g
4
s

Universiteit
“dd) Leiden
W’b The Netherlands

2
"Ha: 1

)
3|
B 3
.
=

.

4

&

o

Automated machine learning for neural network verification
Konig, H.M.T.

Citation
Konig, H. M. T. (2025, October 9). Automated machine learning for neural

network verification. Retrieved from https://hdl.handle.net/1887/4266921

Version: Publisher's Version
License: Licence agreement concerning inclusion of doctoral thesis
) in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4266921

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4266921

Chapter 5

Dynamic Algorithm Termination
for Branch-and-Bound-based

Neural Network Verification

As mentioned in previous chapters, much recent work has been concerned with the
development of more efficient verification algorithms, e.g., by employing the Branch
and Bound (BaB) method for solving the verification problem [22, 11, 109, 12, 27] or
by tightening bounds in the problem formulation using symbolic interval propagation
[8, 40, 110, 111] and abstraction [4, 99, 119, 35, 98] techniques. However, even in light
of recent developments, neural network verification remains a challenging and expensive
computational task, especially as network complexity and dataset size increase.

Recall that neural network verification can be divided into local and global veri-
fication [100]. As in previous chapters, we focus on local robustness verification in
this study. Local robustness verification typically considers a trained neural network,
along with a set of inputs and a verification property specification. Considering the
computational complexity of the verification problem, the required computational
resources can grow substantially with the size of the network to be verified and the set
of inputs.

We propose a novel approach enabling the efficient allocation of compute resources
during the verification procedure. Specifically, we introduce a method to classify
verification instances as solvable or unsolvable within a predefined time budget based

on cheaply computable features. Furthermore, we operationalise these predictions to

87

5.1. Method

terminate the verification procedure early for instances where a solution can not be
obtained within the given time budget. Thereby, we avoid spending compute resources
on attempting to verify instances that ultimately do not inform us about the robustness
of the network. We evaluated our approach on a broad set of state-of-the-art verification
algorithms and benchmarks, including benchmarks from recent VNN competitions
[10, 87, 3], and show that we can reliably terminate verification runs for instances that
are unsolvable within a given cutoff time without solving considerably fewer instances

overall. In summary, the contributions of this chapter are as follows:

e We present features of branch-and-bound-based neural network verification in-

stances that enable predictions about their solubility within a given time budget;

e we introduce a novel method based on those features that reliably identifies

instances that cannot be solved within a given time budget;

e we evaluate our method on a broad set of benchmarks and across multiple

verification tools;

e we show how this approach can be leveraged to terminate unsolvable instances
early in the verification process, leading to savings of 64% in terms of running
time on average with a comparable number of solved instances relative to the

current state-of-the-art approach.

5.1 Method

As previously explained, solving the neural network verification task is computationally
challenging. In addition, it is not known what makes certain instances harder to
solve than others. Therefore, it cannot be decided a priori whether an instance could
be solved successfully within a given time budget, potentially leading to ineffective
resource allocation; i.e., allocating compute time to unsolvable instances. In light of
this, we leverage running time prediction techniques to classify instances as solvable
or unsolvable within a given time budget. This allows us to greatly accelerate the

verification procedure, by ensuring that resources are only spent on solvable instances.

5.1.1 Problem Formulation

As we are interested in the task of terminating instances that cannot be solved within

a given time budget, we consider a binary classification problem. Hence, the vector y

88

Chapter 5. Dynamic Algorithm Termination for BaB-based NNV

introduced in Chapter 2 contains as performance measures binary variables describing
whether an instance has been solved or not.

Our goal is to reduce the computational burden demanded by the verification
procedure, ensuring the most effective use of resources by not spending the full budget
on unsolvable instances. In addition, we need to avoid classifying solvable instances as
unsolvable; otherwise, the number of certified instances would be reduced, which might

lead to inaccurate conclusions about the robustness of a given neural network.

5.1.2 Dynamic Algorithm Termination for BaB-based Neural

Network Verification

As explained in Chapter 2, to perform running time prediction, we need to define a
feature space F from which we can obtain a list of features z characterising a problem
instance Specifically, we utilise cheaply computable features that, in part, relate directly
to the internal operations of the given verifier.

We distinguish between static and dynamic features, where the former are computed
only once and do not change during the solving process. Examples of static features
include the lower bound obtained by an incomplete verification method at the beginning
of the verification process. Conversely, dynamic features aim to capture the dynamically
changing state of the verification algorithm at any point in time; examples include the
current number of nodes in the BaB tree and the current global bounds. Generally,
static features reflect the inherent complexity of the verification instance, while dynamic
features capture the progress made thus far in solving the query. A detailed discussion
of the features we have developed is provided later in this section.

To best leverage the evolving nature of our dynamic features, we propose a novel
method that dynamically terminates verification queries when a classification model
determines that the given instance will not be solved in the remaining time budget. We
give a schematic overview of our method in Algorithm 1. The procedure is parameterised
by the frequency tg.cq at which the current progress of the verification process is assessed
to predict whether the given instance will be solved in the remaining time, and by the
maximum allotted running time per instance, teutor- We refer to the points in time
at which the verification query is examined as a checkpoint. For each checkpoint, we
train a classifier C; with ¢ denoting the time of the checkpoint. C; is trained on the
feature values of the verification instances in the training set at time ¢ along with their
corresponding label indicating whether the instances were solved within t.,o seconds.

In addition, we trained the classifier on verification instances from our training set that

89

5.1. Method

were successfully solved before the current checkpoint with their feature values when
the verification process was completed; thereby, the classifier can learn, which feature
values define a completed instance.

Furthermore, our proposed method is configurable via a confidence parameter 6,
which defines the threshold that the prediction value for the positive class must exceed
such that an instance is labelled accordingly. The incorporation of this parameter
ensures that a user can choose whether the algorithm should stop potentially unsolvable
instances as soon as possible (# = 0.5) or whether, in case of doubt, more information
should be collected. The verification algorithm is then terminated only in case of a
highly confident classifier prediction (6§ = 0.99). We note that 6 can also be understood
as a tuning parameter between exploitation and exploration. Therefore, 6 should be
chosen according to the user’s needs, prioritising either a substantial reduction of the
computational burden or a higher number of certified instances.

In summary, our method operates as follows. Given tgeq, teutosf, 0, @ verification
algorithm, a neural network and a training set of verification instances, we initially
collect feature values for each training instance at every checkpoint ¢ by executing the
verification algorithm on each query for tcutof seconds. In addition, we record whether
the instance was solved or not. Subsequently, we train a classification model C} for
every checkpoint t on the collected data. During classification, given a verification
query, we start by executing the verification algorithm for ¢.q seconds to collect an
initial set of features for the given instance. Thereafter, we employ the classifier for the
first checkpoint to predict whether the instance will be solved in the remaining time
budget. If the confidence of this prediction exceeds 6, we terminate the verification
run for the given instance and record its result as unknown; otherwise, we continue
the verification process for tgeq seconds and update the dynamic instance features
accordingly. Next, we query the classification model for the following checkpoint and
decide whether to terminate the run. We repeat this process until the verification

algorithm solves the instance under consideration or reaches the given cutoff time.

5.1.3 Static Instance Features

To perform running time prediction, we need to define instance features that allow us
to make performance predictions for a given algorithm. We begin by introducing our
proposed static features.

Prediction margin (A). This feature is defined as the difference between the two

highest class scores. i.e., given a neural network f with input zg € X and corresponding

90

Chapter 5. Dynamic Algorithm Termination for BaB-based NNV

Algorithm 1 Dynamic termination for BaB-based neural network verification

1: Input: Verification instance (zg, €); maximum per-instance running time tcutofr;
dynamic termination frequency tg.eq; set of classifiers C = {Cy;,.., Cotrroqs - - - » Conron }3
confidence parameter §; verification algorithm VERIFY((x,€), treq) that pauses
after tgoq seconds to return the features and result of the instance.
Output: result or unknown
solved, features <~ VERIFY((, €), tfreq)
telapsed <~ tfreq
while — solved and t¢japsed < tcutog do
if i), peeq (features) > 6 then
return unknown
else
solved, features <— VERIFY((zo, €), treq)
telapsed — telapsed + tfreq
end if
: end while
: return solved

e

correct label yo € YV, we have A := f, (x9) — maxycy\y, fy(To), where f, refers to the
output for class y. The prediction margin can be seen as a proxy for the closeness of
the input image to the decision boundary. It heuristically captures how much change
in the input space is required to change the neural network’s prediction and, thus, the
likelihood of an adversarial attack succeeding. This feature has recently been used in
the context of adversarially robust model selection [64].

Initial Incomplete Bound. Each verifier we consider first attempts to solve the
verification instance using an incomplete method. We utilised the resulting global
upper and lower bounds as features.

Improved Incomplete Bound. If the initial problem bounds do not suffice to
solve the problem, Oval and a8-CROWN follow up with a tighter bounding method to
further optimise last layer bounds. The initial and improved bounds give an estimate
of how much improvement on the lower bound is realisable through (incomplete) bound
optimisation methods. Furthermore, these bounds are the starting point for BaB and,
thus, indicate the improvements required during BaB for solving the problem.

Initial Percentage of Safe Constraints. While VeriNet does not employ bound
optimisation, the first call to the LP solver with the initial SIP bounds can already
determine that some (or all) linear equations are unsatisfiable; these output constraints
do then not have to be examined further during BaB. Thus, the percentage of initial
safe constraints also provides an indication of the additional computation VeriNet will

require subsequently.

91

5.1. Method

Adversarial Attack Margin. Each of the considered verifiers initially carries
out an adversarial attack that seeks to minimise the margin between the correct and
incorrect classes. If the attack remains unsuccessful, its output can still be utilised
to estimate the upper bound of the verification problem. Therefore, we included the
adversarial attack margin, i.e., the difference between the two highest scoring classes on
the adversarial candidate, as an estimation of the upper bound of the given verification
instance.

Number of Unstable Neurons. Lastly, we also included the absolute number of
unstable neurons in our feature set. This number does not only indicate how many
non-linearities have to be approximated but also bounds the maximum depth of the
BaB tree.

5.1.4 Dynamic Instance Features

The dynamic features of BaB-based verification instances are subject to change during
the BaB process, as they capture the progress made while solving the given problem
instance.

Branch Characteristics. We included the number of wvisited branches that are
already bounded as well as the total number of branches, also including those that
have been created through branch splits but still need to be bounded. We further
included the fraction of verified branches; these correspond to the leaves of the BaB
tree and do not need to be split further. Once this number reaches a value of 1, the
verification system has proven that the property holds.

Current Global Bounds. Furthermore, we included the current global bounds of
the BaB tree. When the MIP formulation of the problem was solved by a-CROWN, we
also recorded the resulting global bounds. This constitutes another way of capturing the
progress of the given query, as once any global bound changes its sign, the verification
process has been completed.

Depth of the BaB Tree. One important characteristic of the BaB tree that
indicates instance complexity is its current depth, as it indicates how many neuron
splits are present in the leaf nodes.

Number of GPU Batches. For Oval and a-CROWN, which perform the BaB
algorithm in batches on a GPU, we included the number of batches that have been
already computed. This feature enables a running time predictor to relate the BaB
features to the internal operations of the verifiers.

Batch Computation Time. In addition, we computed the time used for the

92

Chapter 5. Dynamic Algorithm Termination for BaB-based NNV

computation of the last completed batch; this number indicates the computational
hardness of the problem instance at hand, also in relation to the execution environment
used for running the verifier. If feature collection occurs while a batch is still being
processed, we additionally considered the computation time already spent on that
batch.

5.1.5 Classification Model

For each checkpoint, we trained a random forest classifier with 200 decision trees and
otherwise default hyperparameter settings. It has been shown in the past that random
forests perform very well in the context of running time prediction tasks [48]. We also
experimented with automatic hyperparameter configuration using auto-sklearn [30],
but did not observe substantial improvements. Before training and classification, all
features were standardised, i.e., we removed the mean of each feature and scaled it to
have unit variance, using the mean and standard deviation of each feature over the

training set.

5.2 Experiments

We evaluated our approach on several benchmarks, which we will introduce in the
following, along with details on the performance data collection and feature computation
process.

Each benchmark was run on a compute cluster node equipped with two Intel Xeon
Platinum 8480-+ processors with 56 cores and a cache size of 106MB, 2TB of RAM
and four NVIDIA H100 GPUs with 80GB of video memory, running Rocky Linux 9.4.
Each run utilised 28 CPU cores, one GPU and 448GB of RAM.

5.2.1 Benchmarks

We considered a wide and diverse set of benchmarks taken from the ERAN repository
[86, 99] and the VNN Competition [10, 87, 3], which have been commonly used by the
neural network verification community [60, 10, 87, 3, 111, 99].

For our evaluation, we included two usage scenarios. First, we considered an
approach aligned with an end-user’s needs in assessing the robustness of a neural
network. Here, we verified the correctly classified images from the first 1000 test
set instances. We also included a competition scenario, where we generated problem

instances according to the VNN Competition instance generation protocols.

93

5.2. Experiments

In the first scenario, we included two convolutional (Conv Big and Conv Small)
and two fully connected networks (5 100 and 8 100) trained on the MNIST dataset
that were taken from the ERAN repository. For the CIFAR-10 dataset, we considered
a small ResNet proposed by Wang et al. [111] (ResNet 2B). We verified the first 1000
test images against [, perturbations with e-values chosen in line with those used in
previous studies [60, 111, 96].

For the second scenario, we included benchmarks directly taken from different
editions of the VNN competition [10, 87, 3]. We employed the instance generation
scripts provided in the competitions to generate 500 instances per benchmark that
follow specific selection criteria such as correct classification or robustness against
adversarial attacks. Concretely, we included the Marabou, Oval21, SRI ResNet and
ViT benchmarks that consist of networks trained on the CIFAR-10 dataset. If the
benchmarks included multiple networks or € value specifications, we chose the configu-
rations that yielded the most timeouts in the VNN competition, ¢.e., the presumably
most challenging problem instances.

Lastly, we included two benchmarks from the VNN Competition that consider the
more complex CIFAR-100 and Tiny ImageNet datasets [87]. For both datasets, we
chose the medium-size models for our evaluation. With this collection of networks and
benchmarks, we ensured to include instances that have been studied extensively in the

literature and that are challenging to solve by state-of-the-art verification tools.

5.2.2 Evaluation Setup

We first collected all performance data and feature values by running the verification
tools and saving the result of the verification query, the consumed running time and
the values of the considered instance features during the verification procedure. In
Table 5.1, we report the number of solved instances and the running time for each
verification tool and benchmark Missing values indicate that the benchmarks could not
be used with the respective verification tools, due to unsupported network architectures.

We then evaluated our method by simulating it on the collected data. Generally,
we followed a 5-fold cross validation protocol. To ensure that our training and testing
sets were representative, we included in each fold the same proportion of verification
instances solved before the first checkpoint, after the first checkpoint and unsolved
instances; however, we only report metrics on instances that ran beyond the first
checkpoint, as otherwise, we would predict timeouts after the instance has already

been solved.

94

Chapter 5. Dynamic Algorithm Termination for BaB-based NNV

af-CROWN VeriNet Oval
Benchmark 4 Inst. # Solved [GP:FIIIHES 4 Solved [GP',TI}H;S 4 Solved [G;I}“;j
5 100 960 868 31.44 580 66.65 430 90.77
8 100 947 767 41.32 501 76.64 387 94.69
Conv Big 929 918 1.50 868 11.29 842 15.34
Conv Small 980 979 1.26 931 11.96 958 6.06
ResNet 2B 703 619 15.16 576 22.72 - -
Marabou 500 193 51.73 176 54.28 187 53.32
Oval21 500 210 50.47 158 58.45 201 52.50
ViT 500 251 41.86 - .- -
SRI ResNet A 500 198 51.74 133 62.01 - -
CIFAR-100 500 361 24.73 279 40.25 - -
Tiny ImageNet 500 421 14.63 356 29.47 - -

Table 5.1: Overview of benchmarks used in our evaluation, including the number of certified
instances and running time for each verification tool. Instances are from the first 1000 test
set images for the first 5 benchmarks and otherwise from the VNN Competition [10, 87, 3]
instance selection procedure. All experiments used a per-instance timeout of 600 seconds and
GPU acceleration.

We evaluated the performance of our method in terms of accuracy, true positive
rate (TPR) and false positive rate (FPR). The TPR reflects the fraction of correctly
classified timeouts out of all unsolved instances while the FPR indicates the fraction
of solved instances wrongly classified as timeouts out of all solved instances. On the
convolutional networks for af-CROWN, some folds did not include true negatives or
true positives. If these folds were used as the holdout set, we excluded them when
computing the average TPR and FPR. In addition, we also compared our method to
the standard verification procedure in terms of the overall number of solved instances

(including those completed before the first checkpoint) and the required running time.

To run the verification algorithms, we used the configurations provided by the
respective authors for their entries in the VNN Competitions. We chose a maximum
running time of 600 seconds in wall-clock time per instance (tcutor = 600s) and
predicted whether the instance will be solved within the remaining time budget every
10 seconds (tgeq = 10s). Lastly, we set the decision threshold 6 to 0.99 to ensure that

our method solves as many instances as possible.

95

5.3. Results and Discussion

af-CROWN VeriNet Oval
Benchmark Acc. TPR FPR Acc. TPR FPR Acc. TPR FPR
5100 0.99 095 0.00 0.89 0.87 0.04 0.97 0.96 0.00
8 100 099 099 0.00 0.92 091 0.02 0.99 0.99 0.07
Conv Big 0.47 043 0.00 0.88 0.74 0.00 0.78 0.75 0.05
Conv Small 0.82 1.00 0.20 0.81 0.39 0.00 0.79 0.09 0.00
ResNet 2B 098 0.98 0.00 0.77 0.71 0.00 - - -
Marabou 099 099 0.10 0.93 095 0.53 0.96 0.96 0.13
Oval21 097 098 0.05 0.89 0.88 0.07 0.96 0.95 0.03
ViT 1.00 1.00 0.00 - - - - - -
SRI ResNet A 099 1.00 0.02 0.91 0.90 0.00 - - -
CIFAR-100 0.99 1.00 0.03 0.85 0.79 0.00 - - -
Tiny ImageNet 098 099 0.03 0.88 0.67 0.00 - - -

Table 5.2: Results for timeout prediction with continuous feature collection in terms of
accuracy, true positive and false positive rate as averages over five folds. We display results for
0 = 0.99, i.e., the confidence threshold that must be reached before an instance is terminated.

5.3 Results and Discussion

In the following, we present results from our experimental evaluation of our dynamic
algorithm termination method for the various verification algorithms we considered,
and we show how our approach can be leveraged to allocate available resources more
efficiently by terminating instances that will result in timeouts earlier in the verification

process.

5.3.1 Classification Metrics

We report the classification metrics of our proposed method in Table 5.2 as averages over
all five folds. We obtained very high TPR scores while maintaining a FPR close to 0 for
most verifiers and benchmarks. Concretely, on average, our classifier correctly identified
85% of timeouts while incorrectly classifying 5% of solvable instances. Noticeably,
across all verifiers, there were several benchmarks with TPRs above 90% and FPRs of
almost zero. Lower TPR scores on the Conv Big and Conv Small benchmarks were
due to the relatively small number of timeouts occurring in these benchmarks, leading
to a lack of training examples for this class. Similarly, we observed higher FPR scores
for the Marabou benchmark. This is likely due to the small number of queries solved

after the first checkpoint, again resulting in less diverse training data.

96

Chapter 5. Dynamic Algorithm Termination for BaB-based NNV

af-CROWN VeriNet Oval
Benchmark Time [GPU h] # Solved Time [GPU h] # Solved Time [GPU h] # Solved
5 100 21.97 (70%) 868 (+0) 18.81 (28%) 576 (-4) 7.88 (9%) 430 (40)
8 100 17.86 (43%) 766 (-1) 16.75 (22%) 500 (-1) 3.57 (4%) 386 (-1)
Conv Big 1.01 (68%) 918 (£0) 548 (49%) 868 (£0) 6.36 (41%) 841 (-1)
Conv Small 1.00 (80%) 969 (-10) 11.30 (94%) 931 (+0) 6.08 (100%) 958 (+0)
ResNet 2B 430 (28%) 619 (+0) 10.45 (46%) 576 (+0) - - - -
Marabou 247 (5%) 192 (1) 6.36 (12%) 168 (-8) 4.97 (9%) 185 (-2)
Oval21 7.57 (15%) 207 (-3) 15.04 (26%) 155 (-3) 10.02 (19%) 199 (-2
ViT 2.00 (5%) 251 (&0) - - - - - - -
SRI ResNet A 3.86 (7%) 197 (-1 8.71 (14%) 133 (&0) - - -
CIFAR-100 5.10 (21%) 360 (-1) 19.37 (48%) 279 (+0) . - - -
Tiny ImageNet ~ 4.58 (31%) 420 (-1) 19.92 (68%) 355 (-1) . - .

Table 5.3: Results for dynamic termination of verification queries with § = 0.99. We
display the running time and the number of solved instances accumulated over five folds. In
parentheses, we provide the fraction of running time used and the difference in the number of
solved instances compared to the standard verification procedure.

5.3.2 Dynamic Algorithm Termination

We display the results of our method in terms of total cumulative running time and
number of solved instances aggregated over all folds for each benchmark and verifier in
Table 5.3.

Most importantly, we obtained substantial speed-ups, while only a small amount
of solvable instances was terminated prematurely. On average, our approach solved
comparably many instances in 36% of the original running time. Notably, the largest
acceleration occurred on the Marabou benchmark, where up to 95% of the standard
running time could be saved. However, we also observed moderate penalties in terms of
the absolute difference of solved instances for the Marabou benchmark on VeriNet and
the Conv Small benchmark on a3-CROWN, due to the reasons stated earlier. Moreover,
on several benchmarks, all solvable instances were certified using substantially reduced
running time; e.g., the 5 100 benchmark for Oval and a-CROWN or the ResNet A
benchmark for VeriNet.

Overall, we found that our approach substantially improves neural network verifica-
tion in terms of running time of several verification algorithms on a broad range of

benchmarks.

5.4 Conclusions and Future Work

In this study, we have shown that the computational resources demanded by neural
network robustness verification can be greatly reduced by identifying and terminating

runs on verification instances that will not be solved within their remaining time budget.

97

5.4. Conclusions and Future Work

This answers the third research question (RQ3) of whether and to which extent we
can predict the running time of a given verification algorithm for a specific problem
instance: although it seems impossible to precisely extrapolate the running time to
previously unseen instances, we show that a timeout can be reliably predicted for a
given instance and time budget. Concretely, we showed that our method accelerates
the verification procedure by 64% on average compared to the current state-of-the-art
approach across a diverse set of benchmarks from the verification literature, while
certifying a comparable number of instances. To predict whether an instance will be
solved, we leveraged running time prediction techniques that employ novel static and
dynamic features capturing both characteristics of the verification instance as well as
features related to the internal operations of the given verifier.

The success of the proposed method was enabled by several design decisions. First,
we leveraged the evolving nature of our dynamic features by regularly predicting
timeouts throughout the verification procedure. Moreover, we included a confidence
parameter 6 that controls the threshold the prediction value of the timeout class must
exceed before an instance is terminated. Using this parameter, a user can adjust the
method to either prioritise savings in compute resources or a higher number of solved
instances. We show that for a high value of # our method substantially accelerates
the verification procedure while solving comparably many instances as the standard
verification.

In future work, we seek to extend our approach to further BaB-based verification
approaches (e.g., MN-BaB). Furthermore, we plan to investigate if our proposed
features could be applied in other contexts, such as algorithm selection or satisfiability
prediction. Lastly, we are interested in further studying the running time prediction
capabilities of our features, possibly enabling empirical scaling models of BaB-based

verification.

98

