g
4
s

Universiteit
“dd) Leiden
W’b The Netherlands

2
"Ha: 1

)
3|
B 3
.
=

.

4

&

o

Automated machine learning for neural network verification
Konig, H.M.T.

Citation
Konig, H. M. T. (2025, October 9). Automated machine learning for neural

network verification. Retrieved from https://hdl.handle.net/1887/4266921

Version: Publisher's Version
License: Licence agreement concerning inclusion of doctoral thesis
) in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4266921

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4266921

Chapter 3

Critically Assessing the State of
the Art in Neural Network

Verification

Neural network verification with respect to local robustness is a highly diverse research
area, and existing methods rely on a broad range of techniques. At the same time,
neural networks differ in terms of their architecture, such as the number of hidden
layers and nodes, the type of non-linearities, e.g., ReLU, Sigmoid or Tanh, and the
type of operations they employ, e.g., pooling or convolutional layers. This diversity,
both in terms of verification approaches and neural network design, makes it non-
trivial for researchers or practitioners to assess and decide which method is most
suitable for verifying a given neural network [15]. This challenge is amplified by the
fact that the neural network verification community does not (yet) use commonly
agreed evaluation protocols, which makes it difficult to draw clear conclusions from
the literature regarding the capabilities and performance of existing verifiers. More
precisely, existing studies use different benchmarks and, so far, have not provided an
in-depth performance comparison of a broad range of verification algorithms, as we
will further outline in Section 3.1.

Recently, a competition series has been initiated, in which several verifiers were
applied to different benchmarks (i.e., networks, properties and datasets) and compared
in terms of various performance measures, including the number of verified instances

as well as running time [87]. While the results from these competitions have provided

19

valuable insights into the general progress in neural network verification, several
questions remain unexplored. Most importantly, the ranking of algorithms based on
their aggregated performance scores makes it difficult to assess in detail the strengths
or weaknesses of verifiers on different instances. Indeed, looking at the competition
results, one easily gets the impression that a single approach dominates ‘across the
board’ — an assumption that is known to be inaccurate for other problems involving
formal verification tasks; see, e.g., [117] or [52] for SAT.

In this chapter, we focus exclusively on local robustness verification in image
classification against perturbations under the [,.,-norm. This scenario represents a
widely studied verification task, with a large number of networks being publicly available
and many verifiers providing off-the-shelf support. Notice that most verification tasks
can be translated into local robustness verification queries [95]; we, therefore, believe
that our findings are broadly applicable. Moreover, we seek to go beyond existing
benchmarking approaches and shed light on previously unanswered questions regarding
the state of the art in local robustness verification from a practitioner’s point of view —
a perspective that complements the insights from the VNN competition, where the
participating tools are carefully adapted to the given benchmarks by their developers.
Our contributions in this chapter are as follows and, altogether, seek to answer RQ1 of
this thesis:

e We analyse the current state of practice in benchmarking verification algorithms;

e we perform a systematic benchmarking study of several, carefully chosen GPU-
and CPU-based verification methods based on a newly assembled and diverse
set of networks, including 38 CIFAR and 41 MNIST networks with different
activation functions, representing a much larger number of networks than typically
considered, each verified against several robustness properties, for which we

expended a total of approximately 1 GPU and 16 CPU years in running time;

e we present a categorisation of verification benchmarks based on verifier compati-

bilities with different layer types and operations;

e we quantify verifier performance in terms of the number of solved instances,
running time, as well as marginal contribution and Shapley value, showing
that top-performing verification algorithms strongly complement rather than
consistently dominate each other in terms of performance, a finding that we
also show to hold for the results of the 2022 VNN Competition — e.g., while the

verifiers nnenum and PeregriNN achieved competitive performance in the FC

20

Chapter 3. Critically Assessing the State of the Art in NNV

category of the competition, the former solved many instances unsolved by the

latter and vice versa.

3.1 Common Practices in Benchmarking

Neural Network Verifiers

As explained in Chapter 2, formal verification algorithms can be either complete or
incomplete [71]. An algorithm that is incomplete does not guarantee to report a solution
for every given instance; however, incomplete verification algorithms are typically sound,
which means they will report that a property holds only if the property actually holds.
On the other hand, an algorithm that is sound and complete, when given sufficient
resources to be run to completion, will correctly state that a property holds whenever
it holds, and, in particular, will determine accurately when the property does not
hold. In this study, we focus on complete algorithms, as those arguably represent
the most ambitious form of neural network verification, making them preferable over
incomplete methods, especially in safety-critical applications. Furthermore, we focus on
the verification of real-valued networks, which are typically considered in the verification
literature, although there exist methods for the verification of other network types; see,
e.g., the work of [88] or [49] on binarised networks.

Considering the diversity in neural network verification problems, it is quite natural
to assume that a single best algorithm does not exist, i.e., a method that always
outperforms all others. It is still hard to identify to what extent a method contributes
to the state of the art, mainly because verification methods are typically evaluated
(i) on a small number of benchmarks, which have often been created for the sole purpose
of evaluating the method at hand, and (ii) against baseline methods for which it is often
unclear how they were chosen, leading to several methods claiming state-of-the-art
performance without having been directly compared. We note that in the context
of local robustness verification, a benchmark most often represents a neural network
classifier trained on the MNIST or CIFAR-10 dataset, respectively.

As previously mentioned, a competition series has been established with the goal of
providing an objective and fair comparison of the state-of-the-art methods in neural
network verification, in terms of scalability and speed [87]. The VNN competition
was held every year since 2020, with different protocols (e.g., for running experiments,
scoring, etc.), benchmarks and participants. Here, we focus on the 2022 edition. Within

VNN 2022, a total of 12 benchmarks were considered, of which 6 represented test cases

21

3.1. Common Practices in Benchmarking
Neural Network Verifiers

for local robustness verification of image classification networks. Notice that one of
these benchmarks considers bias field perturbations, which are reduced to a standard
lso-norm specification. Benchmarks were proposed by the participants themselves
and included a total of 13 CIFAR, 2 MNIST and 2 (Tiny)ImageNet networks, which
differed in terms of architecture components, such as non-linearities (e.g., ReLU, Tanh,
Sigmoid) and layer operations (e.g., convolutional or pooling layers, skip connections).
Networks were trained on the CIFAR-10, CIFAR-100, MNIST, TinylmageNet and
ImageNet datasets, respectively. Moreover, each benchmark was composed of random
image subsets, excluding images that were misclassified by the given network, along

with varying perturbation radii.

This competition overcame several of the previously reported limitations with regard
to the evaluation of network verifiers. Most notably, it covered a relatively large and
diverse set of neural networks. Moreover, thanks to the active participation from the
community, 12 verification algorithms were included in the competition. At the same

time, we see room for further research into the performance of neural network verifiers.

First and foremost, the competition seeks to determine the current state of the
art; however, the competition ranking and scores do not sufficiently quantify the
extent to which an algorithm actually contributes to the state of the art. In other
words, it is in the nature of competitions to determine a winner, at least implicitly
suggesting that a single approach generally outperforms all competitors. However, some
verification algorithms might have limited but distinct areas of strength, which cannot
be identified through aggregated performance measures, such as the total number of
verified instances. Although the competition report [87] shows that individual verifier
performance differs among benchmarks, it remains unclear whether all algorithms
solve the same set of instances in the given benchmark, or if they complement each
other. Similarly, it does not reveal whether or not methods are correlated in their

performance.

Furthermore, in our study, we conducted both a joint and separate analysis of
CPU- and GPU-based methods. This choice was motivated by the inherent challenges
that arise when attempting to compare these two types of algorithms. Indeed, the
competition results suggest that GPU-based methods are more efficient than CPU-
based algorithms [87]; however, GPU resources are typically more expensive to run.
Additionally, while CPU-based methods can run a single verification query on each
CPU core, allowing for multiple instances to be solved in parallel on the same machine,
GPU-based methods utilise the full GPU when solving a single verification query. In

fact, running multiple queries in parallel, each utilising a single CPU core, might be

22

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.1: Overview of reviewed verification methods and their eligibility for inclusion in
our assessment based on their () completeness and (%) presence in the top five ranking of
the 2021 or 2022 VNN Competition or (iiz) support through DNNV. Check marks indicate
that a verifier satisfies the criterion, while cross marks indicate that it does not. If a verifier
satisfies the inclusion criteria but is superseded by another, more recent method, the former is
not included.

Verifier Complete? In VNN Comp? In DNNV? GPU/GPU? Reference
BaB v X v CPU [12]
BaDNB v 4 X GPU [22]
af-CROWN v/ 4 X GPU [111]
ERAN! v v v GPU [96]
Marabou v v v CPU [56]
MIPVerify? v X v CPU [104]
MN-BaB v v X GPU [29]
Neurify v X v CPU [110]
nnenum v v v CPU [4]
Planet? v X v CPU [27]
Reluplex? v X v CPU [55]
VeriNet v X v CPU [40]

!Superseded by MN-BaB.

2Local robustness verification not supported via DNNV.
3Superseded by BaB.

4Superseded by Marabou.

a more efficient approach than running each query sequentially, while utilising all
cores. Thus, overall, it remains challenging to set up a comparison between CPU- and
GPU-based verification algorithms in an unbiased manner, which is why we present

both a direct comparison and a separate analysis.

Finally, the competition approaches the state of the art from the perspective of
a tool developer, where the developer is given access to the benchmarks beforehand
and can adapt their implementations as well as hyperparameter settings accordingly.
On the other hand, in this study, we assess the state of the art from the perspective
of a practitioner, who typically uses a verification tool out of the box, is bounded
by the limitations of the implementations, and might also not be able to tune the
hyperparameters of these tools. We believe that both these perspectives on the state

of the art are valid and give complementary insights.

23

3.2. Verification Algorithms under Assessment

3.2 Verification Algorithms under Assessment

We consider eight complete neural network verification algorithms in this study; each
of these was chosen because it fulfilled one of the following conditions: it was (i)
ranked among the top five verification methods according to the 2021 and 2022
VNN competitions or (ii) supported by the recently published DNNV framework [95].
Table 3.1 presents an overview of all methods we reviewed and their eligibility for
inclusion based on the criteria specified above. Notice that some verification methods,
such as Neurify [110] or BaDNB [22], did not participate in the 2022 edition of the VNN
competition. On the other hand, it can be assumed that these methods also contribute
to the state of the art in neural network verification. For example, BaDNB, which is
part of the OVAL framework, reached third place in the 2021 edition of the competition
[3] but did not compete in 2022. Altogether, we consider our set of algorithms to be
representative of recent and important developments in the area of complete neural
network and, more specifically, local robustness verification.

All methods were employed with their default hyperparameter settings, as they
would likely be used by practitioners. In other words, one aspect of our study is to
capture the situation someone using existing tools “out of the box” might face. We
note that the performance of a verifier might improve if its hyperparameters were
optimised specifically for the given benchmark; however, most verifiers have dozens of
hyperparameters (or employ combinatorial solvers that come with their own, extensive
set of hyperparameters), which makes this a non-trivial task, requiring additional

expertise and resources.

3.2.1 CPU-Based Methods

The CPU-based verification algorithms we considered are the following.

BaB. The algorithm proposed by Bunel et al. [12] restates the verification problem
as a global optimisation problem, which is then solved using branch-and-bound search.
It further incorporates algorithmic improvements to branching and bounding procedures
such as smart branching; i.e., before splitting, it computes fast bounds on each of
the possible subdomains and chooses the one with the tightest bounds. This method
supports ReLU-based networks; for the remainder of this chapter, we refer to it as
BaBSB.

Marabou. The Marabou framework [56] employs SMT solving techniques, specif-
ically the lazy search technique for handling non-linear constraints. Furthermore,

Marabou employs deduction techniques to obtain information on the activation func-

24

Chapter 3. Critically Assessing the State of the Art in NNV

tions that can be used to simplify them. The core of the SMT solver is simplex-based,
which means that the variable assignments are made using the simplex algorithm.
Marabou supports ReLU and Sigmoid activation functions as well as MaxPooling
operations.

Neurify. The verification algorithm proposed by Wang et al. [110] relies on
symbolic interval propagation to create over-approximations, followed by a refinement
strategy based on symbolic gradient information. The constraint refinement aims to
tighten the bounds of the approximation of activation functions. Neurify can process
networks containing ReLLU activation functions.

nnenum. The verifier proposed by Bak et al. [4] utilises star sets to represent
the values each layer of a neural network can attain. By propagating these through
the network, it checks whether one or more of the star sets results in an adversarial
example. This verifier can handle networks with ReLU activation functions.

VeriNet. The verifier developed by Henriksen & Lomuscio [40] combines symbolic
intervals with gradient-based adversarial local search for finding counter-examples.
The authors further propose a splitting heuristic for interval propagation based on
the influence of a given node on the bounds of the network output. VeriNet supports

networks containing ReLU, Sigmoid and Tanh activation functions.

3.2.2 GPU-Based Methods

Next, we present the GPU-based verification algorithms we considered.

BaDNB. The BaDNB verifier introduced by DePalma et al. [22] builds on earlier
versions of the BaB framework; however, it uses a novel dual formulation of the MIP,
which it solves via branch-and-bound. The novel formulation allows for extensive par-
allelisation on GPUs. Furthermore, it employs a bounding heuristic which significantly
reduces the number of branches necessary for solving the verification problem. BaDNB
is limited to ReLU-based networks and MaxPooling operations.

Beta-CROWN. a3-CROWN [111] is a bound propagation method combined with
neuron-split constraints, which divides the original problem into sub-problems based
on the activation function’s range. afS-CROWN leverages neuron-split constraints,
while, in general, other bound propagation methods are not able to handle this type of
constraint. Using the framework presented by Bunel et al. [12], the verifier is complete
and can be efficiently parallelised using GPUs. a8-CROWN can handle ReLLU, Sigmoid
and Tanh activations as well as MaxPooling layers.

MN-BaB. The MN-BaB verifier [29] builds on the multi-neuron constraints un-

25

3.3. Setup for Empirical Evaluation

Table 3.2: Instance set size for each benchmark category. Solvable instances are those solved
by at least one (i.e., any) or all of the considered verifiers. We considered any instance that
was found to be sat or unsat as solved. The number of sat and unsat instances, respectively,
can be found in brackets. The column “Verifiers employed” lists (1) BaBSB, (2) Marabou,
(3) Neurify, (4) nnenum, (5) VeriNet, (6) BaDNB, (7) af-CROWN or (8) MN-BaB as the
matching suitable algorithm(s) to the respective category.

CPU methods

MNIST CIFAR
Category Total Solvable Total Solvable Verifiers employed
Any (sat/unsat) Al (sat/unsat) Any (sat/unsat) Al (sat/unsat)

ReLU 2500 1913 (169/1744) 42 (38/4) 2500 972 (946/26) 0 0/0) (1),(2),(3).(4),(5)
ReLU + MaxPool 400 5 ©/5 0 0/0) 100 0 (0/0) 0 (0/0) %)
Tanh 600 556 (20/527) 0 (0/0) 600 0 (0/0) 0 (0/0) (5)
Sigmoid 600 581 (37/544) 0 (0/0) 600 0 (0/0) 0 (0/0) 2),(5)
GPU methods

ReLU 2500 2308 (128/2180) 948 (53/895) 2500 2364 (2262/102) 1048 (1048/0) 6),(7),(8)
ReLU + MaxPool 400 128 (10/88) 84 (25/59) 100 64 (64/0) 0 (0/0) (6).(7),(8)
Tanh 600 319 (28/201) 0 (0/0) 600 497 (494/3) 0 (0/0) (0,(3)
Sigmoid 600 307 (35/272) 304 (0/0) 600 547 (481/66) 0 (0/0) (M,(®)

derlying the ERAN toolkit [85, 96, 99, 97, 98] as well as GPU-enabled linear bound
propagation in a branch-and-bound framework. MN-BaB uses different verification
modes, including input-domain splitting with bound propagation and full MIP encod-
ings for complete verification. It is capable of handling various activation functions

and layer operations such as ReLU, Sigmoid, Tanh, and MaxPooling.

3.3 Setup for Empirical Evaluation

In the following, we will present an overview of how we set up our benchmark study,
i.e., how we selected problem instances and verification algorithms. Furthermore, we
will provide details on the software we used and the execution environment in which

our experiments were carried out.

3.3.1 Problem Instances

For our assessment, we compiled a high-quality set of problem instances for local
robustness verification. Following best practices in other research areas, such as
optimisation [41, 5], the benchmark should be representative and diverse, where the
former refers to how well the difficulty of the benchmark is aligned with that of real-
world instances from the same problem class, and the latter means that the instance
set should cover a wide range of difficulties.

Overall, our benchmark is comprised of 79 image classification networks, of which

26

Chapter 3. Critically Assessing the State of the Art in NNV

Networks Instances Verifiers Properties
1 5 CPU-based
41 MNIST classifiers 100 images Local robustness
38 CIFAR classifiers per classifier with € =0.012
] 3 GPU-based

Figure 3.1: Schematic overview of the setup of experiments.

38 are trained on the CIFAR-10 dataset and 41 are trained on the MNIST dataset.
To ensure the representativeness of our benchmark set, all networks were sampled
from the neural network verification literature, i.e., networks used in existing work
on local robustness verification and provided in public repositories; in other words,
the characteristics of the networks in our benchmark are assumed to match those of
networks generally used for evaluating verification algorithms. We further want our
instance set to be diverse. Therefore, we paid special attention to ensure that the
networks we considered differ in size, i.e., the number of hidden layers and nodes, as well
as the type of non-linearities (e.g., ReLU or Tanh) and layer operations (e.g., pooling
or convolutional layers) they employ. Notice that some of the networks we considered
were also used in the 2022 VNN Competition. A full overview of the networks used in

our study and their respective sources is provided in Table 3.3 and Table 3.3.

Of each network, we verified 100 local robustness properties; more precisely, we
sampled 100 images from the dataset on which the network has been trained and
verified for local robustness with the perturbation radius € set at {0.004, 0.005, 0.008,
0.01, 0.012, 0.02, 0.025, 0.03, 0.04}. To avoid over-aggregation, we firstly focused our
analysis on a single value of €, where e = 0.012, which represents a radius larger than
1/255, the smallest e-ball distance used in existing literature [71], and centred around

commonly chosen values for € [114, 8, 109].

Lastly, we split our benchmark set into different categories based on verifier com-
patibilities. This means a verifier is only applied to categories it can process. The
categories as well as the instance set size for each category are shown in Table 3.2.
Notice that, in general, the ground truth for any given problem instance is not known
a priori. At the same, even state-of-the-art verifiers are known to sometimes produce
different results for the same instance [10]. As some of the considered verifiers do not

return counterexamples by default, we treated these instance as unsat.

27

3.3. Setup for Empirical Evaluation

Table 3.3: Considered neural networks trained on the MNIST dataset, along with their
training method, employed activation function and source repository.

Network Training Activation Source
cnn_max_mninst2} Standard ReLU Marabou
cnn_max_ mninst3! Standard ReLU Marabou
convBig4 DiffAl ReLU ERAN
convMed 4 PGD, e=0.1 ReLU ERAN
convMedp PGD, e=0.1 Sigmoid ERAN
convMedo PGD, e=0.1 Tanh ERAN
convMed p PGD, e =0.3 ReLU ERAN
convMedg PGD, e =0.3 Sigmoid ERAN
convMed p PGD, ¢ =0.3 Tanh ERAN
convMedg Standard ReLU ERAN
convMed Standard Sigmoid ERAN
convMed; Standard Tanh ERAN
convnet! Standard ReLU ERAN
convSmall 4 DiffAI ReLU ERAN
convSmall g PGD ReLU ERAN
convSmalls Standard ReLU ERAN
convSuper DiffAI ReLU ERAN
flnon - 6x500 4 PGD, e=0.1 ReLU ERAN
finn 6x5003 PGD, e =0.1 Sigmoid ERAN
finon 6x500¢ PGD, e =0.1 Tanh ERAN
flnn 6x500p PGD, e =0.3 ReLU ERAN
finn 6x5005 PGD, e =0.3 Sigmoid ERAN
filnn_ 6x500x PGD, e=0.3 Tanh ERAN
finn_ 6x500¢ Standard ReLU ERAN
finn 6x500 Standard Sigmoid ERAN
finn 6x500; Standard Tanh ERAN
mnist-net Standard ReLU Venus
mnist-net 256 x2 Standard ReLU VNN-COMP
mnist-net 256 x4 Standard ReLU VNN-COMP
mnist-net 256 x6 Standard ReLU VNN-COMP
mnist _3x100 Standard ReLU ERAN
mnist_3x50 Standard ReLU ERAN
mnist_4x1024 Standard ReLU ERAN
mnist_5x100 Standard ReLU ERAN
mnist_ 6x100 Standard ReLU ERAN
mnist 6x200 Standard ReLU ERAN
mnist 9% 100 Standard ReLU ERAN
mnist _9x200 Standard ReLU ERAN
mnist_conv! Standard ReLU ERAN
mnist_nn Standard ReLU VeriNet
rsl18a-1inf01 SDP ReLU MIPVerify

!Employs MaxPooling layers

28

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.4: Considered neural networks trained on the CIFAR-10 dataset, along with their
training method, employed activation function and source repository.

Network Training Activation Source
cifar_base kw [113], e =1/255 ReLU OVAL
cifar_deep_kw [113], e = 1/255 ReLU OVAL
cifar_ wide_kw [113], e = 1/255 ReLU OVAL

cifar _base kw_simp [113], e =1/255 ReLU Marabou
cifar _deep kw_simp [113], e = 1/255 ReLU Marabou
cifar wide kw_simp [113], e =1/255 ReLU Marabou
cifar-net Standard ReLU Venus

cifar _conv! Standard ReLU ERAN
cifar 4x100 Standard ReLU ERAN
cifar _ 6x100 Standard ReLU ERAN
cifar 7x1024 Standard ReLU ERAN
cifar_9x200 Standard ReLU ERAN
cifar _4x100 Standard ReLU ERAN
cifarl0_2 255 COLT, e =2/255 ReLU VNN-COMP
cifar10_8 255 COLT, e = 8/255 ReLU VNN-COMP
cifarl0 2 255 simplified COLT, e =2/255 ReLU VNN-COMP
cifarl0 8 255 simplified COLT, e =8/255 ReLU VNN-COMP
convBigp PGD, e =2/255 ReLU ERAN
convMed ; PGD, e =2/255 ReLU ERAN
convMed g PGD, e =2/255 Sigmoid ERAN
convMedy, PGD, e =2/255 Tanh ERAN
convMed PGD, e =8/255 ReLU ERAN
convMed PGD, e = 8/255 Sigmoid ERAN
convMedp PGD, € = 8/255 Tanh ERAN
convMed p Standard ReLLU ERAN
convMedq Standard Sigmoid ERAN
convMed g Standard Tanh ERAN
convSmall g DiffAl ReLLU ERAN
convSmall g Standard ReLU ERAN

finn_ 6x500 7 PGD, e =2/255 ReLU ERAN

finn 6x500x PGD, e =2/255 Sigmoid ERAN

finn_ 6x5007, PGD, e =2/255 Tanh ERAN

finn_ 6x500,, PGD, € = 8/255 ReLU ERAN

filun 6x500 PGD, e =8/255 Sigmoid ERAN
finn_6x5000 PGD, ¢ =8/255 Tanh ERAN
finn 6x500p Standard ReLU ERAN
finn_ 6x500¢ Standard Sigmoid ERAN
finn_ 6x500R Standard Tanh ERAN

!Employs MaxPooling layers

29

3.3. Setup for Empirical Evaluation

3.3.2 Evaluation Metrics

In order to assess the performance of the various methods, we compute four perfor-
mance metrics: the average running time, the number of solved instances, the relative
marginal contribution and the relative Shapley value [33] of each verifier to the parallel
portfolio containing all (applicable) verifiers. The first two of these reflect stand-alone
performance, while the last two capture performance complementarity between verifiers
and their contribution to the overall state of the art. Although these metrics present
aggregated measures, they reflect algorithm performance on an instance level and in
relation to other methods included in our comparison; a more detailed explanation
will be provided in the following paragraphs. Notice that we do not penalise timeouts
when computing average running time; i.e., the maximum running time equals the
given time limit.

The marginal contribution is computed as follows. Define V' as a set of verifiers and
let s(V') be the total score of set V. Here, the total score s(V') consists of the number
of instances verified by at least one verifier in set V' within a given cutoff time. We
compute the marginal contribution per algorithm to determine how much the total
performance of all algorithms (in terms of solved instances) decreases when the given
algorithm is removed from the set of all algorithms if they were employed in a parallel
algorithm portfolio. Formally, to determine the marginal contribution of any of the
verifiers v to portfolio V', one needs to know the value of s(V) and s(V \ {v}), where
V'\ {v} is the portfolio minus verifier v. Thus, the marginal contribution of verifier v

is expressed as
MC,(V) = s(V) = s(V \ {v}) (3.1)

Following this terminology, we can define the number of solved instances by verifier
v as a set consisting only of verifier v, Solved, = s(v) — s(0), where s(@) = 0. In other
words, the number of solved instances employs a set of size one whereas the marginal
contribution employs a set of all verifiers under consideration. The relative marginal
contribution represents the marginal contribution of a given verifier as a fraction of the
sum of every method’s absolute marginal contribution.

Lastly, the Shapley value is the average marginal contribution of a verifier over all
possible joining orders, where joining order refers to the order in which the verifiers
are added to a parallel portfolio. This value complements the previous two metrics, as
it does not assume a particular order in which algorithms are added to the portfolio.
To be precise, the number of solved instances simply represents a joining order in

which the considered algorithm comes first and in which it is the only one added to the

30

Chapter 3. Critically Assessing the State of the Art in NNV

portfolio, whereas the marginal contribution metric assumes a joining order in which it
comes last. However, using fixed orders, as is the case for the marginal contribution,
might not reveal possible interactions between the given method and other algorithms,
e.g., it might understate the importance of a single algorithm given the presence of
another algorithm with highly correlated performance. In such a case, both algorithms
would be assigned very low marginal contribution, even though one of them should
be included in a potential portfolio. Moreover, the fixed joining order leads to the
marginal contribution metric being very sensitive to the composition of the portfolio in
question; i.e., this metric might change drastically if only a subset of methods would
be included in a given portfolio.

This is captured by the Shapley value: Consider a set of verifiers V' of size n (i.e.,
|V| =n) and IV as the set of all permutations of V. Notice that each permutation 7
in ITV is of size n, which results in set IIV being of size n!. Now define V,™ as the set
of verifiers where all verifiers joining after v — i.e., appearing after v in permutation 7 —

are discarded from 7. The Shapley value of verifier v, ¢,, is then calculated as follows:

bu(V) = =3 (s(VT) — (V7 \ {o}) (3.2)

TellV

The relative Shapley value of a verifier v is obtained by dividing ¢, by the sum
over the (absolute) Shapley values for all verifiers under consideration; it intuitively
represents the fraction of the jointly achieved Shapley values over all verifiers that is

attributed to verifier v.

3.3.3 Execution Environment and Software Used

Our experiments were carried out on a cluster of machines equipped with Intel Xeon
E5-2683 CPUs with 32 cores, 40 MB cache size and 94 GB RAM, running CentOS
Linux 7. Each verification method was limited to using a single CPU core per run. Each
query (i.e., attempt to solve a verification problem instance) was given a time budget
of 3600 seconds and a memory budget of 3 GB. Generally, we executed the verification
algorithms through the DNNV interface, version 0.4.8. DNNV is a framework that
transforms a network and robustness property into a unified format, which can then be
solved by a given method [95]. More specifically, DNNV takes as input a network in
the ONNX format, along with a property specification, and then translates the network
and property to the input format required by the verifier. After running the verifier on

the transformed problem, it returns the results in a standardised manner, where the

31

3.4. Results and Discussion

output is either sat if the property was falsified or unsat if the property was proven
to hold. In cases where a violation is found, DNNV also returns a counter-example
to the property and validates it by performing inference with the network. We note
that for the VeriNet toolkit, its implementation in DNNV lags behind the standalone
implementation of the verifier. While we acknowledge that this could affect observed
performance, we still chose to run each CPU method through the DNNV interface to
benefit from the broader benchmark support provided by DNNV.

For GPU-accelerated methods, we used machines equipped with NVIDIA GeForce
GTX 1080 Ti GPUs with 11 GB video memory. We provided the same time budget
but did not impose any memory constraints. The GPU-based methods we considered
are not supported by DNNV. Hence, we used the standalone implementations of
these algorithms through the a3-CROWN!, OVAL—BaB?, and MN-BaB? framework,
respectively. These methods also return a counter-example to the property in cases

where a violation is found.

3.4 Results and Discussion

In the following, we provide an in-depth discussion of the results obtained from our
experiments. We distinguish between CPU-based algorithms and algorithms that
also utilise GPU resources. Table 3.2 shows the categories we devised based on layer
types present in the network, along with the resulting instance set sizes as well as
information on which verifier has been employed for each category. Moreover, we
investigate whether there exists a single algorithm that performs best on all instances
within a given category. If we find this to not be the case, we analyse to what extent
the algorithms we considered complement each other in performance, i.e., show strong

performance on different problem instances.

3.4.1 CPU-Based Methods

Table 3.5 contains the results from our experiments using CPU-based verification
algorithms. It reports the number of problem instances solved by each verifier per
network category (see Table 3.2 for the total number of problem instances per category),
the relative marginal contribution, the relative Shapley value and the average running

time computed over the subset of solvable instances, i.e., instances that could be solved

1Commit 7a46097192207dfbb2fa7135857d6bcdae7d6cd5
2Commit 9e1606044759da5693f226ce489e9d4dded21bd6
3Commit 2aa12b145bb61342f4c464b64be3467b3a275¢46

32

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.5: Performance comparison of CPU-based verification algorithms in terms of the
number of solved instances, relative marginal contribution (RMC), relative Shapley value
(¢) and CPU running time averaged per problem instance, computed for each category for
e =0.012.

ReLU
Verifier MNIST CIFAR

Solved RMC ¢ Avg. Time Solved RMC ¢ Avg. Time

[CPU | [CPU s|

BaBSB 358 0.22 0.06 3241 307 0.00 0.09 2924
Marabou 1001 0.19 0.16 1801 400 0.00 0.12 2153
Neurify 871 0.25 0.14 1964 915 0.75 0.42 235
nnenum 1754 0.17 0.31 389 76 0.05 0.03 3337
VeriNet 1799 0.16 0.32 263 841 0.20 0.34 500
ReLU-+MaxPool
Verifier MNIST CIFAR

Solved RMC ¢ Avg. Time Solved RMC ¢ Avg. Time
Marabou 5 1.00 1.00 57 0 0.00 0.00 3600
Tanh
Verifier MNIST CIFAR

Solved RMC ¢ Avg. Time Solved RMC ¢ Avg. Time
VeriNet 556 1.00 1.00 55 0 0.00 0.00 3600
Sigmoid
Verifier MNIST CIFAR

Solved RMC ¢ Avg. Time Solved RMC ¢ Avg. Time
Marabou 0 0.00 0.00 3600 0 0.00 0.00 3600
VeriNet 581 1.00 1.00 55 0 0.00 0.00 3600

by at least one of the considered methods. The relative marginal contribution and the
relative Shapley value are calculated based on the number of solved problem instances.
We provide absolute values for both the marginal contribution and Shapley value in
Table 3.6, 3.8, 3.10 and 3.12. Notice that instances that were not solved within the

time limit were attributed the maximum running time, i.e., 3600 seconds.

On ReLU-based MNIST networks, we found VeriNet to be the best-performing
verifier, solving 1799 out of 2500 instances, while achieving a relative Shapley value
of 0.32. However, taking relative marginal contribution into account, we found that
Neurify achieved the highest relative marginal contribution of 0.25 (compared to 0.16
for VeriNet), indicating that it could verify a sizable fraction of instances on which
other methods failed to return a solution. Moreover, the relative marginal contribution

scores show that each method could solve a sizeable fraction of instances unsolved by

33

3.4. Results and Discussion

Table 3.6: Performance comparison of CPU-based verification algorithms in terms of the
number of solved instances, absolute marginal contribution (MC), absolute Shapley value
(¢abs) and CPU running time averaged per problem instance, computed for each category
with € set at 0.012.

ReLU
Verifier MNIST CIFAR

Solved MC ¢ups Avg. Time Solved MC ¢ups Avg. Time

[CPU 5 [CPU g

BaBSB 358 23 118 3241 307 0 86 2924
Marabou 1001 20 312 1801 400 0 117 2153
Neurify 871 26 265 1964 915 119 411 235
nnenum 1754 18 600 389 76 8 28 3337
VeriNet 1799 16 618 263 841 31 330 500
ReLU-+MaxPool
Verifier MNIST CIFAR

Solved MC ¢ups Avg. Time Solved MC ¢ups Avg. Time
Marabou 5 5 5 57 0 0 0 3600
Tanh
Verifier MNIST CIFAR

Solved MC ¢ups Avg. Time Solved MC ¢ups Avg. Time
VeriNet 556 556 556 55 0 0 0 3600
Sigmoid
Verifier MNIST CIFAR

Solved MC ¢aps Avg. Time Solved MC ¢qps Avg. Time
Marabou 0 0 0 3600 0 0 0 3600
VeriNet 581 581 581 55 0 0 0 3600

any other method.

On ReLU-based CIFAR networks, it should first be noted that there is no verifica-
tion problem instance that can be solved by all verifiers, highlighting the structural
differences between instances and the sensitivity of the verification approaches to those
differences. That said, Neurify slightly outperformed VeriNet in terms of the number
of solved instances (915 vs 841 out of 2500). Furthermore, Neurify achieved a much
larger relative marginal contribution than VeriNet (0.75 vs 0.20), which means that
the former could solve a relatively large number of instances which could not be solved
by the other methods. Generally, relative marginal contribution scores are much less
evenly distributed among verifiers when compared to the MNIST dataset.

Figure 3.2a and 3.2b show an instance-level comparison of the two best-performing

algorithms (in terms of relative Shapley value) in the ReLU category for each dataset.

34

Chapter 3. Critically Assessing the State of the Art in NNV

10°

Result
Unsat
Unsolved
Sat

10*

10°

10?

10!

10°

CPU time [s], Verinet
CPU time [s], Verinet

107t

1072

1073 - .
103 1072 107! 100 10! 10? 103 104 10° 1073 1072 107! 100 10! 102 103 104 10°
CPU time [s], nnenum CPU time [s], Neurify

(a) CPU - MNIST (b) CPU - CIFAR

10° 105

10* 104
103 103
102 102
10!

10°

GPU time [s], MN-BaB
GPU time [s], BaDNB
=
=

107!

1072

1073 » . ; . -
10=% 1072 107! 10° 10! 102 10° 10* 10° 1073 1072 107! 10° 10! 10 10° 10* 10°
GPU time [s], B-CROWN GPU time [s], B-CROWN

(c) GPU - MNIST (d) GPU - CIFAR

Figure 3.2: Performance comparison of the two top-performing verification methods (in
terms of relative Shapley value) in the ReLU category for CPU-based methods on (a) MNIST
and (b) CIFAR networks as well GPU-based methods on (¢) MNIST and (d) CIFAR networks.
Each data point represents an instance, and its position on a given axis represents the
performance in terms of running time of the respective solver. The diagonal line represents
the point on which both verifiers perform equally well. The verifier represented on the x-axis
performs better on instances above the diagonal line, and the verifier represented on the y-axis
performs better on instances below the diagonal line. Instances that were not solved within
the time limit are displayed with the maximum running time (i.e., 3600 seconds).

35

3.4. Results and Discussion

In Figure 3.2a, we see that on MNIST networks, both VeriNet and nnenum solved
instances that the other one, in turn, could not solve within the given time budget.
Concretely, when considering a parallel portfolio containing both algorithms (see
Section 2.4), the number of solved instances slightly increases to 1817 out of 2500
(vs 1799 solved by VeriNet and 1754 solved by nnenum alone), while supplied with
similar CPU resources (i.e., 1800 CPU seconds per verifier, adding up to the same

combined maximum running time as running a single verifier with 3600 CPU seconds).

On CIFAR instances, we found Neurify and VeriNet to also have distinct strengths
over each other. This is shown in Figure 3.2b, where both algorithms could solve a
substantial amount of instances that the other could not return a solution for. Thus,
when combined in a parallel portfolio, 963 instances can be solved (vs 915 solved by
Neurify and 841 solved by VeriNet alone, out of 2500 instances), while using the same
amount of CPU resources, i.e., 1800 CPU seconds per verifier. These findings further
emphasise the complementarity between the verification algorithms considered in our
study. All remaining verifiers achieved much lower relative Shapley values and relative
marginal contribution scores, indicating that they would not substantially strengthen

the performance of a portfolio already containing Neurify and VeriNet.

Figure 3.3a shows the cumulative distribution function of running times over the
MNIST problem instances. As seen in the figure, VeriNet tends to solve these problem
instances fastest; however, Neurify tended to show even better performances on those
instances it was able to solve. We note that most of the instances unsolved by Neurify
represent networks that were trained on images with 3 dimensions, whereas Neurify

requires images used as network inputs to have 2 or 4 dimensions.

Figure 3.3b shows a similar plot for the CIFAR problem instances. Here, Neurify
solved the largest fraction in less time than other methods. This suggests that Neurify

is a very competitive verifier when applicable to the specific network or input format.

For each of the remaining categories, we found that there is only one verifier that
could effectively handle the respective problem instances. Specifically, instances from
the ReLU+MaxPooling category can be processed by Marabou, although, only a
modest number of MNIST instances could be solved in this way. Networks containing
Tanh activation functions can, in principle, be verified by VeriNet but the algorithm
did nonetheless not solve any CIFAR instances. Lastly, Sigmoid-based networks can be
handled by both VeriNet and Marabou, however, only the former could solve MNIST

instances within the given time and memory budget.

36

Chapter 3. Critically Assessing the State of the Art in NNV

—— BaBSB —— BaBSB

Marabou / Marabou
—— Neurify —— Neurify
—— nnenum / g — nnenum
—— Verinet | —— Verinet
| 2

E I

0.0 0 !
10° 10! 10% 108 10° 10! 10? 10°
CPU time [s] CPU time [s]

o

©
o
©

b

=)
o
=)

~

Fraction of instances solved
Fraction of instances solved

e
IS

<3
)
=3
)

(a) CPU - MNIST (b) CPU - CIFAR

1.0 1.0

] —— B-CROWN
BaDNB
(—— MN-BaB
0.8

A/Fﬁ;

]

0.4

e
3

I
=)

=3
IS
e

Fraction of instances solved
Fraction of instances solved

o
¥

0.2

/ —— B-CROWN
I BaDNB
P MN-BaB J

//_/—
0-0o-2 107! 100 10! 102 10% 0.9 2 . g
GPU time [s] 0-2 107! 10° 10! 102 103
1me 1S GPU time [s]

(c) GPU - MNIST (d) GPU - CIFAR

Figure 3.3: Cumulative distribution of the fraction of instances solved by the considered
verification algorithms in the ReLU category as a function of CPU running time. The plots
at the top are for CPU-based algorithms, whereas those at the bottom are for GPU-based
algorithms, on MNIST and CIFAR.

3.4.2 GPU-Based Methods

Table 3.7 summarises the results from our experiments using GPU-based verification
algorithms. On ReLU-based MNIST networks, a8-CROWN outperformed other

methods in terms of both the number of solved problem instances as well as the average

37

3.4. Results and Discussion

Table 3.7: Performance comparison of GPU-based verification algorithms in terms of the
number of solved instances, relative marginal contribution (RMC), relative Shapley value (¢)
and average GPU running time, computed for each category for e = 0.012.

ReLU
Verifier MNIST CIFAR

Solved RMC ¢ Avg. Time Solved RMC ¢ Avg. Time

[GPU s [GPU 5|

BaDNB 1188 0.31 0.19 1760 2332 0.90 0.45 116
B6-CROWN 2247 0.00 0.42 96 1828 0.03 0.29 814
MN-BaB 2103 0.69 0.39 325 1639 0.07 0.26 1110
ReLU-+MaxPool
Verifier MNIST CIFAR

Solved RMC ¢ Avg. Time Solved RMC ¢ Avg. Time
BaDNB 85 0.00 0.22 1399 0 0.00 0.00 3600
B8-CROWN 128 1.00 0.44 0.4 0 0.00 0.00 3600
MN-BaB 115 0.00 0.34 366 64 1.00 1.00 0.008
Tanh
Verifier MNIST CIFAR

Solved RMC ¢ Avg. Time Solved RMC ¢ Avg. Time
B6-CROWN 319 1.00 1.00 1.16 497 1.00 1.00 0.70
MN-BaB 0 0.00 0.00 3600 0 0.00 0.00 3600
Sigmoid
Verifier MNIST CIFAR

Solved RMC ¢ Avg. Time Solved RMC ¢ Avg. Time
B6-CROWN 306 0.66 0.50 13 538 0.95 0.68 60
MN-BaB 305 0.33 0.50 24 338 0.05 0.32 1376

running time. At the same time, the relative Shapley values of af-CROWN and
MN-BaB indicate that these methods complement each other with respect to their

performance on this instance set.

On ReLU-based CIFAR networks, Table 3.7 shows that BaDNB outperformed
both MN-BaB and a8-CROWN;, with the former solving 2332 and the latter solving
1639 and 1828 out of 2500 verification problem instances, respectively. Furthermore,
both BaDNB and a-CROWN achieve large relative Shapley values, suggesting their
complementarity in an algorithm portfolio.

Figure 3.2c and 3.2d show the instance-level comparison of the two best-performing
algorithms (in terms of relative Shapley value) in the ReLU category for each dataset.
Looking at Figure 3.2c, one can see that there is a fairly large number of MNIST
instances unsolved by a-CROWN but solved by MN-BaB as well as the other way

38

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.8: Performance comparison of GPU-based verification algorithms in terms of the
number of solved instances, absolute marginal contribution (MC), absolute Shapley value
(dabs) and average GPU running time, computed for each category with e set at 0.012.

ReLU
Verifier MNIST CIFAR

Solved MC ¢aps Avg. Time Solved MC ¢gps Avg. Time

[GPU s] [GPU s]

BaDNB 1188 8 440 1760 2332 250 1066 116
B5-CROWN 2247 0 966 96 1828 7 693 818
MN-BaB 2103 18 903 325 1639 20 604 1110
ReLU-+MaxPool
Verifier MNIST CIFAR

Solved MC ¢aps Avg. Time Solved MC ¢gps Avg. Time
BaDNB 85 0 29 1399 0 0 0 3600
B-CROWN 128 12 56 0.4 0 0 0 3600
MN-BaB 115 0 44 366 64 64 64 0.008
Tanh
Verifier MNIST CIFAR

Solved MC ¢aps Avg. Time Solved MC ¢gps Avg. Time
B-CROWN 319 319 319 1.16 497 496 497 0.70
MN-BaB 0 0 0 3600 0 0 0 3600
Sigmoid
Verifier MNIST CIFAR

Solved MC ¢qps Avg. Time Solved MC ¢aps Avg. Time
B5-CROWN 306 2 154 13 538 209 374 60
MN-BaB 305 1 153 24 338 9 174 1376

around.

On the other hand, BaDNB and a8-CROWN seem to have distinctive strengths
over each other on CIFAR instances, as can be seen in Figure 3.2d: The data points
indicating performance on each verification instance are spread out widely around the
line of equal performance, showing that there are many instances that one method can
solve faster than the other and vice versa.

Concurrently, MN-BaB solves a large fraction of CIFAR instances in less time than
other methods, although BaDNB solves more instances overall, which is also reflected
in Figure 3.3d. On MNIST instances, MN-BaB solves more instances in less time than
afB-CROWN, although a-CROWN solves more instances overall; see also Figure 3.3c.

On MNIST networks containing ReLLU activation functions and MaxPooling op-
erations, we again found relatively large Shapley values for both af-CROWN and

39

3.4. Results and Discussion

2500 2500
Error type
EmE miscellaneous
W timeout
20004 s out-of-memory 2000 4
1500 1500 4
1000 A 1000
600
5001 5001
44
0 T 0- T
Verinet Verinet
(a) CPU - MNIST (b) CPU - CIFAR
2500 2500
2000 2000 A
1500 A 1500
1000 A 1000
5001
103

MN-BaB B-CROWN MN-BaB B-CROWN

(c¢) GPU - MNIST (d) GPU - CIFAR

Figure 3.4: Frequency of error types returned by the considered verification algorithms
on instances in the Tanh category. The total number of instances in this category is 600 for
MNIST and 600 for CIFAR.

MN-BaB, as presented in Table 3.7, indicating their potential complementarity in an
algorithm portfolio. However, the relative marginal contribution values indicate that
there are no instances unsolved by a-CROWN that could be solved by other methods.
CIFAR instances in this category could only be verified by MN-BaB, due to verifier
incompatibilities with the respective network structures unrelated to the MaxPooling

operations.

Table 3.7 further shows results for the Tanh category. We found that instances in
this category could effectively only be handled the a-CROWN verifier. Concretely,
MN-BaB returned an error for the instances in this category; see also Figure 3.4 for
additional details.

Lastly, networks containing Sigmoid activation functions can be handled by both

40

Chapter 3. Critically Assessing the State of the Art in NNV

BaDNB and af8-CROWN and achieve perfectly similar relative Shapley values on the
MNIST instances in this category, indicating their complementarity in an algorithm
portfolio. However, as seen in Table 3.7, this does not hold for CIFAR instances, where

afB-CROWN seems to dominate in performance.

3.4.3 Error Analysis

Although the verification methods should, in principle, be able to solve the instances
in the category they are applied to, we found many instances left unsolved, not only
due to time or memory constraints but also due to other, unexpected issues. Hence,
to understand better why certain instances could not be solved by a given verifier,
we categorised and counted the errors returned by each verification system. For this
analysis, we focused on instances in the ReLLU category; results for the remaining
categories are presented in Figure 3.5 and 3.6.

The number of instances solved by each method can be found in Table 3.5 for
CPU- and Table 3.7 for GPU-based algorithms. The total number of instances in
the ReLU category is 2500 for MNIST and CIFAR, respectively. We distinguish
between timeouts, out-of-memory and miscellaneous errors, where the latter includes
verifier-specific errors of which most are undefined and not trivial to resolve, especially
without in-depth knowledge of the verifier at hand.

Figure 3.7a and 3.7b show the errors returned by CPU-based methods for MNIST
and CIFAR instances, respectively. On MNIST, most verifiers failed to solve a given
instance due to timeouts, except for nnenum, which mostly ran into memory issues,
and Neurify, which requires images used as network inputs to have 2 or 4 dimensions,
as mentioned in Section 5.1. Notice that when supplied with a larger memory budget,
nnenum could not solve substantially more instances, but produced a comparably large
number of timeouts instead; more details can be found in Figure 3.8.

Interestingly, we made different observations with regard to the CIFAR instances.
Here, each method mostly returned errors related to the network structure (or undefined
errors). Besides this, nnenum again failed to verify a sizable fraction of instances due to
memory limitations. Overall, we found CIFAR networks to be much less supported by
the CPU-based methods we considered (as implemented in the DNNV framework) than
MNIST networks, arguably due to the increased complexity of the former. We note that
some of these errors could potentially be circumvented by resorting to the standalone
implementations of the respective verifiers. However, overall, DNNV provides the

broadest support for different network structures and operations [95].

41

3.4. Results and Discussion

2500 2500
Error type
EmE miscellaneous
W timeout
2000 4 B out-of-memory 2000 1
1500 A 1500
1000 A 1000
500 4 500 1
200
100 100 100
0 pa— | .
Marabou Marabou

(a) CPU - MNIST (b) CPU - CIFAR
2500 2500
2000 2000 A
1500 A 1500
1000 A 1000

500 4 500 1
315 285 272
. ol 100 36 100
BaDNB MN-BaB B-CROWN BaDNB MN-BaB B-CROWN
(c¢) GPU - MNIST (d) GPU - CIFAR

Figure 3.5: Frequency of error types returned by the considered verification algorithms on
instances in the ReLU+MaxPool category. The total number of instances in this category is
400 for MNIST and 100 for CIFAR.

On the other hand, GPU-based verifiers show greater support for the considered
networks than CPU-based methods. As seen in Figure 3.7c, only BaDNB failed to solve
a relatively large number of MNIST instances due to unsupported network structures
or other, unspecified technical reasons.

In contrast, BaDNB could solve almost all CIFAR instances, as shown in Figure 3.7d.
However, both MN-BaB and a8-CROWN returned several errors of which most are
undefined.

Overall, our results suggest that many verification toolkits only support a limited
set of networks. This occurs despite the fact that these networks are provided in onnx
format, which should, in principle, be supported by each method considered in this

study. Similar findings have been reported in the literature (see, e.g., [80]).

42

Chapter 3. Critically Assessing the State of the Art in NNV

2500 2500
Error type
Emm miscellaneous
I timeout

20001 out-of-memory 2000 4

1500 1500 4

1000 A 1000 1

600 600
500 1 5001
286 314
B
0- T 0- T T
Marabou Verinet Marabou Verinet

(a) CPU - MNIST (b) CPU - CIFAR

2500 2500

2000 2000 A

1500 A 1500 1

1000 A 1000 1

500 5001
295 294 262
62
0 0- T
MN-BaB B-CROWN MN-BaB B-CROWN

(¢) GPU - MNIST (d) GPU - CIFAR

Figure 3.6: Frequency of error types returned by the considered verification algorithms on
instances in the Sigmoid category. The total number of instances in this category is 600 for
MNIST and 600 for CIFAR.

3.4.4 Analysis on Broader Set of Perturbation Radii

So far, we have considered a single value of €, but it stands to reason that changing the
perturbation radius may affect algorithm behaviour. Therefore, we conducted further
analysis on a broader set of perturbation radii, i.e., with € set to values of 0.004, 0.005,
0.008, 0.01, 0.012, 0.02, 0.025, 0.03 and 0.04.

Table 3.9 shows the results for the CPU-based algorithms on this extended set of
problem instances. Overall, we found VeriNet remains the best-performing CPU-based
verifier (in terms of solved instances and relative Shapley value) on ReLU-based MNIST
networks. With regard to ReLLU-based CIFAR networks, Table 3.9 shows that, overall,
Neurify remained the best-performing CPU-based method.

However, we observed substantial differences between small and large values of € in

43

3.4. Results and Discussion

2500 2500
Error type
B miscellaneous
W timeout
20001 out-of-memory 20004

1757

1400 1400

BaBSB Marabou Neurify nnenum Verinet BaBSB Marabou Neurify nnenum Verinet
(a) CPU - MNIST (b) CPU - CIFAR
2500 2500
2000 1 20001
1500 A 1500 1
1312
1000 A 1000 - 930
752
500 5001
301 251 266
0 0 = 2 0l 0 31 20
BaDNB MN-BaB B-CROWN BaDNB MN-BaB B-CROWN
(c) GPU - MNIST (d) GPU - CIFAR

Figure 3.7: Frequency of error types returned by the considered verification algorithms on
instances in the ReLLU category.

the relative marginal contribution for each algorithm. More precisely, we analysed the
relative marginal contribution of each verification algorithm for every given value of
€ and show this in Figure 3.9c. Interestingly, one can see how the relative marginal
contribution of Marabou steeply increases for increasingly larger epsilons, while that
of other methods declines. Similarly, the solved instances and relative Shapley value
achieved by each method changes as the perturbation radius varies; this is visualised in
Figure 3.9a and 3.9e. In terms of both metrics, Marabou is strongly outperformed by
most of the other algorithms for small values of € but ends up achieving competitive or

even better performance when e is large.

An analogous investigation for CIFAR is shown in Figure 3.9d. In contrast to
MNIST, one can see that the relative marginal contribution of each method is relatively

weakly affected by the perturbation radius and, except for some divergence around

44

Chapter 3. Critically Assessing the State of the Art in NNV

2500 2500
Error type
mmm miscellaneous
e timeout
2000 4 mmm out-of-memory 2000 4
1500 4 1500 4
1000 A 1000 1
746
697 667 647
) I l) l l
0 0 (? 0 4 0 0 0 0 0
nnenum Verinet nnenum Verinet
(a) Memory limit = 3GB (b) Memory limit = 30GB

10° 10°
Result
= Unsat
4 4
10 = Unsolved 10

Sat

CPU time [s], Verinet
-
=

CPU time [s], Verinet
-
<

H
<

1072

-3 -2 -1 0 1 2 3 a 5 10-3
107 107 10 CP{?timel[g] nnle?mm 10° 10f 10 103 102 10! 10° 10! 102 103 10* 10°
g CPU time [s], nnenum

(c) Memory limit = 3GB (d) Memory limit = 30GB

Figure 3.8: Top row: Frequency of error types returned by the two top-performing
verification methods (in terms of the number of solved instances) on instances in the ReLU
category, with a memory limit of (a) 3GB or (b) 30GB. Bottom row: Performance comparison
of the two top-performing verification methods (in terms of relative Shapley value) in the
ReLU category for CPU-based methods, with a memory limit of (c) 3GB or (d) 30GB.

€ = 0.005, remains at a stable level. This holds for both solved instances and relative
Shapley value as shown in Figure 3.9b and 3.9f.

We performed a similar analysis for GPU-based methods and present results,
aggregated over all values of €, in Table 3.11. Among these algorithms, af-CROWN
performed best on MNIST networks in the ReLLU category, while BaDNB performed best
on CIFAR networks in the same category. However, we found that the relative marginal

contribution of each algorithm for every considered value of e differs substantially

45

3.4. Results and Discussion

Table 3.9: Performance comparison of CPU-based verification algorithms in terms of the
number of solved instances, relative marginal contribution (RMC), relative Shapley value (¢)
and average CPU running time, computed for each category and ¢ € {0.004, 0.005, 0.008,
0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved RMC ¢ Avg. Time Solved RMC ¢ Avg. Time

[CPU | [CPU s

BaBSB 3716 0.06 0.06 3223 2690 0.00 0.09 2964
Marabou 9457 0.44 0.19 1721 3651 0.01 0.12 2145
Neurify 8206 0.12 0.14 1899 8173 0.71 041 289
nnenum 15144 0.16 0.30 543 744 0.04 0.03 3315
VeriNet 15800 0.23 0.32 367 7674 0.24 0.35 486
ReLU-+MaxPool
Verifier MNIST CIFAR

Solved RMC ¢ Avg. Time Solved RMC ¢ Avg. Time
Marabou 316 1.00 1.00 50 0 0.00 0.00 3600
Tanh
Verifier MNIST CIFAR

Solved RMC ¢ Avg. Time Solved RMC ¢ Avg. Time
VeriNet 4307 1.00 1.00 59 0 0.00 0.00 3600
Sigmoid
Verifier MNIST CIFAR

Solved RMC ¢ Avg. Time Solved RMC ¢ Avg. Time
Marabou 0 0.00 0.00 3600 0 0.00 0.00 3600
VeriNet 4728 1.00 1.00 59 0 0.00 0.00 3600

between small and large values of € on MNIST instances, as shown in Figure 3.10c.
For example, when ¢ = 0.02, BaDNB and MN-BaB both achieve relative marginal
contribution scores close to 0.5 but then strongly converge as € becomes larger. Notably,
these changes are not reflected in the relative Shapley values achieved by each method,
where a-CROWN and MN-BaB both reach values close to 0.40 for every value of ¢;

see Figure 3.10e for more details.

On CIFAR instances, Figure 3.10d indicates that the relative marginal contribution
scores are only marginally affected by the chosen perturbation radius. More precisely,
BaDNB achieves the largest relative marginal contribution for every value of ¢, while
the relative marginal contributions of af-CROWN and MN-BaB only change slightly
as the perturbation radius increases. At the same time, the observed Shapley values

are mostly stable with regard to the perturbation radius, as shown in Figure 3.10f.

46

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.10: Performance comparison of CPU-based verification algorithms in terms of
the number of solved instances, absolute marginal contribution (MC), absolute Shapley
value (¢abs) and average CPU running time, computed for each category with aggregated
e € {0.004, 0.005,0.008,0.01,0.012,0.02,0.025,0.03,0.04}.

ReLU
Verifier MNIST CIFAR

Solved MC ¢ups Avg. Time Solved MC ¢aps Avg. Time

[CPU ¢ [CPU s

BaBSB 3716 103 1062 3223 2690 0 759 2964
Marabou 9457 784 3309 1721 3651 8 1078 2145
Neurify 8206 212 2418 1899 8173 1059 3662 289
nnenum 15144 288 5093 543 744 61 268 3315
VeriNet 15800 411 5442 367 7674 365 3061 486
ReLU-+MaxPool
Verifier MNIST CIFAR

Solved MC ¢ups Avg. Time Solved MC ¢ups Avg. Time
Marabou 316 316 316 50 0 0 0 3600
Tanh
Verifier MNIST CIFAR

Solved MC ¢ups Avg. Time Solved MC ¢ups Avg. Time
VeriNet 4307 4307 4307 59 0 0 0 3600
Sigmoid
Verifier MNIST CIFAR

Solved MC ¢aps Avg. Time Solved MC ¢aps Avg. Time
Marabou 0 0 0 3600 0 0 0 3600
VeriNet 4728 4728 4728 59 0 0 0 3600

Lastly, we again compared the performance of the two best-performing CPU as well
as GPU methods on an instance-level for all MNIST and CIFAR networks, respectively,
from the ReLU category and show the results in Figure 3.11. In each case, we found that
one method could solve some instances that were unsolved by the other, irrespective of
the perturbation radius. Notice that our findings hold even for a much larger value of
€. Specifically, we ran the two best-performing CPU-based algorithms, nnenum and
VeriNet, on the MNIST instances for € = 0.2 and present the results in Figure 3.12.

Overall, this clearly demonstrates that our observation of performance comple-
mentarity between verification algorithms holds for a broad range of perturbation

radii.

47

3.4. Results and Discussion

2500 . 1000
gy —e— BaBSB .
«- Marabou S | o 1
2000 Neurify 800
--#- Inenum
1500 -+~ Verinet 600
1000 .' S ! i 400 Semomeoon ! ! ! !
Dl I [e
500 = : : i 200 .
\, — i Y e e
0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius € Pertubation radius &
(a) MNIST - Instances solved (b) CIFAR - Instances solved
05 0.8
0.4 0.6
0.3
0.4
0.2 P SN I S N
0.2
0.1
0.0 - 0.0 : = =
0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius & Pertubation radius &
(c) MNIST - RMC (d) CIFAR - RMC
030 O-4 I I B N IR SR I
0.25 03 -
0.20
0.2
0.15
0.10 \ 01
0.05 e ——
0.0
0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius € Pertubation radius €
(e) MNIST - Rel. Shapley Value (f) CIFAR - Rel. Shapley Value

Figure 3.9: Performance of CPU-based verifiers for different values of € in the ReLU
category.

3.4.5 Joint Analysis of CPU- and GPU-Based Methods

As previously explained, directly comparing CPU- and GPU-based algorithms is a
challenging endeavour, due to the different parallelisation schemes as well as the
costs associated with running these algorithms. Here, we seek to capture both of
these aspects by conducting a cost-calibrated analysis. More concretely, we compared

these methods whilst factoring in the price of operating them on a prominent cloud

48

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.11: Performance comparison of GPU-based verification algorithms in terms of
the number of solved instances, relative marginal contribution (RMC), relative Shapley
value (¢) and average GPU running time, computed for each category and aggregated
¢ € {0.004,0.005,0.008,0.01,0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved RMC ¢ Avg. Time Solved RMC ¢ Avg. Time

|GPU s [GPU s]

BaDNB 9886 0.71 0.19 1864 21438 090 045 100
B-CROWN 18955 0.02 042 148 17014 0.03 0.30 783
MN-BaB 17799 0.27 0.39 363 14675 0.07 0.25 1174
ReLU-+MaxPool
Verifier MNIST CIFAR

Solved RMC ¢ Avg. Time Solved RMC ¢ Avg. Time
BaDNB 720 0.03 0.22 1493 0 0.00 0.00 3600
B-CROWN 1127 0.96 0.46 19 0 0.00 0.00 3600
MN-BaB 966 0.01 0.32 366 576 1.00 1.00 0.008
Tanh
Verifier MNIST CIFAR

Solved RMC ¢ Avg. Time Solved RMC ¢ Avg. Time
B-CROWN 2576 1.00 1.00 1.16 4535 1.00 1.00 0.75
MN-BaB 0 0.00 0.00 3600 0 0.00 0.00 3600
Sigmoid
Verifier MNIST CIFAR

Solved RMC ¢ Avg. Time Solved RMC ¢ Avg. Time
B-CROWN 2617 0.66 0.50 23 4961 0.97 0.69 46
MN-BaB 2601 0.33 0.50 44 3042 0.03 0.31 1420

computing platform. To this end, we investigated the price difference between Amazon
EC2 CPU instances comparable to the resources allocated in this study.* Notice that
this hardware is not the exact hardware used in our experiments but is being used
here as a substitute for calculating the cost of running similar hardware. Based on
this cost difference, we reduced the time budget for GPU-based methods by a factor
of 46.9, thereby ensuring that these methods cannot exceed the cost budget given to
the CPU-based algorithms. While we carefully calibrated this factor based on existing
prices, it must be noted that this analysis is based on many assumptions, and therefore,

the comparison between CPU and GPU-based solvers serves only illustrative purposes.

4We selected the t2.medium and the g4dn.8xlarge instances, which cost $0.0464 and $2.176 per
hour, respectively, see https://aws.amazon.com/ec2/pricing/on-demand/. Notice that there also
exists the even cheaper t2.small instance with only a single CPU core; however, we did not select this
machine as it has only 2 GB RAM.

49

3.4. Results and Discussion

Table 3.12: Performance comparison of GPU-based verification algorithms in terms
of the number of solved instances, absolute marginal contribution (MC'), absolute Shap-
ley value (¢aps) and average GPU running time, computed for each category with e €
{0.004, 0.005, 0.008,0.01,0.012,0.02,0.025,0.03,0.04}.

ReLU
Verifier MNIST CIFAR

Solved MC ¢ups Avg. Time Solved MC ¢aps Avg. Time

|GPU 5 |GPU g

BaDNB 9886 287 3832 1864 21438 2251 9823 100
B-CROWN 18955 6 8226 148 17014 72 6521 784
MN-BaB 17799 110 7700 363 14675 170 5401 1174
ReLU-+MaxPool
Verifier MNIST CIFAR

Solved MC ¢ups Avg. Time Solved MC ¢aps Avg. Time
BaDNB 720 5 244 1493 0 0 0 3600
B5-CROWN 1127 160 525 19 0 0 0 3600
MN-BaB 966 1 365 531 576 576 576 0.009
Tanh
Verifier MNIST CIFAR

Solved MC ¢ups Avg. Time Solved MC ¢ups Avg. Time
B8-CROWN 2576 2576 2576 1.16 4535 4535 4535 0.75
MN-BaB 0 0 0 3600 0 0 0 3600
Sigmoid
Verifier MNIST CIFAR

Solved MC ¢ups Avg. Time Solved MC ¢aps Avg. Time
B-CROWN 2617 32 1325 23 4961 1983 3472 46
MN-BaB 2601 16 1309 44 3042 64 1553 1421

Results from this analysis can be found in Table 3.13 for ¢ = 0.012 and Table 3.14
for the full range of values of ¢ we considered. First and foremost, it can be seen
that despite the higher costs associated with GPU resources, GPU-based verification
tools (in particular S~-CROWN, MN-BaB) are in many scenarios the most cost-efficient
verifiers. However, the results also show that there exist scenarios in which CPU-based
methods complement GPU-based methods in their performance. More concretely,
Table 3.14 shows that the CPU-based verifier Marabou achieved the largest relative
marginal contribution among all methods on MNIST networks from the ReLLU category,
indicating that it could solve a sizeable number of instances, which none of the other
CPU- or GPU-based methods were able to solve within the same budget. In addition,
the CPU-based verifier VeriNet achieved competitive marginal contribution and Shapley

values. Furthermore, in the Tanh category, VeriNet was able to solve a large fraction of

50

Chapter 3. Critically Assessing the State of the Art in NNV

S —e— BaDNB T |
@ 2400 o .
250 . T -+~ MN-BaB S Lo
S | = B-CROWN
2000 e, o 2200
1750 e
T 2000
1500
1250 .f\'\'\‘\ 1800 e
1000 5
R e S N 1600 S (N SN SN —
0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius & Pertubation radius &
(a) MNIST - Instances solved (b) CIFAR - Instances solved
S & . &
"
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 [A L o) . L 0.0 T m—
0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius & Pertubation radius &
(c) MNIST - RMC (d) CIFAR - RMC
0.45 Se—t—e——— T —* - .
0.40 —
4
0.35 0.40
0.30 0.35
0.25 030
./' = |
020 e 0.25 T B S
0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius & Pertubation radius &
(e) MNIST - Rel. Shapley value (f) CIFAR - Rel. Shapley value

Figure 3.10: Performance of GPU-based verifiers for different values of ¢ in the ReLU
category.

instances for which S-CROWN failed to return a solution; this observation holds when
analysing both a single value of ¢ as well as the whole set of considered perturbation

radii.

51

3.4. Results and Discussion

10° 105
Epsilon
, o+ 0.004 Lot
10 0.005
. 0.008
103 < 0.01 103
R . 0.012 -
o . 0.02 s
5 107 0.025 g 10
> - 003 >
“ 10 0 = 10!
(] (0]
£ £
3 =
o 100 S 100
Ay a9
o)
10-1 10-1
1072 / 102
10*3/ 1037 v v v .
10-3 1072 107! 10° 10! 102 103 10* 10° 107 1072 10! 10° 10' 102 10° 10* 10°
CPU time [s], nnenum CPU time [s], Neurify
(a) CPU - MNIST (b) CPU - CIFAR
10° 105
10* 104
103 103
[m
©
Z
E 102 g 10?
S m
@ 100 @ 101
[}
£ £
£ g
5 100 5 100
% =9}
o <]
10-1 10-1
1072 102
1073 7 , ! ! 1073 7 ; , .
103 1072 107! 10° 10! 102 103 10* 10° 103 1072 107! 10 10' 10% 10% 10* 10°
GPU time [s], B-CROWN GPU time [s], B-CROWN
(¢) GPU - MNIST (d) GPU - CIFAR

Figure 3.11: Performance comparison of the two top-performing verification methods (in
terms of relative Shapley value) in the ReLU category for CPU-based methods on (a) MNIST
and (b) CIFAR networks as well GPU-based methods on (c) MNIST and (d) CIFAR networks,
using multiple values of the perturbation radius e.

3.4.6 Analysis of unsat Instances

To gain further insights, we performed an analysis of unsat (i.e., robust) instances;
see Table 3.2 for the number of unsat instances that were found in each network
category. More concretely, we considered only unsat instances as solved, since several

verification methods considered in this study use counter-example generation mostly

52

Chapter 3. Critically Assessing the State of the Art in NNV

2500 2500

Error type Error type
=== miscellaneous === miscellaneous
e timeout e timeout
20001 mmm out-of-memory 2000 4 mmm out-of-memory
1500 1500 4
1000 A 1000 1
746 697
) . l)
70
0 0 (? 0 4 0 0
nnenum Verinet nnenum
(a) e = 0.012 (b) e =0.2

10° 10°
Result
= Unsat
4 4
10 = Unsolved 10

Sat

10° 103

102 102
10! 10!

10° 100

CPU time [s], Verinet
CPU time [s], Verinet

._.
=)
i
-
<

102 10-2

107° -

-3 -2 -1 0 1 2 3 a 5 10-3

10 10 10 107 10 10 10 10 10 1073 1072 107" 10° 10! 102 103 10* 10°
CPU time [s], nnenum

CPU time [s], nnenum
(c) € = 0.012 (d) € = 0.2

Figure 3.12: Top row: Frequency of error types returned by the two top-performing
verification methods (in terms of the number of solved instances) on instances in the ReLU
category, when (a) e = 0.012 or (b) € = 0.02. Bottom row: Performance comparison of the
two top-performing verification methods (in terms of relative Shapley value) in the ReLU
category for CPU-based methods, when (c) € = 0.012 or (d) € = 0.02.

as an early stopping opportunity. Thus, unsat instances pose an interesting subset
of the benchmark, as it measures the ability of a method to determine robustness in
cases where no such counter-example exist. Furthermore, commonly used robustness
metrics, such as adversarial accuracy, are computed by means of the fraction of unsat
instances in a given instance set. Therefore, verification methods that can efficiently
solve those instances enable a more accurate calculation of these metrics.

Table 3.15 shows result from this analysis for ¢ = 0.012 while Table 3.16 shows

53

3.4. Results and Discussion

Table 3.13: Performance comparison of CPU- and GPU-based verification algorithms
in terms of the number of solved instances, relative marginal contribution (RMC), relative
Shapley value (¢), computed for each category and € = 0.012.

ReLU
Verifier MNIST CIFAR

Solved RMC ¢ Solved RMC 10)
BaDNB 1171 0.12 0.25 2217 0.46 0.43
BaBSB 358 0.00 0.00 307 0.00 0.00
B5-CROWN 2245 0.00 0.23 1819 0.27 0.34
Marabou 1001 0.06 0.03 400 0.00 0.00
MN-BaB 2083 0.71 0.38 1622 0.28 0.19
Neurify 871 0.06 0.03 915 0.00 0.03
nnenum 1754 0.00 0.03 76 0.00 0.00
VeriNet 1799 0.06 0.03 841 0.00 0.01
ReLU-+MaxPool
Verifier MNIST CIFAR

Solved RMC ¢ Solved RMC 10)
BaDNB 69 0.00 0.05 0 0.00 0.00
B5-CROWN 128 1.00 0.67 0 0.00 0.00
Marabou 5 0.00 0.00 0 0.00 0.00
MN-BaB 115 0.00 0.27 64 1.00 1.00
Tanh
Verifier MNIST CIFAR

Solved RMC ¢ Solved RMC 10)
B-CROWN 319 0.09 0.19 198 1.00 1.00
MN-BaB 0 0.00 0.00 0 0.00 0.00
VeriNet 556 0.91 0.81 0 0.00 0.00
Sigmoid
Verifier MNIST CIFAR

Solved RMC ¢ Solved RMC 10)
B-CROWN 306 0.00 0.03 538 0.96 0.82
Marabou 0 0.00 0.00 0 0.00 0.00
MN-BaB 305 0.00 0.03 338 0.04 0.18
VeriNet 581 1.00 0.93 0 0.00 0.00

results aggregated over the full range of € values we considered. First of all, we found
that the total number of solved instances decreases when only unsat instances are

considered. This is particularly noticeable for CIFAR, where the majority of instances

54

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.14: Performance comparison of CPU- and GPU-based verification algo-
rithms in terms of the number of solved instances, relative marginal contribution
(RMC), relative Shapley value (¢), computed for each category and aggregated e €
{0.004, 0.005, 0.008, 0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved RMC ¢ Solved RMC 10)
BaDNB 9455 0.10 0.20 20408 0.48 0.43
BaBSB 3716 0.00 0.00 2690 0.00 0.00
B5-CROWN 18907 0.03 0.18 16997 0.31 0.36
Marabou 9457 0.44 0.20 3651 0.00 0.00
MN-BaB 17601 0.14 0.24 14581 0.20 0.16
Neurify 8206 0.04 0.02 8173 0.00 0.03
nnenum 15144 0.00 0.03 744 0.00 0.00
VeriNet 15800 0.24 0.12 7674 0.00 0.01
ReLU-+MaxPool
Verifier MNIST CIFAR

Solved RMC ¢ Solved RMC 10)
BaDNB 580 0.00 0.00 0 0.00 0.00
B-CROWN 1127 0.99 0.74 0 0.00 0.00
Marabou 316 0.00 0.00 0 0.00 0.00
MN-BaB 966 0.00 0.22 576 1.00 1.00
Tanh
Verifier MNIST CIFAR

Solved RMC ¢ Solved RMC 10)
B-CROWN 2576 0.17 0.24 4535 1.00 1.00
MN-BaB 0 0.00 0.00 0 0.00 0.00
VeriNet 4307 0.83 0.76 0 0.00 0.00
Sigmoid
Verifier MNIST CIFAR

Solved RMC ¢ Solved RMC 10)
B-CROWN 2617 0.00 0.05 4961 0.97 0.83
Marabou 0 0.00 0.00 0 0.00 0.00
MN-BaB 2601 0.00 0.05 3042 0.03 0.17
VeriNet 4728 1.00 0.90 0 0.00 0.00

are non-robust or, in other words, sat. Furthermore, we observed only minor changes

in the relative performance and complementarity of the given verifiers on MNIST

55

3.4. Results and Discussion

instances across all categories. Specifically, we found that for the broader set of €
values, the RMC and Shapley value of Marabou improve substantially, while those
for VeriNet strongly deteriorate. This indicates that on unsat instances, Marabou can
solve a large fraction of instances unsolved by other methods, while VeriNet mainly
contributes when sat instances are also considered. For CIFAR, we also noticed that
the relative performance of the given verifiers changed. Specifically, MN-BaB, which
previously achieved competitive relative performance does not seem to complement
other methods on wunsat instances; instead, most instances are solved by BaDNB and

af-CROWN, which also show strong complementarity in the ReLU category.

3.4.7 Analysis of the 2022 VNN Competition Results

To see if and to what extent our observations hold for a larger set of verifiers as
well as different benchmarks, we analysed the results of the 2022 edition of the VNN
competition. We refer to the accompanying report [87] for more information about the
participating tools, benchmarks and further technical details. Again, we present a joint
as well as a separate analysis of CPU- and GPU-based verification algorithms. We
excluded CGDTest from the set of methods considered in our analysis, as it represents
the only incomplete verification approach participating in the competition, while our
work focuses on complete verification. In addition, CGDTest produced a substantial
number of incorrect results in the competition, casting doubts on the soundness of the
method.

Table 3.17 shows the results from the VNN competition for CPU-based verification
algorithms. It reports the number of problem instances solved by each verifier per
network category, marginal contribution as well as Shapley values, both in absolute and
relative terms. Most notably, we observe strong complementarity between the verifiers
considered in two of the three benchmark categories. Concretely, in the CNN + ResNet
category, Marabou and VeraPak achieved relative Shapley values of 0.44 and 0.24,
respectively. Indeed, as depicted in Figure 3.13c, there are several instances solved by
one of the verifiers but unsolved by the other.

In the FC category, Marabou, nnenum and PerigiNN achieved a similar relative
Shapley value of 0.24, again highlighting the complementarity between these algorithms.
Given the similar relative Shapley values, we resort to the relative marginal contribution
to determine the two best-performing methods in this context; i.e., among these three
methods, nnenum and PerigiNN achieved the largest relative marginal contributions

and are, thus, considered the two best-performing methods. Again, we compare their

56

Chapter 3.

Critically Assessing the State of the Art in NNV

10°

104

103

102

10!

10°

CPU time [s], PeregriNN

1072

1072
1073 1072 107! 100 10! 102 103 104
CPU time [s], nnenum
(a) CPU - Complex
10°
10%
103
102

10!

10°

CPU time [s], VeraPak

103 1072 107! 100 10! 102 103 10%
CPU time [s], Marabou

(¢) CPU - CNN+ResNet

10°

104

103

102

10t

10°

GPU time [s], MN-BaB

107!
1072

103
1073 1072 107! 100 10! 10?2 103 10% 10°
GPU time [s], a,p-CROWN

(b) GPU - Complex

10°

Result
Unsat
« Sat
= Unsolved

104

103

102

10!

10°

GPU time [s], VeriNet

107!

1072

1073
1073 1072 107! 10° 10! 102 103 104 10°
GPU time [s], a,-CROWN

(d) GPU - CNN-+ResNet

Figure 3.13: Performance comparison of the two top-performing verification methods (in
terms of relative Shapley value) in each category from the 2022 VNN Competition. Instances
that were not solved within their respective time limit are displayed with the maximum
running time attributed to any instance in the benchmark set (i.e., 1800 seconds). (Part 1 of

2)

performance on an instance level, as shown in Figure 3.14a. As can be observed,

instances spread out widely around the equal performance line of the plot, with many

57

3.4. Results and Discussion

10° 10° /
10* 104 /

10° 103

Z
z 3
B 2 M 2
§7 10 > 10
3])
o =
- 10! » 10!
@ £
g =]
5100 5 100
E [
S Q

10! 10-1

1072 1072

1073 - 10-3 7

1073 1072 107! 100 10! 102 108 104 . 1073 1072 107! 100 10! 102 103 104
CPU time [s], nnenum GPU time [s], a,B-CROWN
(a) CPU - FC (b) GPU - FC

Figure 3.14: Performance comparison of the two top-performing verification methods (in
terms of relative Shapley value) in each category from the 2022 VNN Competition. Instances
that were not solved within their respective time limit are displayed with the maximum
running time attributed to any instance in the benchmark set (i.e., 1800 seconds). (Part 2 of
2)

instances solved by nnenum but unsolved by PerigiNN, and vice versa.

In the Complex category, nnenum and PeregriNN achieved Shapley values of 0.46
and 0.50, respectively. However, Figure 3.13a reveals that nnenum dominates in
performance over PeregriNN on most instances. We note that the Shapley value
represents the average contribution made by a given verifier over all possible sets of
algorithms in a portfolio. Hence, it indicates that nnenum could solve many instances
unsolved by other methods from the full set of algorithms under consideration; however,

nnenum does not complement PeregriNN in terms of solved instances.

Next, we discuss the results from the 2022 VNN Competition for GPU-based
verification algorithms; these are presented in Table 3.18. Surprisingly, for GPU-based
methods, our findings from analysing the competition results differ from those made in
our previous assessment, as they do not reveal strong complementarity between the
algorithms. Specifically, 5~-CROWN dominates in performance on every instance in
each category, although relative Shapley values indicate complementary (for similar

reasons as those outlined above).

This reflected in Figure 3.13b, Figure 3.13d and Figure 3.14b. Concretely, these

58

10°

Chapter 3. Critically Assessing the State of the Art in NNV

plots show the performance on an instance level for the two top-performing methods in
each category (in terms of relative Shapley values). In the Complex and FC category,
these are fS~-CROWN and MN-BaB, while in the CNN + ResNet category, these are
B-CROWN and VeriNet. The latter category represents the only category in which
a small degree of complementarity can be observed, as both verifiers solved some
instances unsolved by the other. However, the fraction solved by VeriNet remains
comparably small.

Finally, Table 3.19 presents the joint analysis of CPU- and GPU-based methods
based on the competition results. Notice that we did not perform a cost calibration
in this case, as verifiers were employed on hardware with about equal costs. Most
interestingly, we observed performance complementary between these methods in the
CNN+ResNet category. More specifically, the CPU-based Marabou solver could solve
several instances unsolved by GPU-based S-CROWN verifier, although the latter solved
the most instances overall, as reflected in the relative Shapley values (0.53 vs 0.32).
Again, this shows that there exist scenarios in which CPU-based methods complement
GPU-based methods in their performance.

Overall, we find that the biggest difference between the results of the VNN compe-
tition and the results obtained in this study is the degree of complementarity between
the GPU-based verification algorithms, as reflected by the marginal contribution and
Shapley values. While the results from the VNN competition suggest that there is a
single best GPU-based verifier that broadly dominates all other methods, the results
presented in our study reveal a more nuanced story. This difference can most likely be
attributed to the size and the diversity of the proposed benchmark: while the 2022 VNN
Competition considered 17 neural networks as test cases for local robustness verification,
our benchmark consists of 79 networks. At the same time, the competition provides
valuable insights into how the considered verifiers perform when carefully adapted to a
specific benchmark. Moreover, while both analyses have clear contributions, our results

highlight the importance of introducing a larger and more diverse benchmark set.

3.5 Conclusions and Future Work

In this chapter, we sought to answer the question of what constitutes the state of
the art in neural network verification and, thus, address RQ1 of this thesis. To
this end, we assessed the performance of a collection of well-known, complete local
robustness verification algorithms, i.e., algorithms used to verify the robustness of

an image classification network against small input perturbations. We found that

59

3.5. Conclusions and Future Work

all of these methods support RelLU-based networks, while other network types are
strongly under-supported. While this has been suspected in the community, it has, to
our knowledge, not yet been subject to formal study. Generally, we observed that all
considered verification algorithms show severe limitations with regard to the network
structures they can process — in many cases due to unsupported layer operations and
in others due to undefined errors.

Furthermore, and more importantly, we presented evidence for strong performance
complementarity: even within the same benchmark category (as defined based on verifier
compatibility), any two verification systems outperform each other on distinct subsets
of instances. Thereby, the state of the art in neural network verification cannot be
described by a single algorithm but rather several algorithms that contribute to varying
degrees with their own strengths. As we have demonstrated, this complementarity can
be exploited by combining individual verifiers into parallel portfolios. At the same
time, automated portfolio construction comes with its own challenges, leaving room
for further research into the development and evaluation of appropriate frameworks.

Lastly, we showed that, in general, the performance of verifiers strongly differs
between image datasets, with some methods achieving the best performance on MNIST
(in terms of the number of solved instances and average running time) while falling
behind on CIFAR and vice versa. In addition, even for the same dataset, we found that
the performance of a given verifier can change drastically depending on the perturbation
radius; i.e., an algorithm that performs well for a small value of € might degrade in
performance as the value of € increases.

In future work, it would be interesting to analyse in more detail how the relative
performance of verifiers depends on the given perturbation radius and other performance-
relevant characteristics of the given networks and image classification tasks. We suspect
this to be an interesting yet challenging research direction, as it requires a novel
definition of features specific to neural network verification problem. To the best
of our knowledge, no research on the development of such meta-features has been
conducted yet. Due to the specifics of both the verification problem instances as well
as the verification algorithms that should be systematically explored, we consider this
a non-trivial but important challenge to be solved in future work. This line of research
would also enable empirical performance modelling. An empirical performance model
is a model that predicts the performance, e.g., the running time, of algorithms on
previously unseen input, including previously unseen problem instances. Finally, it
would be interesting to expand this analysis to other datasets and machine learning

tasks beyond supervised image classification.

60

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.15: Performance comparison of CPU- and GPU-based verification algorithms
in terms of the number of unsat instances, relative marginal contribution (RMC), relative
Shapley value (¢), computed for each category and € = 0.012.

ReLU
Verifier MNIST CIFAR

Solved RMC ¢ Solved RMC 10)
BaDNB 1072 0.13 0.25 86 0.65 0.63
BaBSB 161 0.00 0.00 0 0.00 0.00
B5-CROWN 2143 0.00 0.23 61 0.35 0.36
Marabou 995 0.07 0.03 6 0.00 0.00
MN-BaB 2025 0.80 0.40 16 0.00 0.00
Neurify 748 0.00 0.00 20 0.00 0.00
nnenum 1686 0.00 0.03 26 0.00 0.00
VeriNet 1675 0.00 0.03 20 0.00 0.00
ReLU-+MaxPool
Verifier MNIST CIFAR

Solved RMC ¢ Solved RMC 10)
BaDNB 59 0.00 0.10 0 0.00 0.00
B5-CROWN 88 1.00 0.52 0 0.00 0.00
Marabou 5 0.00 0.00 0 0.00 0.00
MN-BaB 86 0.00 0.38 0 0.00 0.00
Tanh
Verifier MNIST CIFAR

Solved RMC ¢ Solved RMC 10)
B5-CROWN 291 0.09 0.18 3 1.00 1.00
MN-BaB 0 0.00 0.00 0 0.00 0.00
VeriNet 527 0.91 0.82 0 0.00 0.00
Sigmoid
Verifier MNIST CIFAR

Solved RMC ¢ Solved RMC 10)
B-CROWN 272 0.00 0.03 66 1.00 0.00
Marabou 0 0.00 0.00 0 0.00 0.00
MN-BaB 272 0.00 0.03 0 0.00 0.00
VeriNet 544 1.00 0.94 0 0.00 0.00

61

3.5. Conclusions and Future Work

Table 3.16: Performance comparison of CPU- and GPU-based verification algo-
rithms in terms of the number of wunsat instances, relative marginal contribution
(RMC), relative Shapley value (¢), computed for each category and aggregated e €
{0.004, 0.005, 0.008, 0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved RMC ¢ Solved RMC 10)
BaDNB 8059 0.15 0.21 1069 0.63 0.59
BaBSB 2303 0.00 0.00 0 0.00 0.00
B-CROWN 17433 0.04 0.19 866 0.36 0.39
Marabou 9290 0.61 0.25 60 0.00 0.00
MN-BaB 16 588 0.20 0.28 144 0.00 0.00
Neurify 6 992 0.00 0.00 168 0.00 0.00
nnenum 14601 0.00 0.03 223 0.00 0.01
VeriNet 14317 0.00 0.02 177 0.00 0.00
ReLU-+MaxPool
Verifier MNIST CIFAR

Solved RMC ¢ Solved RMC 1)
BaDNB 418 0.00 0.08 0 0.00 0.00
B-CROWN 573 1.00 0.50 0 0.00 0.00
Marabou 274 0.00 0.02 0 0.00 0.00
MN-BaB 566 0.00 0.40 0 0.00 0.00
Tanh
Verifier MNIST CIFAR

Solved RMC ¢ Solved RMC 10)
B-CROWN 2248 0.15 0.22 151 1.00 1.00
MN-BaB 0 0.00 0.00 0 0.00 0.00
VeriNet 3993 0.85 0.78 0 0.00 0.00
Sigmoid
Verifier MNIST CIFAR

Solved RMC ¢ Solved RMC 10)
B-CROWN 2290 0.00 0.04 575 1.00 1.00
Marabou 0 0.00 0.00 0 0.00 0.00
MN-BaB 2302 0.00 0.04 0 0.00 0.00
VeriNet 4448 1.00 0.92 0 0.00 0.00

62

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.17: Performance comparison of CPU-based verification algorithms in terms of
the number of solved instances, absolute and relative marginal contribution (MC, RMC),
absolute and relative Shapley value (¢ass, ¢) as well as average running time, computed for
each category from the 2022 VNN Competition.

Complex
Verifier

Solved MC RMC ¢aps ¢ Avg. Time
AveriNN 0 0 0.00 0 0.00 192
Debona, 2 0 0.00 1 0.04 192
FastBATLLNN 0 0 0.00 0 0.00 192
Marabou 0 0 0.00 0 0.00 192
nnenum 23 0 0.00 11 0.46 190
PeregriNN 24 1 1.00 12 0.50 189
VeraPak 0 0 0.00 0 0.00 192
CNN -+ ResNet
Verifier

Solved MC RMC ¢aps ¢ Avg. Time
AveriNN 0 0 0.00 0 0.00 357
Debona, 0 0 0.00 0 0.00 357
FastBATLLNN 0 0 0.00 0 0.00 357
Marabou 122 91 0.61 106 0.44 264
nnenum 81 17 0.11 48 0.20 273
PeregriNN 57 0 0.00 28 0.12 325
VeraPak 72 42 0.28 57 0.24 254
FC
Verifier

Solved MC RMC ¢ups ¢ Avg. Time
AveriNN 100 0 0.00 20 0.05 166
Debona 339 3 0.30 82 0.19 91
FastBATLLNN 32 1 0.10 10 0.0 0.5
Marabou 404 0 0.00 102 0.24 53
nnenum 411 1 0.10 105 0.24 37
PeregriNN 397 2 0.20 102 0.24 48
VeraPak 50 3 0.30 13 0.03 66

63

3.5. Conclusions and Future Work

Table 3.18: Performance comparison of GPU-based verification algorithms in terms of
the number of solved instances, absolute and relative marginal contribution (MC, RMC),
absolute and relative Shapley value (@abs, ¢) as well as average running time, computed for
each category from the 2022 VNN Competition.

Complex
Verifier

Solved MC RMC ¢aps ¢ Avg. Time
B5-CROWN 191 66 1.00 0 0.62 72
MN-BaB 125 0 0.00 0 0.28 164
VeriNet 60 0 0.00 0 0.10 187
CNN -+ ResNet
Verifier

Solved MC RMC ¢ups ¢ Avg. Time
B-CROWN 312 28 1.00 0 0.42 107
MN-BaB 254 0 0.00 0 0.28 179
VeriNet 259 0 0.00 0 0.30 171
FC
Verifier

Solved MC RMC ¢aps ¢ Avg. Time
B5-CROWN 448 11 1.00 0 0.35 15
MN-BaB 433 0 0.00 0 0.33 30
VeriNet 435 0 0.00 0 0.32 21

64

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.19: Performance comparison of GPU- and CPU-based verification algorithms in
terms of the number of solved instances, absolute and relative marginal contribution (MC,
RMC) as well as absolute and relative Shapley value (¢aps, @), computed for each category
from the 2022 VNN Competition.

Complex
Verifier

Solved MC RMC ¢aps 10)
AveriNN 0 0 0.00 0 0.00
[S-CROWN 191 66 0.99 20 0.91
Debona 2 0 0.00 0 0.04
FastBATLLNN 0 0 0.00 0 0.00
Marabou 0 0 0.00 0 0.00
MN-BaB 125 0 0.00 2 0.09
nnenum 23 0 0.00 0 0.46
PeregriNN 24 1 0.01 0 0.50
VeraPak 0 0 0.00 0 0.00
VeriNet 60 0 0.00 0 0.10
CNN —+ ResNet
Verifier

Solved MC RMC ¢aps ¢
AveriNN 0 0 0.00 0 0.00
[S-CROWN 312 15 0.28 6 0.32
Debona 0 0 0.00 0 0.00
FastBATLLNN 0 0 0.00 0 0.00
Marabou 122 36 0.68 10 0.53
MN-BaB 254 0 0.00 1 0.05
nnenum 81 0 0.00 0 0.00
PeregriNN 57 0 0.00 0 0.00
VeraPak 72 2 0.04 1 0.05
VeriNet 259 0 0.00 1 0.05
FC
Verifier

Solved MC RMC ¢aps 10)
AveriNN 100 0 0.00 0 0.00
[S-CROWN 448 9 1.00 3 1.00
Debona 339 0 0.00 0 0.00
FastBATLLNN 32 0 0.00 0 0.00
Marabou 404 0 0.00 0 0.00
MN-BaB 433 0 0.00 0 0.00
nnenum 411 0 0.00 0 0.00
PeregriNN 397 0 0.00 0 0.00
VeraPak 50 0 0.00 0 0.00
VeriNet 435 0 0.00 0 0.00

65

3.5.

Conclusions and Future Work

66

