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Chapter 1

Introduction

Neural networks have become increasingly prominent ever since Alan Turing first
proposed his idea of unorganised machines – computer programs based on trainable
networks of largely randomly connected, neuron-like elements [105]. Nowadays, neural
networks can be found in various applications, ranging from healthcare to generating
artworks, and have enabled the rise of big AI companies, such as OpenAI or Tesla.
These neural networks typically consist of millions or even billions of parameters and
are commonly referred to as deep neural networks.

With the increased adaption of deep neural networks comes the call for safety and
trustworthiness of the systems in which they are employed. However, deep neural
networks are highly complex and generally suffer from poor explainability; i.e., it often
remains unclear how their output was reached. At the same time, they are inherently
fragile, and their behaviour is sometimes unexpected and, even more concernedly,
unintended (see, e.g., [101]). In some cases, this unintended behaviour can lead to
severe consequences, e.g., in the case of the misclassification of traffic signs. Therefore, it
becomes necessary to provide formal guarantees about their behaviour; these guarantees
can be obtained via formal verification. In general, formal software verification seeks
to prove or disprove the correctness of a computer program with respect to a certain
pre-defined property or formal specification, using mathematically rigorous techniques.

The most commonly studied verification property of deep neural networks is the
local robustness property [37, 89]. Local robustness means that a trained neural network
produces the same (correct) output when small perturbations are applied to its inputs.
Informally speaking, a local robustness property could specify that the image of a speed
limit sign is not confused with that of a yield sign due to a small input perturbation,
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Figure 1.1: An example of an adversarial attack. The initial image is accurately identified
as a stop sign. However, applying a specific perturbation to this image can lead the image
classification model to produce an incorrect prediction, despite the image evidently showing a
stop sign. Source: https://kennysong.github.io/adversarial.js

as illustrated in Figure 1.1. This specific phenomenon of misclassification due to minor
input variations is canonically referred to as adversarial attack. Notice that the local
robustness property is flexible in the sense that the degree of perturbations as well as
output specification can be adjusted to the given use case.

The key challenge of the verification task is to formally describe the behaviour of the
neural network model. However, in a deep learning setting, we typically do not know
the concept underlying the learning task. For example, we do not know, which pixel
values or features make an image belong to a certain class in an image classification
setting. Hence, if we cannot define the task the network is supposed to learn, we also
cannot prove whether the network correctly learned the intended concept.

Instead, to formally prove its correctness with respect to a given property, we must
encode the neural network. There are several ways to encode the network or, in other
words, formally specify the network and its function, enabling us to reason over these
encodings with respect to a given correctness property. However, at the time of writing
this dissertation, there exists a plethora of encoding techniques as well as reasoning
methods. Furthermore, the neural network verification task has been shown to be
NP-complete [55]. In this work, we seek to provide a better overview of state-of-the-art
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neural network verification methods (with a focus on local robustness properties), to
understand better the strengths and weaknesses of existing algorithms, and to present
meta-algorithmic approaches to reduce the computational costs involved with tackling
neural network verification tasks.

1.1 Research Questions

Neural network verification with respect to local robustness is a highly diverse research
area, and existing methods rely on a broad range of techniques. This raises the question
which verification algorithm is most suitable for solving specific types of instances of
the verification problem, and what constitutes the state of the art in neural network
verification overall, also taking into account different hardware specifications, as some
methods rely on CPUs, while others utilise GPU acceleration. There might exist a
single verifier dominating in performance over other methods, or it might depend on
the exact problem type under consideration. In essence, we seek to answer the following
research question:

RQ1 (Chapter 3) What constitutes the state of the art in neural network verification?

In general, different problem types require different solving approaches, or well-
calibrated adaptations of the same approach. This raises the automated algorithm
configuration problem. In the context of neural network verification, this becomes
especially relevant since some verification approaches rely on mixed integer linear
programming (MIP), where it is well known that state-of-the-art solvers (e.g. CPLEX)
employed by these systems are highly sensitive to the setting of their hyper-parameters.
At the same time, configuring a MIP solver embedded into a neural network verification
engine introduces new challenges and considerations, such as the heterogeneity of
problem instances, which makes it hard to select a single configuration that works well
on every instance. Moreover, this introduces the following research question:

RQ2 (Chapter 4) How can we improve the performance of a MIP-based verification
system, leveraging automated algorithm configuration techniques?

Given the inherent complexity of the neural network verification task, solving
these problems remains a resource-intensive task even when using state-of-the-art
and carefully tuned algorithms. The complexity is further amplified in a portfolio
setting, where multiple algorithms run in parallel, introducing inefficiencies through the
allocation of computational budget to less effective solvers that run concurrently with
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the optimal one until a solution is found. Additionally, there exists the possibility that
all algorithms in the portfolio may fail to solve certain instances. This introduces the
more general problem of spending compute resources on instances that eventually turn
out to be unsolvable within a set cutoff time, i.e., the maximum allowable running time
after which the algorithm is terminated. Consequently, a verification system would
operate more efficiently if compute resources were allocated towards problem instances
that can be solved within the given cutoff time. This leads to the following research
question:

RQ3 (Chapter 5) To which extent can we predict the running time of a given verification
algorithm for a specific problem instance?

So far, we have considered the task of adapting an appropriate neural network
verification method to a given problem instance (or set of problem instances), where
a problem instance is composed of a neural network and verification property. How-
ever, when performing verification of a neural network model (or any other kind of
performance assessment), we are typically interested in finding a model that achieves
optimal performance. In a verification context, we typically measure robust accuracy.
This introduces the model selection problem, which is concerned with selecting the
best-performing model from a set of candidates on the basis of a predefined perfor-
mance criterion. Therefore, we are also interested in efficiently performing robust
model selection by leveraging meta-algorithmic approaches. Thus, we arrive at the
following research question:

RQ4 (Chapter 6) How can we efficiently select the neural network model from a given
set of models that achieves the highest certified robust accuracy?

In summary, this thesis seeks to improve the state of the art in neural network
verification systems by leveraging recent advances in meta-algorithmic approaches, such
as automated algorithm configuration, portfolio construction, running time prediction
and model selection techniques for optimised resource allocation.

1.2 Contributions of this thesis

The core technical content of this thesis has been published in the form of research
papers, with each thesis chapter aligning with a specific paper.

In Chapter 3, we investigate the highly diverse landscape of neural network verifi-
cation algorithms with respect to local robustness properties and present a detailed
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overview of current algorithmic approaches. To enable a principled analysis, we define
several criteria for defining the state of the art, and perform an empirical performance
analysis of selected methods. For this performance analysis, we created a new and
diverse benchmark consisting of neural network verification problem instances and
divided this benchmark into subcategories based on different neural network activa-
tion functions. In addition, we introduce specific measures capturing not only the
stand-alone performance of a given verification algorithm but also their performance
in relation to others. Using these complementarity metrics, we show that no single
best algorithm dominates performance across all verification problem instances and
illustrate the potential of leveraging algorithm portfolios. Furthermore, we show that
some activation functions are highly under-supported by existing verification methods.
The research presented in this chapter has given rise to the following research articles:

• Matthias König, Annelot W Bosman, Holger H Hoos, and Jan N van Rijn.
Critically Assessing the State of the Art in Neural Network Verification. Journal
of Machine Learning Research, 25(12):1–53, 2024.

The paper above is an extension of the following workshop paper:

• Matthias König, Annelot W Bosman, Holger H Hoos, and Jan N van Rijn.
Critically Assessing the State of the Art in CPU-based Local Robustness Veri-
fication. In Proceedings of the Workshop on Artificial Intelligence Safety 2023
(SafeAI 2023) co-located with the Thirty-Seventh AAAI Conference on Artificial
Intelligence (AAAI2023), pages 1–9, 2023. [Best Paper Award]

In Chapter 4, we present a concrete approach to leverage algorithm portfolios for
neural network verification in combination with automated algorithm configuration.
Specifically, we consider neural network verification based on mixed integer linear pro-
gramming (MIP) encodings, where the verification property is treated as a minimisation
problem and solved by a commercial MIP solver. We show that by using automated
algorithm configuration and portfolio construction techniques, the performance of a
MIP-based verification system can be substantially improved in terms of running time
as well as the total number of solved problem instances within a given time budget.
The research presented in this chapter has given rise to the following research articles:

• Matthias König, Holger H Hoos, and Jan N van Rijn. Speeding up neural network
robustness verification via algorithm configuration and an optimised mixed integer
linear programming solver portfolio. Machine Learning, 111(12):4565–4584, 2022.
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• Matthias König, Holger H Hoos, and Jan N van Rijn. Speeding Up Neural Network
Verification via Automated Algorithm Configuration. In ICLR Workshop on
Security and Safety in Machine Learning Systems, pages 1–4, 2021.

In Chapter 5, we introduce novel features describing instances of the neural network
verification problem. These features take into account the given instance as well as
internal mechanics of the verification algorithm used. We focus on several state-of-the-
art verification algorithms and show that our features enable the reliable prediction of
timeouts; i.e., cases in which a specific instance cannot be solved within the given time
budget. This prediction is performed by a supervised machine learning model trained
on these features. Using this timeout prediction model, we can substantially reduce
the computational costs demanded by the verification system via early termination of
verification queries that would otherwise result in a timeout. The research presented
in this chapter has given rise to the following research article:

• Konstantin Kaulen, Matthias König, and Holger H Hoos. Dynamic algorithm
termination for branch-and-bound-based neural network verification. In To appear
in Proceedings of the 39th AAAI Conference on Artificial Intelligence (AAAI-25),
pages 1–9, 2025.

Lastly, in Chapter 6, we consider the task of robust model selection. Specifically,
this task involves selecting the neural network model from a given set of candidate
models that shows the highest degree of adversarial robustness. Towards this end, we
propose a racing algorithm that leverages the estimated likelihood of an instance to
be robust and prioritises those during the model evaluation procedure. This enables
an early elimination of candidate models after verifying only a small number of input
instances. We show that our approach reduces the computational burden of selecting
the most robust neural network model by up to two orders of magnitude on standard
benchmarks from the literature, compared to an exhaustive evaluation (i.e., standard)
approach. The research presented in this chapter has given rise to the following research
article:

• Matthias König, Holger H Hoos, and Jan N van Rijn. Accelerating Adversarially
Robust Model Selection for Deep Neural Networks via Racing. In Proceedings
of the 38th AAAI Conference on Artificial Intelligence (AAAI-24), pages 21267–
21275, 2024.

Altogether, the contributions of this thesis enable the scaling of state-of-the-art
neural network verification algorithms to problem instances that were previously
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unsolved as well as the usage of the these algorithms in a more resource-efficient
manner.

1.3 Other Work by the Author

From the following papers, the work presented by König et al. [65] is directly related to
the contents of this thesis, as it applies the concept of automated algorithm configuration
to linear bounding techniques for incomplete neural network verification. The remaining
papers are not directly related.

• Matthias König, Xiyue Zhang, Holger H Hoos, Marta Kwiatkowska, and Jan N van
Rijn. Automated Design of Linear Bounding Functions for Sigmoidal Nonlineari-
ties in Neural Networks. In Proceedings of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases, 2024.

• Bruno Veloso, Luciano Caroprese, Matthias König, Sónia Teixeira, Giuseppe
Manco, Holger H Hoos, and João Gama. Hyper-Parameter Optimization for
Latent Spaces in Dynamic Recommender Systems. In Proceedings of the European
Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases, pages 249–264, 2021.

• Matthias König, Holger H Hoos, and Jan N van Rijn. Towards Algorithm-Agnostic
Uncertainty Estimation: Predicting Classification Error in an Automated Machine
Learning Setting. In ICML Workshop on Automated Machine Learning, pages
1–6, 2020.
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