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Chapter 7

Conclusions and Outlook

In this chapter, we revisit the research questions presented in Chapter 1 and provide
a detailed discussion on how each question has been addressed. Lastly, we discuss
directions for future research.

7.1 Answers to Research Questions

In Chapter 1, we presented four research questions that guided the exploration and
structure of this thesis. In the following, we will revisit each research question, outlining
the methods we used to address them and summarising our key findings.

RQ1: What constitutes the state of the art in neural network verification?

In Chapter 3, we performed a comprehensive performance analysis of various CPU-
and GPU-based neural network verification methods and revealed an algorithmic
landscape characterised by significant performance diversity across different types of
verification problem instances. From this study, we concluded that no single verifier
consistently outperforms other methods in every scenario, challenging the notion of a
universally superior algorithm within the neural network verification domain. Instead,
we observed high levels of complementarity, i.e., instances solved by one verifier that
other verifiers could not solve and vice versa, quantified by means of marginal con-
tribution and Shapley values. Moreover, these findings highlight the complex nature
of neural network verification problems and suggest the usage of algorithm portfolios
for optimal verification outcomes. Notice that these findings are in line with those for
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other NP-hard problems; e.g., the work of Leyton-Brown et al. [70].

RQ2: How can we leverage automated algorithm configuration techniques to improve
the performance of a MIP-based verification system?

In Chapter 4, we investigated the application of automated algorithm configuration
techniques to enhance the operational efficiency of MIP-based verification systems.
Notably, we observed strong heterogeneity among different problem instances, which is
not handled well by standard configuration approaches. Instead, we employed advanced
portfolio construction techniques, which combine different solver configurations with
complementary strengths into a parallel portfolio. This portfolio runs the solver config-
urations in parallel, stopping each configuration as soon as one of them has returned
a solution. This implicitly ensures the we always benefit from the best-performing
algorithm in the portfolio. Notably, we achieved substantial improvements in terms
of running time and an increased number of successfully solved instances, despite the
increased overhead demanded by the parallel portfolio. These outcomes highlight the
potential of automated configuration and portfolio construction techniques as a fruitful
approach for improving the performance of combinatorial solvers employed in the
context of neural network verification systems, thereby streamlining the verification
procedure overall. This confirms findings from previous work on related problems,
notably mixed integer linear programming [46, 44, 45, 76].

RQ3: To which extent can we predict the running time of a given verification al-
gorithm for a specific problem instance?

In Chapter 5, we investigated the possibilities of running time prediction for neural
network verification algorithms. While we found that precise running time prediction
(i.e., regression) remains a challenging task, we developed a timeout prediction model
that anticipates the feasibility of completing a verification query within a predefined
time budget. This was enabled by newly defined features of the problem instance and
the verification algorithm in use. Using this approach, we achieved a more efficient
allocation of computational resources, strongly enhancing the overall efficiency of the
verification procedure. Furthermore, our timeout prediction method could be lever-
aged in the context of parallel algorithm portfolios or, more specifically, per-instance
algorithm selection; given several algorithms that run in parallel on a specific instance,
our method could terminate those that are not able to solve the instance in the given
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time budget. However, the verification algorithms we considered in our study did
not display sufficient performance complementarity on the benchmarks we used. This
could be explained by the fact that the verification algorithms were employed with
configurations specifically tailored to the given benchmarks.

RQ4: How can we efficiently select the neural network model from a given set of
models that achieves the highest certified robust accuracy?

In Chapter 6, we introduced a novel racing algorithm designed to guide the selection
process of the most robust neural network model from a set of candidate models. In this
context, we proposed a novel heuristic that captures the likelihood of a given instance
to be robust or non-robust. Using this heuristic, we can guide the search towards
neural network models that are most likely to show a high adversarial robustness. We
found that our proposed solution significantly reduces the computational costs typically
associated with model selection by iteratively eliminating less promising candidates,
thereby facilitating a more efficient selection process of the optimal, i.e., most robust
model. This approach presents a practical solution to the challenge of robust model
selection, ensuring computational resources are utilised judiciously while selecting the
model with the highest robustness.

7.2 Directions for Future Research

With the work presented in this thesis, we sought to enable future progress in the field
of neural network verification. These methods offer great potential for obtaining safety
guarantees for neural-network-based AI systems, which is a crucial requirement for
their use in high-risk domains, such as medical diagnosis or advanced driver assistant
systems. At the same time, computational complexity remains a major challenge and
current methods do not scale to complex architectures, such as large language models.

One general direction involves expanding this work to encompass a broader spectrum
of neural network architectures and verification problems beyond local robustness for
image classification models. Such an expansion would not only further validate the
generalisability of the findings presented in this thesis but also potentially reveal new
insights and challenges that could further refine the state of the art in neural network
verification. While we considered only local robustness properties in this thesis, mainly
due to their prominence in the literature and the availability of suitable benchmarks
and solvers, these properties do not capture semantic changes or domain-specific noise
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models; these would require different distance metrics that take into account the
dependencies among input variables and, possibly, novel approaches for reasoning over
the resulting properties.

Furthermore, we focused on the automated configuration of MIP-based verification
systems. At the same time, verification algorithms have additional hyperparameters,
also unrelated to MIP solvers; e.g., configuring αβ-CROWN [111, 119] gives rise to
several choices ranging from the selection of a bounding method to the number of
branches for non-linear branching. Automatically configuring these algorithms could
lead to substantial performance improvements and enhance usability, given the vast
hyperparameter space presented by some of these methods.

Another fruitful direction for future work lies in the enhancement of running time
prediction models. Enabling running time regression could provide a more nuanced
understanding of the verification process, leading to improved resource allocation and
process efficiency. Specifically, it would be desirable to predict the running time needed
to solve a specific instance beyond a given cutoff point. This would, firstly, require to
study the behaviour of verification algorithms when supplied with large time budgets
to see if and when hard instances get solved and, potentially, the definition additional
features.

In addition, applying the insights and methodologies developed in this thesis to a
variety of real-world scenarios holds considerable promise, such as medical diagnosis.
Such applications would not only test the practical implications of the research but also
uncover new challenges and opportunities for innovation in the field of neural network
verification. For example, assessing the robustness of a neural network model used for
the classification of ECG measurements requires the definition of robustness properties
with respect to specific noise models, such as baseline wander or power-line interference
[81]. Furthermore, the scalability of verification methods to neural network models
used in practice would be interesting to study.

Finally, the methods and findings presented in this thesis could be jointly utilised
in the context of neural architecture search. Given the task of finding a neural network
architecture that achieves a high level of robustness, it becomes necessary to perform
verification as efficiently as possible, as multiple network architectures or configurations
need to evaluated to guide the search process. This would require well-calibrated
verifiers as well as efficient resource allocation, and a joint framework that can handle
both the neural architecture search process as well as the verification system.

Overall, these future research directions hold the potential to significantly advance
the research are of neural network verification, building on the contributions of this

116



Chapter 7. Conclusions and Outlook

thesis to explore new frontiers in neural network verification and automated machine
learning. This can ultimately foster the employment of neural-network-based AI
systems in safety-critical tasks, as neural network verification provides a method to
formally prove that the system behaves as intended for a given operational domain. In
fact, proving the safety (and, specifically the robustness) of an AI System is demanded
by the European AI Act [106], underlining the relevance and importance of the concepts
and methods introduced in this thesis.
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