotations

involved in FSL due to morphological similarities among certain cells.

Despite the promising applicability of FSL techniques to cell segmentation, there is

a limited amount of research targeting few-shot segmentation of new classes in cell data

sets. Segmenting new classes with FSL is, however, more widely attempted in medical

imaging. In this case, one technique that many works rely on is attention-guided

segmentation [127, 55, 170], where the activations generated from the support images

are used to weigh the activations of the query images. Another popular category of

works uses prototype learning [160, 141, 112], where prototype vectors learned from

the support set are compared against the features extracted from the query images to

generate predictions. Although these approaches perform well in organ segmentation,

where the structures are relatively large, morphologically dissimilar, and located in

relatively fixed positions, they are not entirely suitable for cell segmentation, where

structures do not necessarily fit into the aforementioned pattern. For instance, one

difference from organ segmentation lies in the varying cell positions within tissues.

This affects attention-based FSL methods since guiding the segmentation of the query

based on the attention provided by the support requires alignment between the target

structures from these images. This alignment issue is also acknowledged in [122],

which motivates the authors to employ the prototype learning paradigm. Prototype

learning solutions compare prototype vectors against the feature maps generated in

the last layers of an encoder, which results in low-resolution predictions. This can

hinder the segmentation of cell microscopy images, which generally contain clusters

of cells, since the lack of resolution would not allow for the delineation the individual

cells within the clusters. Besides the methods designed for few-shot medical image

segmentation, there are many developed for natural images [122, 173, 90]. However,
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their applicability has not been extensively explored for (bio)medical imaging.

In this chapter, we propose a novel few-shot segmentation solution designed for cell

segmentation. We train mixed-scale dense (MSD) networks [116] as feature extractors

on the training set and then we use the support set to learn a linear combination of

the extracted features that can be applied to segment a new class of entities. We

account for limitations of previous works, such as the low resolution of the prototype-

learning predictions, by producing features of the same spatial dimensions as the

input image. Moreover, unlike attention-guided methods, we do not require similar

positioning between support and query structures since we disentangle the adaptation

step on the support from the query prediction. Also, since we only learn a low number

of weights for the linear combination, the adaptation step can be performed rapidly,

enabling easier prototyping.

4.2 Background and Methodology
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Figure 4.1: Workflow. We train feature extractors on the known classes. Consequently,
we extract feature maps from the support set to learn a recombination for predicting the new
class. Lastly, we apply the learned recombination to the query images.

We consider the case of segmentation of 2D vector-valued images, e.g., RGB or

grayscale, where the aim is to learn a mapping from a matrix of pixels with L rows,

M columns, and C channels x ∈ RL×M×C to the target y ∈ ZL×M , where each pixel

of y has a value reflecting the entity it belongs to. One method of approximating

55



4.2. Background and Methodology

this is with convolutional neural networks (CNNs) fδ : RL×M×C → RL×M×Nc , where

Nc is the number of classes and whose parameters δ are learned from a training set

Xtr = {(x1, y1), (x2, y2), ..., (xNtr , yNtr)}, with Ntr = |Xtr|.

Few-shot image segmentation requires an initial training set Xtr, with the set of

classes Ctr, which is used to train the model’s parameters. The model is employed

to predict a new set of classes Cte : Cte ∩ Ctr = ∅ by only relying on K annotated

samples (shots) for each of the new N classes (ways), where N = |Cte|, making the

segmentation task an N-way K-shot problem. For the remainder of this chapter, we

will consider 1-way segmentation problems, i.e., the binary segmentation of the new

class. The K annotated shots comprise the support set Xs = {(xs, ys)} from which

the model distils knowledge about the new class to produce a segmentation of the

unannotated query set Xq = {xq}.

For our method, summarized in Figure 4.1, we consider feature extractor CNNs

capable of generating feature maps at the same spatial resolution as the input image.

We train the feature extractors on the classes known in the training set. Specifically,

in this work, we train a binary segmentation model for each of these known classes.

Consequently, we use the feature maps of the images from the support set generated

by the trained feature extractors to learn a set of weights for recombining the maps

to predict the new class. Finally, we employ the feature extractors and the learned

weights to predict the query images. In this work, we choose MSD networks [116] as

feature extractors. MSD bypasses the need for downscaling and upscaling the feature

maps for capturing features at different scales by replacing standard convolutional

kernels with dilated convolutions [70]. Since each feature map has the same spatial

dimensions as the input image, this network can localize well the individual cells,

generating activation areas that correspond to the actual position and shape of the

cells within the image. Preserving the spatial dimensions of the feature maps also

enables the network to densely connect its layers, allowing MSD to produce accurate

results with relatively few trainable parameters. The low parameter count implies

that MSD is less prone to overfitting [158], making it a well-suited feature extractor

for data-scarce domains, such as medical image or cell segmentation.

We decompose the feature extractor network fδ into a feature maps generator gϕ

and a predictor oϵ. Therefore, we have fδ = oϵ ◦ gϕ, where gϕ : RL×M×C → RL×M×C′

uses the parameters ϕ to generate C ′ feature maps from the input image and oϵ :

RL×M×C′ → RL×M×Nc , parametrized by ϵ, outputs the prediction from the feature
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maps, with ϕ ∪ ϵ = δ. We begin by training the feature extractor on the training set:

ϕ̂, ϵ̂ = argmin
ϕ,ϵ

∑
(x,y)∈Xtr

L(oϵ(gϕ(x)), y), (4.1)

where L is a loss function. Consequently, we employ the feature maps generator to

learn the weights W ∈ RC′
and intercept b ∈ R of a perceptron in the few-shot

adaptation step:

b̂, Ŵ = argmin
b,W

∑
(x,y)∈Xs

L(σ(b+ gϕ̂(x) ·W ), y) + λ∥W∥2, (4.2)

where σ : RL×M → RL×M is an element-wise activation function. The ∥W∥2 regular-

ization term is included because we noticed its benefit in 1-shot cases, where overfitting

can become more likely. Equation 4.2 enables us to create a new linear combination

of the feature maps, suitable for the new class in the support set. Finally, we apply

the weights to predict the query images as ŷ = σ(̂b+ gϕ̂(x) · Ŵ ) ∀x ∈ Xq.

When utilizing a cross-entropy loss, Equation 4.2 becomes a logistic regression

task [108] for which highly efficient implementations are available [53]. For other

loss functions, e.g., Dice loss, we use a second-order optimizer, which has several

advantages compared to first-order approaches (e.g., faster convergence and better

robustness to hyperparameter settings [171]). Second-order optimizers are typically

not suitable for deep learning due to their high computational costs when optimizing

a large number of parameters. However, the number of weights of our perceptron is

relatively low, making second-order optimization a viable choice. Since second-order

optimization methods perform best when the initial guess of the parameters is close

to the optimum [12], we use logistic regression to provide this initial guess.

4.3 Experiments

4.3.1 Experimental Setup

We implemented our experiments in PyTorch [114]. For training the feature extractors,

we partition our data into training and validation with an 80/20 ratio and stop the

training when the validation score does not improve for more than 10 consecutive

epochs. We use the Dice loss function and ADAM [82] optimizer. For obtaining the

perceptron’s weights W and intercept b, we employ BFGS [169] with Dice loss as the

objective function. We choose the regularization parameter in Equation 4.2 by visually
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Method ABD-MRI∗ ABD-CT∗ Lizard† MoNuSAC†

PANet 46.75 28.95 10.08 27.77
SE-Net 47.45 39.242 10.16 23.12
GCN-DE 67.3 61.73 19.04 21.79

SSL-ALPNet 70.12 65.05 6.01 18.59
BAM - - 5.4 9.77
Ours - - 48.76 48.27

Table 4.1: The average Dice score [%] on the test set of state-of-the-art medical and natural
image few-shot segmentation models. ∗: Results taken from [170]. †: Results generated by
following the open-source implementation of the methods.

assessing the predictions of several random selections of support and query images.

The optimization stops when the gradient norm is lower than 10−5. To report the

results, we use the Dice coefficient on a separate test set, using 5 instances of trained

feature extractors with 10 randomly sampled support sets (50 results) per experiment.

4.3.2 Data

We chose Lizard [59] and MoNuSAC [153] segmentation data sets, containing, respec-

tively, 291 (191 train, 100 test) and 410 (310 train, 100 test) 8-bit RGB H&E stained

tissue images of various sizes. From Lizard, we keep epithelial (E), connective (C),

lymphocyte (L), and plasma (P) classes, whereas from MoNuSAC we use epithelial

(E), lymphocyte (L), macrophage (M), and neutrophil (N). For both data sets, we

separate each image into multiple 256×256 patches via a sliding window technique

with a stride of 64 pixels. Additionally, to show the performance of the FSL methods

designed for medical image segmentation, we use ABD-CT from [89] (30 3D CT scans

with 1755 slices) and ABD-MRI from [80] (20 3D MRI scans with 492 slices). From

both data sets, we report the results on four classes: liver, spleen, left kidney, and

right kidney.

4.3.3 Results

Existing Works on Cell Segmentation. We used open-source implementations,

provided by their respective authors, of SE-Net [127] and PANet [160], two methods

that constitute the seminal works in medical imaging for attention-guided few-shot seg-

mentation, and for prototype learning, respectively, as well as of GCN-DE [138] and

SSL-ALPNet [112], two well-performing derivations of SE-Net and PANet, respec-

tively. Also, we explore the results of BAM [90], a recent method with state-of-the-art
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(a) Support image & label (c) SE-Net (d) PANet

(h) Ours

(b) Query image & label

(e) GCN-DE (f) SSL-ALPNet (g) BAM

Figure 4.2: Visual comparison of predictions of epithelial cells from Lizard by methods
designed for natural and/or medical image segmentation, and our method.

results for natural image segmentation. We applied these techniques on the cell data

sets whose results we report in Table 4.1. The results on ABD-MRI and ABD-CT,

taken from [170], correspond to a one-shot setting, while for Lizard and MoNuSAC we

used five shots in the support set for PANet, BAM, GCN-DE and our method, while

for SE-Net and SSL-ALPNet, we employed one support image since these methods

do not allow pairing a query image with multiple support images. Since BAM has

not been applied to medical imaging, we do not show results for it on ABD-MRI and

ABD-CT. We notice that although these methods show good results for the task they

were designed for, i.e., few-shot organ segmentation, their performances do not trans-

late to few-shot cell segmentation. In this context, they achieve considerably lower

scores compared to our method. Figure 4.2 shows a qualitative comparison between

the aforementioned methods and our solution on the Lizard data set where the un-

known class is the epithelial cell type. The other cell classes were used during training.

For the methods allowing multiple shots, we used five. For the others, we used one

shot. In Figure 4.2, we only show the support image common to all methods. We

observe that SE-Net, GCN-DE, and BAM show difficulties in adapting to the new cell

type. SE-Net segments most cell-like structures within the query image, whereas the

predictions of GCN-DE and BAM contain structures belonging to the cell types from

the training set. The prototype-based solutions, i.e., PANet and SSL-ALPNet, show
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Figure 4.3: Figures (a, b) show the Dice score of our method for different numbers of
shots and feature maps. The orange line shows the average Dice score on the test set of the
models trained on all labelled data. The data points reflect the median Dice score on the test
set, while the shaded area is defined by the first and the third quartiles.

comparatively better adaptability. PANet includes a region with the epithelial cells

in its predictions, with the same area also covered by SSL-ALPNet. However, both

methods present relatively large areas of false positive segmentation. In this example,

our method shows the best coverage of the target cells, while introducing the least

amount of false positives.

Performance Analysis. For this experiment, we trained feature extractors of 25,

50, and 100 layers, on three classes, while selecting 1, 5, and 10 images whose labels

we include in the support set. We trained the feature extractors as individual binary

segmentation networks, each covering one of the classes; four binary segmentation

networks in total. For every target class, we include the feature extractors trained on

the other classes within the few-shot adaptation step. We present the results generated

by the feature extractor trained on the target class as an upper-bound baseline. The

results reported in Figure 4.3 show that offering the perceptron more features for

recombination, i.e., training deeper feature extractors, generally results in improved

Dice score, especially for higher numbers of shots. This behaviour is expected, since

a richer set of features means more flexibility in choosing a more general combination

separating the new cell type from the other structures in the image. Also, we notice

that, due to the random nature of the few-shot allocation, adapting the perceptron
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Optimization
Lizard MoNuSAC

E L C P E L M N
Logistic [%] 61.37 50.26 34.57 32.48 49.1 63.63 37.6 37.54
BFGS [%] 64.66 53.89 40.27 36.21 51.86 64.45 39.18 37.57

Table 4.2: Median Dice score results on the test with weights trained by logistic regression
and further refined by BFGS.

on only one shot is detrimental to its performance because of the risk of picking a less

representative or less informative support image, such as an image with a small amount

of annotated cells. This issue is reflected in the large blue-shaded areas corresponding

to 1-shot results, showing high variability in the performance of our method. However,

when utilizing 5 shots, we notice more robust results that are less affected by the

chosen support set. Also, since we learn the perceptron’s weights using a second-order

optimizer, the adaptation step is performed quickly, averaging 9 seconds on a Nvidia

RTX 3070 GPU, allowing eventual flaws in choosing the support set to be quickly

detected and corrected in practice.

Few-Shot Adaptation Choice. We assessed the benefit of utilizing the weights

obtained via logistic regression as a starting point for a second-order optimization

algorithm with Dice loss. We conducted the experiments by randomly selecting 5

support images of the target class on which the perceptron was trained via logistic

regression. Consequently, we employed BFGS to optimize the resulting weights with

the Dice loss as the optimization function. Table 4.2 illustrates that the additional

optimization step is beneficial for the performance of our method with an average Dice

score gain of 10.14% for Lizard and 2.8% for MoNuSAC.

4.4 Conclusion

Cell segmentation is an important annotation-scarce task that can benefit from few-

shot learning, but for which existing methods are unsuitable. Here, we present a novel

few-shot segmentation method designed to account for the particularities of cell seg-

mentation, such as the varying position of the target structures and their proximity to

each other. To achieve this, we utilize the high-resolution feature maps generated by

MSD networks [116], trained on the known classes, as input to a perceptron, which we

adapt to the few shots of the new class. We showed that our method can be success-

fully applied to cell images, requiring as little as five annotated images in the support

set for producing Dice scores less than 20% lower than of models trained on several
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hundred annotated images. In the future, we aim to improve the reliability of our

solution by exploring other types of feature extractors, incorporating additional reg-

ularization techniques, or using ensemble methods. Moreover, to better contextualize

our results, we intend to provide additional comparisons with popular fully-supervised

cell segmentation methods such as UNet [125] and Hover-Net [60].

Besides being used as a standalone cell segmentation tool, our solution can also be

embedded into an active learning setup where the quick adaptation step would enable

the user to immediately choose an appropriate support set where its predictions can

constitute the base for a further refinement step, e.g. as in [159]. In both cases,

our method can significantly reduce the amount of training annotations necessary for

costly segmentation tasks. For instance, within a semi-automated annotation tool,

our solution can produce initial suggestions of annotations, which can then quickly be

corrected by experts, while a fully-supervised model trains in the background on the

rectified annotations such as in [61].
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Chapter 5

Explainability and

Annotations with Activation

Maps

5.1 Introduction

Automating archaeological feature detection and classification on remotely sensed im-

agery is increasingly becoming possible. Until recently, the reliability of object-based

solutions, i.e., the partitioning of remote-sensing images into categories [37], suffered

from the sensitivity of algorithms to image variations, e.g., in contrast, or brightness,

or from the heterogeneity of archaeological objects as algorithms expect homogenous

entities [88]. While these methods were once considered improvements over pixel-

based classification (as early examples, see [31, 33]), object-based methods [40] could

not be fully used for automatically detecting the relevant archaeological features of

remote-sensing images.

However, a new approach is forming thanks to the fast-emerging deep learning

This chapter is based on:

S, . Vădineanu, T. Kalayci, D. M. Pelt, and K.J. Batenburg. “Convolutional Neural
Networks and Their Activations: An Exploratory Case Study on Mounded Settlements”.
Journal of Computer Applications in Archaeology, 7(1). ubiquity press (2024).
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paradigm that intends to bypass earlier obstacles by learning definitory patterns of

the target objects directly from the data. Due to recent advancements in hardware

technology and the availability of abundant data, machine learning, especially deep

learning, algorithms have seen widespread and rapid adoption in many domains, in-

cluding archaeology. Deep learning algorithms particularly achieve state-of-the-art

performance via convolutional neural networks (CNNs) for many image processing

tasks, such as image classification.

In archaeology, Bayesian regularization and Levenberg–Marquardt algorithms have

been compared for predicting metrics of Neolithic laminar artefacts [146]. Similarly,

machine learning algorithms have been employed to cluster cultural and technologi-

cal groups within archaeological datasets [147]. Deep learning approaches have also

proven successful in detecting and segmenting archaeological structures from LiDAR

data [63] and in semi-automatically mapping archaeological topography using air-

borne laser scanning data [145]. CNNs have facilitated the detection of ”princely”

tombs [25], and have revealed shell-ring building practices by Archaic Native Ameri-

cans [38]. Additionally, deep learning-based automated analysis has been applied to

archaeo-geophysical images, enhancing the interpretation of geophysical survey data

[87].

Nevertheless, the new paradigm already signals it is not devoid of problems such as

the requirement of large quantities of high-quality annotated data, high computational

costs, and the opacity of the CNNs’ decision process. In this chapter, we highlight

two of these key issues that might benefit from further research: the annotation cost

and the explainability of network architectures. As a constructive approach to address

these issues, we present ways to link annotation and explainability problems through

visualizations, supported by exploratory statistics.

The annotation problem is particularly relevant to archaeology. While deep learn-

ing algorithms are highly effective for numerous imaging tasks, their training demands

substantial annotated data. The challenge lies in generating annotations, especially

in specialized domains such as archaeological satellite imagery, where annotations are

often created by trained experts with limited availability [15, 73]. Annotated data

scarcity becomes particularly problematic for labour-intensive tasks, such as segmen-

tation, which requires classifying the pixels within an image. Such constraints can

impede the practicality of deep learning applications. Therefore, addressing the chal-

lenge of annotated data scarcity can play an important role in the further adoption of

deep learning in archaeological research.

We also observe that achieving high accuracy is the main concern in the schol-
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arship. When provided with sufficient training data, recent deep learning models

generally produce highly accurate detection and classification results regardless of the

architecture. Yet, the influence of architectural choices over which image features con-

tribute towards a prediction receives less attention. This perceived opacity of neural

networks’ decision-making process may contribute to some research fields approaching

their use with caution. Therefore, besides alleviating the burden of extensive manual

annotation, visualizing what the most relevant image areas are for a given prediction

can build trust among practitioners. Moreover, such insights can assist the experts

in developing less biased workflows [100, 142], rectifying mis-annotated samples or

discovering new patterns in the images.

To address the two key issues outlined above, we utilize explainability techniques,

i.e., methods producing visual interpretations of a CNN’s output in relation to its

input, whose results we refer to as activation maps. Particularly, we focus on the ex-

plainability techniques producing activation maps reflecting the contribution of each

individual input pixel towards a CNN prediction. To address the annotation scarcity

and the perceived opacity of deep learning, we employ the resulting activation maps as

sources of both cheap annotations and insights into the patterns found by CNNs. We

address the annotation task by proposing an automated annotation pipeline for gen-

erating segmentation masks of archaeological sites from the activation maps extracted

with explainability techniques. We apply these techniques to trained classification

CNNs, whose training annotations are relatively cheap to produce compared to seg-

mentation masks. We also explore to what extent we can extract meaningful visual

insights from the features deemed relevant by different types of CNN architectures.

We compare the activation maps extracted from multiple network architectures and

study which parts of an archaeological feature contribute the most to the network’s

predictions. Additionally, we verify whether the highlighted features can signal the

presence of mis-annotated images or overfitting. Our integrated workflow helps us to

explore the annotation and explainability issues in tandem.

In our workflow, we employ Occlusion Maps [57], LayerCAM [73], and Guided

GradCAM [129] as explainability methods. To combat the lack of spatial resolution as-

sociated with existing techniques, we also propose an extension to Guided GradCAM.

As a case study, we map the extent of ancient settlement mounds within CORONA

satellite images in the Upper Khabur Basin of Upper Mesopotamia. We apply these

four explainability techniques to three widely used CNN architectures: VGG [132],

ResNet [66], and DenseNet [71]. Finally, we explore activation maps to localize ancient

settlement mounds using CNNs trained for binary image classification by employing
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only image-level annotations.

Our aims are twofold: (i) providing an analysis of the visual cues that contribute to

CNNs’ predictions of sites from remote sensing images of the Upper Khabur Basin and

(ii) using visual cues from activation maps as sources for segmentation annotations. To

achieve these goals, we utilize existing explainability techniques and we also propose

a new method for extracting activations that better match the expert interpretation

of a site than existing works.

5.2 Background

5.2.1 The Study Area

The Upper Khabur Basin is located within the larger gently undulating plain of Upper

Mesopotamia that stretches east-west between the massive Anti-Taurus Mountains in

the north and the short mountain range called Jebel Sinjar in the south [42]. The

Abd-al Aziz mountain ridge rising across Sinjar also bounds the study area. The

primary contributor of the hydrological system is the Euphrates River. Running down

from the northwest of Lake Van at an approximate altitude of 3,500 meters, the river

significantly drops its gradient as it further moves into the Upper Mesopotamian plain,

in modern-day Syria. The Khabur Basin (Figure 5.1) takes its name from the Khabur

River, the largest tributary to the Euphrates.

In the Upper Khabur, several wadis (Aweij, Khanzir, Jaghjagh, Jarrah, Kuneizir,

and Rumeilan) run in north-south direction eventually draining to Wadi-el-Radd [42,

p. 173]. Wadi is an Arabic term denoting a valley-like morphological feature that is dry

except during periods of rainfall. Even if they were temporal and usually short-lived,

flowing water contributed to the geography and life. Therefore, they “played an im-

portant role for human societies within this area and many archaeological sites—often

tells (settlement mounds)—are located along them.” [41, p. 337] (Figure 5.2).

5.2.2 Settlement Mounds

The long-term accumulation of everyday-life cultural material through centuries re-

sults in a particular site type, called a settlement mound [126]. These are signature

settlements in southwest Asia, getting the names of tell in Arabic, tepe or chogha in

Farsi, or höyük in Turkish [101]. Yet, it is important also to note that other regions

in the world also host mounded settlements, including Greece [43] and Hungary [113].

Depending on their (post-)depositional processes, density and duration of occupation,
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Figure 5.1: We investigated mounded sites in the Upper Khabur Basin of Upper
Mesopotamia. One can see the 100-kilometre-long Sinjar mountain range in the lower-right
corner. The Abd-al Aziz mountain ridge is across the river from Sinjar. Some key settlements
in the area are shown in white. Red dots indicate the locations of other settlements discussed
in the text.

local geological and geographic conditions, and many other factors mounds exhibit con-

siderable differences. These differences, however, bear the potential for morphological

analysis [149, 23]. Mound morphology is almost always variable, but it is possible to

identify some broad trends also in our study area. Using the results of Tell Beydar

Survey [150] and Tell Hamoukar Survey [148] one may summarize site morphologies,

but only briefly and only with great generalization: due to less intense occupation,

smaller/lower mounds were formed primarily during early prehistoric times. Rapid

nucleation during the second half of the Early Bronze Age (mid-second millennium

BCE) resulted in taller and more prominent mounds. From the Late Bronze Age

onwards, including the Iron Age, less intensive occupation was attached to the now-

abandoned Early Bronze Age mounds. This new phase of nucleation added further to

morphological complexities. Lower-density occupation in later periods [97] must have

contributed less to the formation of mounds.
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Figure 5.2: ”Spots” on TanDEM interferometric SAR imagery indicate settlement mounds.
They are located mainly along north-south running wadis. The large spot/site at the centre
of the image is Tell Sharisi (36.891° N, 41.365° E). In the bottom left, we see another mound,
Tell Farfara (36.825° N, 41.334° E).

5.2.3 Corona Satellite Imagery

In the study area, tell-sites can be as high as 40 meters and can attain sizes of more than

100 hectares [168]. Due to their considerable sizes and relatively defined site extents,

but also thanks to the moderately flat topography of the study area, ancient settlement

mounds are visible on remote sensing data, but notably on historical CORONA spy-

satellite imagery [119, 24]. In return, it is possible to conduct desktop surveys with

visual interpretation [23] and with additional products, such as digital elevation models

[103].

The state-of-the-art sensors resolve the ground in great detail and provide data from

non-visible portions of the spectrum. CORONA as a historical dataset, but especially

the Key Hole KH 4B series (1967–1972) contributes to landscape archaeology in other

different ways. At the very least, CORONA predates the negative impact of modern

irrigation systems, great dam projects [149, p. 12] and urban sprawl [167, p. 228] on

material culture (Figure 5.3).

In particular, the high-resolution of KH-4B (ca. 1.85 meters at Nadir) provides an

extensive coverage, mainly due to the panoramic scan. Thanks to multiple CORONA
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Figure 5.3: State-of-the-art sensors, such as WorldView-2, can resolve the ground in great
detail, on the right. CORONA provides historical evidence of land-use land-cover changes,
on the left. In this particular example, one can assess the impact of modern buildings on Tell
Beydar. Image resolutions are comparable despite the age of spy-satellite imagery.

KH-4B missions, archaeological landscapes can be investigated in time series and the

most optimal scenery can be selected for further research. Recent studies highlight

the potential of Hexagon [58, 64] and U2 imagery [65]. Yet they are still not widely

available for wide-scale analysis. Therefore, ortho-corrected CORONA is still a viable

source for exploring diverse archaeological landscapes across the globe.

5.3 Deep Learning and Activation Maps

5.3.1 Deep Learning for Image Classification

Convolutional neural networks (CNNs) explore patterns in input images through the

use of units organized as filters. These filters, forming a convolutional layer, gener-

ate intermediary images known as feature maps [92], which essentially represent the

prominence of specific features within the image. For example, a filter might empha-

size vertical edges, while another filter could identify horizontal edges, textures, and

so on. These resulting feature maps then become the input for the subsequent set of

filters in the following convolutional layer.
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Among the problems tackled with CNNs, we focus on image classification due to

its relatively cheap annotation process and widespread relevance. The classification

CNN typically comprises two main components: a convolutional part, functioning as a

feature extractor, and a fully-connected part, serving as the classifier. In the convolu-

tional part, the learned parameters correspond to the filters within the convolutional

layers, while the fully-connected part of the architecture utilizes its learned weights

to categorize the features extracted by the convolutional layers. The categorization is

performed by reweighing and combining the feature maps in order to produce a set of

class probabilities out of which the predicted class is chosen.

Different CNN architectures employ distinct strategies to produce accurate clas-

sifications, varying in aspects such as the number of layers, the filter size, and the

connectivity between layers. Despite the variety in architectural choices, many CNNs

perform similarly well across different tasks and data sets [74]. Moreover, although dif-

ferent architectures may perform similarly on a given task, their inner decision process

can vastly differ, thus influencing their explainability and utility as detection tools,

therefore, making the selection of suitable architectures a non-trivial problem.

Among the popular well-performing CNNs for the task of image classification, we

focus on VGG [132], ResNet [66], and DenseNet [71], listed in the order of their de-

velopment. All three networks showed particularly good results for the classification

of natural images on the ImageNet data set [44], with each network claiming improve-

ments over its predecessor. All three network architectures are still widely used today.

Their extensive adoption, architectural differences, and the distinctiveness of remotely

sensed imagery from natural images make a comparison between these networks worth

exploring. Moreover, such comparison intrinsically contributes to explainability stud-

ies by assessing the suitability of the different architectures as visualization tools of

relevant patterns within remote sensing archaeological data.

VGG was among the first solutions aiming to improve the classification perfor-

mance of CNNs by increasing the depth, i.e., the number of layers, of the architecture

(Figure 5.4a). This was achieved by reducing the size of the convolution kernels to

3x3, substantially decreasing the number of parameters per layer. VGG consists of

several layers where the information is processed sequentially, using the feature maps

from the previous layer as input to the next. The feature extractor architecture con-

sists of blocks of 3x3 convolution layers followed by max-pooling layers that reduce

the size of the feature maps in half by selecting from every non-overlapping group of

2x2 pixels, the pixel with the highest value. After the final max pooling layer, the

resulting feature maps are spatially flattened to sets of 1-dimensional vectors, which
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Figure 5.4: Schematic representations of VGG16 (a), ResNet34 (b), and DenseNet121 (c).
The values above a block of layers correspond to the number of layers within a block. The
values below the blocks refer to the number of filters each layer has.

are passed to the classifier.

ResNet is a CNN architecture that focuses on training a larger number of layers

than VGG (Figure 5.4b). It achieves this by creating alternative paths that allow

for the output of a layer to skip being processed by the immediately following layers.
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The unprocessed output is then added to the result of the sequential path. In this

way, the network focuses on learning the additions (residuals) that need to be applied

to the input such that the relevant features are extracted for classification. This

approach allows increasing the number of convolutional layers, enabling the network

to learn more complex features. Apart from the alternative paths, ResNet differs from

VGG by how it reduces the spatial dimensions of its feature maps since it replaces

max-pooling layers with strided convolutions, i.e., instead of sliding the convolutional

filter on the image/feature map with a step of one pixel, the step size is increased

according to the stride value. After the last set of convolutions, the resulting feature

maps are aggregated into a set of 1-dimensional vectors by passing the final feature

maps through a global average pooling layer, which reduces a map to the average of

the values across all its spatial dimensions. Averaging instead of flattening the final

feature maps has the benefit of making the architecture independent of the image size,

since the size of the input to the fully connected layer is dictated by the size of the

channel dimension of the last convolutional layer, rather than the spatial shape of the

feature map after passing the image through the convolutional and pooling layers.

DenseNet also provides a solution for training a large number of layers by devel-

oping connections that pass all the feature maps that were created by previous layers

to all subsequent layers (Figure 5.4c). The architecture is composed of dense blocks,

which aggregate the feature maps from all their convolutional layers, and transition

blocks which provide both spatial as well as channel-wise dimensionality reduction.

Similar to ResNet, the network makes use of global average pooling to make the tran-

sition from the feature extractor to classifier, while relying on average pooling instead

of strided convolution for the dimensionality reduction of the feature maps.

There is already a significant number of archaeological case studies using these spe-

cific network architectures. However, limited literature is available that considers the

rationale behind choosing one architecture type over another. For instance, Albrecht

et al. [6] use a VGG to classify archaeological features on LiDAR data. They report

they chose VGG because “this approach is accurate and flexible for the archeologist’s

needs” [6, p. 18]. Similarly, Somrak et al. [136] aim to detect archaeological features

on Airborne Laser Scanning (ALS) data using VGG. They used this type of architec-

ture mainly because “[t]here have been previous uses of the VGG network” [136, p. 7].

Verschoof-van der Vaart et al. [154, p. 7] provide more specific reasoning for their

choice of the VGG architecture as it “performs better than most shallower networks

and needs significantly less memory than some deeper networks, while yielding compa-

rable results.”. Patrucco and Setragno [115, p. 19] decided to deploy DenseNet since
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”[t]his network allows using fewer channels for each layer, thus having fewer training

parameters and a smaller network”. Trier, Cowley and Waldeland [144] identified the

problem early on. They deploy ResNet18, but also state that “the development of

‘general purpose’ archaeological CNNs is desirable if the discipline as a whole is to

make better use of the methodology.” [144, p. 168].

It is also common to use multiple networks and compare results. When multiple

networks are used, the major aim is to compare accuracies, leaving little room for

advancing research on explainability. Abellán et al. [1, p. 4] use “six architectures to

test the accuracy in classifying tooth marks”. In another study, researchers worked

with seven deep learning models and their choice for the network was based on the

ranking of these models [48]. Bonhage et al. [18] further solidify the accuracy problem

by asking “what level of accuracy would be required from automated systems to be

acceptable for a specific purpose.”.

Overall, it appears that when scholars work with a single architecture, there is

relatively more discussion on the reasons behind choosing that network. Nevertheless,

the rationale behind their choice tends to remain implicit, restricting interpretability.

Comparative approaches focus mainly on the accuracy of the results these networks

can produce and make limited contribution to our understanding of how different ar-

chitectures can be exploited to retrieve more information about the data itself. Using

explainability techniques can benefit the scholarship as they contribute to understand-

ing whether the image features deemed as relevant by the networks have intuitive

explanations.

5.3.2 Explainability Techniques

Despite their proven capabilities in increasingly difficult tasks, one major challenge

that the current CNNs are facing is a lack of interpretability of their predictions.

Consequently, the applicability and reliability of these solutions can be distrusted.

In response to this, multiple techniques have been developed to explain the decision

process undertaken by CNNs before generating a prediction. In the context of image

classification, where the prediction takes the form of class probabilities, these explain-

ability techniques have the added benefit of providing localization information of the

most relevant image sections that influenced the prediction of the CNN.

We selected three such techniques, namely Occlusion Maps (OM) [57], Gradient-

Weighted Class Activation Maps (GradCAM) [129], and LayerCAM [73]. In our work,

we also propose a localization technique based on Guided GradCAM [129]. All the
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selected methods have the benefit of being independent of the type of CNN being

used, offering good flexibility for experimenting with multiple neural network archi-

tectures. Additionally, all techniques produce easily-interpretable output under the

form of activation maps, i.e., images of the same shape as the input image whose pixel

values reflect the contribution of the input image’s pixels towards the prediction of

the network.

The working principle behind OM is that covering relevant sections within an

image should drastically impact the classification result of the CNN, while covering

background areas should influence the results less. Therefore, in order to find these

relevant sections, a window is slid on top of the image with all the pixels within the

window area being occluded (their values are set to 0). For every window position,

the occluded image is set as input to the trained neural network and the difference

in classification probability between the non-occluded and the occluded image is reg-

istered. After a complete pass throughout the image, the result is a 2-dimensional

array of probability differences, where the highest differences denote the location of

the relevant image sections.

A more invasive approach is proposed by GradCAM, which relies on processing

the feature maps given by the last convolutional layer of a CNN. In general, after the

training process, the initial layers of the CNN “learn” to recognize low-level features,

such as edges, while the final layers recognize high-level features, e.g., the archaeolog-

ical mound itself. Considering this, by analysing the output of the last layer before

classification, the resulting feature maps should highlight the position of the most rel-

evant features for the classification task. However, the information within the feature

maps must be aggregated into one activation map that reflects the contribution of an

image feature to the network’s prediction. Therefore, the feature maps are weighed by

their gradient with respect to the prediction result and their sum produces the final

activation map.

A related technique is employed by LayerCAM, where the activation maps can

similarly be extracted and weighed them by their gradients. However, as opposed to

GradCAM, which performs this process only for the last convolutional layer, Layer-

CAM produces an intermediary activation map for every convolutional block within

the network’s architecture. The resulting intermediary maps are linearly combined to

produce the final activation map, with higher weights assigned to the intermediary

maps extracted from the later blocks of the network.

One common disadvantage that the three aforementioned techniques share is that

their activation maps come at the cost of spatial resolution. Since OM aggregates
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results for covering an entire area within an image and since it is not computationally

feasible to slide the window every pixel, the resulting activation map is of a lower

resolution than the input image. We can make similar observations both for GradCAM

and LayerCAM which rely on the feature maps generated by the last convolutional

layer of the CNN. Due to the image downscaling within the CNN, these feature maps

have far lower spatial resolution than the input image, making the resulting activation

maps also suffer from this lack of resolution.

Guided GradCAM proposes a solution for inferring high-resolution activations in

the form of the individual contribution of each pixel towards the prediction. The

image is first passed through the CNN, and then the resulting feature maps are passed

backwards from the last layers towards the first ones. This process generates activation

images containing clusters of pixels whose high values signify the presence of relevant

features. However, these high-valued pixels are sparsely distributed, which makes

delimiting the relevant features difficult. To ensure contiguous activations, we develop

an addition to this method which we detail in Section 5.4.2.

Besides adding to the interpretability of the model’s decision-making process, the

activation maps can be thresholded to automatically create pseudo-annotations for

more labour-intensive tasks such as the segmentation of the site area, i.e., the sepa-

ration of the site from the surrounding area. The availability of cheap annotations

can thus facilitate more experimentation with existing data sets and the development

of more complex tools whose training would require prohibitive amounts of expert

annotations. For instance, the generation of an image-level annotation for a classifi-

cation task requires far less effort compared to creating a segmentation mask for the

same image since the image-level label can be attributed after a relatively quick visual

inspection, whereas a segmentation annotation involves the careful delineation of the

site boundary. Thus, for existing classification data sets the generation of pseudo-

annotations for segmentation would allow training segmentation algorithms with little

intervention from domain experts.

5.4 Methodology

5.4.1 Data Preparation

For the study, we acquired CORONA KH-4B data from the CORONA Atlas & Ref-

erencing System [26]. Images from DS1105-1025 (November 1968) and DS1102-1025

(December 1967) cover the entirety of the Khabur Basin. For the initial desktop
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survey, first, we orthorectified CORONA imagery and mosaicked them to generate a

seamless coverage of the Khabur Basin. Second, we visually confirmed the location

of 300 settlement mounds on CORONA. We also randomly picked 300 points to ex-

plore ‘no-site’ landscapes, and visually confirm areas that did not contain a settlement

mound (Figure 5.5). Next, a custom-built script visited ‘Site’ and ‘No-Site’ locations

and clipped a square chunk (1000 pixels x 1000 pixels) around each target. Image

chunks were contrast stretched between 0 and 255 to exploit 8-bit data depth fully.

In the following step, we augmented data through rotation, swirling, and clipping.

First, we rotated each chunk in cardinal directions to make four scenes available from

Figure 5.5: The binary classification scheme in this analysis. A CORONA image chunk
with a site (left) and an image chunk with no indication of a mounded settlement (right).

the same area. Second, using the scikit-image Python package [152], we swirled all

rotated images with a radius of 400 and with the parameter randomly determined

from a uniform distribution with lower boundary of -2 and upper boundary of +2.

These parameters ensure the pseudo-target generation mainly swirls the original site

while keeping the background as intact as possible. With swirling, we aimed to mimic

the relatively circular nature of sites; mounded settlements tend to have more circular

footprints than rectangular site types. In the end, eight image chunks (four rotated

and four swirled) with 1000 x 1000-pixel dimensions are further clipped into smaller

pieces with 400 x 400-pixel dimensions. The clipping strategy involved “moving” the

sites in four corners as well as keeping them at the centre of a scene. In doing so,

the aim was to represent different parts of the immediate surroundings of the sites in

additional images (Figure 5.6). This final clipping operation generated 40 images per
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Figure 5.6: Four (out of 40) samples from the augmentation process are presented here.
(a) the initial clip of a mound as documented on CORONA imagery, (b) clipping and rotation
moves the site to the upper right corner while revealing a different background context, (c)
rotated as in sub-figure b, but also moved to top left corner and swirled, (d) a different set
of rotation, clipping, and swirling.

site. Therefore, we were able to gather 12,000 (40x300) image sets (binary code: 1)

for ‘sites’; and for ‘no-sites’ (binary code: 0). In total, 24,000 images were available

for training.

5.4.2 Proposed Pipeline

For this work, summarized in Figure 5.7, we aim to utilize activation maps to de-

rive cheap annotations that can be used for a site segmentation task as well as to

formulate interpretations of the relevant areas within the images that are triggering

the prediction of a network. We begin by training classification CNNs on image-level
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Figure 5.7: Workflow. We train CNNs for classifying whether a site is present or not in
an image. We embed the trained CNN into explainability frameworks which we can use to
both produce a segmentation mask of the site or to analyse the important image features
highlighted by the network.

binary annotations, where a positive annotation signifies the presence of a site, and

a negative annotation denotes the absence of the site from the input image. We uti-

lize PyTorch [114] implementations of the three network architectures [99]. We treat

the site detection as a binary classification task where the input to the network is

a single-channel grayscale image and the output is a 2-valued vector, with the first

value indicating the probability that no site is present in the image, while the second

value indicates the opposite probability. We split our data into training and validation

with an 80/20 ratio. For every type of architecture, we train 5 networks with different

initialisations and a different random split of the data. During training, if we observe

no improvement in the validation score for 10 consecutive epochs, we stop the process.

We use the binary cross-entropy as the loss function, and we update the parameters

with ADAM optimization algorithm [82].

Generating Activation Maps

After training, we include the trained networks in the explainability tools which pro-

duce an activation map. To get more stable activation maps, we average the results

from multiple initializations of the same CNN architecture. Also, for each initializa-

tion, we create a different random split between the training and validation images.

We utilized Captum [85], a model interpretability library for PyTorch models to gen-

erate Occlusion Maps and to perform Guided GradCAM, whereas for GradCAM and
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LayerCAM we developed our implementations based on the original papers. In all

cases, the results given by the explainability methods take the form of images, where

a pixel value denotes the probability that the corresponding pixel from the input image

belongs to a relevant region for the classification task.

Figure 5.8: We propose an extension to the Guided GradCAM in order to tackle the
reduced spatial resolution problem. Adding a Gaussian filter and a logistic function enhances
image features that are comparable to annotations.

In addition, to address the lack of resolution of the activations generated by Occlu-

sion Maps, GradCAM, and LayerCAM and the sparsity of Guided GradCAM activa-

tions, we propose an extension of the latter that aims to provide smoothness in acti-

vation areas, while maintaining the resolution of Guided GradCAM, which we present

in Figure 5.8. We apply a Gaussian filter to smooth the pixel values of the activation

image, therefore creating continuous activation areas. This, however, comes with the

caveat of widening the gap in value between high-activation and low-activation areas,

which can lead to a pessimistic estimation of the relevant image features. We compen-

sate for this by passing the filtered activation image through a logistic function which

creates a nonlinear rescaling of the pixel values such that previously low-activation

areas would receive higher values. For visualizing the relevant features, we translate

the activation map into a heatmap which we then overlap on top of the input image

(see Figure 5.7). This results in a more straightforward analysis of the image features.

Here, we make observations based on visual interpretation. The aim is to build

qualitative knowledge for how three different network architectures (VGG, ResNet,

DenseNet) ‘learn’ what a settlement mound is, highlighted by four different activation

techniques (Occlusion Map, GradCAM, LayerCAM, and our method based on Guided

GradCAM). Our workflow includes selecting representative examples from the overall

data set and exploring the activation maps on remotely sensed data.

From Activation Map to Segmentation Mask

After obtaining the activation maps, we process them to obtain segmentation masks.

In order to do this, we translate the smooth probability landscapes provided by the

activation map into hard area borders by utilizing conditional random fields (CRF)
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Figure 5.9: Example of an expert annotation (a), the segmentation mask derived from
it (b), the automatically derived segmentation mask (c), the intersection of the expert and
automatic masks (d), with green, yellow, and orange pixels representing true positives, false
negatives, and false positives, respectively, and the intersection of expert and automatic
boundaries (e).

[139]. The CRF considers both pixel probabilities from the activation map and the

similarity between neighbouring pixels from the input image and outputs a binary

image where the foreground corresponds to areas within the image occupied by rel-

evant features and the background covers the rest of the image. An example of a

segmentation mask generated from an activation map is shown in Figure 5.7.

We analyse the suitability of the segmentation masks produced by CRF both qual-

itatively and quantitatively by comparing them with site delineations provided by a

domain expert. The human annotation process included drawing mound boundaries

as they appear to the expert on CORONA images (Figure 5.9a). While site delin-

eation is a subjective process, mound formation produced footprints easier to trace

than many other site types and morphologies. City walls around some of these settle-

ments also helped the annotation. To produce a quantitative analysis, we first binarize

the human-annotated image such that the pixels within the boundary are assigned the

value of 1, while the rest are assigned 0, creating a mask ready for further analysis

(Figure 5.9b).

We then compute the Dice similarity score [45] between the binarized human an-

notation and the masks produced by the conditional random field (CRF) (Figure 5.9c)

to assess the suitability of the automatically generated masks as annotations for seg-

mentation. The equation describing the Dice score is presented in

Dice =
2× TP

2× TP + FP + FN
(5.1)

where TP, FP, FN, refers to the number of true positive, false positive, and, respec-

tively, false negative pixels between the binarized ground truth and the prediction

(example in Figure 5.9d). For the qualitative comparison, we use the output of the
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CRF to generate a boundary which we overlay, together with the human-generated

one, on top of the input image (Figure 5.9e).

5.5 Results

5.5.1 Classification Performance

Since our primary aim is to explore activation maps in relation to future annotations,

we only briefly mention overall model performances. We evaluated the performance

by computing the precision and the recall. These metrics are computed based on

the true positives (TP), false positives (FP), and false negatives (FN), calculated in

the context of binary image classification, i.e., they count image-level class labels,

rather than pixels. The precision reflects the proportion of relevant samples that the

classification model is able to find, i.e., the proportion of correctly predicted sites

among all site predictions (precision = TP / (TP + FP)). The recall, on the other

hand, shows the ability of the model to find all relevant samples in the data set, i.e.,

the proportion of correctly predicted sites among all images with sites (recall = TP /

(TP + FN)).

Network Precision Recall
VGG16 0.9996 0.9962
ResNet34 0.9994 0.9983

DenseNet121 0.9994 0.9976

Table 5.1: Validation set performance of the different architectures.

In Table 5.1, we report the classification results on the validation set of the three

networks. It appears that all networks learned a good fit for the data, being able to

correctly classify (‘site’ or ‘no-site’) for almost all the images. All networks present

similar precision, with ResNet34 showing a larger recall than the other two —albeit

only very slightly. It appears that a simple augmentation technique could generate

powerful classifier models with similar performances in the study area. Nevertheless,

the models are trained for a very specific site type within a particular geography.

Therefore, these models’ generalizability is an open question; transfer learning is be-

yond the scope of this chapter. On the other hand, trained networks may equally

perform in areas with similar relatively flat morphologies hosting settlements with

mound morphologies, such as Neolithic Thessaly [7, 118].
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Figure 5.10: Two sites with simple (a) and complex (b) morphologies.

5.5.2 Analysis of Activation Maps

To assess the interpretability of the selected network architectures, we perform a visual

analysis of the activation maps produced for sites with both simple (Figure 5.10a) and

complex (Figure 5.10b) morphologies.

We begin by analysing the activations of the simple morphology (Figure 5.11).

The Occlusion Map and our method fit well to the human interpretation of a site

boundary for all three networks. GradCAM and LayerCAM activations exceed the

site boundaries, especially for DenseNet. DenseNet produces wider activation areas,

owing to its approach of aggregating information from multiple layers, thus being

activated by a wider set of image features than the other two architectures. GradCAM

is of particular interest since the highly activated area appears to have no immediate

connections with the shape or the shadow, the two prime indications of a mound for

the annotator.

Studying a more complex morphology reveals that activations can be discontinuous.

In the current example, the site is dotted with modern structures, potentially adding

complexity to network training. All three architectures are activated more in the north

(Figure 5.12). Incidentally, this portion is cluttered less by later human occupation. It

is also possible that the shadow generated more contrast against the background for the

high-level features, resulting in a northerly activation. Finally, we note that only VGG

is successful in identifying the smaller mound at the lower-left corner. Conforming with

82



Chapter 5. Explainability and Annotations with Activation Maps

Figure 5.11: Activations of a single conical mound (36.832° N, 40.229° E). The red line
corresponds to the expert annotation.

the previous example, the Occlusion Map and our method provide the activations that

match more closely the human intuition for this smaller and circular feature.

The activations of both types of sites show that, across all network architectures,

the predictions were influenced by actual archaeological features within the images.

For instance, in Figure 5.11 all activations are centred on the small conical mound,

whereas, in Figure 5.12, parts of the elevated area of the site are highlighted by all

explainability techniques.

5.5.3 Activations as Sources of Annotations

For this experiment, we use the conditional random field (CRF) to process the ac-

tivation maps into site segmentation masks. For ease of comparison with the expert

annotations, we represent these masks as boundaries applied on top of the input image.

Besides visual inspection, we also numerically assess the quality of these automatically

generated masks by measuring their Dice similarity score relative to the expert anno-

tations. We report two examples, for simple and complex morphologies. The expert
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Figure 5.12: A feature of interest with a mound morphology (36.652° N, 40.270° E). Only
the north end is clear of built environment, coinciding with most of the activations. The
mound is surrounded by now dried out catchment of a branch of the Euphrates River system.
This soil appears very dark on CORONA imagery. The red line corresponds to the expert
annotation.

annotation (red polygon) and the results of activation mapping processed by CRF

(blue polygon) are overlaid on CORONA imagery.

For a simple conical morphology, but with a more elongated extension, the network

architectures variably estimate the site boundaries. We notice that the boundary

generated with our method shows the highest overlap with the human annotation for

all three networks, but especially for VGG and DenseNet (Figure 5.13).

The example is more telling when we study a more complex morphology and back-

ground (Figure 5.14). Adding to the complexity is how the site is represented on

CORONA imagery. Image boundaries cut some parts of the site as it does not fit

into the predetermined image chunk. Jakoby [72] discusses if Tell Mosti with a ‘cup-

and-saucer’ shape exhibits morphological characteristics of a Kranzhügel type [135].

To bypass the site representation problem, the human annotation only considered the

‘cup’ as the ‘site’. Once again, our method is able to determine the extents of the
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Figure 5.13: A conical mound (36.639° N, 40.977° E) and its model predictions. Note
how they all miss the rectangular site just next to the mounded settlement. The red line
corresponds to the expert annotation, while the blue line is the predicted boundary.

site, but only for DenseNet and ResNet. These networks are clearly archaeology ag-

nostic, but still conforming with the visible boundaries of the ‘cup’. We discuss the

image-cutting site boundaries in the next section as we evaluate biases in the training

dataset.

Network Occlusion Maps GradCAM LayerCAM Our Method
VGG16 0.4483 0.4083 0.6043 0.5928
ResNet34 0.4826 0.5149 0.4041 0.5954

DenseNet121 0.4514 0.3537 0.213 0.6185
Mean Values 0.46 0.43 0.41 0.60
Variances 0.0004 0.0067 0.0383 0.0002

Table 5.2: Dice similarity between the predicted and annotated site area over the entire
data set. The bold values represent the highest score achieved per network.
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Figure 5.14: Tell Mosti (36.624° N, 41.615° E) exhibits a more complex case. Please note
the actual site is larger than the digitized/annotated “crown”. The image extent cuts the
site due to its size. The red line corresponds to the expert annotation, while the blue line is
the predicted boundary.

Finally, we provide a quantitative analysis to show an overview of the quality of

the generated masks over the entire data set. We report the Dice similarity scores

between the predicted boundary and the annotation in Table 5.2. We observe that

although all three networks perform similarly for the classification task, their ability to

delineate the boundary of an archaeological site differs. The variations in performance

possibly stem from architectural differences between networks, as well as from the type

of explainability method we employed. One notable exception is given by our method,

which shows the least amount of variation between Dice scores across networks. Also,

the masks generated from processing the activations of our method produce the highest

individual score for DenseNet and better average performance across all architectures

than the masks generated from the other explainability techniques. Thus, our exten-

sion to the Guided GradCAM appears to be a robust annotation generator for the

given training data set collected from this particular geography.
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Figure 5.15: Different activation maps for DenseNet. Please note how our extended Guided
GradCAMmethod identifies some parts of the cup of the site matching the human annotation.
The slightly activated area in the right left is much more pronounced in GradCAM and
LayerCAM. The red line corresponds to the expert annotation.

5.6 Discussion

Here, we present the activation maps of multiple sites with varying morphologies, and

we discuss the potential of the activations as sources for cheap annotation. We also de-

rive interpretations of these activations to understand how different CNN architectures

learned to distinguish archaeological sites.

We start our discussion using the previous example from Tell Mosti. As we dis-

cussed above, the human annotation only included the ‘cup’ of the site, so there is a

clear mismatch between human annotation and model estimation for the most part.

It is only that our proposed addition to the Guided GradCAM estimates an area close

to human interpretation, but GradCAM and LayerCAM reveal a high-activation area

in the lower-right corner of the image (Figure 5.15). To investigate, we explored a

high-resolution digital elevation model of Tell Mosti (Figure 5.16). Overall, higher

elevations roughly overlap with the results of activation maps. In this particular case,

we observe the benefit of analysing the activation maps since they indicated the south-

eastern extension, which the expert missed since it is not immediately visible on the

CORONA imagery.

To showcase how activation maps may relate to non-circular site morphologies, we

selected Tell Jamilo (Figure 5.17a) and Tell Hadi (Figure 5.17b) which present compa-

rable morphologies. The orientations differ but their tangled morphologies are similar.

The activation maps of both sites show that VGG predictions are more strongly trig-

gered by round features, a characteristic that many mounds within our data set share.

We observe a similar pattern for VGG in the activation map of Figure 5.12. This

reliance on round features can be due to the loss of context information after each

pooling operation is performed from one group of layers to the next. On the other

side, ResNet and DenseNet still retain context information even in the deeper layers
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Figure 5.16: The digital elevation model of Tell Mosti highlights the elevated core of the
site. Manual annotation considers only the highest eastern blob but misses the entire core.

by using skip and, respectively, dense connections in their architectures, making their

activations a promising source for generating segmentation masks.

Furthermore, we explore single conical and complex morphologies in the same

image chunk. Figure 5.18 contains two sites in the same image frame, the larger

more complex one being identified as Tell al-Shur [128]. Because the sites are close

to each other, small CORONA image chunks covered both. We initially identified

them as different sites, so the script created one image case for each site with greatly

overlapping backgrounds.

In the first instance (Figure 5.18a), the larger site with more complex morphology

is at the centre and the smaller conical site is slightly to the right. We observe that

DenseNet is able to highlight both sites with GradCAM and LayerCAM, matching the

human interpretation. Also, our method is particularly convincing as an annotation

source since it activates both sites at the same time with relatively good coverage

of the archaeological features without including much of the surrounding landscape.

The same couple produces different activations when the central focus is shifted (Fig-
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Figure 5.17: Activations generated with our method for Tell Jamilo (36.683° N,40.607° E)
(a) and Tell Hadi. (36.870° N,41.865° E) (b).

ure 5.18b). As in the previous case, the circular site is represented almost in entirety.

However, it appears as Tell al-Shur lost significance in the activations. It is possible

that all three networks learned that a mound should be circular, and our swirling

augmentation further emphasized circularity. It may be also possible that models

were influenced from the location of Tell al-Shur within the image. In this case, the

site is located at the edge of the image, suggesting that the contribution of a site to

the prediction in a multi-site image is dependent on the site’s position within that

image. This is expected since the networks are trained for classification, which does

not incentivize the activation of all archaeological features present in an image, but

rather of the strongest visual cue, which, in this case, is the circular small mound.

When both sites are fully included in the image but shifted upwards from the centre

(Figure 5.18c), we notice similar activation patterns as in Figure 5.18a. This mainly

shows the invariance to image shifts, a general characteristic of CNNs due to their

usage of pooling layers. The difference from the activations in Figure 18b shows that

this invariance still requires the relevant image features to be entirely present in the

image.

Throughout our analysis of activation maps, we noticed that LayerCAM, through

its aggregation of activations from multiple layers, produces the widest coverage of

the archaeological features, which proves especially useful when multiple sites are

present in an image. GradCAM, by focusing only on the final layer, trims this wider

context which results in more focused activations, but at the cost of ignoring some
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Figure 5.18: Different activations of Tell al-Shur (36.845° N, 40.458° E) with a complex
morphology and a nearby conical site. Different augmentations of the same region are acti-
vated in different ways.
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archaeological features, as is the case for ResNet in Figure 5.18. The Occlusion Maps

mainly highlight differences in elevation, by signalling shaded areas as discriminatory

features. This technique, however, suffers from a high computational cost, as it requires

a new network prediction for every position of the occlusion window, its output is of low

resolution, and it also requires choosing a window size, since small occlusion windows

may not significantly change the prediction score. Our method generally produces

activation maps that include even less of the surrounding landscape than GradCAM

which enable a clearer observation of the relevant archaeological features within the

images. Moreover, given their sharp boundaries, the activation maps generated with

our method can become a strong basis for producing annotations for segmentation as

also indicated by the results in Table 5.2.

When it comes to the network architectures, we notice that VGG seems to rely less

on context, i.e., image features characterizing the whole site, focusing more on general

features, such as roundness. On the other hand, ResNet and DenseNet appear to base

their predictions on increasingly more contextual information due to their connec-

tions that forward information from previous layers to the following ones, while VGG

lacks this characteristic. This wider coverage of the archaeological site by ResNet and

DenseNet activations can mean that these two architectures may show better adapt-

ability than VGG to changes in site morphology when, for instance, the geographical

area changes.

5.7 Conclusion

Exploring how different networks are activated for mounded settlements proved to be

a fruitful exercise. The study generated voluminous data, and we followed a particular

path in interpreting experiment results. Therefore, the topic is open, and many other

inferences can be made. Our aim has not been to develop a “best-practice guide”

with detailed accuracy statistics and thresholds. Inferences we made in this chapter

depended upon our CORONA-specific training dataset with a specific site morphology.

The results we reported here are not benchmarks for any network or an activation

method. The settlement mound has a particular morphology uniquely contextualized

in Upper Mesopotamia. Therefore, our interpretations are specific to the training

dataset, and we try to avoid making broad statements. However, experimenting with

network architectures using different activation techniques appears to be a fruitful

exercise and the workflow may be generalizable.

Our work, while only emphasizing coarse associations between settlement mor-
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phology and periodization, opens the door to more detailed and systematic analyses

through the application of deep learning. The widespread presence of mounds sug-

gests an opportunity to extend computer-assisted morphological analysis, with our

study serving as a step in that direction. Additionally, our approach finds utility

in a detection mechanism, where users can observe highlighted regions as potential

archaeological sites within large geographical areas.

Furthermore, we showcase the potential of using activation maps as the basis

for producing cheap annotations, which, with the incorporation of corrections, either

through user intervention in an active learning setup [123] or automatic adjustments

[159], can contribute to refining predictions and improving the overall accuracy of al-

gorithms for site delineations. For this particular region, we observed that DenseNet

in conjunction with our modified version of Guided GradCAM produces the most ac-

curate site annotations. Moreover, DenseNet’s usage of wide contextual information

may indicate good robustness to potential changes in the site’s morphology and in its

surrounding landscape.

Finally, despite our initial focus on settlement mounds and exclusion of periodiza-

tion concerns in our preliminary experiments, our method holds promise as a potential

deep learning-based expert helper system for assisting desktop surveys. Additionally,

the integration of Digital Elevation Models (DEM) into the workflow could amplify

our method’s potential for morphological classification, presenting a versatile tool for

archaeological analyses. Also, to better assess the applicability of this study, we aim

to expand it by including a more diverse set of site morphologies.
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Chapter 6

Conclusion and Outlook

The main goal of the research presented in this thesis was to develop solutions that

facilitate applying deep learning algorithms under annotation constraints, with appli-

cations for cell imaging and archaeological remote sensing. Throughout this research,

we targeted the challenges present for the human operator in both the annotation

and the training processes within the deep learning pipeline. To do so, we relaxed the

quality requirements placed on the expert annotators, we proposed annotation-efficient

learning paradigms, and we introduced explainability case studies. Here, we present

a summary of the main contributions of this thesis, acknowledge its limitations, and

propose future research directions.

6.1 Contributions and Limitations

In Chapter 2 we modelled three types of inconsistencies that can occur when creat-

ing annotations for cell segmentation. These inconsistencies can be considered both

annotator-related errors or deliberate relaxations of the annotation process to allow

for creating larger quantities of annotations within a fixed time budget. We considered

the effect of the omission of a certain proportion of the target cells, the inclusion of

objects other than the target cells, and the effect of inconsistent cell boundaries under

the form of exaggerated or reduced boundary delineations (called bias). We performed

gradual reductions in the annotation quality and we tested their effect on the train-

ing of three architecturally-dissimilar segmentation networks. Our results indicated

that the networks were least affected by omissions, with inclusion and bias producing

more severe degradation of the performance, especially when the cells have small foot-

93



6.1. Contributions and Limitations

prints. These findings may allow human operators to optimize quality control efforts

by focusing on the most impactful error types, thereby enhancing the robustness of

models even when annotation resources are constrained. This contribution directly

addresses one of the annotation process bottlenecks by enabling more strategic quality

trade-offs, thus supporting the deployment of robust segmentation models with fewer

high-quality annotated samples. One inherent limitation of our study is the scope in

which it was performed. We considered three CNN architectures, three data sets, and

three types of annotation errors, which can limit the broadness of our conclusions.

Based on the findings from Chapter 2, we proposed in Chapter 3 a method that

can enhance the quality of annotations suffering from various types of inconsistencies.

Our main contribution is designing a learning pipeline for cell segmentation in which

a small data set with high-quality annotations is leveraged to train a CNN to upgrade

a low-quality annotation to a high-quality one. We achieve this by perturbing the

high-quality annotations and tasking the CNN with retrieving their initial quality.

We then use this upgrade CNN to enhance the quality of a larger set with low-quality

annotations. We showed that by combining the initial small high-quality set with the

larger set with upgraded annotations, we can train better-performing cell segmentation

CNNs than on the high-quality set alone. This approach presents a practical solution

for scaling annotated data in a cost-effective manner by reducing the need for extensive

expert annotations. By enhancing lower-quality annotations through an automated

upgrading process, our method increases the usable dataset size without a proportional

increase in human effort, contributing to the applicability of deep learning in scientific

imaging under constrained annotation budgets. This contribution aligns with the

thesis’s aim to develop annotation-efficient solutions that support the training of deep

learning networks in data-limited domains. The main limitation of our approach is

the necessity of engineering perturbations that replicate the errors expected in the

low-quality data set. Although we showed that the match between perturbations and

errors does not have to be perfect, designing them is still an additional cost in the

development of the model.

The main contribution of Chapter 4 is creating a few-shot technique particularly

suited for cell segmentation. This method fits into the general few-shot learning

pipeline while accounting for requirements specific to cell segmentation. We leverage

the high-resolution feature maps produced by MSD networks trained on the known

cell classes, which we then linearly recombine to adapt to the new class of cells. We

demonstrated that the few-shot learning paradigm can be effectively applied to cell

images, with our method surpassing other techniques designed for natural images or
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medical image segmentation. Here, we targeted the training process of the deep learn-

ing pipeline and proposed a solution that reduces the reliance of the human operator

on large quantities of annotations. The few-shot learning technique we developed re-

duced the number of labelled samples required for training new classes in the context

of cell segmentation, enabling future experimentation with data sets previously un-

suitable for learning setups. One important limitation of our method is its one-shot

performance. When trained with a single image, the results vary based on how repre-

sentative that image is for the rest of the data set. This variation, however, becomes

significantly lower when using 5 or 10 shots. Another limitation is the requirement to

have sufficient annotations for some of the cell types within a given data set in order

to train the MSD networks. This limits the applicability of our work to scenarios in

which one wants to segment new structures from an already annotated data set.

Chapter 5 contributes with an annotation process for archaeological site segmen-

tation starting from image-level annotations. We use binary annotations for image

classification, i.e., whether a site is present within an image, to train classification

models from which we employ explainability techniques to extract activation maps

that we further process to obtain site boundaries. In addition to producing cheap

annotations for segmentation, we leverage the resulting maps to perform an analysis

of the learned features by three CNNs, which can contribute to a better understanding

of the CNNs operation and, consequently, to the wider adoption of these techniques

in archaeological works. Moreover, we present a modification to an existing explain-

ability technique which produces site boundaries close to the expert estimation. We

observed differences in the image features that different architectures tend to highlight

and we also showcased the explainability techniques’ potential of highlighting biases

or mis-annotated images. This contribution tackles problems in both the annotation

and training processes and offers a dual benefit by providing a low-cost method for

segmentation annotation in archaeology while simultaneously enhancing model inter-

pretability. On one hand, alleviating the annotation scarcity facilitates the practical

introduction of deep learning in archaeological workflows as the human operator does

not need to focus much on producing annotations. On the other hand, the capacity to

derive meaningful visual explanations from CNNs facilitates a greater understanding

of model behaviour, which can build trust in the predictions of deep learning net-

works. This is important for interdisciplinary applications with non-technical fields

where model transparency and interpretability are valued. The geographical area to

which the study was applied constitutes the main limitation of this chapter. We did

not apply our techniques to images belonging to other regions which could contain
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Figure 6.1: A schematic representation of future research directions emerging from this
thesis, including enhanced annotation tools, adaptable learning methods and a focus on
explainability techniques, highlighting the necessity of continuous collaboration with domain
experts.

differently-looking sites or in which the landscape could pose more challenges in iden-

tifying a site image from a non-site one.

6.2 Outlook

Future research presents significant opportunities to streamline the advancement of

deep learning within scientific fields where the demands of annotation and training

processes pose challenges for human operators. In this section, we outline several

potential directions for alleviating the costs associated with these processes. For a

schematic representation of the envisioned directions, see Figure 6.1.

On the annotation side, one possibility emerges from combining the low-data re-

quirements and short training time of few-shot learning with the enhancement of an

upgradinig CNN into efficient annotation tools. Such tools can rely on an initial small

set of manual annotations to train a few-shot model whose predictions can be further

refined by an upgrading CNN. In this way, the expert can focus only on the most

challenging samples, while the networks would also improve as more images are being

annotated, in an active learning manner [107].

Alternatively, rather than focusing solely on increasing the throughput of the an-
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notation process, this process may be accelerated by generating extensive synthetic

segmentation datasets via generative networks, such as diffusion models, where input

conditions (e.g., text queries, class labels) can be provided with significantly reduced

human intervention compared to the generation of pixel-level segmentation annota-

tions. Additionally, low-effort human input such as textual prompting, point, or box

annotations can also be used to increase the number of available segmentation anno-

tations by leveraging the predictions of foundation models, such as segment anything

model (SAM)[83] or its more specialized variants, for instance, MedSAM [98].

On the training side, there remains a critical need for adaptable learning methods

that can effectively exploit general image features derived from data sets with abun-

dant annotations or even pseudo-annotations as in [112]. The key challenge lies in

refining these generalized feature extractors to suit the specific requirements of the

target domain. A viable solution involves embedding traditional machine learning

algorithms within deep learning pipelines. This integration combines the feature ex-

traction strength of deep learning with the efficiency and reduced data dependency of

traditional machine learning methods. As demonstrated in Chapter 4, this hybrid ap-

proach has the potential to yield highly adaptable models, addressing the limitations

posed by data scarcity in domain-specific applications.

When it comes to the detection of archaeological sites, the output of the explain-

ability techniques (activation maps) can also be leveraged to derive more information

about the sites than their boundaries. For example, by analysing their shape and

distribution, activation maps can provide information about the morphology of ar-

chaeological sites without additional human input. This can then help in further

clustering and categorization efforts.

Finally, one common theme that ties together the observations presented in this

thesis is the need to strengthen collaboration between machine learning scientists and

domain experts. Although scientific domains suffer from expensive data acquisition

and annotation processes, these disadvantages can be mitigated by including expert

knowledge directly into the development process of learning-based solutions. One

way to do so is by introducing constraints based on prior knowledge. For example,

in Chapter 5 we applied a Gaussian filter on site activations to generate accurate

segmentation masks because we had the a priori knowledge that the area of interest

contained round settlements. Thus, we were able to process the activations to better

reflect this characteristic without the need of additional data or annotations. Similar

approaches could also be applied in designing efficient annotation tools and accurate

adaptable learning methods.
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and multitemporal sentinel 2-based machine learning algorithm detects near 10k
archaeological tumuli in North-Western Iberia. Remote Sensing, 13(20):4181,
2021.

[16] Chandradeep Bhatt, Indrajeet Kumar, V. Vijayakumar, Kamred Udham Singh,
and Abhishek Kumar. The state of the art of deep learning models in medical
science and their challenges. Multimedia Systems, 27(4):599–613, 2021.

[17] Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-
Cohen, Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire
Mamani, and Gabriel Chartrand. The liver tumor segmentation benchmark
(LiTS). Medical Image Analysis, 84:102680, 2023.

[18] Alexander Bonhage, Mahmoud Eltaher, Thomas Raab, Michael Breuß, Alexan-
dra Raab, and Anna Schneider. A modified Mask region-based convolutional
neural network approach for the automated detection of archaeological sites on
high-resolution light detection and ranging-derived digital elevation models in
the North German Lowland. Archaeological Prospection, 28(2):177–186, 2021.

[19] Carolyn Burnett and Thomas Blaschke. A multi-scale segmentation/object re-
lationship modelling methodology for landscape analysis. Ecological Modelling,
168(3):233–249, 2003.

100



Bibliography

[20] Stefano Campana and Salvatore Piro. Seeing the unseen. Geophysics and
landscape archaeology. CRC Press, 2008.

[21] Yigit B. Can, Krishna Chaitanya, Basil Mustafa, Lisa M. Koch, Ender
Konukoglu, and Christian F. Baumgartner. Learning to segment medical images
with scribble-supervision alone. In Deep Learning in Medical Image Analysis and
Multimodal Learning for Clinical Decision Support, volume 11045 of Lecture
Notes in Computer Science, pages 236–244. Springer, 2018.

[22] Aaron Carass, Snehashis Roy, Amod Jog, Jennifer L. Cuzzocreo, Elizabeth Ma-
grath, Adrian Gherman, Julia Button, James Nguyen, Ferran Prados, and Car-
ole H. Sudre. Longitudinal multiple sclerosis lesion segmentation: Resource and
challenge. NeuroImage, 148:77–102, 2017.

[23] Jesse Casana. Remote sensing-based approaches to site morphology and histor-
ical geography in the northern fertile crescent. New Agendas in Remote Sensing
and Landscape Archaeology in the Near East. Studies in honour of Tony J.
Wilkinson: Archaeopress, pages 154–174, 2020.

[24] Jesse Casana, Jackson Cothren, and Tuna Kalayci. Swords into ploughshares:
Archaeological applications of CORONA satellite imagery in the Near East.
Internet Archaeology, 32(2), 2012.

[25] Gino Caspari and Pablo Crespo. Convolutional neural networks for archaeolog-
ical site detection–Finding “princely” tombs. Journal of Archaeological Science,
110:104998, 2019.

[26] University of Arkansas/U.S. Geological Survey Center for Advanced Spa-
tial Technologies. Corona @ CAST UA.

[27] Sixian Chan, Cheng Huang, Cong Bai, Weilong Ding, and Shengyong Chen.
Res2-UNeXt: A novel deep learning framework for few-shot cell image segmen-
tation. Multimedia Tools and Applications, 81(10):13275–13288, 2022.

[28] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L. Yuille. Deeplab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected CRFs. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 40(4):834–848, 2017.

[29] Shuai Chen, Antonio Garcia-Uceda, Jiahang Su, Gijs van Tulder, Lennard Wolff,
Theo van Walsum, and Marleen de Bruijne. Label refinement network from
synthetic error augmentation for medical image segmentation. Medical Image
Analysis, 99:103355, 2025.

[30] Guy Barrett Coleman and Harry C. Andrews. Image segmentation by clustering.
Proceedings of the IEEE, 67(5):773–785, 1979.

[31] Frederick A. Cooper, Marvin E. Bauer, and Brenda C. Cullen. Satellite spectral
data and archaeological reconnaissance in western Greece. NASA. Stennis Space
Center, Applications of Space-Age Technology in Anthropology, 1991.

101



Bibliography

[32] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa
Sengupta, and Anil A. Bharath. Generative adversarial networks: An overview.
IEEE Signal Processing Magazine, 35(1):53–65, 2018.

[33] Jay F. Custer, Timothy Eveleigh, Vytautas Klemas, and Ian Wells. Applica-
tion of LANDSAT data and synoptic remote sensing to predictive models for
prehistoric archaeological sites: An example from the Delaware coastal plain.
American Antiquity, 51(3):572–588, 1986.

[34] Wei Dai, Nanqing Dong, Zeya Wang, Xiaodan Liang, Hao Zhang, and Eric P.
Xing. SCAN: Structure correcting adversarial network for organ segmentation
in chest X-rays. In Deep Learning in Medical Image Analysis and Multimodal
Learning for Clinical Decision Support, volume 11045 of Lecture Notes in
Computer Science, pages 263–273. Springer, 2018.

[35] Yousef-Awwad Daraghmi, Tsung-Hsiang Wu, and Ts̀ı-Uı́ İk. Crowdsourcing-
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Summary

Image segmentation is a process that divides an image into distinct regions, identify-
ing and categorising them based on shared characteristics such as colour, texture, or
boundaries (see Figure S1 for a schematic representation of cell segmentation). This
process has the potential to address a wide range of problems in specialised fields, such
as detecting tumours in computed tomography scans for medical imaging or identifying
sites in archaeological research. Currently, the best-performing image segmentation
algorithms are based on deep learning.

Segmentation

Figure S1: Example of image segmentation. The cell shapes and the segmentation are
from [86].

Deep learning refers to a category of statistical models trained to perform tasks
by learning from large datasets. For example, in image segmentation, the model is
trained using pairs of input images and their corresponding annotations (i.e., cate-
gorised regions within the image). Consequently, a learning pipeline for deep learning
segmentation algorithms typically includes an initial step in which annotations are
generated to prepare for training (annotation process) and a second step where the
algorithm is trained using the input images and the previously created annotations
(training process). Figure S2 shows an overview of this pipeline.

Despite the promising results of deep learning in image segmentation, its widespread
adoption in specialised domains remains hindered by challenges related to annotation
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Figure S2: Deep learning pipeline from an initial set of images to a trained model.
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Summary

and training. When it comes to annotation, marking the regions of an image is not
only time-consuming—since it’s often done manually—but also prone to mistakes due
to human error or unclear boundaries. In specialised domains, this becomes even
more difficult because annotators need expert knowledge, which adds costs in terms
of time and availability. Experts in these fields often have demanding schedules, and
the necessary knowledge may only be possessed by a small group of people. On the
training side, deep learning algorithms need large amounts of data and operate with an
opaque decision-making process, posing additional barriers. Collecting enough data
can be expensive, requiring special equipment, preparing samples (as in medical imag-
ing), or even travelling to specific locations (as in archaeology). Additionally, because
deep learning models don’t provide a clear, step-by-step explanation of their decisions,
professionals in non-technical fields may be hesitant to rely on them.

This thesis provides a set of solutions to address the challenges associated with the
annotation and training processes of deep learning algorithms for image segmentation
in specialised domains. Specifically, we focus on two applications: cell segmentation in
biomedical imaging and the detection of archaeological sites from satellite images. In
Chapter 2, we investigate the impact of annotation errors on the performance of deep
learning models for cell segmentation. Building on these findings, Chapter 3 introduces
a training technique that enables deep learning models to learn from low-quality an-
notations, such as those with missing regions or imprecise boundaries. In Chapter 4,
we propose a novel deep learning algorithm capable of performing cell segmentation
using only a few annotated image-annotation pairs (e.g., 5 pairs). Chapter 5 explores
the application of explainability techniques to deep learning models trained for image
classification, generating visual representations of the image regions the model consid-
ers relevant. We analyse these visualisations to gain insights into the learned patterns
and further refine them to create semi-automated annotations for archaeological site
segmentation, reducing the time required from domain experts compared to manual
annotation.
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Samenvatting

Beeldsegmentatie is een proces dat een afbeelding opdeelt in afzonderlijke regio’s,
waarbij deze worden gëıdentificeerd en gecategoriseerd op basis van gedeelde ken-
merken zoals kleur, textuur of grenzen (zie Figuur S1 voor een schematische weergave
van celsegmentatie). Deze techniek biedt mogelijkheden om een breed scala aan prob-
lemen in gespecialiseerde domeinen aan te pakken, van het detecteren van tumoren in
computertomografiescans voor medische beeldvorming tot het identificeren van vind-
plaatsen in archeologisch onderzoek. Momenteel zijn de best presterende algoritmen
voor beeldsegmentatie gebaseerd op deep learning.

Segmentation

Figuur S1: Voorbeeld van beeldsegmentatie. De celvormen en de segmentatie zijn afkom-
stig uit [86].

Deep learning verwijst naar een categorie statistische modellen die worden ge-
traind om taken uit te voeren door te leren van grote datasets. Bij beeldsegmentatie
bijvoorbeeld wordt het model getraind met invoerafbeeldingen en de bijbehorende an-
notaties (gecategoriseerde regio’s binnen de afbeelding). Een training pipeline voor
deep learning-segmentatie-algoritmen omvat doorgaans een eerste fase waarin anno-
taties worden gemaakt (annotatieproces), gevolgd door een tweede fase waarin het
algoritme wordt getraind met de invoerafbeeldingen en de eerder gemaakte annotaties
(trainingsproces). Figuur S2 toont een overzicht van dit traject.
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Figuur S2: Deep learning ontwikkel pipeline van een initiële set afbeeldingen naar een
getraind model.
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Samenvatting

Ondanks de veelbelovende resultaten van deep learning voor beeldsegmentatie,
wordt de brede toepassing ervan in gespecialiseerde domeinen beperkt door uitdagin-
gen in de annotatie en training. Binnen de annotatie fase is het marken van regio’s
in afbeeldingen niet alleen tijdrovend maar ook foutgevoelig door onnauwkeurig of
verkeerd aangegeven grenzen, gezien dit proces vaak handmatig moet gebeuren. In
gespecialiseerde domeinen is dit nog uitdagender, omdat deskundige kennis nodig is
voor het annoteren, wat extra kosten met zich meebrengt en limitaties kent in beschik-
baarheid van deskundigen. Experts in deze vakgebieden hebben vaak drukke agenda’s,
en de benodigde kennis is soms slechts aanwezig bij een kleine groep mensen. Wat de
training betreft, vereisen deep learning-algoritmen grote hoeveelheden voorbeelden en
hebben ze een slecht-inzichtelijk werkingsmechanisme voor het maken van beslissingen,
wat ook weer extra obstakels oplevert. Het verzamelen van voldoende gegevens kan
kostbaar zijn en speciale apparatuur vereisen, het voorbereiden van samples (zoals in
medische beeldvorming), of zelfs reizen naar specifieke locaties (zoals voor archeologie).
Een aanvullende uitdaging is dat deep learning-modellen geen duidelijke, stapsgewijze
uitleg van hun beslissingsproces geven, waardoor eindgebruikers terughoudend zijn om
erop te vertrouwen.

Dit proefschrift biedt een reeks oplossingen om de uitdagingen aan te pakken die
gepaard gaan met de annotatie- en trainingsprocessen van deep learning-algoritmen
voor beeldsegmentatie in gespecialiseerde domeinen. We richten ons daarbij speci-
fiek op twee toepassingen: celsegmentatie in biomedische beeldvorming en de detectie
van archeologische sites vanuit satellietbeelden. In Hoofdstuk 2 onderzoeken we de
impact van annotatiefouten op de prestaties van deep learning-modellen voor celseg-
mentatie. Hierop voortbouwend, introduceert Hoofdstuk 3 een trainingstechniek die
deep learning-modellen in staat stelt te leren van annotaties van lage kwaliteit, zoals
annotaties met ontbrekende regio’s of onnauwkeurige grenzen. In Hoofdstuk 4 presen-
teren we een nieuw deep learning-algoritme dat in staat is celsegmentatie uit te voeren
met slechts een klein aantal geannoteerde afbeelding-annotatieparen (bijvoorbeeld 5
paren). Hoofdstuk 5 onderzoekt de toepassing van explainability-technieken op deep
learning-modellen die zijn getraind voor beeldclassificatie. Hierbij worden visuele rep-
resentaties gegenereerd van de afbeeldingsregio’s die het model als relevant beschouwt.
We analyseren deze visualisaties om inzicht te krijgen in de geleerde patronen en ver-
fijnen ze verder om semi-automatische annotaties voor segmentatie van archeologische
sites te creëren. Dit vermindert de benodigde tijd van domeinexperts in vergelijking
met handmatige annotatie.
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Dr. Daniël Pelt for the incredible support they offered me throughout my whole journey
as a Ph.D. candidate. I consider myself very lucky to have collaborated with such
sympathetic, kind and enthusiastic people who created a working environment in which
I could thrive. I am especially grateful for the feedback they offered me, aimed not
only at improving my academic skills, but also at polishing my interpersonal abilities.

I would also like to thank Dr. Oleh Dzyubachyk for making sure that my ideas
were not only cool deep learning applications, but also that they held relevance to
the biomedical field. In addition, I want to thank Dr. Tuna Kalayci for the fruitful
conversations we had regarding both work and all sorts of life stories. This made me
to always look forward to the next meeting in van Steenis building.

Additionally, I am grateful to have met Jiayang, my office mate for more than three
years, with whom I shared struggles, successes and stories, and who made coming to
the office all the more enjoyable. Moreover, I am happy to have been colleagues with
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