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Chapter 4

Speeding Up MIP-Based Neural
Network Verification via
Automated Algorithm
Configuration

As outlined in the previous chapter, formal network verification methods tends to be
computationally expensive, making it difficult to verify networks with a large number
of units and/or on a large number of inputs. At the same time, we have shown that
there exist performance complementarity among different verification algorithms. This
can be exploited by constructing algorithm portfolios in a principled manner; i.e.,
constructing them in such a way that they contain a set of solvers that complement
each other in the most effective way possible.

As mentioned in Chapter 2.2.3, it is possible to formulate the verification task as a
constraint optimisation problem using mixed integer programming (MIP). In light of
this, recent work by Tjend et al. [104] presented a verification tool, called MIPVerify,
which formulates the verification task as a minimisation problem, which is then solved
using a commercial MIP solver. More specifically, the optimisation task is to apply a
perturbation to the original sample that maximises model error, while staying close
to the initial example, i.e., keeping the distance at a minimum. In other words, the
verifier takes an image and a trained neural network as inputs and produces either
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an adversarial example or, if the optimisation problem cannot be solved, a certificate
of local robustness. While MIPVerify can verify a larger number of instances than
previous methods, such as those from the works of Wong et al. [113], Dvijotham et al.
[26] or Raghunathan et al. [93], it is computationally costly (in terms of CPU time
required per verification query). Specifically, depending on the classifier to be verified,
we found that some instances required several thousand CPU seconds of running time
of the MIP solver, while a sizeable fraction of instances could not be solved at all, even
within a rather generous time limit of 38 400 CPU seconds per sample.

The same holds for other MIP-based verification systems, such as Venus [8]. Here,
our experiments showed that, depending on the classifier to be verified, the computa-
tional cost per query remains subject to great variance as outlined above, with many
instances resulting in timeouts.

We note that, to date, the performance of MIPVerify and Venus has not been
compared directly, which motivates our decision to consider both as contributors to
the state of the art in MIP-based neural network verification.

Previous work has demonstrated that automated configuration of MIP solvers can
yield substantial improvements [46, 44, 45, 76]. Building on these findings, we seek to
improve the performance of MIP-based neural network verification tools by leveraging
automated algorithm configuration techniques to optimise the hyperparameters of the
solver at the heart of these verifiers. As such, the proposed method can be used
regardless of the underlying MIP problem formulation, and its improvements are
orthogonal to any advances made with regard to the formulation. Put differently, we
argue that automated algorithm configuration can benefit any verification approach
relying on MIP solving or similar techniques.

Automated algorithm configuration of neural network verification engines is a non-
trivial task and comes with several challenges. Most prominently, the high running times
and heterogeneity/diversity of instances pose problems that are not easily solved by
standard configuration approaches, such as SMAC [45]. More precisely, we consistently
found in our experiments that a single configuration could not significantly improve
mean CPU time over the default. In fact, we observed that a single configuration
could achieve a 500-fold speedup on a given instance over the default, but then time
out on another, which the default, in turn, could solve. Therefore, we decided to
adapt Hydra [116], an advanced approach that combines algorithm configuration and
per-instance algorithm selection, to automatically construct a parallel portfolio of MIP
solver configurations optimised for solving neural network verification problems.

We demonstrate the effectiveness of our approach for both aforementioned verifica-
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tion tools. These systems both rely on MIP solving, yet they are conceptually different
enough to show the generalisability of our method. To the best of our knowledge,
ours is the first study to pursue this direction. In brief, the main contributions of this
chapter are as follows:

• A framework for automatically constructing a parallel portfolio of MIP solver
configurations optimised for neural network verification, which can be applied to
any MIP-based verification method;

• an extensive evaluation of this framework on two well known verification engines,
namely Venus [8] and MIPVerify, improving their performance on (i) SDPdMLPA

- an MNIST classifier designed for robustness [93], (ii) mnistnet - an MNIST
classifier from the neural network verification literature [8] and (iii) the ACAS
Xu benchmark [51, 55].

On the SDPdMLPA benchmark, we achieved substantial improvements in CPU
time by average factors of 4.7 and 10.3 for MIPVerify and Venus, respectively, on a
solvable subset of instances from the MNIST dataset. This subset excludes all instances
that cannot be solved by any of the baseline approaches we consider. Beyond that, the
number of timeouts was reduced by a factor of 1.42 and 1.6, respectively.

On the mnistnet benchmark, we again achieved substantial improvements in CPU
time, this time by average factors of 1.61 and 7.26 for MIPVerify and Venus, respectively,
on solvable instances. We furthermore reduced timeouts on this benchmark by average
factors of 1.14 and 2.81, respectively.

Finally, we strongly improved the performance of the Venus verifier on the ACAS
Xu benchmark, attaining a 2.97-fold reduction in average CPU time. We note that
on this benchmark, we found MIPVerify to be unable to solve most of the instances
within the kinds of computational budgets considered in our experiments.

4.1 Background

The following section provides details of MIP-based neural network verification algo-
rithms. It further puts focus on the limitations of current approaches and introduces
the concepts behind automated algorithm configuration and portfolio construction.
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4.1. Background

4.1.1 MIP-Based Neural Network Verification

MIPVerify combines and extends existing approaches to MIP-based robustness veri-
fication [17, 75, 25, 32] and presents a verifier that encodes the network as a set of
mixed-integer linear constraints. Following [104], a valid adversarial example x′ for
input x with true class label λ(x) (encoded as integer) corresponds to the solution to
the problem where we minimise:

d(x′, x) (4.1)

subject to
argmaxi(fi(x

′)) ̸= λ(x) (4.2)

x′ ∈ (G(x) ∩Xvalid), (4.3)

where d(·, ·) denotes a distance metric (e.g., the l∞-norm), fi(·) is the i-th network
output (i.e., indicating whether it predicts the input to belong to the i-th class) and
G(x) = {x′ | ∀i : −ε ≤ (x − x′)i ≤ ε}. Intuitively, G(x) denotes the region around
an input x corresponding to all allowable perturbations within a pre-defined radius ε.
Xvalid represents the domain of valid inputs (e.g., the pixel value range of a normalised
image, in case of image classification). Note that this formulation assumes that the
network predicts a single class label for each observation (i.e., the arg max operator in
Eq. 4.2 returns a single element); other behaviour is undefined.

MIPVerify achieves speed-ups through optimised MIP formulations or, more specifi-
cally, tight formulations for non-linearities and a pre-solving algorithm that reduces the
number of binary variables, i.e., the number of unstable ReLU nodes. More specifically,
the information provided by G(x) is used to reduce the interval of the input domain
propagated through the network during the calculation of the pre-activation bounds.
This is combined with progressive bounds tightening, which represents a method for
choosing procedures to determine pre-activation bounds, i.e., interval arithmetic or
linear programming, based on the potential improvement to the problem formulation.

The MIP-based verifier Venus [8] achieves performance gains over previous meth-
ods, such as NSVerify [1], through dependency-based pruning to reduce the search
space during branch-and-bound and combines this dependency analysis approach with
symbolic interval arithmetic and domain splitting techniques.

Moreover, both [104] and [8] report state-of-the-art performance on various network
architectures and datasets but their tools consume very substantial amounts of CPU
time. Depending on the classifier to be verified, we observed that finding a solution
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can easily take up to several hours of computation time for a single instance. Network
verification can therefore turn into an extremely time-consuming endeavour, even for a
relatively small dataset, such as MNIST. At the same time, a verifier fails to maintain
the premise of completeness, meaning that it can certify every input example it is
presented with if many instances are subject to timeouts, which we also found to be
the case for the verification methods considered in this study.

4.1.2 Automated Configuration of MIP Solvers

Commercial tools for combinatorial problem solving usually come with many hyper-
parameters, whose settings may have strong effects on the running time required for
solving given problem instances. Deviating from the default and manually setting these
performance parameters is a complex task that requires extensive domain knowledge
and experimentation, and can be automated using algorithm configuration techniques,
which are outlined in Section 2.3.

In this study, we use SMAC [45], a widely known, freely available, state-of-the-art
configurator based on sequential model-based optimisation (also known as Bayesian
optimisation). The main idea of SMAC is to construct and iteratively update a
statistical model of target algorithm performance (specifically: a random forest regressor;
[9]) to guide the search for good configurations. The random forest regressor allows
SMAC to handle categorical parameters and therefore makes it suitable for MIP solvers,
which have many configurable categorical parameters; SMAC has been shown to
improve the performance of the commercial CPLEX solver over previous configuration
approaches on several widely studied benchmarks [45].

4.1.3 Automatic Portfolio Construction

As mentioned in Section 2.4, for the configuration procedure to work effectively, the
problem instances of interest have to be sufficiently similar, such that a configuration
that performs well on a subset of them also performs well on others. In other words,
the instance set should be homogeneous. If a given instance set does not satisfy
this homogeneity assumption, automated configuration likely results in performance
improvements on some instances, while performance on others might suffer, making it
difficult to achieve overall performance improvements.

This problem can be addressed through automatic portfolio construction [116, 52,
78, 72]. The general concept behind automatic portfolio construction techniques is to
create a set of algorithm configurations that are chosen such that they complement
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Figure 4.1: Schematic diagram of the proposed framework.

each other’s strengths and weaknesses. This portfolio should then be able to exploit
per-instance variation much more effectively than a single algorithm configuration,
which is designed to achieve high overall performance but may perform badly on certain
types or subsets of instances.

More specifically, Hydra [116] automatically constructs portfolios containing multi-
ple instances of the target algorithm with different configurations. The key idea behind
Hydra is that a new candidate configuration is scored with its actual performance only
in cases where it works better than any of the configurations in the existing portfolio,
but with the portfolio’s performance in cases where it performs worse. Thereby, a con-
figuration is only rewarded to the extent that it improves overall portfolio performance
and is not penalised for performing poorly on instances for which it should not be run
anyway. More details can be found in Chapter 2.4.

Once a portfolio has been constructed, there are essentially two ways to leverage
the performance complementarity of the configurations contained in the portfolio. The
first option is to extract instance-specific features and use those to train a statistical
model that predicts the performance of each configuration in the portfolio individually.
These predictions can then be used to select the configuration with the best-predicted
performance (see, e.g., Xu et al. [118]). Alternatively, all configurations can be run in
parallel on a given problem instance, which implicitly ensures that we always benefit
from the best-performing configuration in the portfolio, at the cost of increased use
of parallel resources. An empirical comparison between both approaches has been
presented by Kashgarani et al. [54].
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Figure 4.2: Performance comparison of the configurations in the portfolios constructed
for (a) MIPVerify and (b) Venus on the mnistnet benchmark. The plots show, that each
configuration outperforms the other on some instances, while none of the configurations is
dominating in performance across the entire benchmark set. This illustrates the complementary
strengths of the configurations, which are exploited through portfolio construction. Note that
there are also several instances on which one of the configurations reaches the time limit, but
which are solved by the other. These are not shown in the figure due to the scaling of the
axes. The diagonal line indicates equal performance of the two configurations.

4.2 Network Verification with Parallel MIP Solver

Portfolios

In order to reduce complexity, [104] mainly focused on reducing the number of variables
in the verification problem. On the other hand, [8] rely on pruning the search space
during the branch-and-bound procedure. However, the embedded MIP solver and
its numerous parameters were left untouched in both cases. More specifically, both
methods employed a commercial MIP solver with default settings. This decision, along
with their problem formulation, forms the starting point for our work.

More concretely, we seek to improve the performance of MIP-based neural network
verification through configuring the MIP solver embedded in these systems, and
constructing a portfolio of solver configurations optimised for the benchmark set at
hand; Figure 4.1 provides an overview of the framework we propose. In brief, for a
given network-example pair, we employ the verifier with several, differently configured
instances of the embedded MIP solver. This portfolio of solvers is run in parallel and
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finishes once one solver has returned a solution or a global time limit has been reached.

In the following sections, we describe details of the configuration procedure as well
as the MIP solver we configured.

4.2.1 Configuration Procedure

In this study, we configure the commercial MIP solver Gurobi; see Section 4.2.2 for
further details. Though it should be noted that, in principle, our approach works for
any MIP solver.

The configuration procedure employs running Hydra over a predefined set of itera-
tions to construct a portfolio of solver configurations with complementary strengths.
The number of iterations is a hyper-parameter of the Hydra algorithm and has to be
specified by the user. Since we cannot know the optimal portfolio size for a given
benchmark in advance, we run Hydra over a reasonably larger number of iterations and,
once the procedure has finished, discard configurations that did not improve portfolio
performance on the validation set, i.e. that led to stagnation or reduction in total
CPU time compared to the previous iteration. Note that the portfolio can contain the
default configuration of the MIP solver.

Interestingly enough, we consistently observed strong heterogeneity among the
instances in our benchmarks sets, making the use of a single configuration, i.e., a
portfolio of size 1, ineffective. This is illustrated in Figure 4.2: Employing two different
configurations individually on the same benchmark set shows that none of them
outperforms the other, i.e., consistently achieves better performance across the entire
set of instances. Combining both configurations into a portfolio, however, makes use of
the complementary strengths of the configurations, and thereby achieves the highest
overall performance, which motivates our choice of the portfolio approach.

Leveraging standard multi-core CPU architectures, we run the configurations in
the portfolio in parallel until one of them returned a solution or until an overall limit
on CPU time was exceeded. We note that, in principle, automated algorithm selection
(see, e.g., [66]) could be used to determine from this portfolio the configuration likely
to solve any given instance most efficiently, though this requires substantial amounts of
training data and creates uncertainty from sub-optimal choices made by the machine
learning technique at the heart of such selection approaches.
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4.2.2 MIP Solver

Following Tjeng et al. [104] and Botoeva et al. [8], we used the Gurobi MIP solver with
a free academic license. Using the online documentation on Gurobi’s parameters, we
selected 62 performance-relevant parameters for configuration. These parameters can
be categorical, e.g., the simplex variable pricing strategy parameter can take the values
{Automatic (-1), Partial Pricing (0), Steepest Edge (1), Devex (2), and Quick-Start
Steepest Edge (3)}, or continuous, e.g., the parameter controlling the magnitude of
the simplex perturbation can take any value in the range {0, ∞}.

To control and limit the computational resources given to the solver, we fixed the
number of CPU cores, i.e., the parameter Threads, to the value of 1. Thereby, we also
ensure that the solver is optimised in such a way that it uses minimal computational
resources, which, in turn, allows for more efficient parallelisation. In contrast, the
default value of this parameter is an automatic setting, which means that the solver
will generally use all available cores in a machine. There are further parameters that
have an automatic setting as one of their values. In those cases, we allowed for the
“automatic” value to be selected, but also other values.

While configuring the MIP solver embedded in MIPVerify is a rather straightforward
task, additional considerations arise when configuring the solver embedded in Venus.
Essentially, Venus can run two modes, which lead to changes in the configuration
space of the MIP solver: (i) Venus with ideal cuts and dependency cuts activated
(default mode), in which case several cutting parameters are deactivated in Gurobi

and therefore should be left untouched during the configuration procedure; (ii) Venus

with its cutting mechanism deactivated, which allows for Gurobi’s full parameter
space to be optimised upon. Along with other, previously mentioned challenges, these
considerations illustrate the complexity of adapting automated algorithm configuration
techniques to the domain of neural network verification.

In order to maximally exploit the potential of automated hyperparameter optimisa-
tion, we decided to provide the configurator with full access to the configuration space
and, thus, employ Venus with ideal cuts and dependency cuts deactivated and Gurobi’s
cutting parameters activated during portfolio construction.

4.3 Setup of Experiments

We test our method on several benchmarks, which will be introduced in the follow-
ing, along with the objective of our configuration approach and the computational
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environment in which experiments were carried out.

4.3.1 Configuration Objective

The objective of our configuration experiments is to minimise mean CPU time over
all instances from the benchmark set. This choice deviates from the commonly used
performance metric in the neural network verification literature, where evaluation is
typically performed by operating on a fixed number of CPU cores while measuring
wall-clock time. However, we do not consider wall-clock time a sensible performance
measure when the evaluated methods use different numbers of cores. Instead, we decide
to capture performance by means of CPU time, as it compensates for the possible
difference in utilised cores. In other words, by choosing CPU time over wall-clock time,
we ensure a more rigorous performance evaluation of our method as well as the baseline
approaches, as one could easily gain performance in terms of wall-clock time through
parallelisation, while heavily compromising in CPU time. Furthermore, we consider
CPU time to be the more sensible performance measure, due to the cost associated with
computational efforts. In fact, the rates for cloud services increase with the number of
cores in a machine.

Generally, if the cost metric is running time, configurators typically optimise
penalised average running time (PAR), notably PARk, as the metric of interest, which
penalises unsuccessful runs by counting runs exceeding the cutoff time tc as tc × k. In
line with common practice in the algorithm configuration literature, we use k = 10 and
refer to the cost metric as PAR10.

4.3.2 Details of the Configuration Procedure

The parameters for the configuration procedure were set as follows. Hydra ran over a
predefined set of four iterations, during which it performed two independent runs of
SMAC with a time budget of 24 hours each. Thus, running Hydra took 4×2×24 = 192

hours for training, in addition to a variable amount of time spent on validation. In
theory, the number of iterations could be set to a larger value; however, we refrained
from this to keep our experiments within reasonable time frames. Lastly, we set k = 1,
which means that after every run, Hydra added one configuration to the portfolio,
i.e., the configuration that yielded the largest gain in overall training performance.
The final output, therefore, is a portfolio containing a minimum number of 1 and a
maximum number of 4 solver configurations.
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4.3.3 Data

Our benchmark sets were comprised of randomly chosen verification problem instances
created by MIPVerify and Venus, respectively, using the network weights of two MNIST
classifiers as well as the property-network pairs from the ACAS Xu repository [51, 55].
ACAS Xu contains an array of neural networks trained for horizontal manoeuvre
advisory in unmanned aircraft. The MNIST classifiers were taken from the works of
[104] and [8], respectively, and used to cross-test each verifier on both networks. The
ACAS Xu benchmark was chosen to find out whether a high diversity in networks (the
ACAS Xu repository contains 45 different neural networks) poses any challenges to the
configuration procedure.

MNIST. Firstly, we created problem instances using the network weights of the
robust classifier SDPdMLPA from [93]. Among the networks considered in the work of
[104], we regard this one as the most difficult to verify, since it shows the largest average
solving times and optimality gaps for many examples, even compared to classifiers
trained on the typically more challenging CIFAR-10 benchmark. Secondly, we used
the weights of the network mnistnet from the Venus repository [8], which is the only
MNIST classifier considered in their study. In both cases, we created 184 instances,
which were split 50-50 into disjoint training and validation sets. The training and
validation sets were used during the configuration procedure, whereas the remaining
9 816 instances form the test set and were used to evaluate the final portfolio.

ACAS Xu. For this benchmark, we only considered verification problem instances
created by Venus, as MIPVerify at default reached the time limit of 38 400 CPU seconds
for more than 80% of the instances. This makes automated configuration infeasible, as
these instances do not only cause the default solver to time out but also any solver
configuration tried by SMAC. Thereby, the configurator can hardly identify promising
regions of the hyperparameter space and, consequently, not exploit them. Using Venus,
we created 20 instances for different property-network pairs and, again, split them into
disjoint training and validation sets. The remaining 152 instances are used for testing
the final portfolio. Note that ACAS-Xu shows the highest average solving time among
all benchmarks considered in the work of [8].

4.3.4 Execution Environment and Software Used

Our experiments were carried out on Intel Xeon E5-2683 CPUs with 32 cores, 40 MB
cache size and 94 GB RAM, running CentOS Linux 7. We used MIPVerify version
0.2.3, Venus version 1.01, SMAC version 2.10.03, Hydra version 1.1 and the Gurobi
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Table 4.1: Timeouts, adversarial error and PAR10 scores for different solver configurations
of the MIP solver embedded in the MIPVerify engine on the MNIST dataset. Note that all
approaches were given the same budget in terms of CPU time (the number of cores times the
cutoff time). Using our portfolio, we achieved better performance than method of [104] as
well as the default configuration of Gurobi using different numbers of cores. Boldfaced values
indicate statistically significant improvements according to a binomial test with α = 0.05 for
timeouts and error bounds, and a permutation test with the number of permutations set at
10 000 and significance threshold of 0.05 for PAR10 scores.

Configuration Cores Cutoff Timeouts Adversarial Error PAR10
[Seconds] Lower Upper [CPU s]

Bound Bound

SDPdMLPA

Default 32 1 200 21.29% 14.37% 30.67% 39 772
Default 4 9 600 17.74% 14.40% 27.49% 22 065
Default 1 38 400 17.66% 14.36% 27.58% 20 117
Portfolio 4 9 600 14.96% 14.43% 23.86% 8 478

mnistnet
Default 1 38 400 1.57% 69.96% 70.16% 2 969
Portfolio 2 19 200 1.38% 70.13% 70.14% 1 844

solver version 9.0.1.

4.4 Results

We report empirical results for our new approach and each baseline in the form of
(i) the fraction of timeouts; and (ii) bounds on adversarial error (the fraction of the
dataset for which a valid adversarial example can be found), complement to adversarial
accuracy (the fraction of the dataset known to be robust); (iii) CPU time (i.e., PAR10

scores) on solvable instances, i.e., instances that were solved by our portfolio or any
of the baselines within the given cutoff time. Aggregated performance numbers are
presented in Table 4.1 for MIPVerify and Table 4.2 for Venus, whereas Figure 4.3
and Figure 4.4 visualise penalised running time of our portfolio approach against the
baselines on an instance level. Generally, we determined statistical significance using a
binomial test with α = 0.05 for timeouts and error bounds, and a permutation test
with the number of permutations set at 10 000 and significance threshold of 0.05 for
PAR10 scores.
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4.4.1 MIPVerify

The results from our configuration experiments on the SDPdMLPA classifier are
compared against multiple baselines. Firstly, we evaluated our portfolio approach
against Gurobi, as used by Tjeng et al. [104], using all 32 cores per CPU available on
our compute cluster, with the cutoff time set to 1 200× 32 = 38 400 CPU seconds (i.e.,
1 200 seconds wall-clock time on a CPU without any additional load). In addition, since
our parallel portfolio used 1 core for each of its 4 component configurations, we gathered
additional baseline results from running the default configuration of Gurobi on the
same number of cores and with the same cutoff as our portfolio, i.e., 9 600× 4 = 38 400

CPU seconds. Lastly, to maximise the number of instances processed in parallel,
we considered Gurobi in its default configuration limited to a single CPU core, with
cutoff time of 38 400 seconds. In short, we compared our approach against baselines
with a variable number of cores and a constant budget in terms of CPU time. From
these approaches, we considered only the best-performing one as the baseline for our
configuration experiments on the mnistnet classifier.

As seen in Table 4.1, our portfolio was able to certify a statistically significantly
larger fraction of instances, while reducing CPU time by an average factor of 4.7 on the
solvable instances (8 478 vs 39 772 CPU seconds). Furthermore, the portfolio strongly
outperformed this baseline in terms of timeouts (14.96% vs 21.29%). More concretely,
694 instances solved by the portfolio timed out in the default setup with 32 cores; see
Fig 4.3a for more details. 1 435 instances were neither solved by the default nor the
portfolio within the given time limit. 61 instances on which the portfolio timed out
were solved by the default solver.

The default configuration of Gurobi running on 4 cores was also clearly outperformed
by our portfolio in terms of CPU time (8 478 vs 22 065 CPU seconds). Furthermore,
the portfolio was able to reduce the number of timeouts (14.96% vs 17.74%), while
improving on the upper bound (23.86% vs 27.49%). In other words, the portfolio
certified more instances using fewer computational resources, although it was provided
with the same number of cores and overall time budget. Fig 4.3b shows per-instance
results for this set of experiments. Here, the default solver timed out on 378 instances,
which were solved by the portfolio. On 109 instances, only the portfolio timed out. On
1 374 instances, both setups resulted in timeouts.

Lastly, we compared the portfolio against the default configuration of Gurobi

running on a single-core. Here, our portfolio showed improved performance in terms of
PAR10 (8 478 vs 20 117 CPU seconds) as well as the fraction of timeouts (14.96% vs
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Figure 4.3: Evaluation of our parallel portfolio approach for MIPVerify on the MNIST
dataset (n=10 000) using weights from the SDPdMLPa and mnistnet classifiers, respectively.
Each dot represents a problem instance and the penalised running time for that instance
achieved by the baseline approach (x-axis) vs our portfolio (y-axis). For SDPdMLPa, the
baselines we considered are (a) the default solver running on all available, i.e., 32 cores, as in
the work of [104], (b) the default solver running on 4 cores and (c) the default solver running
on 1 core. Our parallel portfolio, using 4 cores, achieved substantially fewer timeouts than
any of the baselines and lower CPU times (in terms of PAR10 scores). Points grouped at the
top and right border represent instances for which the solver reached the time limit, and are
measured according to their penalised running time values.
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17.66%) and the upper bound (23.86% vs 27.58%). More specifically, the single-core
default timed out on 378 instances that could be solved by the portfolio. On 108
instances, only the portfolio timed out. On 1 388 instances, both setups resulted in
timeouts; see Fig 4.3c for more details.

On the mnistnet classifier, our portfolio also outperformed the single-core baseline
in terms of PAR10 (1 844 vs 2 969 CPU seconds) as well as the fraction of timeouts
(1.38% vs 1.57%), although to a smaller extent. To be precise, the default baseline
timed out on 44 instances that the portfolio was able to solve (Fig 4.3d). On 25
instances, only the portfolio reached the time limit. 113 instances were neither solved
by the default nor the portfolio. The default baseline timed out on 44 instances that
the portfolio was able to solve. On 25 instances, only the portfolio reached the time
limit. 113 instances were neither solved by the default nor the portfolio. These results
could be explained by the mnistnet network being comparatively smaller and, thus,
easier to verify than the SDPdMLPA classifier, as the latter results in a much larger
number of timeouts when verified with equal settings.

4.4.2 Venus

The results from our configuration experiments are compared against two baseline
approaches. Firstly, we evaluated our portfolio against Venus as employed by Botoeva
et al. [8], i.e., using the same hyperparameter settings for the verifier. We refer to
this setup as default∗, as the MIP solver is left in its default configuration, while the
verification engine is deployed with optimised hyperparameter settings. We note that
the number of cores is equivalent to the number of parallel workers, which is set as a
hyperparameter of the verifier. More precisely, we were running Venus using 2 workers,
i.e., 2 cores per CPU available on our compute cluster, with the cutoff time set to
7 200 × 2 = 14 400 CPU seconds. In this setup, Venus employs 2 instances of the
MIP solver in parallel, while we ensured that each solver is using exactly 1 CPU core.
This way, we are giving the same amount of resources to the verifier and the portfolio.
It should be noted that for the ACAS Xu benchmark, we also ran Venus with the
hyperparameter settings reported by Botoeva et al. [8], however with different numbers
of workers. That is, we ran the verifier using 4 workers, 2 workers, and 1 worker, i.e.,
CPU core(s), to assess the effects of parallelism, and found CPU time to be constant
with regards to the number of workers running in parallel. We, therefore, consider each
of these baselines to be equally competitive and only report results for Venus running
with 2 active workers, i.e., on 2 CPU cores and, thus, similar to the number of cores
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Table 4.2: Timeouts, adversarial error and PAR10 scores for different configurations of the
MIP solver embedded in the Venus engine on the MNIST and ACAS Xu datasets. Note that
all approaches were given the same budget in terms of CPU time (the number of cores times
the cutoff time). Using our portfolio, we achieved better performance than the method of
[8]. Boldfaced values indicate statistically significant improvements according to a binomial
test with α = 0.05 for timeouts and error bounds, and a permutation test with the number of
permutations set at 10 000 and significance threshold of 0.05 for PAR10 scores. The asterisk
marks Venus runs using the hyperparameter settings suggested by Botoeva et al. [8], yet with
Gurobi at default.

Configuration Cores Cutoff Timeouts Adversarial Error PAR10
[Seconds] Lower Upper [CPU s]

Bound Bound
mnistnet
Default∗ 2 7 200 1.63% 70.33% 71.96% 1 975
Portfolio 2 7 200 0.58% 70.61% 71.19% 272

SDPdMLPA

Default 1 14 400 9.76% 14.36% 24.12% 6 534
Portfolio 2 7 200 6.10% 14.31% 20.41% 636

ACAS Xu
Default∗ 2 7 200 1.75% 20.34% 22.09% 1 314
Portfolio 2 7 200 1.17% 20.34% 21.21% 443

utilised by the portfolio.

As there is no optimal setting of Venus hyperparameters provided for the SDPdMLPA

classifier, we used Venus with default settings as the baseline for our configuration
experiments on this benchmark. In this setup, Venus is running with 1 active worker,
which uses the same overall time budget of 14 400 CPU seconds.

As Table 4.2 shows, the portfolio strongly outperformed Venus with default∗ settings.
On the mnistnet benchmark, it was able to certify a statistically significantly larger
fraction of instances, while reducing CPU time by an average factor of 7.26 on the
solvable instances (272 vs 1 975 CPU seconds). Furthermore, the portfolio strongly
reduced the number of timeouts (1.63% vs 0.58%) on this benchmark. More specifically,
the verifier timed out for 115 instances that were solved by the portfolio. On the other
hand, the portfolio reached the time limit on 10 instances, which could be solved by
the default. On 48 instances, both approaches resulted in timeouts; see Figure 4.4a for
more details.
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This baseline was also used to evaluate our portfolio approach on the ACAS
Xu benchmark and, as previously mentioned, employed the verifier using the same
hyperparameter settings as reported by Botoeva et al. [8], although with the number of
workers or CPU cores fixed at 2. Essentially, the portfolio was able to slightly improve
the number of timeouts and statistically significantly reduce CPU time by an average
factor of 2.97 on the solvable instances (443 vs 1 314 CPU seconds). In concrete terms,
the portfolio could solve 1 instance on which the default solver reached the time limit;
see Figure 4.4c. For clarification, we achieved comparable performance gains over
Venus running with 4 workers in parallel (443 vs 1 337 CPU seconds) as well as Venus

running with 1 worker (443 vs 1 306 CPU seconds).
On the SDPdMLPA benchmark, the default baseline, i.e., Venus with default

settings, was outperformed by the portfolio in terms of PAR10 (636 vs 6 534 CPU
seconds) as well as the fraction of timeouts (6.10% vs 9.76%). In this setup, the default
timed out on 379 instances solved by the portfolio (Figure 4.4b). On 15 instances, only
the portfolio reached the time limit. 597 instances were neither solved by the default
nor the portfolio. Lastly, the portfolio strongly improved on the upper bound (20.41%
vs 24.12%), which overall clearly demonstrates the strength of the portfolio approach.

4.5 Conclusions and Future Work

In this study, we have demonstrated the effectiveness of automated algorithm configu-
ration and portfolio construction in the context of neural network verification, thereby
providing an answer to the second research question (RQ2) of whether we can improve
the performance of a MIP-based verification system by leveraging automated algorithm
configuration techniques.

Applying these techniques to neural network verification is by no means a trivial
extension, due to the high running times and heterogeneity of the problem instances to
be solved. In order to address this heterogeneity, we constructed a parallel portfolio
of optimised MIP solver configurations with complementary strengths. The potential
of this method is supported by the notion of complementarity as explained in 3. Our
method advises on the ideal number of configurations in the portfolio and can be
used in combination with any MIP-based neural network verification system. We
empirically evaluated our method on two recent, well known MIP-based verification
systems, MIPVerify and Venus.

Our results show that the portfolio approach can significantly reduce the CPU
time required by these systems on various verification benchmarks, while reducing the

83



4.5. Conclusions and Future Work

10 1 100 101 102 103 104 105 106

PAR10 [CPU s], default

10 1

100

101

102

103

104

105

106

PA
R

10
 [C

PU
 s

], 
po

rt
fo

lio

(a) mnistnet | Default∗

10 1 100 101 102 103 104 105 106

PAR10 [CPU s], default

10 1

100

101

102

103

104

105

106

PA
R

10
 [C

PU
 s

], 
po

rt
fo

lio

(b) SDPdMLPA | Default

10 1 100 101 102 103 104 105 106

PAR10 [CPU s], default

10 1

100

101

102

103

104

105

106

PA
R

10
 [C

PU
 s

], 
po

rt
fo

lio

(c) ACAS Xu | Default∗

Figure 4.4: Evaluation of our parallel portfolio approach for Venus on the MNIST dataset
(n=10 000) using weights from the SDPdMLPa and mnistnet classifiers, respectively, and
on the 172 property-network pairs from the ACAS Xu benchmark. Each dot represents a
problem instance and the penalised running time for that instance achieved by the verifier
with the embedded MIP solver at default (x-axis) vs our portfolio (y-axis). Overall, our
parallel portfolio achieved fewer timeouts than the baseline and lower CPU times (in terms of
PAR10 scores).
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number of timeouts and, thus, certifying a larger fraction of instances.

In more concrete terms, we strongly improved the performance of MIPVerify via
speed-ups in CPU time by an average factor of 4.7 on the MNIST classifier SDPdMLPA

from [93] and 1.61 on the MNIST classifier mnistnet from [8]. At the same time,
we were able to lower the number of timeouts for both benchmarks and tighten
previously reported bounds on adversarial error. For the Venus verifier, we achieved
even larger improvements, i.e., 10.3- and 7.26-fold reductions in average CPU time on
the SDPdMLPA and mnistnet networks, respectively. Beyond that, we strengthened
the performance of Venus on the ACAS Xu benchmark, attaining a 2.97-fold speedup
in average CPU time. Overall, our results highlight the potential of employing MIP-
based neural network verification systems with optimised solver configurations and
demonstrate how our method can consistently improve neural network verifiers that
make use of MIP solvers. At the same time, we note that our method is inherently
dependent on the default performance of the verifier at hand. In other words, we
acknowledge that this approach alone cannot scale existing methods to network sizes
that are completely beyond the capabilities of these methods. However, our approach
can significantly improve the running time of the verifier on the benchmarks it is able
to certify, and thus moves the boundary of network/input combinations accessible to
the verifier.

We see several fruitful directions for future work. Firstly, we plan to explore the use
of per-instance algorithm configuration techniques to further reduce the computational
cost of our approach. While our parallel portfolio approach is robust and makes good
use of parallel computing resources, judicious use of per-instance algorithm selection
techniques could potentially save some computational costs. We note that this will
require the development of grounded descriptive attributes (so-called meta-features)
for neural network verification, which we consider an interesting research project in its
own right.

The neural network verification systems we considered in this study have additional
hyperparameters. While our current approach focuses on the hyperparameters of the
internal MIP solver, in future work, we will also configure the hyperparameters at the
verification level. Due to the potential impact that this has on the MIP formulation
and therefore on the running time of a given instance, this poses specific challenges for
the algorithm configuration methods we use.

Finally, the portfolios we construct consist of multiple configurations of the same
verification engine. In light of the results presented in Chapter 3, we could also consider
heterogeneous portfolios that contain configurations of different verification engines,
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which could lead to further improvements in the state of the art in neural network
verification, and ultimately make it possible to verify networks far beyond the sizes
that can be handled by the methods we have introduced here.
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