
Automated machine learning for neural network verification
König, H.M.T.

Citation
König, H. M. T. (2025, October 9). Automated machine learning for neural
network verification. Retrieved from https://hdl.handle.net/1887/4266921

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4266921

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4266921

Chapter 3

Critically Assessing the State of
the Art in Neural Network
Verification

Neural network verification with respect to local robustness is a highly diverse research
area, and existing methods rely on a broad range of techniques. At the same time,
neural networks differ in terms of their architecture, such as the number of hidden
layers and nodes, the type of non-linearities, e.g., ReLU, Sigmoid or Tanh, and the
type of operations they employ, e.g., pooling or convolutional layers. This diversity,
both in terms of verification approaches and neural network design, makes it non-
trivial for researchers or practitioners to assess and decide which method is most
suitable for verifying a given neural network [15]. This challenge is amplified by the
fact that the neural network verification community does not (yet) use commonly
agreed evaluation protocols, which makes it difficult to draw clear conclusions from
the literature regarding the capabilities and performance of existing verifiers. More
precisely, existing studies use different benchmarks and, so far, have not provided an
in-depth performance comparison of a broad range of verification algorithms, as we
will further outline in Section 3.1.

Recently, a competition series has been initiated, in which several verifiers were
applied to different benchmarks (i.e., networks, properties and datasets) and compared
in terms of various performance measures, including the number of verified instances
as well as running time [87]. While the results from these competitions have provided

19

valuable insights into the general progress in neural network verification, several
questions remain unexplored. Most importantly, the ranking of algorithms based on
their aggregated performance scores makes it difficult to assess in detail the strengths
or weaknesses of verifiers on different instances. Indeed, looking at the competition
results, one easily gets the impression that a single approach dominates ‘across the
board’ — an assumption that is known to be inaccurate for other problems involving
formal verification tasks; see, e.g., [117] or [52] for SAT.

In this chapter, we focus exclusively on local robustness verification in image
classification against perturbations under the l∞-norm. This scenario represents a
widely studied verification task, with a large number of networks being publicly available
and many verifiers providing off-the-shelf support. Notice that most verification tasks
can be translated into local robustness verification queries [95]; we, therefore, believe
that our findings are broadly applicable. Moreover, we seek to go beyond existing
benchmarking approaches and shed light on previously unanswered questions regarding
the state of the art in local robustness verification from a practitioner’s point of view –
a perspective that complements the insights from the VNN competition, where the
participating tools are carefully adapted to the given benchmarks by their developers.
Our contributions in this chapter are as follows and, altogether, seek to answer RQ1 of
this thesis:

• We analyse the current state of practice in benchmarking verification algorithms;

• we perform a systematic benchmarking study of several, carefully chosen GPU-
and CPU-based verification methods based on a newly assembled and diverse
set of networks, including 38 CIFAR and 41 MNIST networks with different
activation functions, representing a much larger number of networks than typically
considered, each verified against several robustness properties, for which we
expended a total of approximately 1 GPU and 16 CPU years in running time;

• we present a categorisation of verification benchmarks based on verifier compati-
bilities with different layer types and operations;

• we quantify verifier performance in terms of the number of solved instances,
running time, as well as marginal contribution and Shapley value, showing
that top-performing verification algorithms strongly complement rather than
consistently dominate each other in terms of performance, a finding that we
also show to hold for the results of the 2022 VNN Competition – e.g., while the
verifiers nnenum and PeregriNN achieved competitive performance in the FC

20

Chapter 3. Critically Assessing the State of the Art in NNV

category of the competition, the former solved many instances unsolved by the
latter and vice versa.

3.1 Common Practices in Benchmarking

Neural Network Verifiers

As explained in Chapter 2, formal verification algorithms can be either complete or
incomplete [71]. An algorithm that is incomplete does not guarantee to report a solution
for every given instance; however, incomplete verification algorithms are typically sound,
which means they will report that a property holds only if the property actually holds.
On the other hand, an algorithm that is sound and complete, when given sufficient
resources to be run to completion, will correctly state that a property holds whenever
it holds, and, in particular, will determine accurately when the property does not
hold. In this study, we focus on complete algorithms, as those arguably represent
the most ambitious form of neural network verification, making them preferable over
incomplete methods, especially in safety-critical applications. Furthermore, we focus on
the verification of real-valued networks, which are typically considered in the verification
literature, although there exist methods for the verification of other network types; see,
e.g., the work of [88] or [49] on binarised networks.

Considering the diversity in neural network verification problems, it is quite natural
to assume that a single best algorithm does not exist, i.e., a method that always
outperforms all others. It is still hard to identify to what extent a method contributes
to the state of the art, mainly because verification methods are typically evaluated
(i) on a small number of benchmarks, which have often been created for the sole purpose
of evaluating the method at hand, and (ii) against baseline methods for which it is often
unclear how they were chosen, leading to several methods claiming state-of-the-art
performance without having been directly compared. We note that in the context
of local robustness verification, a benchmark most often represents a neural network
classifier trained on the MNIST or CIFAR-10 dataset, respectively.

As previously mentioned, a competition series has been established with the goal of
providing an objective and fair comparison of the state-of-the-art methods in neural
network verification, in terms of scalability and speed [87]. The VNN competition
was held every year since 2020, with different protocols (e.g., for running experiments,
scoring, etc.), benchmarks and participants. Here, we focus on the 2022 edition. Within
VNN 2022, a total of 12 benchmarks were considered, of which 6 represented test cases

21

3.1. Common Practices in Benchmarking
Neural Network Verifiers

for local robustness verification of image classification networks. Notice that one of
these benchmarks considers bias field perturbations, which are reduced to a standard
l∞-norm specification. Benchmarks were proposed by the participants themselves
and included a total of 13 CIFAR, 2 MNIST and 2 (Tiny)ImageNet networks, which
differed in terms of architecture components, such as non-linearities (e.g., ReLU, Tanh,
Sigmoid) and layer operations (e.g., convolutional or pooling layers, skip connections).
Networks were trained on the CIFAR-10, CIFAR-100, MNIST, TinyImageNet and
ImageNet datasets, respectively. Moreover, each benchmark was composed of random
image subsets, excluding images that were misclassified by the given network, along
with varying perturbation radii.

This competition overcame several of the previously reported limitations with regard
to the evaluation of network verifiers. Most notably, it covered a relatively large and
diverse set of neural networks. Moreover, thanks to the active participation from the
community, 12 verification algorithms were included in the competition. At the same
time, we see room for further research into the performance of neural network verifiers.

First and foremost, the competition seeks to determine the current state of the
art; however, the competition ranking and scores do not sufficiently quantify the
extent to which an algorithm actually contributes to the state of the art. In other
words, it is in the nature of competitions to determine a winner, at least implicitly
suggesting that a single approach generally outperforms all competitors. However, some
verification algorithms might have limited but distinct areas of strength, which cannot
be identified through aggregated performance measures, such as the total number of
verified instances. Although the competition report [87] shows that individual verifier
performance differs among benchmarks, it remains unclear whether all algorithms
solve the same set of instances in the given benchmark, or if they complement each
other. Similarly, it does not reveal whether or not methods are correlated in their
performance.

Furthermore, in our study, we conducted both a joint and separate analysis of
CPU- and GPU-based methods. This choice was motivated by the inherent challenges
that arise when attempting to compare these two types of algorithms. Indeed, the
competition results suggest that GPU-based methods are more efficient than CPU-
based algorithms [87]; however, GPU resources are typically more expensive to run.
Additionally, while CPU-based methods can run a single verification query on each
CPU core, allowing for multiple instances to be solved in parallel on the same machine,
GPU-based methods utilise the full GPU when solving a single verification query. In
fact, running multiple queries in parallel, each utilising a single CPU core, might be

22

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.1: Overview of reviewed verification methods and their eligibility for inclusion in
our assessment based on their (i) completeness and (ii) presence in the top five ranking of
the 2021 or 2022 VNN Competition or (iii) support through DNNV. Check marks indicate
that a verifier satisfies the criterion, while cross marks indicate that it does not. If a verifier
satisfies the inclusion criteria but is superseded by another, more recent method, the former is
not included.

Verifier Complete? In VNN Comp? In DNNV? GPU/GPU? Reference

BaB ✓ ✗ ✓ CPU [12]
BaDNB ✓ ✓ ✗ GPU [22]
αβ-CROWN ✓ ✓ ✗ GPU [111]
ERAN1 ✓ ✓ ✓ GPU [96]
Marabou ✓ ✓ ✓ CPU [56]
MIPVerify2 ✓ ✗ ✓ CPU [104]
MN-BaB ✓ ✓ ✗ GPU [29]
Neurify ✓ ✗ ✓ CPU [110]
nnenum ✓ ✓ ✓ CPU [4]
Planet3 ✓ ✗ ✓ CPU [27]
Reluplex4 ✓ ✗ ✓ CPU [55]
VeriNet ✓ ✗ ✓ CPU [40]

1Superseded by MN-BaB.
2Local robustness verification not supported via DNNV.
3Superseded by BaB.
4Superseded by Marabou.

a more efficient approach than running each query sequentially, while utilising all
cores. Thus, overall, it remains challenging to set up a comparison between CPU- and
GPU-based verification algorithms in an unbiased manner, which is why we present
both a direct comparison and a separate analysis.

Finally, the competition approaches the state of the art from the perspective of
a tool developer, where the developer is given access to the benchmarks beforehand
and can adapt their implementations as well as hyperparameter settings accordingly.
On the other hand, in this study, we assess the state of the art from the perspective
of a practitioner, who typically uses a verification tool out of the box, is bounded
by the limitations of the implementations, and might also not be able to tune the
hyperparameters of these tools. We believe that both these perspectives on the state
of the art are valid and give complementary insights.

23

3.2. Verification Algorithms under Assessment

3.2 Verification Algorithms under Assessment

We consider eight complete neural network verification algorithms in this study; each
of these was chosen because it fulfilled one of the following conditions: it was (i)
ranked among the top five verification methods according to the 2021 and 2022
VNN competitions or (ii) supported by the recently published DNNV framework [95].
Table 3.1 presents an overview of all methods we reviewed and their eligibility for
inclusion based on the criteria specified above. Notice that some verification methods,
such as Neurify [110] or BaDNB [22], did not participate in the 2022 edition of the VNN
competition. On the other hand, it can be assumed that these methods also contribute
to the state of the art in neural network verification. For example, BaDNB, which is
part of the OVAL framework, reached third place in the 2021 edition of the competition
[3] but did not compete in 2022. Altogether, we consider our set of algorithms to be
representative of recent and important developments in the area of complete neural
network and, more specifically, local robustness verification.

All methods were employed with their default hyperparameter settings, as they
would likely be used by practitioners. In other words, one aspect of our study is to
capture the situation someone using existing tools “out of the box” might face. We
note that the performance of a verifier might improve if its hyperparameters were
optimised specifically for the given benchmark; however, most verifiers have dozens of
hyperparameters (or employ combinatorial solvers that come with their own, extensive
set of hyperparameters), which makes this a non-trivial task, requiring additional
expertise and resources.

3.2.1 CPU-Based Methods

The CPU-based verification algorithms we considered are the following.
BaB. The algorithm proposed by Bunel et al. [12] restates the verification problem

as a global optimisation problem, which is then solved using branch-and-bound search.
It further incorporates algorithmic improvements to branching and bounding procedures
such as smart branching ; i.e., before splitting, it computes fast bounds on each of
the possible subdomains and chooses the one with the tightest bounds. This method
supports ReLU-based networks; for the remainder of this chapter, we refer to it as
BaBSB.

Marabou. The Marabou framework [56] employs SMT solving techniques, specif-
ically the lazy search technique for handling non-linear constraints. Furthermore,
Marabou employs deduction techniques to obtain information on the activation func-

24

Chapter 3. Critically Assessing the State of the Art in NNV

tions that can be used to simplify them. The core of the SMT solver is simplex-based,
which means that the variable assignments are made using the simplex algorithm.
Marabou supports ReLU and Sigmoid activation functions as well as MaxPooling
operations.

Neurify. The verification algorithm proposed by Wang et al. [110] relies on
symbolic interval propagation to create over-approximations, followed by a refinement
strategy based on symbolic gradient information. The constraint refinement aims to
tighten the bounds of the approximation of activation functions. Neurify can process
networks containing ReLU activation functions.

nnenum. The verifier proposed by Bak et al. [4] utilises star sets to represent
the values each layer of a neural network can attain. By propagating these through
the network, it checks whether one or more of the star sets results in an adversarial
example. This verifier can handle networks with ReLU activation functions.

VeriNet. The verifier developed by Henriksen & Lomuscio [40] combines symbolic
intervals with gradient-based adversarial local search for finding counter-examples.
The authors further propose a splitting heuristic for interval propagation based on
the influence of a given node on the bounds of the network output. VeriNet supports
networks containing ReLU, Sigmoid and Tanh activation functions.

3.2.2 GPU-Based Methods

Next, we present the GPU-based verification algorithms we considered.

BaDNB. The BaDNB verifier introduced by DePalma et al. [22] builds on earlier
versions of the BaB framework; however, it uses a novel dual formulation of the MIP,
which it solves via branch-and-bound. The novel formulation allows for extensive par-
allelisation on GPUs. Furthermore, it employs a bounding heuristic which significantly
reduces the number of branches necessary for solving the verification problem. BaDNB

is limited to ReLU-based networks and MaxPooling operations.

Beta-CROWN. αβ-CROWN [111] is a bound propagation method combined with
neuron-split constraints, which divides the original problem into sub-problems based
on the activation function’s range. αβ-CROWN leverages neuron-split constraints,
while, in general, other bound propagation methods are not able to handle this type of
constraint. Using the framework presented by Bunel et al. [12], the verifier is complete
and can be efficiently parallelised using GPUs. αβ-CROWN can handle ReLU, Sigmoid
and Tanh activations as well as MaxPooling layers.

MN-BaB. The MN-BaB verifier [29] builds on the multi-neuron constraints un-

25

3.3. Setup for Empirical Evaluation

Table 3.2: Instance set size for each benchmark category. Solvable instances are those solved
by at least one (i.e., any) or all of the considered verifiers. We considered any instance that
was found to be sat or unsat as solved. The number of sat and unsat instances, respectively,
can be found in brackets. The column “Verifiers employed” lists (1) BaBSB, (2) Marabou,
(3) Neurify, (4) nnenum, (5) VeriNet, (6) BaDNB, (7) αβ-CROWN or (8) MN-BaB as the
matching suitable algorithm(s) to the respective category.

CPU methods

MNIST CIFAR

Category Total Solvable Total Solvable Verifiers employed

Any (sat/unsat) All (sat/unsat) Any (sat/unsat) All (sat/unsat)

ReLU 2 500 1 913 (169/1 744) 42 (38/4) 2 500 972 (946/26) 0 (0/0) (1),(2),(3),(4),(5)
ReLU + MaxPool 400 5 (0/5) 0 (0/0) 100 0 (0/0) 0 (0/0) (2)
Tanh 600 556 (29/527) 0 (0/0) 600 0 (0/0) 0 (0/0) (5)
Sigmoid 600 581 (37/544) 0 (0/0) 600 0 (0/0) 0 (0/0) (2),(5)
GPU methods

ReLU 2 500 2 308 (128/2 180) 948 (53/895) 2 500 2 364 (2 262/102) 1 048 (1 048/0) (6),(7),(8)
ReLU + MaxPool 400 128 (40/88) 84 (25/59) 100 64 (64/0) 0 (0/0) (6),(7),(8)
Tanh 600 319 (28/291) 0 (0/0) 600 497 (494/3) 0 (0/0) (7),(8)
Sigmoid 600 307 (35/272) 304 (0/0) 600 547 (481/66) 0 (0/0) (7),(8)

derlying the ERAN toolkit [85, 96, 99, 97, 98] as well as GPU-enabled linear bound
propagation in a branch-and-bound framework. MN-BaB uses different verification
modes, including input-domain splitting with bound propagation and full MIP encod-
ings for complete verification. It is capable of handling various activation functions
and layer operations such as ReLU, Sigmoid, Tanh, and MaxPooling.

3.3 Setup for Empirical Evaluation

In the following, we will present an overview of how we set up our benchmark study,
i.e., how we selected problem instances and verification algorithms. Furthermore, we
will provide details on the software we used and the execution environment in which
our experiments were carried out.

3.3.1 Problem Instances

For our assessment, we compiled a high-quality set of problem instances for local
robustness verification. Following best practices in other research areas, such as
optimisation [41, 5], the benchmark should be representative and diverse, where the
former refers to how well the difficulty of the benchmark is aligned with that of real-
world instances from the same problem class, and the latter means that the instance
set should cover a wide range of difficulties.

Overall, our benchmark is comprised of 79 image classification networks, of which

26

Chapter 3. Critically Assessing the State of the Art in NNV

41 MNIST classifiers
38 CIFAR classifiers

Networks

100 images
per classifier

Instances

5 CPU-based

Verifiers

3 GPU-based

Properties

Local robustness
with 𝜀 = 0.012

Figure 3.1: Schematic overview of the setup of experiments.

38 are trained on the CIFAR-10 dataset and 41 are trained on the MNIST dataset.
To ensure the representativeness of our benchmark set, all networks were sampled
from the neural network verification literature, i.e., networks used in existing work
on local robustness verification and provided in public repositories; in other words,
the characteristics of the networks in our benchmark are assumed to match those of
networks generally used for evaluating verification algorithms. We further want our
instance set to be diverse. Therefore, we paid special attention to ensure that the
networks we considered differ in size, i.e., the number of hidden layers and nodes, as well
as the type of non-linearities (e.g., ReLU or Tanh) and layer operations (e.g., pooling
or convolutional layers) they employ. Notice that some of the networks we considered
were also used in the 2022 VNN Competition. A full overview of the networks used in
our study and their respective sources is provided in Table 3.3 and Table 3.3.

Of each network, we verified 100 local robustness properties; more precisely, we
sampled 100 images from the dataset on which the network has been trained and
verified for local robustness with the perturbation radius ϵ set at {0.004, 0.005, 0.008,
0.01, 0.012, 0.02, 0.025, 0.03, 0.04}. To avoid over-aggregation, we firstly focused our
analysis on a single value of ϵ, where ϵ = 0.012, which represents a radius larger than
1/255, the smallest ϵ-ball distance used in existing literature [71], and centred around
commonly chosen values for ϵ [114, 8, 109].

Lastly, we split our benchmark set into different categories based on verifier com-
patibilities. This means a verifier is only applied to categories it can process. The
categories as well as the instance set size for each category are shown in Table 3.2.
Notice that, in general, the ground truth for any given problem instance is not known
a priori. At the same, even state-of-the-art verifiers are known to sometimes produce
different results for the same instance [10]. As some of the considered verifiers do not
return counterexamples by default, we treated these instance as unsat.

27

3.3. Setup for Empirical Evaluation

Table 3.3: Considered neural networks trained on the MNIST dataset, along with their
training method, employed activation function and source repository.

Network Training Activation Source

cnn_max_mninst21 Standard ReLU Marabou
cnn_max_mninst31 Standard ReLU Marabou
convBigA DiffAI ReLU ERAN
convMedA PGD, ϵ = 0.1 ReLU ERAN
convMedB PGD, ϵ = 0.1 Sigmoid ERAN
convMedC PGD, ϵ = 0.1 Tanh ERAN
convMedD PGD, ϵ = 0.3 ReLU ERAN
convMedE PGD, ϵ = 0.3 Sigmoid ERAN
convMedF PGD, ϵ = 0.3 Tanh ERAN
convMedG Standard ReLU ERAN
convMedH Standard Sigmoid ERAN
convMedI Standard Tanh ERAN
convnet1 Standard ReLU ERAN
convSmallA DiffAI ReLU ERAN
convSmallB PGD ReLU ERAN
convSmallC Standard ReLU ERAN
convSuper DiffAI ReLU ERAN
ffnn_6×500A PGD, ϵ = 0.1 ReLU ERAN
ffnn_6×500B PGD, ϵ = 0.1 Sigmoid ERAN
ffnn_6×500C PGD, ϵ = 0.1 Tanh ERAN
ffnn_6×500D PGD, ϵ = 0.3 ReLU ERAN
ffnn_6×500E PGD, ϵ = 0.3 Sigmoid ERAN
ffnn_6×500F PGD, ϵ = 0.3 Tanh ERAN
ffnn_6×500G Standard ReLU ERAN
ffnn_6×500H Standard Sigmoid ERAN
ffnn_6×500I Standard Tanh ERAN
mnist-net Standard ReLU Venus
mnist-net_256×2 Standard ReLU VNN-COMP
mnist-net_256×4 Standard ReLU VNN-COMP
mnist-net_256×6 Standard ReLU VNN-COMP
mnist_3×100 Standard ReLU ERAN
mnist_3×50 Standard ReLU ERAN
mnist_4×1024 Standard ReLU ERAN
mnist_5×100 Standard ReLU ERAN
mnist_6×100 Standard ReLU ERAN
mnist_6×200 Standard ReLU ERAN
mnist_9×100 Standard ReLU ERAN
mnist_9×200 Standard ReLU ERAN
mnist_conv1 Standard ReLU ERAN
mnist_nn Standard ReLU VeriNet
rsl18a-linf01 SDP ReLU MIPVerify

1Employs MaxPooling layers

28

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.4: Considered neural networks trained on the CIFAR-10 dataset, along with their
training method, employed activation function and source repository.

Network Training Activation Source

cifar_base_kw [113], ϵ = 1/255 ReLU OVAL
cifar_deep_kw [113], ϵ = 1/255 ReLU OVAL
cifar_wide_kw [113], ϵ = 1/255 ReLU OVAL
cifar_base_kw_simp [113], ϵ = 1/255 ReLU Marabou
cifar_deep_kw_simp [113], ϵ = 1/255 ReLU Marabou
cifar_wide_kw_simp [113], ϵ = 1/255 ReLU Marabou
cifar-net Standard ReLU Venus
cifar_conv1 Standard ReLU ERAN
cifar_4×100 Standard ReLU ERAN
cifar_6×100 Standard ReLU ERAN
cifar_7×1024 Standard ReLU ERAN
cifar_9×200 Standard ReLU ERAN
cifar_4×100 Standard ReLU ERAN
cifar10_2_255 COLT, ϵ = 2/255 ReLU VNN-COMP
cifar10_8_255 COLT, ϵ = 8/255 ReLU VNN-COMP
cifar10_2_255_simplified COLT, ϵ = 2/255 ReLU VNN-COMP
cifar10_8_255_simplified COLT, ϵ = 8/255 ReLU VNN-COMP
convBigB PGD, ϵ = 2/255 ReLU ERAN
convMedJ PGD, ϵ = 2/255 ReLU ERAN
convMedK PGD, ϵ = 2/255 Sigmoid ERAN
convMedL PGD, ϵ = 2/255 Tanh ERAN
convMedM PGD, ϵ = 8/255 ReLU ERAN
convMedN PGD, ϵ = 8/255 Sigmoid ERAN
convMedO PGD, ϵ = 8/255 Tanh ERAN
convMedP Standard ReLU ERAN
convMedQ Standard Sigmoid ERAN
convMedR Standard Tanh ERAN
convSmallE DiffAI ReLU ERAN
convSmallF Standard ReLU ERAN
ffnn_6×500J PGD, ϵ = 2/255 ReLU ERAN
ffnn_6×500K PGD, ϵ = 2/255 Sigmoid ERAN
ffnn_6×500L PGD, ϵ = 2/255 Tanh ERAN
ffnn_6×500M PGD, ϵ = 8/255 ReLU ERAN
ffnn_6×500N PGD, ϵ = 8/255 Sigmoid ERAN
ffnn_6×500O PGD, ϵ = 8/255 Tanh ERAN
ffnn_6×500P Standard ReLU ERAN
ffnn_6×500Q Standard Sigmoid ERAN
ffnn_6×500R Standard Tanh ERAN

1Employs MaxPooling layers

29

3.3. Setup for Empirical Evaluation

3.3.2 Evaluation Metrics

In order to assess the performance of the various methods, we compute four perfor-
mance metrics: the average running time, the number of solved instances, the relative
marginal contribution and the relative Shapley value [33] of each verifier to the parallel
portfolio containing all (applicable) verifiers. The first two of these reflect stand-alone
performance, while the last two capture performance complementarity between verifiers
and their contribution to the overall state of the art. Although these metrics present
aggregated measures, they reflect algorithm performance on an instance level and in
relation to other methods included in our comparison; a more detailed explanation
will be provided in the following paragraphs. Notice that we do not penalise timeouts
when computing average running time; i.e., the maximum running time equals the
given time limit.

The marginal contribution is computed as follows. Define V as a set of verifiers and
let s(V) be the total score of set V . Here, the total score s(V) consists of the number
of instances verified by at least one verifier in set V within a given cutoff time. We
compute the marginal contribution per algorithm to determine how much the total
performance of all algorithms (in terms of solved instances) decreases when the given
algorithm is removed from the set of all algorithms if they were employed in a parallel
algorithm portfolio. Formally, to determine the marginal contribution of any of the
verifiers v to portfolio V , one needs to know the value of s(V) and s(V \ {v}), where
V \ {v} is the portfolio minus verifier v. Thus, the marginal contribution of verifier v

is expressed as
MC v(V) = s(V)− s(V \ {v}) (3.1)

Following this terminology, we can define the number of solved instances by verifier
v as a set consisting only of verifier v, Solvedv = s(v)− s(∅), where s(∅) = 0. In other
words, the number of solved instances employs a set of size one whereas the marginal
contribution employs a set of all verifiers under consideration. The relative marginal
contribution represents the marginal contribution of a given verifier as a fraction of the
sum of every method’s absolute marginal contribution.

Lastly, the Shapley value is the average marginal contribution of a verifier over all
possible joining orders, where joining order refers to the order in which the verifiers
are added to a parallel portfolio. This value complements the previous two metrics, as
it does not assume a particular order in which algorithms are added to the portfolio.
To be precise, the number of solved instances simply represents a joining order in
which the considered algorithm comes first and in which it is the only one added to the

30

Chapter 3. Critically Assessing the State of the Art in NNV

portfolio, whereas the marginal contribution metric assumes a joining order in which it
comes last. However, using fixed orders, as is the case for the marginal contribution,
might not reveal possible interactions between the given method and other algorithms,
e.g., it might understate the importance of a single algorithm given the presence of
another algorithm with highly correlated performance. In such a case, both algorithms
would be assigned very low marginal contribution, even though one of them should
be included in a potential portfolio. Moreover, the fixed joining order leads to the
marginal contribution metric being very sensitive to the composition of the portfolio in
question; i.e., this metric might change drastically if only a subset of methods would
be included in a given portfolio.

This is captured by the Shapley value: Consider a set of verifiers V of size n (i.e.,
|V | = n) and ΠV as the set of all permutations of V . Notice that each permutation π

in ΠV is of size n, which results in set ΠV being of size n!. Now define V π
v as the set

of verifiers where all verifiers joining after v – i.e., appearing after v in permutation π –
are discarded from π. The Shapley value of verifier v, ϕv, is then calculated as follows:

ϕv(V) =
1

n!
·
∑

π∈ΠV

(s(V π
v)− s(V π

v \ {v})) (3.2)

The relative Shapley value of a verifier v is obtained by dividing ϕv by the sum
over the (absolute) Shapley values for all verifiers under consideration; it intuitively
represents the fraction of the jointly achieved Shapley values over all verifiers that is
attributed to verifier v.

3.3.3 Execution Environment and Software Used

Our experiments were carried out on a cluster of machines equipped with Intel Xeon
E5-2683 CPUs with 32 cores, 40 MB cache size and 94 GB RAM, running CentOS
Linux 7. Each verification method was limited to using a single CPU core per run. Each
query (i.e., attempt to solve a verification problem instance) was given a time budget
of 3 600 seconds and a memory budget of 3 GB. Generally, we executed the verification
algorithms through the DNNV interface, version 0.4.8. DNNV is a framework that
transforms a network and robustness property into a unified format, which can then be
solved by a given method [95]. More specifically, DNNV takes as input a network in
the ONNX format, along with a property specification, and then translates the network
and property to the input format required by the verifier. After running the verifier on
the transformed problem, it returns the results in a standardised manner, where the

31

3.4. Results and Discussion

output is either sat if the property was falsified or unsat if the property was proven
to hold. In cases where a violation is found, DNNV also returns a counter-example
to the property and validates it by performing inference with the network. We note
that for the VeriNet toolkit, its implementation in DNNV lags behind the standalone
implementation of the verifier. While we acknowledge that this could affect observed
performance, we still chose to run each CPU method through the DNNV interface to
benefit from the broader benchmark support provided by DNNV.

For GPU-accelerated methods, we used machines equipped with NVIDIA GeForce
GTX 1080 Ti GPUs with 11 GB video memory. We provided the same time budget
but did not impose any memory constraints. The GPU-based methods we considered
are not supported by DNNV. Hence, we used the standalone implementations of
these algorithms through the αβ-CROWN1, OVAL−BaB2, and MN-BaB3 framework,
respectively. These methods also return a counter-example to the property in cases
where a violation is found.

3.4 Results and Discussion

In the following, we provide an in-depth discussion of the results obtained from our
experiments. We distinguish between CPU-based algorithms and algorithms that
also utilise GPU resources. Table 3.2 shows the categories we devised based on layer
types present in the network, along with the resulting instance set sizes as well as
information on which verifier has been employed for each category. Moreover, we
investigate whether there exists a single algorithm that performs best on all instances
within a given category. If we find this to not be the case, we analyse to what extent
the algorithms we considered complement each other in performance, i.e., show strong
performance on different problem instances.

3.4.1 CPU-Based Methods

Table 3.5 contains the results from our experiments using CPU-based verification
algorithms. It reports the number of problem instances solved by each verifier per
network category (see Table 3.2 for the total number of problem instances per category),
the relative marginal contribution, the relative Shapley value and the average running
time computed over the subset of solvable instances, i.e., instances that could be solved

1Commit 7a46097192207dfbb2fa7135857d6bc4ae7d6cd5
2Commit 9e1606044759da5693f226ce489e9d4dded21bd6
3Commit 2aa12b145bb61342f4c464b64be3467b3a275e46

32

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.5: Performance comparison of CPU-based verification algorithms in terms of the
number of solved instances, relative marginal contribution (RMC), relative Shapley value
(ϕ) and CPU running time averaged per problem instance, computed for each category for
ϵ = 0.012.

ReLU
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time
[CPU s] [CPU s]

BaBSB 358 0.22 0.06 3 241 307 0.00 0.09 2 924
Marabou 1 001 0.19 0.16 1 801 400 0.00 0.12 2 153
Neurify 871 0.25 0.14 1 964 915 0.75 0.42 235
nnenum 1 754 0.17 0.31 389 76 0.05 0.03 3 337
VeriNet 1 799 0.16 0.32 263 841 0.20 0.34 500
ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

Marabou 5 1.00 1.00 57 0 0.00 0.00 3 600
Tanh
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

VeriNet 556 1.00 1.00 55 0 0.00 0.00 3 600
Sigmoid
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

Marabou 0 0.00 0.00 3 600 0 0.00 0.00 3 600
VeriNet 581 1.00 1.00 55 0 0.00 0.00 3 600

by at least one of the considered methods. The relative marginal contribution and the
relative Shapley value are calculated based on the number of solved problem instances.
We provide absolute values for both the marginal contribution and Shapley value in
Table 3.6, 3.8, 3.10 and 3.12. Notice that instances that were not solved within the
time limit were attributed the maximum running time, i.e., 3 600 seconds.

On ReLU-based MNIST networks, we found VeriNet to be the best-performing
verifier, solving 1 799 out of 2 500 instances, while achieving a relative Shapley value
of 0.32. However, taking relative marginal contribution into account, we found that
Neurify achieved the highest relative marginal contribution of 0.25 (compared to 0.16
for VeriNet), indicating that it could verify a sizable fraction of instances on which
other methods failed to return a solution. Moreover, the relative marginal contribution
scores show that each method could solve a sizeable fraction of instances unsolved by

33

3.4. Results and Discussion

Table 3.6: Performance comparison of CPU-based verification algorithms in terms of the
number of solved instances, absolute marginal contribution (MC), absolute Shapley value
(ϕabs) and CPU running time averaged per problem instance, computed for each category
with ϵ set at 0.012.

ReLU
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time
[CPU s] [CPU s]

BaBSB 358 23 118 3 241 307 0 86 2 924
Marabou 1 001 20 312 1 801 400 0 117 2 153
Neurify 871 26 265 1 964 915 119 411 235
nnenum 1 754 18 600 389 76 8 28 3 337
VeriNet 1 799 16 618 263 841 31 330 500
ReLU+MaxPool
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

Marabou 5 5 5 57 0 0 0 3 600
Tanh
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

VeriNet 556 556 556 55 0 0 0 3 600
Sigmoid
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

Marabou 0 0 0 3 600 0 0 0 3 600
VeriNet 581 581 581 55 0 0 0 3 600

any other method.
On ReLU-based CIFAR networks, it should first be noted that there is no verifica-

tion problem instance that can be solved by all verifiers, highlighting the structural
differences between instances and the sensitivity of the verification approaches to those
differences. That said, Neurify slightly outperformed VeriNet in terms of the number
of solved instances (915 vs 841 out of 2 500). Furthermore, Neurify achieved a much
larger relative marginal contribution than VeriNet (0.75 vs 0.20), which means that
the former could solve a relatively large number of instances which could not be solved
by the other methods. Generally, relative marginal contribution scores are much less
evenly distributed among verifiers when compared to the MNIST dataset.

Figure 3.2a and 3.2b show an instance-level comparison of the two best-performing
algorithms (in terms of relative Shapley value) in the ReLU category for each dataset.

34

Chapter 3. Critically Assessing the State of the Art in NNV

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], nnenum

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Ve

ri
ne

t

Result
Unsat
Unsolved
Sat

(a) CPU - MNIST

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], Neurify

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Ve

ri
ne

t

(b) CPU - CIFAR

10 3 10 2 10 1 100 101 102 103 104 105

GPU time [s], -CROWN

10 3

10 2

10 1

100

101

102

103

104

105

G
PU

 ti
m

e
[s

],
M

N
-B

aB

(c) GPU - MNIST

10 3 10 2 10 1 100 101 102 103 104 105

GPU time [s], -CROWN

10 3

10 2

10 1

100

101

102

103

104

105

G
PU

 ti
m

e
[s

],
B

aD
N

B

(d) GPU - CIFAR

Figure 3.2: Performance comparison of the two top-performing verification methods (in
terms of relative Shapley value) in the ReLU category for CPU-based methods on (a) MNIST
and (b) CIFAR networks as well GPU-based methods on (c) MNIST and (d) CIFAR networks.
Each data point represents an instance, and its position on a given axis represents the
performance in terms of running time of the respective solver. The diagonal line represents
the point on which both verifiers perform equally well. The verifier represented on the x-axis
performs better on instances above the diagonal line, and the verifier represented on the y-axis
performs better on instances below the diagonal line. Instances that were not solved within
the time limit are displayed with the maximum running time (i.e., 3 600 seconds).

35

3.4. Results and Discussion

In Figure 3.2a, we see that on MNIST networks, both VeriNet and nnenum solved
instances that the other one, in turn, could not solve within the given time budget.
Concretely, when considering a parallel portfolio containing both algorithms (see
Section 2.4), the number of solved instances slightly increases to 1 817 out of 2 500
(vs 1 799 solved by VeriNet and 1 754 solved by nnenum alone), while supplied with
similar CPU resources (i.e., 1 800 CPU seconds per verifier, adding up to the same
combined maximum running time as running a single verifier with 3 600 CPU seconds).

On CIFAR instances, we found Neurify and VeriNet to also have distinct strengths
over each other. This is shown in Figure 3.2b, where both algorithms could solve a
substantial amount of instances that the other could not return a solution for. Thus,
when combined in a parallel portfolio, 963 instances can be solved (vs 915 solved by
Neurify and 841 solved by VeriNet alone, out of 2 500 instances), while using the same
amount of CPU resources, i.e., 1 800 CPU seconds per verifier. These findings further
emphasise the complementarity between the verification algorithms considered in our
study. All remaining verifiers achieved much lower relative Shapley values and relative
marginal contribution scores, indicating that they would not substantially strengthen
the performance of a portfolio already containing Neurify and VeriNet.

Figure 3.3a shows the cumulative distribution function of running times over the
MNIST problem instances. As seen in the figure, VeriNet tends to solve these problem
instances fastest; however, Neurify tended to show even better performances on those
instances it was able to solve. We note that most of the instances unsolved by Neurify

represent networks that were trained on images with 3 dimensions, whereas Neurify

requires images used as network inputs to have 2 or 4 dimensions.

Figure 3.3b shows a similar plot for the CIFAR problem instances. Here, Neurify

solved the largest fraction in less time than other methods. This suggests that Neurify

is a very competitive verifier when applicable to the specific network or input format.

For each of the remaining categories, we found that there is only one verifier that
could effectively handle the respective problem instances. Specifically, instances from
the ReLU+MaxPooling category can be processed by Marabou, although, only a
modest number of MNIST instances could be solved in this way. Networks containing
Tanh activation functions can, in principle, be verified by VeriNet but the algorithm
did nonetheless not solve any CIFAR instances. Lastly, Sigmoid-based networks can be
handled by both VeriNet and Marabou, however, only the former could solve MNIST
instances within the given time and memory budget.

36

Chapter 3. Critically Assessing the State of the Art in NNV

100 101 102 103

CPU time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

so
lv

ed

BaBSB
Marabou
Neurify
nnenum
Verinet

(a) CPU - MNIST

100 101 102 103

CPU time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

so
lv

ed

BaBSB
Marabou
Neurify
nnenum
Verinet

(b) CPU - CIFAR

10 2 10 1 100 101 102 103

GPU time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

so
lv

ed

-CROWN
BaDNB
MN-BaB

(c) GPU - MNIST

10 2 10 1 100 101 102 103

GPU time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 in

st
an

ce
s

so
lv

ed

-CROWN
BaDNB
MN-BaB

(d) GPU - CIFAR

Figure 3.3: Cumulative distribution of the fraction of instances solved by the considered
verification algorithms in the ReLU category as a function of CPU running time. The plots
at the top are for CPU-based algorithms, whereas those at the bottom are for GPU-based
algorithms, on MNIST and CIFAR.

3.4.2 GPU-Based Methods

Table 3.7 summarises the results from our experiments using GPU-based verification
algorithms. On ReLU-based MNIST networks, αβ-CROWN outperformed other
methods in terms of both the number of solved problem instances as well as the average

37

3.4. Results and Discussion

Table 3.7: Performance comparison of GPU-based verification algorithms in terms of the
number of solved instances, relative marginal contribution (RMC), relative Shapley value (ϕ)
and average GPU running time, computed for each category for ϵ = 0.012.

ReLU
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time
[GPU s] [GPU s]

BaDNB 1 188 0.31 0.19 1 760 2 332 0.90 0.45 116
β-CROWN 2247 0.00 0.42 96 1 828 0.03 0.29 814
MN-BaB 2 103 0.69 0.39 325 1 639 0.07 0.26 1 110
ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

BaDNB 85 0.00 0.22 1 399 0 0.00 0.00 3 600
β-CROWN 128 1.00 0.44 0.4 0 0.00 0.00 3 600
MN-BaB 115 0.00 0.34 366 64 1.00 1.00 0.008
Tanh
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

β-CROWN 319 1.00 1.00 1.16 497 1.00 1.00 0.70
MN-BaB 0 0.00 0.00 3 600 0 0.00 0.00 3 600
Sigmoid
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

β-CROWN 306 0.66 0.50 13 538 0.95 0.68 60
MN-BaB 305 0.33 0.50 24 338 0.05 0.32 1 376

running time. At the same time, the relative Shapley values of αβ-CROWN and
MN-BaB indicate that these methods complement each other with respect to their
performance on this instance set.

On ReLU-based CIFAR networks, Table 3.7 shows that BaDNB outperformed
both MN-BaB and αβ-CROWN, with the former solving 2 332 and the latter solving
1 639 and 1 828 out of 2 500 verification problem instances, respectively. Furthermore,
both BaDNB and αβ-CROWN achieve large relative Shapley values, suggesting their
complementarity in an algorithm portfolio.

Figure 3.2c and 3.2d show the instance-level comparison of the two best-performing
algorithms (in terms of relative Shapley value) in the ReLU category for each dataset.
Looking at Figure 3.2c, one can see that there is a fairly large number of MNIST
instances unsolved by αβ-CROWN but solved by MN-BaB as well as the other way

38

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.8: Performance comparison of GPU-based verification algorithms in terms of the
number of solved instances, absolute marginal contribution (MC), absolute Shapley value
(ϕabs) and average GPU running time, computed for each category with ϵ set at 0.012.

ReLU
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time
[GPU s] [GPU s]

BaDNB 1 188 8 440 1 760 2 332 250 1 066 116
β-CROWN 2247 0 966 96 1 828 7 693 818
MN-BaB 2 103 18 903 325 1 639 20 604 1 110
ReLU+MaxPool
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

BaDNB 85 0 29 1 399 0 0 0 3 600
β-CROWN 128 12 56 0.4 0 0 0 3 600
MN-BaB 115 0 44 366 64 64 64 0.008
Tanh
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

β-CROWN 319 319 319 1.16 497 496 497 0.70
MN-BaB 0 0 0 3 600 0 0 0 3 600
Sigmoid
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

β-CROWN 306 2 154 13 538 209 374 60
MN-BaB 305 1 153 24 338 9 174 1 376

around.

On the other hand, BaDNB and αβ-CROWN seem to have distinctive strengths
over each other on CIFAR instances, as can be seen in Figure 3.2d: The data points
indicating performance on each verification instance are spread out widely around the
line of equal performance, showing that there are many instances that one method can
solve faster than the other and vice versa.

Concurrently, MN-BaB solves a large fraction of CIFAR instances in less time than
other methods, although BaDNB solves more instances overall, which is also reflected
in Figure 3.3d. On MNIST instances, MN-BaB solves more instances in less time than
αβ-CROWN, although αβ-CROWN solves more instances overall; see also Figure 3.3c.

On MNIST networks containing ReLU activation functions and MaxPooling op-
erations, we again found relatively large Shapley values for both αβ-CROWN and

39

3.4. Results and Discussion

Verinet
0

500

1000

1500

2000

2500

44

Error type
miscellaneous
timeout
out-of-memory

(a) CPU - MNIST

Verinet
0

500

1000

1500

2000

2500

600

(b) CPU - CIFAR

MN-BaB -CROWN
0

500

1000

1500

2000

2500

600

281

(c) GPU - MNIST

MN-BaB -CROWN
0

500

1000

1500

2000

2500

600

103

(d) GPU - CIFAR

Figure 3.4: Frequency of error types returned by the considered verification algorithms
on instances in the Tanh category. The total number of instances in this category is 600 for
MNIST and 600 for CIFAR.

MN-BaB, as presented in Table 3.7, indicating their potential complementarity in an
algorithm portfolio. However, the relative marginal contribution values indicate that
there are no instances unsolved by αβ-CROWN that could be solved by other methods.
CIFAR instances in this category could only be verified by MN-BaB, due to verifier
incompatibilities with the respective network structures unrelated to the MaxPooling
operations.

Table 3.7 further shows results for the Tanh category. We found that instances in
this category could effectively only be handled the αβ-CROWN verifier. Concretely,
MN-BaB returned an error for the instances in this category; see also Figure 3.4 for
additional details.

Lastly, networks containing Sigmoid activation functions can be handled by both

40

Chapter 3. Critically Assessing the State of the Art in NNV

BaDNB and αβ-CROWN and achieve perfectly similar relative Shapley values on the
MNIST instances in this category, indicating their complementarity in an algorithm
portfolio. However, as seen in Table 3.7, this does not hold for CIFAR instances, where
αβ-CROWN seems to dominate in performance.

3.4.3 Error Analysis

Although the verification methods should, in principle, be able to solve the instances
in the category they are applied to, we found many instances left unsolved, not only
due to time or memory constraints but also due to other, unexpected issues. Hence,
to understand better why certain instances could not be solved by a given verifier,
we categorised and counted the errors returned by each verification system. For this
analysis, we focused on instances in the ReLU category; results for the remaining
categories are presented in Figure 3.5 and 3.6.

The number of instances solved by each method can be found in Table 3.5 for
CPU- and Table 3.7 for GPU-based algorithms. The total number of instances in
the ReLU category is 2 500 for MNIST and CIFAR, respectively. We distinguish
between timeouts, out-of-memory and miscellaneous errors, where the latter includes
verifier-specific errors of which most are undefined and not trivial to resolve, especially
without in-depth knowledge of the verifier at hand.

Figure 3.7a and 3.7b show the errors returned by CPU-based methods for MNIST
and CIFAR instances, respectively. On MNIST, most verifiers failed to solve a given
instance due to timeouts, except for nnenum, which mostly ran into memory issues,
and Neurify, which requires images used as network inputs to have 2 or 4 dimensions,
as mentioned in Section 5.1. Notice that when supplied with a larger memory budget,
nnenum could not solve substantially more instances, but produced a comparably large
number of timeouts instead; more details can be found in Figure 3.8.

Interestingly, we made different observations with regard to the CIFAR instances.
Here, each method mostly returned errors related to the network structure (or undefined
errors). Besides this, nnenum again failed to verify a sizable fraction of instances due to
memory limitations. Overall, we found CIFAR networks to be much less supported by
the CPU-based methods we considered (as implemented in the DNNV framework) than
MNIST networks, arguably due to the increased complexity of the former. We note that
some of these errors could potentially be circumvented by resorting to the standalone
implementations of the respective verifiers. However, overall, DNNV provides the
broadest support for different network structures and operations [95].

41

3.4. Results and Discussion

Marabou
0

500

1000

1500

2000

2500

100 100
200

Error type
miscellaneous
timeout
out-of-memory

(a) CPU - MNIST

Marabou
0

500

1000

1500

2000

2500

100

(b) CPU - CIFAR

BaDNB MN-BaB -CROWN
0

500

1000

1500

2000

2500

315 285 272

(c) GPU - MNIST

BaDNB MN-BaB -CROWN
0

500

1000

1500

2000

2500

100 36 100

(d) GPU - CIFAR

Figure 3.5: Frequency of error types returned by the considered verification algorithms on
instances in the ReLU+MaxPool category. The total number of instances in this category is
400 for MNIST and 100 for CIFAR.

On the other hand, GPU-based verifiers show greater support for the considered
networks than CPU-based methods. As seen in Figure 3.7c, only BaDNB failed to solve
a relatively large number of MNIST instances due to unsupported network structures
or other, unspecified technical reasons.

In contrast, BaDNB could solve almost all CIFAR instances, as shown in Figure 3.7d.
However, both MN-BaB and αβ-CROWN returned several errors of which most are
undefined.

Overall, our results suggest that many verification toolkits only support a limited
set of networks. This occurs despite the fact that these networks are provided in onnx
format, which should, in principle, be supported by each method considered in this
study. Similar findings have been reported in the literature (see, e.g., [80]).

42

Chapter 3. Critically Assessing the State of the Art in NNV

Marabou Verinet
0

500

1000

1500

2000

2500

286

19

314

Error type
miscellaneous
timeout
out-of-memory

(a) CPU - MNIST

Marabou Verinet
0

500

1000

1500

2000

2500

600 600

(b) CPU - CIFAR

MN-BaB -CROWN
0

500

1000

1500

2000

2500

295 294

(c) GPU - MNIST

MN-BaB -CROWN
0

500

1000

1500

2000

2500

262

62

(d) GPU - CIFAR

Figure 3.6: Frequency of error types returned by the considered verification algorithms on
instances in the Sigmoid category. The total number of instances in this category is 600 for
MNIST and 600 for CIFAR.

3.4.4 Analysis on Broader Set of Perturbation Radii

So far, we have considered a single value of ϵ, but it stands to reason that changing the
perturbation radius may affect algorithm behaviour. Therefore, we conducted further
analysis on a broader set of perturbation radii, i.e., with ϵ set to values of 0.004, 0.005,
0.008, 0.01, 0.012, 0.02, 0.025, 0.03 and 0.04.

Table 3.9 shows the results for the CPU-based algorithms on this extended set of
problem instances. Overall, we found VeriNet remains the best-performing CPU-based
verifier (in terms of solved instances and relative Shapley value) on ReLU-based MNIST
networks. With regard to ReLU-based CIFAR networks, Table 3.9 shows that, overall,
Neurify remained the best-performing CPU-based method.

However, we observed substantial differences between small and large values of ϵ in

43

3.4. Results and Discussion

BaBSB Marabou Neurify nnenum Verinet
0

500

1000

1500

2000

2500

185

1000

1757

906

452

697

200

593

177

746

4

Error type
miscellaneous
timeout
out-of-memory

(a) CPU - MNIST

BaBSB Marabou Neurify nnenum Verinet
0

500

1000

1500

2000

2500

1472
1400 1400 1400 1400

521

300

70 59
200

400

115

1024

200

(b) CPU - CIFAR

BaDNB MN-BaB -CROWN
0

500

1000

1500

2000

2500

1312

301 251

0
96

2

(c) GPU - MNIST

BaDNB MN-BaB -CROWN
0

500

1000

1500

2000

2500

266

930

752

0 31 20

(d) GPU - CIFAR

Figure 3.7: Frequency of error types returned by the considered verification algorithms on
instances in the ReLU category.

the relative marginal contribution for each algorithm. More precisely, we analysed the
relative marginal contribution of each verification algorithm for every given value of
ϵ and show this in Figure 3.9c. Interestingly, one can see how the relative marginal
contribution of Marabou steeply increases for increasingly larger epsilons, while that
of other methods declines. Similarly, the solved instances and relative Shapley value
achieved by each method changes as the perturbation radius varies; this is visualised in
Figure 3.9a and 3.9e. In terms of both metrics, Marabou is strongly outperformed by
most of the other algorithms for small values of ϵ but ends up achieving competitive or
even better performance when ϵ is large.

An analogous investigation for CIFAR is shown in Figure 3.9d. In contrast to
MNIST, one can see that the relative marginal contribution of each method is relatively
weakly affected by the perturbation radius and, except for some divergence around

44

Chapter 3. Critically Assessing the State of the Art in NNV

nnenum Verinet
0

500

1000

1500

2000

2500

0 00

697746

4

Error type
miscellaneous
timeout
out-of-memory

(a) Memory limit = 3GB

nnenum Verinet
0

500

1000

1500

2000

2500

0 0

667 647

0 0

(b) Memory limit = 30GB

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], nnenum

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Ve

ri
ne

t

Result
Unsat
Unsolved
Sat

(c) Memory limit = 3GB

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], nnenum

10 3

10 2

10 1

100

101

102

103

104

105
C

PU
 ti

m
e

[s
],

Ve
ri

ne
t

(d) Memory limit = 30GB

Figure 3.8: Top row: Frequency of error types returned by the two top-performing
verification methods (in terms of the number of solved instances) on instances in the ReLU
category, with a memory limit of (a) 3GB or (b) 30GB. Bottom row: Performance comparison
of the two top-performing verification methods (in terms of relative Shapley value) in the
ReLU category for CPU-based methods, with a memory limit of (c) 3GB or (d) 30GB.

ϵ = 0.005, remains at a stable level. This holds for both solved instances and relative
Shapley value as shown in Figure 3.9b and 3.9f.

We performed a similar analysis for GPU-based methods and present results,
aggregated over all values of ϵ, in Table 3.11. Among these algorithms, αβ-CROWN
performed best on MNIST networks in the ReLU category, while BaDNB performed best
on CIFAR networks in the same category. However, we found that the relative marginal
contribution of each algorithm for every considered value of ϵ differs substantially

45

3.4. Results and Discussion

Table 3.9: Performance comparison of CPU-based verification algorithms in terms of the
number of solved instances, relative marginal contribution (RMC), relative Shapley value (ϕ)
and average CPU running time, computed for each category and ϵ ∈ {0.004, 0.005, 0.008,
0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time
[CPU s] [CPU s]

BaBSB 3 716 0.06 0.06 3 223 2 690 0.00 0.09 2 964
Marabou 9 457 0.44 0.19 1 721 3 651 0.01 0.12 2 145
Neurify 8 206 0.12 0.14 1 899 8 173 0.71 0.41 289
nnenum 15 144 0.16 0.30 543 744 0.04 0.03 3 315
VeriNet 15 800 0.23 0.32 367 7 674 0.24 0.35 486
ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

Marabou 316 1.00 1.00 50 0 0.00 0.00 3 600
Tanh
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

VeriNet 4 307 1.00 1.00 59 0 0.00 0.00 3 600
Sigmoid
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

Marabou 0 0.00 0.00 3 600 0 0.00 0.00 3 600
VeriNet 4 728 1.00 1.00 59 0 0.00 0.00 3 600

between small and large values of ϵ on MNIST instances, as shown in Figure 3.10c.
For example, when ϵ = 0.02, BaDNB and MN-BaB both achieve relative marginal
contribution scores close to 0.5 but then strongly converge as ϵ becomes larger. Notably,
these changes are not reflected in the relative Shapley values achieved by each method,
where αβ-CROWN and MN-BaB both reach values close to 0.40 for every value of ϵ;
see Figure 3.10e for more details.

On CIFAR instances, Figure 3.10d indicates that the relative marginal contribution
scores are only marginally affected by the chosen perturbation radius. More precisely,
BaDNB achieves the largest relative marginal contribution for every value of ϵ, while
the relative marginal contributions of αβ-CROWN and MN-BaB only change slightly
as the perturbation radius increases. At the same time, the observed Shapley values
are mostly stable with regard to the perturbation radius, as shown in Figure 3.10f.

46

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.10: Performance comparison of CPU-based verification algorithms in terms of
the number of solved instances, absolute marginal contribution (MC), absolute Shapley
value (ϕabs) and average CPU running time, computed for each category with aggregated
ϵ ∈ {0.004, 0.005, 0.008, 0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time
[CPU s] [CPU s]

BaBSB 3 716 103 1 062 3 223 2 690 0 759 2 964
Marabou 9 457 784 3 309 1 721 3 651 8 1 078 2 145
Neurify 8 206 212 2 418 1 899 8 173 1 059 3 662 289
nnenum 15 144 288 5 093 543 744 61 268 3 315
VeriNet 15 800 411 5 442 367 7 674 365 3 061 486
ReLU+MaxPool
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

Marabou 316 316 316 50 0 0 0 3 600
Tanh
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

VeriNet 4 307 4 307 4 307 59 0 0 0 3 600
Sigmoid
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

Marabou 0 0 0 3 600 0 0 0 3 600
VeriNet 4 728 4 728 4 728 59 0 0 0 3 600

Lastly, we again compared the performance of the two best-performing CPU as well
as GPU methods on an instance-level for all MNIST and CIFAR networks, respectively,
from the ReLU category and show the results in Figure 3.11. In each case, we found that
one method could solve some instances that were unsolved by the other, irrespective of
the perturbation radius. Notice that our findings hold even for a much larger value of
ϵ. Specifically, we ran the two best-performing CPU-based algorithms, nnenum and
VeriNet, on the MNIST instances for ϵ = 0.2 and present the results in Figure 3.12.

Overall, this clearly demonstrates that our observation of performance comple-
mentarity between verification algorithms holds for a broad range of perturbation
radii.

47

3.4. Results and Discussion

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

500

1000

1500

2000

2500
BaBSB
Marabou
Neurify
nnenum
Verinet

(a) MNIST - Instances solved

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

200

400

600

800

1000

(b) CIFAR - Instances solved

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

0.0

0.1

0.2

0.3

0.4

0.5

(c) MNIST - RMC

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

0.0

0.2

0.4

0.6

0.8

(d) CIFAR - RMC

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

0.05

0.10

0.15

0.20

0.25

0.30

(e) MNIST - Rel. Shapley Value

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

0.0

0.1

0.2

0.3

0.4

(f) CIFAR - Rel. Shapley Value

Figure 3.9: Performance of CPU-based verifiers for different values of ϵ in the ReLU
category.

3.4.5 Joint Analysis of CPU- and GPU-Based Methods

As previously explained, directly comparing CPU- and GPU-based algorithms is a
challenging endeavour, due to the different parallelisation schemes as well as the
costs associated with running these algorithms. Here, we seek to capture both of
these aspects by conducting a cost-calibrated analysis. More concretely, we compared
these methods whilst factoring in the price of operating them on a prominent cloud

48

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.11: Performance comparison of GPU-based verification algorithms in terms of
the number of solved instances, relative marginal contribution (RMC), relative Shapley
value (ϕ) and average GPU running time, computed for each category and aggregated
ϵ ∈ {0.004, 0.005, 0.008, 0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time
[GPU s] [GPU s]

BaDNB 9 886 0.71 0.19 1 864 21 438 0.90 0.45 100
β-CROWN 18 955 0.02 0.42 148 17 014 0.03 0.30 783
MN-BaB 17 799 0.27 0.39 363 14 675 0.07 0.25 1 174
ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

BaDNB 720 0.03 0.22 1 493 0 0.00 0.00 3 600
β-CROWN 1127 0.96 0.46 19 0 0.00 0.00 3 600
MN-BaB 966 0.01 0.32 366 576 1.00 1.00 0.008
Tanh
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

β-CROWN 2576 1.00 1.00 1.16 4 535 1.00 1.00 0.75
MN-BaB 0 0.00 0.00 3 600 0 0.00 0.00 3 600
Sigmoid
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

β-CROWN 2617 0.66 0.50 23 4 961 0.97 0.69 46
MN-BaB 2 601 0.33 0.50 44 3 042 0.03 0.31 1 420

computing platform. To this end, we investigated the price difference between Amazon
EC2 CPU instances comparable to the resources allocated in this study.4 Notice that
this hardware is not the exact hardware used in our experiments but is being used
here as a substitute for calculating the cost of running similar hardware. Based on
this cost difference, we reduced the time budget for GPU-based methods by a factor
of 46.9, thereby ensuring that these methods cannot exceed the cost budget given to
the CPU-based algorithms. While we carefully calibrated this factor based on existing
prices, it must be noted that this analysis is based on many assumptions, and therefore,
the comparison between CPU and GPU-based solvers serves only illustrative purposes.

4We selected the t2.medium and the g4dn.8xlarge instances, which cost $0.0464 and $2.176 per
hour, respectively, see https://aws.amazon.com/ec2/pricing/on-demand/. Notice that there also
exists the even cheaper t2.small instance with only a single CPU core; however, we did not select this
machine as it has only 2 GB RAM.

49

3.4. Results and Discussion

Table 3.12: Performance comparison of GPU-based verification algorithms in terms
of the number of solved instances, absolute marginal contribution (MC), absolute Shap-
ley value (ϕabs) and average GPU running time, computed for each category with ϵ ∈
{0.004, 0.005, 0.008, 0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time
[GPU s] [GPU s]

BaDNB 9 886 287 3 832 1 864 21 438 2 251 9 823 100
β-CROWN 18 955 6 8 226 148 17 014 72 6 521 784
MN-BaB 17 799 110 7 700 363 14 675 170 5 401 1 174
ReLU+MaxPool
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

BaDNB 720 5 244 1 493 0 0 0 3 600
β-CROWN 1127 160 525 19 0 0 0 3 600
MN-BaB 966 1 365 531 576 576 576 0.009
Tanh
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

β-CROWN 2576 2 576 2 576 1.16 4 535 4 535 4 535 0.75
MN-BaB 0 0 0 3 600 0 0 0 3 600
Sigmoid
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

β-CROWN 2617 32 1 325 23 4 961 1 983 3 472 46
MN-BaB 2 601 16 1 309 44 3 042 64 1 553 1 421

Results from this analysis can be found in Table 3.13 for ϵ = 0.012 and Table 3.14
for the full range of values of ϵ we considered. First and foremost, it can be seen
that despite the higher costs associated with GPU resources, GPU-based verification
tools (in particular β-CROWN, MN-BaB) are in many scenarios the most cost-efficient
verifiers. However, the results also show that there exist scenarios in which CPU-based
methods complement GPU-based methods in their performance. More concretely,
Table 3.14 shows that the CPU-based verifier Marabou achieved the largest relative
marginal contribution among all methods on MNIST networks from the ReLU category,
indicating that it could solve a sizeable number of instances, which none of the other
CPU- or GPU-based methods were able to solve within the same budget. In addition,
the CPU-based verifier VeriNet achieved competitive marginal contribution and Shapley
values. Furthermore, in the Tanh category, VeriNet was able to solve a large fraction of

50

Chapter 3. Critically Assessing the State of the Art in NNV

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

1000

1250

1500

1750

2000

2250
BaDNB
MN-BaB
-CROWN

(a) MNIST - Instances solved

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

1600

1800

2000

2200

2400

(b) CIFAR - Instances solved

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

0.0

0.2

0.4

0.6

0.8

(c) MNIST - RMC

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

0.0

0.2

0.4

0.6

0.8

(d) CIFAR - RMC

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

0.20

0.25

0.30

0.35

0.40

(e) MNIST - Rel. Shapley value

0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
Pertubation radius

0.25

0.30

0.35

0.40

0.45

(f) CIFAR - Rel. Shapley value

Figure 3.10: Performance of GPU-based verifiers for different values of ϵ in the ReLU
category.

instances for which β-CROWN failed to return a solution; this observation holds when
analysing both a single value of ϵ as well as the whole set of considered perturbation
radii.

51

3.4. Results and Discussion

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], nnenum

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Ve

ri
ne

t

Epsilon
0.004
0.005
0.008
0.01
0.012
0.02
0.025
0.03
0.04

(a) CPU - MNIST

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], Neurify

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Ve

ri
N

et

(b) CPU - CIFAR

10 3 10 2 10 1 100 101 102 103 104 105

GPU time [s], -CROWN

10 3

10 2

10 1

100

101

102

103

104

105

G
PU

 ti
m

e
[s

],
M

N
-B

aB

(c) GPU - MNIST

10 3 10 2 10 1 100 101 102 103 104 105

GPU time [s], -CROWN

10 3

10 2

10 1

100

101

102

103

104

105

G
PU

 ti
m

e
[s

],
B

aD
N

B

(d) GPU - CIFAR

Figure 3.11: Performance comparison of the two top-performing verification methods (in
terms of relative Shapley value) in the ReLU category for CPU-based methods on (a) MNIST
and (b) CIFAR networks as well GPU-based methods on (c) MNIST and (d) CIFAR networks,
using multiple values of the perturbation radius ϵ.

3.4.6 Analysis of unsat Instances

To gain further insights, we performed an analysis of unsat (i.e., robust) instances;
see Table 3.2 for the number of unsat instances that were found in each network
category. More concretely, we considered only unsat instances as solved, since several
verification methods considered in this study use counter-example generation mostly

52

Chapter 3. Critically Assessing the State of the Art in NNV

nnenum Verinet
0

500

1000

1500

2000

2500

0 00

697746

4

Error type
miscellaneous
timeout
out-of-memory

(a) ϵ = 0.012

nnenum Verinet
0

500

1000

1500

2000

2500

0 0

1197

996

708

70

Error type
miscellaneous
timeout
out-of-memory

(b) ϵ = 0.2

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], nnenum

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Ve

ri
ne

t

Result
Unsat
Unsolved
Sat

(c) ϵ = 0.012

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], nnenum

10 3

10 2

10 1

100

101

102

103

104

105
C

PU
 ti

m
e

[s
],

Ve
ri

ne
t

(d) ϵ = 0.2

Figure 3.12: Top row: Frequency of error types returned by the two top-performing
verification methods (in terms of the number of solved instances) on instances in the ReLU
category, when (a) ϵ = 0.012 or (b) ϵ = 0.02. Bottom row: Performance comparison of the
two top-performing verification methods (in terms of relative Shapley value) in the ReLU
category for CPU-based methods, when (c) ϵ = 0.012 or (d) ϵ = 0.02.

as an early stopping opportunity. Thus, unsat instances pose an interesting subset
of the benchmark, as it measures the ability of a method to determine robustness in
cases where no such counter-example exist. Furthermore, commonly used robustness
metrics, such as adversarial accuracy, are computed by means of the fraction of unsat
instances in a given instance set. Therefore, verification methods that can efficiently
solve those instances enable a more accurate calculation of these metrics.

Table 3.15 shows result from this analysis for ϵ = 0.012 while Table 3.16 shows

53

3.4. Results and Discussion

Table 3.13: Performance comparison of CPU- and GPU-based verification algorithms
in terms of the number of solved instances, relative marginal contribution (RMC), relative
Shapley value (ϕ), computed for each category and ϵ = 0.012.

ReLU
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

BaDNB 1 171 0.12 0.25 2 217 0.46 0.43
BaBSB 358 0.00 0.00 307 0.00 0.00
β-CROWN 2245 0.00 0.23 1 819 0.27 0.34
Marabou 1 001 0.06 0.03 400 0.00 0.00
MN-BaB 2 083 0.71 0.38 1 622 0.28 0.19
Neurify 871 0.06 0.03 915 0.00 0.03
nnenum 1 754 0.00 0.03 76 0.00 0.00
VeriNet 1 799 0.06 0.03 841 0.00 0.01
ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

BaDNB 69 0.00 0.05 0 0.00 0.00
β-CROWN 128 1.00 0.67 0 0.00 0.00
Marabou 5 0.00 0.00 0 0.00 0.00
MN-BaB 115 0.00 0.27 64 1.00 1.00
Tanh
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

β-CROWN 319 0.09 0.19 198 1.00 1.00
MN-BaB 0 0.00 0.00 0 0.00 0.00
VeriNet 556 0.91 0.81 0 0.00 0.00
Sigmoid
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

β-CROWN 306 0.00 0.03 538 0.96 0.82
Marabou 0 0.00 0.00 0 0.00 0.00
MN-BaB 305 0.00 0.03 338 0.04 0.18
VeriNet 581 1.00 0.93 0 0.00 0.00

results aggregated over the full range of ϵ values we considered. First of all, we found
that the total number of solved instances decreases when only unsat instances are
considered. This is particularly noticeable for CIFAR, where the majority of instances

54

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.14: Performance comparison of CPU- and GPU-based verification algo-
rithms in terms of the number of solved instances, relative marginal contribution
(RMC), relative Shapley value (ϕ), computed for each category and aggregated ϵ ∈
{0.004, 0.005, 0.008, 0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

BaDNB 9 455 0.10 0.20 20 408 0.48 0.43
BaBSB 3 716 0.00 0.00 2 690 0.00 0.00
β-CROWN 18 907 0.03 0.18 16 997 0.31 0.36
Marabou 9 457 0.44 0.20 3 651 0.00 0.00
MN-BaB 17 601 0.14 0.24 14 581 0.20 0.16
Neurify 8 206 0.04 0.02 8 173 0.00 0.03
nnenum 15 144 0.00 0.03 744 0.00 0.00
VeriNet 15 800 0.24 0.12 7 674 0.00 0.01
ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

BaDNB 580 0.00 0.00 0 0.00 0.00
β-CROWN 1 127 0.99 0.74 0 0.00 0.00
Marabou 316 0.00 0.00 0 0.00 0.00
MN-BaB 966 0.00 0.22 576 1.00 1.00
Tanh
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

β-CROWN 2 576 0.17 0.24 4 535 1.00 1.00
MN-BaB 0 0.00 0.00 0 0.00 0.00
VeriNet 4 307 0.83 0.76 0 0.00 0.00
Sigmoid
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

β-CROWN 2 617 0.00 0.05 4 961 0.97 0.83
Marabou 0 0.00 0.00 0 0.00 0.00
MN-BaB 2 601 0.00 0.05 3 042 0.03 0.17
VeriNet 4 728 1.00 0.90 0 0.00 0.00

are non-robust or, in other words, sat. Furthermore, we observed only minor changes
in the relative performance and complementarity of the given verifiers on MNIST

55

3.4. Results and Discussion

instances across all categories. Specifically, we found that for the broader set of ϵ

values, the RMC and Shapley value of Marabou improve substantially, while those
for VeriNet strongly deteriorate. This indicates that on unsat instances, Marabou can
solve a large fraction of instances unsolved by other methods, while VeriNet mainly
contributes when sat instances are also considered. For CIFAR, we also noticed that
the relative performance of the given verifiers changed. Specifically, MN-BaB, which
previously achieved competitive relative performance does not seem to complement
other methods on unsat instances; instead, most instances are solved by BaDNB and
αβ-CROWN, which also show strong complementarity in the ReLU category.

3.4.7 Analysis of the 2022 VNN Competition Results

To see if and to what extent our observations hold for a larger set of verifiers as
well as different benchmarks, we analysed the results of the 2022 edition of the VNN
competition. We refer to the accompanying report [87] for more information about the
participating tools, benchmarks and further technical details. Again, we present a joint
as well as a separate analysis of CPU- and GPU-based verification algorithms. We
excluded CGDTest from the set of methods considered in our analysis, as it represents
the only incomplete verification approach participating in the competition, while our
work focuses on complete verification. In addition, CGDTest produced a substantial
number of incorrect results in the competition, casting doubts on the soundness of the
method.

Table 3.17 shows the results from the VNN competition for CPU-based verification
algorithms. It reports the number of problem instances solved by each verifier per
network category, marginal contribution as well as Shapley values, both in absolute and
relative terms. Most notably, we observe strong complementarity between the verifiers
considered in two of the three benchmark categories. Concretely, in the CNN+ResNet

category, Marabou and VeraPak achieved relative Shapley values of 0.44 and 0.24,
respectively. Indeed, as depicted in Figure 3.13c, there are several instances solved by
one of the verifiers but unsolved by the other.

In the FC category, Marabou, nnenum and PerigiNN achieved a similar relative
Shapley value of 0.24, again highlighting the complementarity between these algorithms.
Given the similar relative Shapley values, we resort to the relative marginal contribution
to determine the two best-performing methods in this context; i.e., among these three
methods, nnenum and PerigiNN achieved the largest relative marginal contributions
and are, thus, considered the two best-performing methods. Again, we compare their

56

Chapter 3. Critically Assessing the State of the Art in NNV

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], nnenum

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Pe

re
gr

iN
N

(a) CPU - Complex

10 3 10 2 10 1 100 101 102 103 104 105

GPU time [s], , -CROWN

10 3

10 2

10 1

100

101

102

103

104

105

G
PU

 ti
m

e
[s

],
M

N
-B

aB

(b) GPU - Complex

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], Marabou

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Ve

ra
Pa

k

(c) CPU - CNN+ResNet

10 3 10 2 10 1 100 101 102 103 104 105

GPU time [s], , -CROWN

10 3

10 2

10 1

100

101

102

103

104

105

G
PU

 ti
m

e
[s

],
Ve

ri
N

et

Result
Unsat
Sat
Unsolved

(d) GPU - CNN+ResNet

Figure 3.13: Performance comparison of the two top-performing verification methods (in
terms of relative Shapley value) in each category from the 2022 VNN Competition. Instances
that were not solved within their respective time limit are displayed with the maximum
running time attributed to any instance in the benchmark set (i.e., 1 800 seconds). (Part 1 of
2)

performance on an instance level, as shown in Figure 3.14a. As can be observed,
instances spread out widely around the equal performance line of the plot, with many

57

3.4. Results and Discussion

10 3 10 2 10 1 100 101 102 103 104 105

CPU time [s], nnenum

10 3

10 2

10 1

100

101

102

103

104

105

C
PU

 ti
m

e
[s

],
Pe

re
gr

iN
N

(a) CPU - FC

10 3 10 2 10 1 100 101 102 103 104 105

GPU time [s], , -CROWN

10 3

10 2

10 1

100

101

102

103

104

105

G
PU

 ti
m

e
[s

],
M

N
-B

aB

(b) GPU - FC

Figure 3.14: Performance comparison of the two top-performing verification methods (in
terms of relative Shapley value) in each category from the 2022 VNN Competition. Instances
that were not solved within their respective time limit are displayed with the maximum
running time attributed to any instance in the benchmark set (i.e., 1 800 seconds). (Part 2 of
2)

instances solved by nnenum but unsolved by PerigiNN, and vice versa.

In the Complex category, nnenum and PeregriNN achieved Shapley values of 0.46
and 0.50, respectively. However, Figure 3.13a reveals that nnenum dominates in
performance over PeregriNN on most instances. We note that the Shapley value
represents the average contribution made by a given verifier over all possible sets of
algorithms in a portfolio. Hence, it indicates that nnenum could solve many instances
unsolved by other methods from the full set of algorithms under consideration; however,
nnenum does not complement PeregriNN in terms of solved instances.

Next, we discuss the results from the 2022 VNN Competition for GPU-based
verification algorithms; these are presented in Table 3.18. Surprisingly, for GPU-based
methods, our findings from analysing the competition results differ from those made in
our previous assessment, as they do not reveal strong complementarity between the
algorithms. Specifically, β-CROWN dominates in performance on every instance in
each category, although relative Shapley values indicate complementary (for similar
reasons as those outlined above).

This reflected in Figure 3.13b, Figure 3.13d and Figure 3.14b. Concretely, these

58

Chapter 3. Critically Assessing the State of the Art in NNV

plots show the performance on an instance level for the two top-performing methods in
each category (in terms of relative Shapley values). In the Complex and FC category,
these are β-CROWN and MN-BaB, while in the CNN+ResNet category, these are
β-CROWN and VeriNet. The latter category represents the only category in which
a small degree of complementarity can be observed, as both verifiers solved some
instances unsolved by the other. However, the fraction solved by VeriNet remains
comparably small.

Finally, Table 3.19 presents the joint analysis of CPU- and GPU-based methods
based on the competition results. Notice that we did not perform a cost calibration
in this case, as verifiers were employed on hardware with about equal costs. Most
interestingly, we observed performance complementary between these methods in the
CNN+ResNet category. More specifically, the CPU-based Marabou solver could solve
several instances unsolved by GPU-based β-CROWN verifier, although the latter solved
the most instances overall, as reflected in the relative Shapley values (0.53 vs 0.32).
Again, this shows that there exist scenarios in which CPU-based methods complement
GPU-based methods in their performance.

Overall, we find that the biggest difference between the results of the VNN compe-
tition and the results obtained in this study is the degree of complementarity between
the GPU-based verification algorithms, as reflected by the marginal contribution and
Shapley values. While the results from the VNN competition suggest that there is a
single best GPU-based verifier that broadly dominates all other methods, the results
presented in our study reveal a more nuanced story. This difference can most likely be
attributed to the size and the diversity of the proposed benchmark: while the 2022 VNN
Competition considered 17 neural networks as test cases for local robustness verification,
our benchmark consists of 79 networks. At the same time, the competition provides
valuable insights into how the considered verifiers perform when carefully adapted to a
specific benchmark. Moreover, while both analyses have clear contributions, our results
highlight the importance of introducing a larger and more diverse benchmark set.

3.5 Conclusions and Future Work

In this chapter, we sought to answer the question of what constitutes the state of
the art in neural network verification and, thus, address RQ1 of this thesis. To
this end, we assessed the performance of a collection of well-known, complete local
robustness verification algorithms, i.e., algorithms used to verify the robustness of
an image classification network against small input perturbations. We found that

59

3.5. Conclusions and Future Work

all of these methods support ReLU-based networks, while other network types are
strongly under-supported. While this has been suspected in the community, it has, to
our knowledge, not yet been subject to formal study. Generally, we observed that all
considered verification algorithms show severe limitations with regard to the network
structures they can process – in many cases due to unsupported layer operations and
in others due to undefined errors.

Furthermore, and more importantly, we presented evidence for strong performance
complementarity: even within the same benchmark category (as defined based on verifier
compatibility), any two verification systems outperform each other on distinct subsets
of instances. Thereby, the state of the art in neural network verification cannot be
described by a single algorithm but rather several algorithms that contribute to varying
degrees with their own strengths. As we have demonstrated, this complementarity can
be exploited by combining individual verifiers into parallel portfolios. At the same
time, automated portfolio construction comes with its own challenges, leaving room
for further research into the development and evaluation of appropriate frameworks.

Lastly, we showed that, in general, the performance of verifiers strongly differs
between image datasets, with some methods achieving the best performance on MNIST
(in terms of the number of solved instances and average running time) while falling
behind on CIFAR and vice versa. In addition, even for the same dataset, we found that
the performance of a given verifier can change drastically depending on the perturbation
radius; i.e., an algorithm that performs well for a small value of ϵ might degrade in
performance as the value of ϵ increases.

In future work, it would be interesting to analyse in more detail how the relative
performance of verifiers depends on the given perturbation radius and other performance-
relevant characteristics of the given networks and image classification tasks. We suspect
this to be an interesting yet challenging research direction, as it requires a novel
definition of features specific to neural network verification problem. To the best
of our knowledge, no research on the development of such meta-features has been
conducted yet. Due to the specifics of both the verification problem instances as well
as the verification algorithms that should be systematically explored, we consider this
a non-trivial but important challenge to be solved in future work. This line of research
would also enable empirical performance modelling. An empirical performance model
is a model that predicts the performance, e.g., the running time, of algorithms on
previously unseen input, including previously unseen problem instances. Finally, it
would be interesting to expand this analysis to other datasets and machine learning
tasks beyond supervised image classification.

60

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.15: Performance comparison of CPU- and GPU-based verification algorithms
in terms of the number of unsat instances, relative marginal contribution (RMC), relative
Shapley value (ϕ), computed for each category and ϵ = 0.012.

ReLU
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

BaDNB 1 072 0.13 0.25 86 0.65 0.63
BaBSB 161 0.00 0.00 0 0.00 0.00
β-CROWN 2 143 0.00 0.23 61 0.35 0.36
Marabou 995 0.07 0.03 6 0.00 0.00
MN-BaB 2 025 0.80 0.40 16 0.00 0.00
Neurify 748 0.00 0.00 20 0.00 0.00
nnenum 1 686 0.00 0.03 26 0.00 0.00
VeriNet 1 675 0.00 0.03 20 0.00 0.00
ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

BaDNB 59 0.00 0.10 0 0.00 0.00
β-CROWN 88 1.00 0.52 0 0.00 0.00
Marabou 5 0.00 0.00 0 0.00 0.00
MN-BaB 86 0.00 0.38 0 0.00 0.00
Tanh
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

β-CROWN 291 0.09 0.18 3 1.00 1.00
MN-BaB 0 0.00 0.00 0 0.00 0.00
VeriNet 527 0.91 0.82 0 0.00 0.00
Sigmoid
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

β-CROWN 272 0.00 0.03 66 1.00 0.00
Marabou 0 0.00 0.00 0 0.00 0.00
MN-BaB 272 0.00 0.03 0 0.00 0.00
VeriNet 544 1.00 0.94 0 0.00 0.00

61

3.5. Conclusions and Future Work

Table 3.16: Performance comparison of CPU- and GPU-based verification algo-
rithms in terms of the number of unsat instances, relative marginal contribution
(RMC), relative Shapley value (ϕ), computed for each category and aggregated ϵ ∈
{0.004, 0.005, 0.008, 0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

BaDNB 8 059 0.15 0.21 1 069 0.63 0.59
BaBSB 2 303 0.00 0.00 0 0.00 0.00
β-CROWN 17 433 0.04 0.19 866 0.36 0.39
Marabou 9 290 0.61 0.25 60 0.00 0.00
MN-BaB 16 588 0.20 0.28 144 0.00 0.00
Neurify 6 992 0.00 0.00 168 0.00 0.00
nnenum 14 601 0.00 0.03 223 0.00 0.01
VeriNet 14 317 0.00 0.02 177 0.00 0.00
ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

BaDNB 418 0.00 0.08 0 0.00 0.00
β-CROWN 573 1.00 0.50 0 0.00 0.00
Marabou 274 0.00 0.02 0 0.00 0.00
MN-BaB 566 0.00 0.40 0 0.00 0.00
Tanh
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

β-CROWN 2248 0.15 0.22 151 1.00 1.00
MN-BaB 0 0.00 0.00 0 0.00 0.00
VeriNet 3 993 0.85 0.78 0 0.00 0.00
Sigmoid
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

β-CROWN 2290 0.00 0.04 575 1.00 1.00
Marabou 0 0.00 0.00 0 0.00 0.00
MN-BaB 2 302 0.00 0.04 0 0.00 0.00
VeriNet 4 448 1.00 0.92 0 0.00 0.00

62

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.17: Performance comparison of CPU-based verification algorithms in terms of
the number of solved instances, absolute and relative marginal contribution (MC, RMC),
absolute and relative Shapley value (ϕabs, ϕ) as well as average running time, computed for
each category from the 2022 VNN Competition.

Complex
Verifier

Solved MC RMC ϕabs ϕ Avg. Time

AveriNN 0 0 0.00 0 0.00 192
Debona 2 0 0.00 1 0.04 192
FastBATLLNN 0 0 0.00 0 0.00 192
Marabou 0 0 0.00 0 0.00 192
nnenum 23 0 0.00 11 0.46 190
PeregriNN 24 1 1.00 12 0.50 189
VeraPak 0 0 0.00 0 0.00 192
CNN + ResNet
Verifier

Solved MC RMC ϕabs ϕ Avg. Time

AveriNN 0 0 0.00 0 0.00 357
Debona 0 0 0.00 0 0.00 357
FastBATLLNN 0 0 0.00 0 0.00 357
Marabou 122 91 0.61 106 0.44 264
nnenum 81 17 0.11 48 0.20 273
PeregriNN 57 0 0.00 28 0.12 325
VeraPak 72 42 0.28 57 0.24 254
FC
Verifier

Solved MC RMC ϕabs ϕ Avg. Time

AveriNN 100 0 0.00 20 0.05 166
Debona 339 3 0.30 82 0.19 91
FastBATLLNN 32 1 0.10 10 0.0 0.5
Marabou 404 0 0.00 102 0.24 53
nnenum 411 1 0.10 105 0.24 37
PeregriNN 397 2 0.20 102 0.24 48
VeraPak 50 3 0.30 13 0.03 66

63

3.5. Conclusions and Future Work

Table 3.18: Performance comparison of GPU-based verification algorithms in terms of
the number of solved instances, absolute and relative marginal contribution (MC, RMC),
absolute and relative Shapley value (ϕabs, ϕ) as well as average running time, computed for
each category from the 2022 VNN Competition.

Complex
Verifier

Solved MC RMC ϕabs ϕ Avg. Time

β-CROWN 191 66 1.00 0 0.62 72
MN-BaB 125 0 0.00 0 0.28 164
VeriNet 60 0 0.00 0 0.10 187
CNN + ResNet
Verifier

Solved MC RMC ϕabs ϕ Avg. Time

β-CROWN 312 28 1.00 0 0.42 107
MN-BaB 254 0 0.00 0 0.28 179
VeriNet 259 0 0.00 0 0.30 171
FC
Verifier

Solved MC RMC ϕabs ϕ Avg. Time

β-CROWN 448 11 1.00 0 0.35 15
MN-BaB 433 0 0.00 0 0.33 30
VeriNet 435 0 0.00 0 0.32 21

64

Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.19: Performance comparison of GPU- and CPU-based verification algorithms in
terms of the number of solved instances, absolute and relative marginal contribution (MC,
RMC) as well as absolute and relative Shapley value (ϕabs, ϕ), computed for each category
from the 2022 VNN Competition.

Complex
Verifier

Solved MC RMC ϕabs ϕ

AveriNN 0 0 0.00 0 0.00
β-CROWN 191 66 0.99 20 0.91
Debona 2 0 0.00 0 0.04
FastBATLLNN 0 0 0.00 0 0.00
Marabou 0 0 0.00 0 0.00
MN-BaB 125 0 0.00 2 0.09
nnenum 23 0 0.00 0 0.46
PeregriNN 24 1 0.01 0 0.50
VeraPak 0 0 0.00 0 0.00
VeriNet 60 0 0.00 0 0.10
CNN + ResNet
Verifier

Solved MC RMC ϕabs ϕ

AveriNN 0 0 0.00 0 0.00
β-CROWN 312 15 0.28 6 0.32
Debona 0 0 0.00 0 0.00
FastBATLLNN 0 0 0.00 0 0.00
Marabou 122 36 0.68 10 0.53
MN-BaB 254 0 0.00 1 0.05
nnenum 81 0 0.00 0 0.00
PeregriNN 57 0 0.00 0 0.00
VeraPak 72 2 0.04 1 0.05
VeriNet 259 0 0.00 1 0.05
FC
Verifier

Solved MC RMC ϕabs ϕ

AveriNN 100 0 0.00 0 0.00
β-CROWN 448 9 1.00 3 1.00
Debona 339 0 0.00 0 0.00
FastBATLLNN 32 0 0.00 0 0.00
Marabou 404 0 0.00 0 0.00
MN-BaB 433 0 0.00 0 0.00
nnenum 411 0 0.00 0 0.00
PeregriNN 397 0 0.00 0 0.00
VeraPak 50 0 0.00 0 0.00
VeriNet 435 0 0.00 0 0.00

65

3.5. Conclusions and Future Work

66

