
Automated machine learning for neural network verification
König, H.M.T.

Citation
König, H. M. T. (2025, October 9). Automated machine learning for neural
network verification. Retrieved from https://hdl.handle.net/1887/4266921

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4266921

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4266921

Chapter 6

Adversarially Robust Model
Selection via Racing

In the previous chapters, we have introduced several meta-algorithmic approaches to
formally verify the robustness of neural network models against perturbations in their
inputs, such as the ones that occur in adversarial attacks. Nonetheless, this particular
verification task remains computationally challenging.

In addition to other performance metrics of a neural network model, such as
accuracy, one can compute robust accuracy by counting the fraction of inputs that
are provably robust with regard to the given property. However, this adds significant
overhead to the evaluation procedure, due to the high computational demands incurred
by most formal verification algorithms, as explained earlier (see, e.g., Chapter 2. This
overhead grows substantially if multiple models are considered and compared against
each other in (robust) performance; this challenge is not only faced by practitioners
(e.g., during model evaluation) but also encountered during Neural Architecture Search
(NAS), where the goal is to select a suitable model from a large search space (see, e.g.,
Elsken et al. [28]). In this context, adding robust accuracy as a selection criterion
would hardly be feasible due to the large computational costs.

In this chapter, we seek to improve the efficiency of local robustness verification
from a previously unexplored, meta-algorithmic point of view. Specifically, we propose
a method to efficiently evaluate and compare the robustness of different neural network
models (or variations of the same model) against adversarial attacks. Moreover, we
consider the problem of selecting the most robust model, i.e., the model with the

99

highest certified robust accuracy, from a given set of trained neural networks, whilst
making the most efficient use of the computational budget.

In a nutshell, our proposed method employs a racing algorithm, in which a given
set of neural network models are subjected to local robustness verification with respect
to adversarial attacks. After each input iteration, the performance of each network (in
terms of robust accuracy) is measured, and the verification procedure stops for a given
network as soon as its robust accuracy is lower than the robust accuracy obtained by
its competitors. Racing approaches are well studied and have already been successfully
employed in other, resource-intense domains, such as hyperparameter optimisation
[45, 7].

Complementary to the racing approach, we propose a novel sampling strategy based
on the likelihood of a given input instance being adversarially robust. Essentially, this
strategy prioritises input instances during the verification procedure that are most
likely to expose vulnerabilities of the neural network model and, therefore, provide
valuable insights into its robustness after fewer input iterations of the verification
procedure and, hence, at a lower computational cost. At the same time, it reduces
the risk of selecting sub-optimal models, which might show higher robust accuracy
than other candidate models after verifying some randomly sampled input instances
but might perform worse overall. In fact, when using random sampling, the only way
to mitigate this risk would be to increase the number of input iterations – with the
associated costs involved.

To enable the proposed sampling strategy, we must define or estimate the likelihood
of a network input being adversarially robust. In our case, this involves estimating the
proximity of a network input to the decision boundaries of the model, captured by
means of ∆-values, which will be explained in the following. Using this strategy, we can
bias the sampling towards inputs for which adversarial attacks are most likely to occur.
Although the relation between adversarial examples and the decision boundary of a
neural network has been extensively studied [23, 120, 20, 38, 74], we are not aware of
any existing work leveraging these insights in the context of local robustness verification
procedures. In summary, the main contributions of this chapter are as follows:

• We propose an efficient model selection method based on a novel heuristic that
quantifies the likelihood of a network being adversarially robust with respect to
a given input;

• we introduce ∆-values, which serve as a proxy for the distance of an input instance
to the decision boundaries of a neural network model;

100

Chapter 6. Adversarially Robust Model Selection via Racing

• we provide statistical evidence demonstrating significant differences in the empiri-
cal cumulative distribution of ∆-values between robust and non-robust instances;

• we evaluate our method on two diverse sets of neural networks trained on the
MNIST and CIFAR-10 datasets, achieving a 108-fold reduction in cumulative
running time for MNIST networks and a 42-fold reduction for CIFAR-10 networks.

6.1 Adversarially Robust Model Selection

Given a set of neural network models N = {N1, N2, . . . , Nm} and a set of input
instances X , the objective is to identify the model N∗ ∈ N that maximises robust
accuracy with respect to adversarial attacks. Notice that robust accuracy is computed
by verifying all instances x ∈ X , measuring the fraction of cases in which the model
correctly classifies an instance and adversarial input perturbations do not change the
original output produced by the model.

To address this problem, we propose a method with two main components: a racing
approach and a sampling strategy based on a sorting mechanism for the input instances
on which the network is verified. We considered two variants of the racing approach.
The first one is a naïve racing approach in which the best-performing candidate models
are selected at every input iteration, whereas the second one represents an adaptation
of the F-Race algorithm [7], which gathers statistical evidence against some candidate
models before they are discarded. Both variants of the racing approach as well as our
proposed sorting mechanism will be further explained in the following.

6.1.1 Naïve Racing Approach

Generally, the idea of a racing approach is to evaluate a finite set of candidate models
while allocating the computational resources among them in a systematic way (see,
e.g., [79]). To do so, the racing approach verifies step-by-step each candidate model
in the given set, where in this context, a step corresponds to an input instance on
which the neural network models are verified. At each step, all the remaining candidate
models are verified, possibly in parallel, and candidate models are discarded once they
are outperformed by others, i.e., once one or more networks have obtained a higher
robust accuracy.

An overview of this approach, which we refer to as the naïve racing approach for the
remainder of this chapter, can be found in Algorithm 2. After each iteration over the
input instances, it identifies the model with the highest robust accuracy (determined

101

6.1. Adversarially Robust Model Selection

Algorithm 2 Racing approach for robust model selection

Require: Trained neural network models N = {N1, N2, . . . , Nm}; Network input
instances X = {x1, x2, . . . , xn}; Verification algorithm Verify(Ni, xj) that returns
sat, unsat or unsolved ;

Ensure: Model with highest robust accuracy: Nselected
1: C ← N
2: ui ← 0 with i = 1, 2, . . . , |N |
3: for all xj ∈ X do
4: for all Ni ∈ C do
5: if Verify(Ni, xj) is unsat then
6: ui ← ui + 1
7: end if
8: end for
9: C ← {Ni | i ∈ argmaxi{ui} }

10: end for
11: Randomly select one element Nselected from set C
12: Return Nselected

based on ui which represents the number of unsat instances for network Ni) and updates
the set of candidate models C accordingly. Notice that the selection criterion on line 9
can by virtue of the arg max operator return a set of multiple networks. Moreover, ui

increases whenever a network Ni is found to be robust, i.e., unsat, w.r.t. to a given
input. On the other hand, an instance that is misclassified by the model would be
considered as sat. The algorithm stops once all input instances have been processed,
and the final output is the model with the highest determined robust accuracy.

6.1.2 F-Race

An important aspect of the model selection problem outlined above is that it can be
viewed as a stochastic problem. In fact, although the process of formally verifying
the behaviour of a neural network model with respect to certain input instances is
deterministic (i.e., multiple runs on the same input instance will always lead to the
same result), its outcome depends on the particular instance to which it is applied.
Concurrently, the specific instance being verified can be regarded as having been
sampled from an underlying probability distribution, which may be unknown. For the
naïve racing approach, this could lead to models being prematurely discarded after
a few input iterations, even if that model would achieve the highest robust accuracy
overall, i.e., if it was verified with respect to all available input instances.

To address this stochasticity, the authors of [7] proposed F-Race, a widely known,

102

Chapter 6. Adversarially Robust Model Selection via Racing

0.0 0.2 0.4 0.6 0.8 1.0
-value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

sat
unsat
unsolved

(a) MNIST (VeriNet, ϵ = 0.04)

0.0 0.2 0.4 0.6 0.8 1.0
-value

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

(b) CIFAR (αβ-CROWN, ϵ = 0.008)

Figure 6.1: Empirical cumulative probability distribution of normalised ∆-values for sat,
unsat and unsolved instances for the considered MNIST and CIFAR networks, respectively.
Notably, the plot shows a statistically significant difference between the empirical distribution
functions of ∆-values for sat and unsat instances. Specifically, for both MNIST and CIFAR
networks, sat instances generally have smaller ∆-values than unsat instances. Statistical
significance is determined by means of a Kolmogorov–Smirnov test with a significance threshold
of 0.05.

state-of-the-art racing algorithm. F-Race can be considered an extension of the naïve
racing approach, where the naïve selection criterion (line 9 in Algorithm 2) is replaced
with a statistical test. Concretely, after each iteration over the input instances, F-Race
performs a statistical test, typically, the non-parametric Friedman test, to determine if
there are significant differences in the number of unsat instances per neural network
model. If the null hypothesis is rejected or, in other words, significant differences exist,
F-Race applies post-tests to identify the models which are performing statistically
significantly worse than the best, and updates C accordingly. The algorithm stops
when all input instances have been processed, and the final output is the model with
the highest robust accuracy.

Since we are interested in the fraction of instances that are unsat, we used Cochran’s
Q test to determine if there are significant differences among the unsat counts for each
of the networks. Notice that the Cochran’s Q test is identical to the Friedman test but
applicable when the responses are binary. When only two candidate networks remain,
we used the McNemar test (without continuity correction), which can be seen as a

103

6.2. Setup of Experiments

special case of Cochran’s Q test [102]. Any significant Cochran’s Q (or McNemar)
statistic is followed by Dunn’s post-hoc test with a significance threshold of p= 0.05,
and networks are selected if they have a significantly higher certified robust accuracy
than their competitors.

6.1.3 Sorting Mechanism

In addition, we propose a sampling strategy based on a mechanism that sorts the
considered input instances according to their likelihood of being adversarially robust.
The key idea behind this mechanism is that by exposing a neural network model to
inputs that are least likely to be adversarially robust, we can more quickly gather
insights into its vulnerability or, similarly, its robustness. In other words, if we initially
verify a neural network model on its most “challenging” input instances, i.e., instances
on which it is most likely not robust, but obtain robustness guarantees for these
instances, we can at least heuristically assume the model to also be robust with respect
to the remaining instances.

To enable this sorting mechanism, we must define or estimate the likelihood of
a neural network model input being adversarially robust. In our case, this involves
estimating their distance from the decision boundaries of the model, captured by means
of network outputs. Intuitively, if an input lies very close to the boundary between two
classes, it can be assumed that small perturbations, such as those applied to adversarial
examples, have a higher chance to change the prediction made by the model.

In this study, we estimate the distance to an adjacent class boundary as the difference
between the neural network output corresponding to the most likely class and that corre-
sponding to the second-most likely class, and we refer to this difference as ∆. Formally,
we define ∆ := max({y1, y2, . . . , yn}) − max({y1, y2, . . . , yn} \ max({y1, y2, . . . , yn})),
where yn refers to the network output for a given class n. Based on the resulting
∆-values, we can, for each neural network model individually, sort the input instances
in an non-decreasing order, where the smaller the value of ∆, the closer we assume an
instance to lie to an adjacent class boundary.

6.2 Setup of Experiments

We compiled two sets of neural network models: one set consisting of 31 neural networks
trained on the MNIST dataset and one set containing 27 neural networks trained on
the CIFAR-10 dataset. All networks were taken from the repository of the ERAN

104

Chapter 6. Adversarially Robust Model Selection via Racing

verification system [85, 96, 99, 97, 98] and greatly vary in terms of architecture, training
method as well as robust accuracy. Details of the considered networks can be found
in the supplementary material. We verified each network for local robustness with
respect to the first 100 instances in the test set of the MNIST and CIFAR-10 datasets,
respectively.

To verify the MNIST networks, we used the state-of-the-art complete CPU-based
verification algorithm VeriNet [40] with a perturbation radius of ϵ = 0.04, which lies
well within the range of commonly chosen values for ϵ when verifying networks trained
on MNIST [114, 8, 109]. Verification queries ran with a time budget of 3600 seconds
on a cluster of machines equipped with Intel Xeon E5-2683 CPUs with 32 cores, 40
MB cache size and 94 GB RAM, running CentOS Linux 7.

To verify the more challenging CIFAR networks, we used αβ-CROWN, a state-of-
the-art complete GPU-accelerated verification method [111]. For these networks, we
verified local robustness with ϵ = 0.008, a value in line with commonly chosen values
of ϵ for networks trained on CIFAR (see, e.g., [87]). Again, all verification queries
ran with a time budget of 3600 seconds on machines equipped with NVIDIA GeForce
GTX 1080 Ti GPUs with 11 GB video memory. Overall, the verification of the CIFAR
networks used in our study consumed 558 hours in GPU time, whereas the verification
of the MNIST networks demanded a total of 1380 CPU hours.

We note that, although the verification algorithms presented above are complete,
they were sometimes unable to solve an instance due to time or memory limitations;
we report such instances as unsolved.

6.3 Empirical Results

In the following, we will compare our proposed selection method against the F-Race
approach, the naïve racing approach as well as selection based on exhaustive evaluation.
The latter represents the conceptually simplest baseline for selecting the most robust
model from a given set of neural network models. Using this approach, each model is
verified with respect to all available input instances during the verification procedure.
At each input iteration, the candidate model with the highest certified robust accuracy
is selected as the incumbent; i.e., the model that would be returned if the process
were terminated at the given iteration. Differently from the racing approaches, the
exhaustive evaluation approach does not eliminate any candidate models during the
selection process; therefore, when run to completion, it will always achieve a regret of
zero.

105

6.3. Empirical Results

0 20 40 60 80 100
Input iterations

5

10

15

20

25

30

C
an

di
da

te
 m

od
el

s

Exhaustive evaluation
F-Race
Naive racing
Naive racing with sorting mechanism

(a) MNIST (VeriNet, ϵ = 0.04)

0 20 40 60 80 100
Input iterations

0

5

10

15

20

25

C
an

di
da

te
 m

od
el

s

(b) CIFAR (αβ-CROWN, ϵ = 0.008)

Figure 6.2: Number of candidate models as determined by each method after every input
iteration. For the three methods that do not use the sorting mechanism, the line represents
the average number of candidate models over 200 random input orders, each with different
random seeds, along with along with the respective 95% confidence intervals. Clearly, naïve
racing, coupled with our proposed sorting mechanism, reduces the number of candidates
after substantially fewer input iterations than other methods. Notice that selection based on
exhaustive evaluation does not eliminate models from the set of candidates, which, therefore,
does not decrease in size.

We evaluated each method in terms of cumulative running time and regret. The
former describes the total running time consumed by the verification algorithm until
all given input instances have been processed and the most robust model has been
determined. Regret, in the context of model selection, describes the difference between
the performance of the selected model and the performance of the best model that
could have been chosen based on complete and perfect knowledge. In other words, it
represents the loss incurred by selecting a sub-optimal model.

Formally, the regret R is defined as follows. Suppose we have a set of candidate
models C = {C1, C2, . . . , Cn}, and we want to select one model from this set based on
certified robust accuracy. Let Cbest be the best model in the set, i.e., the model with
the highest certified robust accuracy ra. Then, R := ra(Cbest)− ra(Cselected), where
ra(Cbest) represents the robust accuracy of the best model and ra(Cselected) the robust
accuracy of the selected model.

106

Chapter 6. Adversarially Robust Model Selection via Racing

0 20 40 60 80 100
Input iterations

0.0

0.2

0.4

0.6

0.8

1.0

R
eg

re
t

Exhaustive evaluation
F-Race
Naive racing
Naive racing with sorting mechanism

(a) MNIST (VeriNet, ϵ = 0.04)

0 20 40 60 80 100
Input iterations

0.0

0.1

0.2

0.3

0.4

0.5

R
eg

re
t

(b) CIFAR (αβ-CROWN, ϵ = 0.008)

Figure 6.3: Regret achieved by the considered methods, where regret describes the difference
between the performance of the selected model and the performance of the best model that
could have been chosen given all available information. For methods not using the sorting
mechanism, the regret was averaged over 200 random input orders, each with different random
seeds, and is shown with a 95% confidence interval. The plots show that naïve racing, coupled
with our proposed sorting mechanism, achieves optimal regret with fewer input iterations
than other methods.

6.3.1 Local Robustness at the Decision Boundary

First of all, we investigated the relationship between the local robustness of a neural
network model and the estimated distance of an input instance from the decision
boundary of the model. More specifically, we examined the empirical cumulative
probability distribution of ∆-values across all considered models, giving rise to 3100
individual verification problem instances for MNIST and 2800 for CIFAR. Remember
that ∆-values serve as a proxy for the distance of an instance from the closest adjacent
class boundary. We normalised these values per network under consideration.

The empirical cumulative distribution of the ∆-values is visualised in Figure 6.1.
Notice that some instances could not be verified due to timeouts or memory limitations;
we show these instances as unsolved. The plots clearly show that sat instances, i.e.,
instances for which an adversarial example could be found, tend to have a smaller
∆-value than those that are unsat, i.e., robust. The difference in distributions is
determined as statistically significant by means of a Kolmogorov–Smirnov test with a
standard significance threshold of 0.05.

107

6.3. Empirical Results

104 105 106

Cumulative running time [s]

0.0

0.1

0.2

0.3

0.4

0.5

R
eg

re
t Exhaustive evaluation

F-Race
Naive racing
Naive racing with sorting mechanism

(a) MNIST (VeriNet, ϵ = 0.04)

104 105 106

Cumulative running time [s]

0.0

0.1

0.2

0.3

0.4

R
eg

re
t

(b) CIFAR (αβ-CROWN, ϵ = 0.008)

Figure 6.4: Regret as a function of cumulative running time for each of the considered
methods. Running time represents wall-clock time on the machine on which the experiments
were carried out. For methods not using the sorting mechanism, the regret was averaged
over 200 random input orders, each with different random seeds, and is shown with a 95%
confidence interval. The plots show that naïve racing, coupled with our proposed sorting
mechanism, achieves optimal regret while using substantially less compute time than other
methods. Each line ends once a specific method has processed all given input instances.

At the same time, Figure 6.1 shows that there exist instances, which are found to
be sat despite having a relatively large ∆-value, i.e., a ∆-value close to the end of the
(normalised) range of values. Upon further investigation, we found that for MNIST,
such instances occurred for 12 out of the 31 neural network models we considered
and for 15 out of the 27 CIFAR networks. Notice that for these models, no instance
was found to be robust, which indicates that large ∆-values can occur also for sat
instances if a neural network model generally suffers from poor robustness. However,
this observation does not affect the performance of our proposed selection method, as
models which are non-robust with respect to any input instance would be discarded
from the set of candidate models early in the selection process regardless of their
∆-value and, hence, the sorting of input instances. Notice that when removing these
neural network models from the set, the difference in ∆-values between sat and unsat
instances grows even larger; more details can be found in the supplementary material.

108

Chapter 6. Adversarially Robust Model Selection via Racing

6.3.2 Evaluation of Our Proposed Selection Method

We evaluated our proposed selection method, naïve racing coupled with the sorting
mechanism, in terms of cumulative running time and regret, and compared its perfor-
mance against the following three baselines: (i) F-Race, (ii) naïve racing without a
sorting mechanism and (iii) selection based on exhaustive evaluation. For methods that
do not employ the sorting mechanism (i.e., all baselines), we repeated the selection
process 200 times, where each time the order of the input instances was based on a
different random seed. We report the average running time over all runs, along with
the respective 95% confidence intervals.

Figure 6.2a displays the size of the set of candidate networks trained on the MNIST
dataset throughout the selection process. It shows that our proposed selection method
reduces the number of candidate models after fewer iterations compared to each
considered baseline. At the same time, for the exhaustive evaluation approach, the
number of considered models remains constant, resulting in a larger number of queries
that need to be performed at every input iteration.

As the number of candidate models reduces very quickly, it could be assumed that
the aggressive nature of our selection method might lead to a sub-optimal outcome
of the model selection process. We investigated this potential trade-off and show
the results in Figure 6.3a. As can be seen, every method reached an optimal regret,
indicating that the significant speed-up does not necessarily compromise on the quality
of the selection process. However, we note that some of the MNIST networks were
found to be fully robust. These are, consequently, always selected by any of the selection
methods, even those that are more aggressive. Lastly, notice that F-Race eliminates
candidate models based on statistical evidence, which can lead to models being selected
that are less robust than others but where this difference is not found to be statistically
significant at the given iteration.

We also tested our method on networks trained on the more challenging CIFAR
dataset. Neural networks trained on this dataset are generally more difficult to verify
than those trained on the MNIST dataset [71]. Figure 6.2b shows the size of the set of
candidate CIFAR networks throughout the selection process. Again, we found that our
proposed selection method eliminates candidate models after fewer iterations compared
to other methods. Concurrently, the difference between the naïve racing approach with
and without the sorting mechanism is much smaller than the difference observed on
MNIST networks.

However, Figure 6.3b shows the advantage of the sorting mechanism: the naïve

109

6.4. Conclusions and Future Work

racing approach using the sorting mechanism very quickly converges towards an optimal
regret, while other methods either require substantially more iterations or do not reach
the optimum at all. In fact, on this set of models, the naïve racing approach without
the sorting mechanism always resulted in a sub-optimal model choice. Overall, these
results clearly demonstrate that our new method can effectively select the most robust
model, and does so in a more efficient way than F-Race, which discards models only
after it obtained statistical significance between the robust accuracy of the candidate
models.

Lastly, we studied in more detail the efficiency of our method compared to the
baselines we considered, in terms of regret achieved for a specific time budget. This is
visualised in Figure 6.4a for MNIST networks and Figure 6.4b for CIFAR networks.
Notably, these plots reveal that for both sets of models, our method selects the best-
performing, i.e., most robust model while demanding less compute time than any of the
considered baselines, especially selection based on exhaustive evaluation. In fact, for
MNIST networks, the cumulative running required to complete the selection process is
reduced by several orders of magnitude, i.e., a 108-fold speedup factor, when compared
to selecting based on exhaustive evaluation (1380.93 vs 12.83 hours). Furthermore, for
CIFAR networks, our selection method achieved a 41-fold speedup compared to the
exhaustive evaluation approach (558.44 vs 13.18 hours). Generally, this decrease in
cumulative running time occurs because our selection method iteratively eliminates
models from the set of candidates, subsequently reducing the number of verification
queries in the following iterations, as previously explained. We note that the number
of verification queries directly depends on the number of models, which decreases
throughout the selection process.

These results highlight that our proposed selection method is well-suited for scenarios
in which computing resources are limited, as it is likely to select, within any given
amount of running time, models that are more robust than those determined by the
baselines considered in our study.

6.4 Conclusions and Future Work

In this chapter, we have demonstrated the effectiveness of advanced model selection
techniques in the context of neural network verification. Specifically, we studied the
problem of selecting the most robust neural network model from a given set of models,
whilst reducing the compute time needed to obtain robustness certificates for the given
input instances.

110

Chapter 6. Adversarially Robust Model Selection via Racing

To enable our proposed selection method, we introduced a novel sorting mechanism
based on the likelihood of an input instance being robust with respect to adversarial
input perturbations. This likelihood is captured by means of ∆-values, which serve
as a proxy for the distance of an input instance to the model decision boundaries,
and we present statistical evidence indicating significant differences in the empirical
cumulative distribution of these values for robust and non-robust instances. Overall,
our method guides the allocation of computing resources required to perform local
robustness verification towards adversarially robust models and can, in principle, be
used in combination with any verification system.

We empirically evaluated our method on two diverse sets of 31 and 27 neural
networks, trained on the MNIST and CIFAR-10 datasets, respectively. Our results
clearly show that our proposed model selection method significantly reduces the
cumulative running time required to select the most robust neural network model from
these sets. Thereby, we provide an answer to the fourth research question (RQ4) of
how to efficiently select the neural network model from a given set of models that
achieves the highest certified robust accuracy. Specifically, compared to the exhaustive
evaluation approach, our method achieved a speedup factor of 108 for the set of MNIST
networks and a speedup factor of 42 for the set of CIFAR networks while still selecting
the most robust model.

In future work, we plan to apply our method to other verification tasks (e.g.,
robustness verification under bias field perturbations), network architectures and
datasets, and to perform a systematic analysis of the relationship between ∆-values and
the robustness of neural network models. In addition, we are interested in the precise
relationship between the ∆-value and the distance to the nearest decision boundary.

111

6.4. Conclusions and Future Work

112

