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Chapter 1

Introduction

Neural networks have become increasingly prominent ever since Alan Turing first
proposed his idea of unorganised machines – computer programs based on trainable
networks of largely randomly connected, neuron-like elements [105]. Nowadays, neural
networks can be found in various applications, ranging from healthcare to generating
artworks, and have enabled the rise of big AI companies, such as OpenAI or Tesla.
These neural networks typically consist of millions or even billions of parameters and
are commonly referred to as deep neural networks.

With the increased adaption of deep neural networks comes the call for safety and
trustworthiness of the systems in which they are employed. However, deep neural
networks are highly complex and generally suffer from poor explainability; i.e., it often
remains unclear how their output was reached. At the same time, they are inherently
fragile, and their behaviour is sometimes unexpected and, even more concernedly,
unintended (see, e.g., [101]). In some cases, this unintended behaviour can lead to
severe consequences, e.g., in the case of the misclassification of traffic signs. Therefore, it
becomes necessary to provide formal guarantees about their behaviour; these guarantees
can be obtained via formal verification. In general, formal software verification seeks
to prove or disprove the correctness of a computer program with respect to a certain
pre-defined property or formal specification, using mathematically rigorous techniques.

The most commonly studied verification property of deep neural networks is the
local robustness property [37, 89]. Local robustness means that a trained neural network
produces the same (correct) output when small perturbations are applied to its inputs.
Informally speaking, a local robustness property could specify that the image of a speed
limit sign is not confused with that of a yield sign due to a small input perturbation,
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Figure 1.1: An example of an adversarial attack. The initial image is accurately identified
as a stop sign. However, applying a specific perturbation to this image can lead the image
classification model to produce an incorrect prediction, despite the image evidently showing a
stop sign. Source: https://kennysong.github.io/adversarial.js

as illustrated in Figure 1.1. This specific phenomenon of misclassification due to minor
input variations is canonically referred to as adversarial attack. Notice that the local
robustness property is flexible in the sense that the degree of perturbations as well as
output specification can be adjusted to the given use case.

The key challenge of the verification task is to formally describe the behaviour of the
neural network model. However, in a deep learning setting, we typically do not know
the concept underlying the learning task. For example, we do not know, which pixel
values or features make an image belong to a certain class in an image classification
setting. Hence, if we cannot define the task the network is supposed to learn, we also
cannot prove whether the network correctly learned the intended concept.

Instead, to formally prove its correctness with respect to a given property, we must
encode the neural network. There are several ways to encode the network or, in other
words, formally specify the network and its function, enabling us to reason over these
encodings with respect to a given correctness property. However, at the time of writing
this dissertation, there exists a plethora of encoding techniques as well as reasoning
methods. Furthermore, the neural network verification task has been shown to be
NP-complete [55]. In this work, we seek to provide a better overview of state-of-the-art
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Chapter 1. Introduction

neural network verification methods (with a focus on local robustness properties), to
understand better the strengths and weaknesses of existing algorithms, and to present
meta-algorithmic approaches to reduce the computational costs involved with tackling
neural network verification tasks.

1.1 Research Questions

Neural network verification with respect to local robustness is a highly diverse research
area, and existing methods rely on a broad range of techniques. This raises the question
which verification algorithm is most suitable for solving specific types of instances of
the verification problem, and what constitutes the state of the art in neural network
verification overall, also taking into account different hardware specifications, as some
methods rely on CPUs, while others utilise GPU acceleration. There might exist a
single verifier dominating in performance over other methods, or it might depend on
the exact problem type under consideration. In essence, we seek to answer the following
research question:

RQ1 (Chapter 3) What constitutes the state of the art in neural network verification?

In general, different problem types require different solving approaches, or well-
calibrated adaptations of the same approach. This raises the automated algorithm
configuration problem. In the context of neural network verification, this becomes
especially relevant since some verification approaches rely on mixed integer linear
programming (MIP), where it is well known that state-of-the-art solvers (e.g. CPLEX)
employed by these systems are highly sensitive to the setting of their hyper-parameters.
At the same time, configuring a MIP solver embedded into a neural network verification
engine introduces new challenges and considerations, such as the heterogeneity of
problem instances, which makes it hard to select a single configuration that works well
on every instance. Moreover, this introduces the following research question:

RQ2 (Chapter 4) How can we improve the performance of a MIP-based verification
system, leveraging automated algorithm configuration techniques?

Given the inherent complexity of the neural network verification task, solving
these problems remains a resource-intensive task even when using state-of-the-art
and carefully tuned algorithms. The complexity is further amplified in a portfolio
setting, where multiple algorithms run in parallel, introducing inefficiencies through the
allocation of computational budget to less effective solvers that run concurrently with
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1.2. Contributions of this thesis

the optimal one until a solution is found. Additionally, there exists the possibility that
all algorithms in the portfolio may fail to solve certain instances. This introduces the
more general problem of spending compute resources on instances that eventually turn
out to be unsolvable within a set cutoff time, i.e., the maximum allowable running time
after which the algorithm is terminated. Consequently, a verification system would
operate more efficiently if compute resources were allocated towards problem instances
that can be solved within the given cutoff time. This leads to the following research
question:

RQ3 (Chapter 5) To which extent can we predict the running time of a given verification
algorithm for a specific problem instance?

So far, we have considered the task of adapting an appropriate neural network
verification method to a given problem instance (or set of problem instances), where
a problem instance is composed of a neural network and verification property. How-
ever, when performing verification of a neural network model (or any other kind of
performance assessment), we are typically interested in finding a model that achieves
optimal performance. In a verification context, we typically measure robust accuracy.
This introduces the model selection problem, which is concerned with selecting the
best-performing model from a set of candidates on the basis of a predefined perfor-
mance criterion. Therefore, we are also interested in efficiently performing robust
model selection by leveraging meta-algorithmic approaches. Thus, we arrive at the
following research question:

RQ4 (Chapter 6) How can we efficiently select the neural network model from a given
set of models that achieves the highest certified robust accuracy?

In summary, this thesis seeks to improve the state of the art in neural network
verification systems by leveraging recent advances in meta-algorithmic approaches, such
as automated algorithm configuration, portfolio construction, running time prediction
and model selection techniques for optimised resource allocation.

1.2 Contributions of this thesis

The core technical content of this thesis has been published in the form of research
papers, with each thesis chapter aligning with a specific paper.

In Chapter 3, we investigate the highly diverse landscape of neural network verifi-
cation algorithms with respect to local robustness properties and present a detailed
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Chapter 1. Introduction

overview of current algorithmic approaches. To enable a principled analysis, we define
several criteria for defining the state of the art, and perform an empirical performance
analysis of selected methods. For this performance analysis, we created a new and
diverse benchmark consisting of neural network verification problem instances and
divided this benchmark into subcategories based on different neural network activa-
tion functions. In addition, we introduce specific measures capturing not only the
stand-alone performance of a given verification algorithm but also their performance
in relation to others. Using these complementarity metrics, we show that no single
best algorithm dominates performance across all verification problem instances and
illustrate the potential of leveraging algorithm portfolios. Furthermore, we show that
some activation functions are highly under-supported by existing verification methods.
The research presented in this chapter has given rise to the following research articles:

• Matthias König, Annelot W Bosman, Holger H Hoos, and Jan N van Rijn.
Critically Assessing the State of the Art in Neural Network Verification. Journal
of Machine Learning Research, 25(12):1–53, 2024.

The paper above is an extension of the following workshop paper:

• Matthias König, Annelot W Bosman, Holger H Hoos, and Jan N van Rijn.
Critically Assessing the State of the Art in CPU-based Local Robustness Veri-
fication. In Proceedings of the Workshop on Artificial Intelligence Safety 2023
(SafeAI 2023) co-located with the Thirty-Seventh AAAI Conference on Artificial
Intelligence (AAAI2023), pages 1–9, 2023. [Best Paper Award]

In Chapter 4, we present a concrete approach to leverage algorithm portfolios for
neural network verification in combination with automated algorithm configuration.
Specifically, we consider neural network verification based on mixed integer linear pro-
gramming (MIP) encodings, where the verification property is treated as a minimisation
problem and solved by a commercial MIP solver. We show that by using automated
algorithm configuration and portfolio construction techniques, the performance of a
MIP-based verification system can be substantially improved in terms of running time
as well as the total number of solved problem instances within a given time budget.
The research presented in this chapter has given rise to the following research articles:

• Matthias König, Holger H Hoos, and Jan N van Rijn. Speeding up neural network
robustness verification via algorithm configuration and an optimised mixed integer
linear programming solver portfolio. Machine Learning, 111(12):4565–4584, 2022.
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1.2. Contributions of this thesis

• Matthias König, Holger H Hoos, and Jan N van Rijn. Speeding Up Neural Network
Verification via Automated Algorithm Configuration. In ICLR Workshop on
Security and Safety in Machine Learning Systems, pages 1–4, 2021.

In Chapter 5, we introduce novel features describing instances of the neural network
verification problem. These features take into account the given instance as well as
internal mechanics of the verification algorithm used. We focus on several state-of-the-
art verification algorithms and show that our features enable the reliable prediction of
timeouts; i.e., cases in which a specific instance cannot be solved within the given time
budget. This prediction is performed by a supervised machine learning model trained
on these features. Using this timeout prediction model, we can substantially reduce
the computational costs demanded by the verification system via early termination of
verification queries that would otherwise result in a timeout. The research presented
in this chapter has given rise to the following research article:

• Konstantin Kaulen, Matthias König, and Holger H Hoos. Dynamic algorithm
termination for branch-and-bound-based neural network verification. In To appear
in Proceedings of the 39th AAAI Conference on Artificial Intelligence (AAAI-25),
pages 1–9, 2025.

Lastly, in Chapter 6, we consider the task of robust model selection. Specifically,
this task involves selecting the neural network model from a given set of candidate
models that shows the highest degree of adversarial robustness. Towards this end, we
propose a racing algorithm that leverages the estimated likelihood of an instance to
be robust and prioritises those during the model evaluation procedure. This enables
an early elimination of candidate models after verifying only a small number of input
instances. We show that our approach reduces the computational burden of selecting
the most robust neural network model by up to two orders of magnitude on standard
benchmarks from the literature, compared to an exhaustive evaluation (i.e., standard)
approach. The research presented in this chapter has given rise to the following research
article:

• Matthias König, Holger H Hoos, and Jan N van Rijn. Accelerating Adversarially
Robust Model Selection for Deep Neural Networks via Racing. In Proceedings
of the 38th AAAI Conference on Artificial Intelligence (AAAI-24), pages 21267–
21275, 2024.

Altogether, the contributions of this thesis enable the scaling of state-of-the-art
neural network verification algorithms to problem instances that were previously
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Chapter 1. Introduction

unsolved as well as the usage of the these algorithms in a more resource-efficient
manner.

1.3 Other Work by the Author

From the following papers, the work presented by König et al. [65] is directly related to
the contents of this thesis, as it applies the concept of automated algorithm configuration
to linear bounding techniques for incomplete neural network verification. The remaining
papers are not directly related.

• Matthias König, Xiyue Zhang, Holger H Hoos, Marta Kwiatkowska, and Jan N van
Rijn. Automated Design of Linear Bounding Functions for Sigmoidal Nonlineari-
ties in Neural Networks. In Proceedings of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases, 2024.

• Bruno Veloso, Luciano Caroprese, Matthias König, Sónia Teixeira, Giuseppe
Manco, Holger H Hoos, and João Gama. Hyper-Parameter Optimization for
Latent Spaces in Dynamic Recommender Systems. In Proceedings of the European
Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases, pages 249–264, 2021.

• Matthias König, Holger H Hoos, and Jan N van Rijn. Towards Algorithm-Agnostic
Uncertainty Estimation: Predicting Classification Error in an Automated Machine
Learning Setting. In ICML Workshop on Automated Machine Learning, pages
1–6, 2020.
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Chapter 2

Preliminaries

In this chapter, we will introduce the most important concepts and methods on
which this thesis are built, including adversarial attacks, existing approaches to formal
verification as well as meta-algorithmic techniques, such as automated algorithm
configuration and running time prediction. Notice that the research articles presented
in Chapter 1.2 are, in part, based in the content of this chapter.

2.1 Adversarial Attacks

In recent years, deep learning methods based on neural networks have been increasingly
adopted within various safety-critical domains and use contexts, ranging from manoeu-
vre advisory systems in unmanned aircraft to face recognition systems in mobile phones
([50, 2, 53]). Concurrently, it is now well known that neural networks are vulnerable
to adversarial attacks [101], where a given input is manipulated, often in subtle ways,
such that it is misclassified by the network.

Adversarial examples or negatives are network inputs that are indistinguishable
from regular inputs, but cause the network to produce misclassifications [101]. These
adversarial examples can be created by applying a hardly perceptible perturbation
to the original instance that maximises model error while staying close to the initial
example. The most prevalent distance metrics used to evaluate adversarial distortion
are the l1 [13, 16], l2 [101] and l∞ [37, 89] norms. Prominent methods for creating
adversarial examples include projected gradient descent (PGD) [77] and fast gradient
sign method (FGSM) [37], which, in essence, seek to identify the input pixels that have
the largest impact on the model prediction, and modify those until the model produces

9



2.2. Formal Neural Network Verification

a misclassification. Notice that adversarial examples could also occur due to natural
distortions, such as signal noise or changing conditions in the environment.

In the case of image recognition tasks, the perturbation required to trigger a
misclassification, whether it is adversarially crafted or arises accidentally, can be so
small that it remains virtually undetectable to the human eye.

2.2 Formal Neural Network Verification

Various methods have been proposed to establish the robustness of neural networks
against adversarial attacks. Some of these methods perform heuristic attacks, where
adversarial examples are found using approximate, iterative strategies to solve the
underlying optimisation problem [37, 67, 14]; however, these methods are empirical in
the sense that they do not paint a full picture of the robustness of a given network to
adversarial attacks, as one defense mechanism might still be circumvented by another,
possibly new class of attacks.

In light of this, several approaches have been developed to more thoroughly verify
neural networks [94, 6, 27, 55, 26, 35, 115, 12, 104, 8]. These formal verification methods
can assess the robustness of a given network in a principled fashion, which means that
they yield provable guarantees on certain properties of input-output combinations. For
a classifier, a property can be that instances, which are in close distance to a certain
input x, belong to the same class as x.

This specific type of assessment refers to local robustness verification, a broadly
studied verification task, in which a network is systematically tested against various
input perturbations under pre-defined norms, where the most commonly considered
norm is the l∞-norm [37, 89], representing the maximum discrepancy between two inputs.
The l∞-norm is most suitable for adversarial testing, as it ensures that perturbations are
minimally perceptible yet uniformly applied across all input dimensions. It should be
noted that recent work has proposed to move beyond pixel-based perturbations, which
account for realistic sensor errors, to semantic perturbations; i.e., linear transformations
representing changes in contrast, luminosity, scaling, rotation, and other factors [83, 39].
This specific type of verification, though, falls outside the scope of this thesis.

In general, formal verification algorithms can be characterised by three criteria:
soundness, completeness and computational cost. A sound algorithm will only report
that a property holds if the property actually holds. An algorithm that is complete
will correctly state that a property holds whenever it holds. While it is favourable to
produce verifiers that can certify every given instance in a dataset, there is a trade-off
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Chapter 2. Preliminaries

between the completeness of a verification algorithm and its scalability in terms of
computational complexity. The neural network verification problem is highly complex
and has been proven to be NP-complete [55]. This complexity arises from the need to
determine whether any input from a given domain can produce an output that violates
specified constraints, which translates into solving a non-convex optimization problem
due to the presence of non-linear activation functions in the neural network. Therefore,
it is not surprising that for large networks and/or instance sets the problem quickly
becomes practically intractable.

Consequently, some verification algorithms forego completeness to improve compu-
tational efficiency by resorting to approximations [6, 26, 35, 115, 12]. These approxima-
tions, however, do not always return the actual solution to a given verification problem
but can result in mismatches or cases where the solution remains unknown. Other
incomplete methods seek to add random noise to the inputs during training to smooth
a neural network classifier and then derive the certified robustness for this smoothed
classifier [69, 19]. While these approaches scale to larger network architectures, their
robustness guarantees remain probabilistic, i.e., the method estimates the probability
that the predicted label remains most likely even under small perturbations to the
input. In contrast to incomplete verification methods, however, this does not provide
sound verification, as there is no formal guarantee that the robustness property actually
holds. Furthermore, randomised smoothing has been found to come at the cost of
classifier accuracy [82]. As can be seen from this example, increased scalability of a
verification method usually comes at the cost of performance loss in other areas.

2.2.1 Problem Definition

Formally, the local robustness verification problem we study in the remainder of this
thesis can be described as follows. Consider a feed-forward neural network classifier
comprising n layers with a k0-dimensional input and a kn-dimensional output. Let
x ∈ Dx ⊆ Rk0 denote the input and y ∈ Dy ⊆ Rkn denote the class label associated
with that input (in a certain representation), where Dx and Dy represent the domains
of possible values for x and y, respectively. The neural network represents a function
f that aims to model the relation between input x and the associated class label y,
expressed as ŷ = f(x), where ŷ represents the output of the neural network based on
input x. Note that the model can also produce misclassifications, in those cases ŷ ̸= y.

To address the verification problem, we need to validate the specified conditions
for input-output relationships of f . In the context of local robustness verification for
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image classification networks, the goal is to determine whether input instances within
distance ϵ of a specific input x0 belong to the same output class as x0. This problem
can be formulated as follows (based on [73]):

∀x : ∥x− x0∥p ≤ ϵ =⇒ f(x) = f(x0)

Here, x represents a possible input, for which we can compute the distance to x0

based on an ℓp distance metric. If the neural network always predicts correctly within
the pre-defined distance ϵ, the network is verified to be robust with respect to the
verification property. Otherwise, x has been found to be an adversarial example,
rendering the neural network unsafe, i.e., non-robust.

2.2.2 Incomplete Verification

The most scalable and efficient incomplete verification approaches attempt to produce
sound bounds for the output nodes of a given network by identifying linear relationships
between each hidden or input neuron and the output neurons. Therefore, in the case of
ReLU activation functions, each ReLU neuron whose inputs span over both the positive
and negative domain must be relaxed, which typically involves approximating the
ReLU function by means of linear bounds; see e.g., [119]. These neurons are referred to
as being unstable. There also exist relaxations for other commonly used non-linearities,
such as sigmoid or hyperbolic tangent [65, 119].

To find a linear relationship between the input and the output of a network, the
output bounds of the last layer are back-propagated, such that the input bounds of each
layer are replaced recursively by the output bounds from the previous layer [99, 119].
These techniques are referred to as linear bound propagation (LBP) methods. Once the
linear connections have been established, the easier linear optimisation problem can be
solved to obtain the final bounds of the output layer using Linear Programming (LP)
solvers. Alternatively, it has been proposed to employ symbolic interval propagation
(SIP) to calculate linear bounding equations of the output [8, 110]. In comparison to
LBP techniques, SIP-based approaches propagate input variables symbolically and,
thus, are able to identify inter-dependencies between them, which may lead to overall
tighter bounds.

Finally, adversarial attacks can also be considered an incomplete verification ap-
proach, as the existence of an adversarial example proves the violation of the given
property [37].
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2.2.3 Complete Verification

Early work on complete verification of neural networks utilised satisfiability modulo
theories (SMT) solvers [55, 56, 90, 91, 92], which determine whether a set of logic
constraints is satisfiable [84]. The resulting verification problems are NP-complete and
challenging to solve in practice. Some SMT-based verification algorithms, such as those
proposed by Katz et al. [55, 56], employ the well-known simplex algorithm [21] for
assigning values to the SMT variables.

Alternatively, it is possible to formulate the verification task as a constraint optimi-
sation problem using mixed integer programming (MIP) [8, 25, 75, 104]. MIP solvers
essentially optimise an objective function subject to a set of constraints. Generally,
optimisation problems are well studied, and by approaching verification tasks from
that angle, techniques and insights from well-developed areas of computer science
and operations research can be leveraged. MIP-based verification algorithms assign
variables to each node in the network and, more specifically, encode non-linearities by
means of binary variables indicating whether a node is in an active or inactive state;
for ReLU nodes, this means whether a the pre-activation value of the node exceeds a
value of zero. Approaches differ in the way perturbations are encoded into the program
as well as in the specification of their objective function. MIP problems, similar to
SMT problems, can be challenging to solve and tend to be computationally expensive
(in terms of CPU time and memory). Further details on MIP-based verification will be
provided in Chapter 4.

To overcome the computational complexity of SMT and MIP, it has been proposed
to use the well-known branch-and-bound algorithm [68] for solving the verification
problem, regardless of whether it is modelled as MIP or SMT [11, 12, 22, 27, 109].
Neural network verification algorithms based on branch-and-bound consist of two main
steps: (i) branching and (ii) bounding. Branching involves splitting the domain of
one or more variables (based on the nodes in the network) into sub-problems of the
original problem; for instance, a ReLU node can be split into its positive and negative
domain, which creates new sub-problems for each of these cases, respectively. These
(relaxed) sub-problems are then solved by cheap but incomplete verification algorithms,
such as LBP techniques, which determine a lower bound to the verification problem,
while upper bounds are found via falsification algorithms [24]. By repeating these
steps, the bounds, i.e., the upper and lower limits on the possible value of a solution to
the verification problem, are tightened in each iteration. There exist many different
branching schemes and bounding algorithms, which vary in tightness of the bounds
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and performance in terms of running time.

To formulate the constraints used in the above-mentioned methods, the non-linear
activation functions of a neural network are usually relaxed. This is mostly done
by approximating the original non-linear activation function by at least two linear
functions, forming upper and lower bounds [27, 99, 112, 113, 119]. Employing the
linear bounds as relaxation to the activation function increases the feasible region
of each variable in the model, and as the nodes in each layer are dependent on the
previous layer, the bounds on each consecutive layer become looser. The approximation,
thus, provides a trade-off, as loose and fast bounds lead to large feasible regions while
obtaining tight bounds tends to be computationally expensive. The way in which
non-linearities are approximated presents a key distinguishing factor between complete
verification algorithms.

Alternatively, symbolic interval propagation has been proposed to compute bounds
on the output range of the network for a given input and use those as additional
constraints [8, 40, 110, 111]. The output range of the output layer is obtained by
propagating the bounds through the network, which renders it unnecessary to encode
the entire network and use computationally expensive solvers. Symbolic interval
propagation lends itself as an incomplete verification method, but it can also complement
complete methods, improving their efficiency by reducing the size of the feasible region
of the problem, compared to the looser approximation described above.

Other bound approximation methods include polyhedra, zonotope and star-set
abstraction. Polyhedra abstraction produces one lower bound for the approximation
based on the trained network, instead of two bounds, as used in symbolic interval
propagation, where the latter results in tighter bounds [99, 119]. Zonotope abstraction
is similar to polyhedra abstraction and is able to model dependencies between the
zonotope representation of different network layers [35, 98]. In contrast to polyhedron
transformations, the zonotope transformations scale polynomially, and optimisation is
efficient. Star sets are a generalisation of the zonotope abstraction, as they are not
restricted to being symmetric [4]. They are similar to zonotopes; however, optimisation
is less efficient, as it requires solving a linear program.

Throughout this thesis, we will use and study several verification algorithms stem-
ming from various paradigms. Notice that we focus on complete verifiers. An overview
of all considered methods as well as their reference and location in this thesis are
presented in Table 2.1.
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Table 2.1: Overview of verification methods considered in this thesis.

Verifier Reference Paradigm Chapter

BaB Bunel et al. [12] Branch-and-bound 3
BaDNB DePalma et al. [22] Branch-and-bound 3,5
αβ-CROWN Wang et al. [111] Branch-and-bound 3,5,6
Marabou Katz et al. [56] SMT 3
MIPVerify Tjeng et al. [104] MIP 4
MN-BaB Ferrari et al. [29] Branch-and-bound 3
Neurify Wang et al. [110] SIP 3
nnenum Bak et al. [4] Star-set abstraction 3
Venus Botoeva et al. [8] MIP 4
VeriNet Henriksen & Lomuscio [40] SIP 3,5,6

2.3 Automated Algorithm Configuration

In general, the algorithm configuration problem can be described as follows: Given an
algorithm A (also referred to as the target algorithm) with parameter configuration
space Θ (arising from the domains of individual parameters), a set of problem instances
Π and a cost metric c : Θ×Π→ R, find a configuration θ∗ ∈ Θ that minimises cost c

across the instances in Π:

θ∗ ∈ argmin
θ∈Θ

∑
π∈Π

c(θ, π) (2.1)

The general workflow of the algorithm configuration procedure starts with picking
a configuration θ ∈ Θ and an instance π ∈ Π. Next, the configurator initialises a
run of algorithm A with configuration θ on instance π with CPU time cutoff k and
measures the resulting cost c(θ, π). The configurator uses this information about the
performance of the target algorithm to find a configuration that performs well on the
training instances. Once its configuration budget (e.g., time budget) is exhausted, it
returns the current incumbent, i.e., the best configuration found so far. Finally, when
running the target algorithm with configuration θ∗, it should result in lower cost (such
as average running time) across the benchmark set.

Automated algorithm configuration has been shown to work effectively in the
context of SAT solving [43, 47], scheduling [18], mixed-integer programming [44, 76],
answer set solving [34], AI planning [107] and machine learning [103, 31].
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2.4 Algorithm Portfolios & Selection

In cases where the performance of an algorithm varies greatly from one instance
to another and where the performance of several different algorithms (or algorithm
configurations) complements each other across an instance distribution, one can make
use of algorithm portfolios [36, 42]. Such portfolios combine multiple algorithms (or
algorithm configurations) in such a way that a much broader range of performance
characteristics can be exploited, compared to running a single algorithm on its own.
Added this paragraph with formal description.

A widely recognised approach for portfolio construction is Hydra [116], which has
been shown to work effectively, e.g., in the context of MIP-based neural network
verification [61]. Hydra employs a greedy algorithm that scores a configuration based
on its actual performance if it surpasses the portfolio on the current instance; otherwise,
it assigns the portfolio’s performance cost. Consequently, potential configurations
are evaluated solely based on their contribution to improving the portfolio, guiding
the configurator to prioritise instances on which the current portfolio underperforms.
The portfolio construction proceeds as follows: Let Pi denote the portfolio after
iteration i, starting with P0 := {}, which is the empty portfolio. In each iteration i,
the configurator identifies a new configuration θi, which is then added to the portfolio.
In the first iteration, this results in P1 := {θ1}. From the second iteration onward, the
performance metric is adjusted such that if the incumbent configuration underperforms
the portfolio on a specific instance, its score is replaced with the portfolio’s performance.
Following each iteration, the newly generated configuration θi is evaluated, and the
portfolio is updated according to a predefined portfolio updating strategy, yielding
Pi = Pi−1 ∪{θi}. Notice that this framework can be extended to allow adding multiple
configurations per iteration, however, this requires adjustments to the performance
metric and the updating strategy.

Algorithm portfolios can employ all algorithms in a parallel fashion or, alternatively,
provide the basis for per-instance algorithm selection mechanisms. The latter are based
on instance-specific features, which are used to train a statistical model subsequently
used for selecting the algorithm to be run on a given problem instance, e.g., based
on performance predictions for each individual algorithm in the portfolio [118]. In
the former case, all algorithms are run in parallel on a given problem instance, and
the portfolio terminates once one algorithm has returned a solution. This implicitly
ensures that we always benefit from the best-performing algorithm in the portfolio;
however, it comes at the cost of increased use of parallel resources when compared to
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per-instance selection from a portfolio of algorithms. Thus, when evaluating a parallel
algorithm portfolio, it is important to ensure that all algorithms together do not exceed
the global computing budget used by a single baseline algorithm.

2.5 Running Time Prediction

In the context of NP-complete problems, such as SAT, MIP or TSP, it has been
shown that running time can vary drastically depending on the instance and algorithm
used [48]. While there is only very little understanding of the reasons for this behaviour,
it is possible to predict running times of previously unseen SAT, MIP and TSP problem
instances reasonably well based on cheaply computable instance features by fitting a
statistical model on the running time of a given algorithm [48]. Running time prediction
has various applications that seek to minimise costs and improve the efficiency of
machine learning systems; those range from algorithm selection (as mentioned in the
previous section) to scheduling [58]. Furthermore, running time prediction provides
insights into the relationship between instance characteristics and algorithm running
time and, thus, informs us about instance complexity.

Following the notation of [48], we characterise a problem instance using a list of m
features z = [z1, . . . , zm], selected from a specified feature space F . These features are
typically computed by specialised code to extract relevant characteristics for any given
problem instance. In the context of neural network verification, such features could be,
for example, the number of unstable nodes or the prediction margin.

Consider R the space of real numbers indicating an algorithm’s performance measure,
such as the running time in seconds on a given machine. For an algorithm A and a
distribution of instances described by a feature space F , we are interested in modelling
the running time as a function f : F → R that maps the feature vector z ∈ F to the
performance measure of the algorithm.

To model the performance of an algorithm A on an instance set Π, we run A on
all instances πi ∈ Π and record the resulting performance values yi. We capture the
m-dimensional feature vector zi of the instance used in the i-th run to be used as our
vector of predictor variables. The training data for our performance model is then
{(z1, y1), . . . , (zn, yn)}, where yi (with 1 ≤ i ≤ n) is the performance (e.g., running
time) of A on instance πi. Lastly, we use y for the vector of performance values
[y1, . . . , yn].
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Chapter 3

Critically Assessing the State of
the Art in Neural Network
Verification

Neural network verification with respect to local robustness is a highly diverse research
area, and existing methods rely on a broad range of techniques. At the same time,
neural networks differ in terms of their architecture, such as the number of hidden
layers and nodes, the type of non-linearities, e.g., ReLU, Sigmoid or Tanh, and the
type of operations they employ, e.g., pooling or convolutional layers. This diversity,
both in terms of verification approaches and neural network design, makes it non-
trivial for researchers or practitioners to assess and decide which method is most
suitable for verifying a given neural network [15]. This challenge is amplified by the
fact that the neural network verification community does not (yet) use commonly
agreed evaluation protocols, which makes it difficult to draw clear conclusions from
the literature regarding the capabilities and performance of existing verifiers. More
precisely, existing studies use different benchmarks and, so far, have not provided an
in-depth performance comparison of a broad range of verification algorithms, as we
will further outline in Section 3.1.

Recently, a competition series has been initiated, in which several verifiers were
applied to different benchmarks (i.e., networks, properties and datasets) and compared
in terms of various performance measures, including the number of verified instances
as well as running time [87]. While the results from these competitions have provided
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valuable insights into the general progress in neural network verification, several
questions remain unexplored. Most importantly, the ranking of algorithms based on
their aggregated performance scores makes it difficult to assess in detail the strengths
or weaknesses of verifiers on different instances. Indeed, looking at the competition
results, one easily gets the impression that a single approach dominates ‘across the
board’ — an assumption that is known to be inaccurate for other problems involving
formal verification tasks; see, e.g., [117] or [52] for SAT.

In this chapter, we focus exclusively on local robustness verification in image
classification against perturbations under the l∞-norm. This scenario represents a
widely studied verification task, with a large number of networks being publicly available
and many verifiers providing off-the-shelf support. Notice that most verification tasks
can be translated into local robustness verification queries [95]; we, therefore, believe
that our findings are broadly applicable. Moreover, we seek to go beyond existing
benchmarking approaches and shed light on previously unanswered questions regarding
the state of the art in local robustness verification from a practitioner’s point of view –
a perspective that complements the insights from the VNN competition, where the
participating tools are carefully adapted to the given benchmarks by their developers.
Our contributions in this chapter are as follows and, altogether, seek to answer RQ1 of
this thesis:

• We analyse the current state of practice in benchmarking verification algorithms;

• we perform a systematic benchmarking study of several, carefully chosen GPU-
and CPU-based verification methods based on a newly assembled and diverse
set of networks, including 38 CIFAR and 41 MNIST networks with different
activation functions, representing a much larger number of networks than typically
considered, each verified against several robustness properties, for which we
expended a total of approximately 1 GPU and 16 CPU years in running time;

• we present a categorisation of verification benchmarks based on verifier compati-
bilities with different layer types and operations;

• we quantify verifier performance in terms of the number of solved instances,
running time, as well as marginal contribution and Shapley value, showing
that top-performing verification algorithms strongly complement rather than
consistently dominate each other in terms of performance, a finding that we
also show to hold for the results of the 2022 VNN Competition – e.g., while the
verifiers nnenum and PeregriNN achieved competitive performance in the FC
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category of the competition, the former solved many instances unsolved by the
latter and vice versa.

3.1 Common Practices in Benchmarking

Neural Network Verifiers

As explained in Chapter 2, formal verification algorithms can be either complete or
incomplete [71]. An algorithm that is incomplete does not guarantee to report a solution
for every given instance; however, incomplete verification algorithms are typically sound,
which means they will report that a property holds only if the property actually holds.
On the other hand, an algorithm that is sound and complete, when given sufficient
resources to be run to completion, will correctly state that a property holds whenever
it holds, and, in particular, will determine accurately when the property does not
hold. In this study, we focus on complete algorithms, as those arguably represent
the most ambitious form of neural network verification, making them preferable over
incomplete methods, especially in safety-critical applications. Furthermore, we focus on
the verification of real-valued networks, which are typically considered in the verification
literature, although there exist methods for the verification of other network types; see,
e.g., the work of [88] or [49] on binarised networks.

Considering the diversity in neural network verification problems, it is quite natural
to assume that a single best algorithm does not exist, i.e., a method that always
outperforms all others. It is still hard to identify to what extent a method contributes
to the state of the art, mainly because verification methods are typically evaluated
(i) on a small number of benchmarks, which have often been created for the sole purpose
of evaluating the method at hand, and (ii) against baseline methods for which it is often
unclear how they were chosen, leading to several methods claiming state-of-the-art
performance without having been directly compared. We note that in the context
of local robustness verification, a benchmark most often represents a neural network
classifier trained on the MNIST or CIFAR-10 dataset, respectively.

As previously mentioned, a competition series has been established with the goal of
providing an objective and fair comparison of the state-of-the-art methods in neural
network verification, in terms of scalability and speed [87]. The VNN competition
was held every year since 2020, with different protocols (e.g., for running experiments,
scoring, etc.), benchmarks and participants. Here, we focus on the 2022 edition. Within
VNN 2022, a total of 12 benchmarks were considered, of which 6 represented test cases
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for local robustness verification of image classification networks. Notice that one of
these benchmarks considers bias field perturbations, which are reduced to a standard
l∞-norm specification. Benchmarks were proposed by the participants themselves
and included a total of 13 CIFAR, 2 MNIST and 2 (Tiny)ImageNet networks, which
differed in terms of architecture components, such as non-linearities (e.g., ReLU, Tanh,
Sigmoid) and layer operations (e.g., convolutional or pooling layers, skip connections).
Networks were trained on the CIFAR-10, CIFAR-100, MNIST, TinyImageNet and
ImageNet datasets, respectively. Moreover, each benchmark was composed of random
image subsets, excluding images that were misclassified by the given network, along
with varying perturbation radii.

This competition overcame several of the previously reported limitations with regard
to the evaluation of network verifiers. Most notably, it covered a relatively large and
diverse set of neural networks. Moreover, thanks to the active participation from the
community, 12 verification algorithms were included in the competition. At the same
time, we see room for further research into the performance of neural network verifiers.

First and foremost, the competition seeks to determine the current state of the
art; however, the competition ranking and scores do not sufficiently quantify the
extent to which an algorithm actually contributes to the state of the art. In other
words, it is in the nature of competitions to determine a winner, at least implicitly
suggesting that a single approach generally outperforms all competitors. However, some
verification algorithms might have limited but distinct areas of strength, which cannot
be identified through aggregated performance measures, such as the total number of
verified instances. Although the competition report [87] shows that individual verifier
performance differs among benchmarks, it remains unclear whether all algorithms
solve the same set of instances in the given benchmark, or if they complement each
other. Similarly, it does not reveal whether or not methods are correlated in their
performance.

Furthermore, in our study, we conducted both a joint and separate analysis of
CPU- and GPU-based methods. This choice was motivated by the inherent challenges
that arise when attempting to compare these two types of algorithms. Indeed, the
competition results suggest that GPU-based methods are more efficient than CPU-
based algorithms [87]; however, GPU resources are typically more expensive to run.
Additionally, while CPU-based methods can run a single verification query on each
CPU core, allowing for multiple instances to be solved in parallel on the same machine,
GPU-based methods utilise the full GPU when solving a single verification query. In
fact, running multiple queries in parallel, each utilising a single CPU core, might be
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Table 3.1: Overview of reviewed verification methods and their eligibility for inclusion in
our assessment based on their (i) completeness and (ii) presence in the top five ranking of
the 2021 or 2022 VNN Competition or (iii) support through DNNV. Check marks indicate
that a verifier satisfies the criterion, while cross marks indicate that it does not. If a verifier
satisfies the inclusion criteria but is superseded by another, more recent method, the former is
not included.

Verifier Complete? In VNN Comp? In DNNV? GPU/GPU? Reference

BaB ✓ ✗ ✓ CPU [12]
BaDNB ✓ ✓ ✗ GPU [22]
αβ-CROWN ✓ ✓ ✗ GPU [111]
ERAN1 ✓ ✓ ✓ GPU [96]
Marabou ✓ ✓ ✓ CPU [56]
MIPVerify2 ✓ ✗ ✓ CPU [104]
MN-BaB ✓ ✓ ✗ GPU [29]
Neurify ✓ ✗ ✓ CPU [110]
nnenum ✓ ✓ ✓ CPU [4]
Planet3 ✓ ✗ ✓ CPU [27]
Reluplex4 ✓ ✗ ✓ CPU [55]
VeriNet ✓ ✗ ✓ CPU [40]

1Superseded by MN-BaB.
2Local robustness verification not supported via DNNV.
3Superseded by BaB.
4Superseded by Marabou.

a more efficient approach than running each query sequentially, while utilising all
cores. Thus, overall, it remains challenging to set up a comparison between CPU- and
GPU-based verification algorithms in an unbiased manner, which is why we present
both a direct comparison and a separate analysis.

Finally, the competition approaches the state of the art from the perspective of
a tool developer, where the developer is given access to the benchmarks beforehand
and can adapt their implementations as well as hyperparameter settings accordingly.
On the other hand, in this study, we assess the state of the art from the perspective
of a practitioner, who typically uses a verification tool out of the box, is bounded
by the limitations of the implementations, and might also not be able to tune the
hyperparameters of these tools. We believe that both these perspectives on the state
of the art are valid and give complementary insights.
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3.2 Verification Algorithms under Assessment

We consider eight complete neural network verification algorithms in this study; each
of these was chosen because it fulfilled one of the following conditions: it was (i)
ranked among the top five verification methods according to the 2021 and 2022
VNN competitions or (ii) supported by the recently published DNNV framework [95].
Table 3.1 presents an overview of all methods we reviewed and their eligibility for
inclusion based on the criteria specified above. Notice that some verification methods,
such as Neurify [110] or BaDNB [22], did not participate in the 2022 edition of the VNN
competition. On the other hand, it can be assumed that these methods also contribute
to the state of the art in neural network verification. For example, BaDNB, which is
part of the OVAL framework, reached third place in the 2021 edition of the competition
[3] but did not compete in 2022. Altogether, we consider our set of algorithms to be
representative of recent and important developments in the area of complete neural
network and, more specifically, local robustness verification.

All methods were employed with their default hyperparameter settings, as they
would likely be used by practitioners. In other words, one aspect of our study is to
capture the situation someone using existing tools “out of the box” might face. We
note that the performance of a verifier might improve if its hyperparameters were
optimised specifically for the given benchmark; however, most verifiers have dozens of
hyperparameters (or employ combinatorial solvers that come with their own, extensive
set of hyperparameters), which makes this a non-trivial task, requiring additional
expertise and resources.

3.2.1 CPU-Based Methods

The CPU-based verification algorithms we considered are the following.
BaB. The algorithm proposed by Bunel et al. [12] restates the verification problem

as a global optimisation problem, which is then solved using branch-and-bound search.
It further incorporates algorithmic improvements to branching and bounding procedures
such as smart branching ; i.e., before splitting, it computes fast bounds on each of
the possible subdomains and chooses the one with the tightest bounds. This method
supports ReLU-based networks; for the remainder of this chapter, we refer to it as
BaBSB.

Marabou. The Marabou framework [56] employs SMT solving techniques, specif-
ically the lazy search technique for handling non-linear constraints. Furthermore,
Marabou employs deduction techniques to obtain information on the activation func-
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tions that can be used to simplify them. The core of the SMT solver is simplex-based,
which means that the variable assignments are made using the simplex algorithm.
Marabou supports ReLU and Sigmoid activation functions as well as MaxPooling
operations.

Neurify. The verification algorithm proposed by Wang et al. [110] relies on
symbolic interval propagation to create over-approximations, followed by a refinement
strategy based on symbolic gradient information. The constraint refinement aims to
tighten the bounds of the approximation of activation functions. Neurify can process
networks containing ReLU activation functions.

nnenum. The verifier proposed by Bak et al. [4] utilises star sets to represent
the values each layer of a neural network can attain. By propagating these through
the network, it checks whether one or more of the star sets results in an adversarial
example. This verifier can handle networks with ReLU activation functions.

VeriNet. The verifier developed by Henriksen & Lomuscio [40] combines symbolic
intervals with gradient-based adversarial local search for finding counter-examples.
The authors further propose a splitting heuristic for interval propagation based on
the influence of a given node on the bounds of the network output. VeriNet supports
networks containing ReLU, Sigmoid and Tanh activation functions.

3.2.2 GPU-Based Methods

Next, we present the GPU-based verification algorithms we considered.

BaDNB. The BaDNB verifier introduced by DePalma et al. [22] builds on earlier
versions of the BaB framework; however, it uses a novel dual formulation of the MIP,
which it solves via branch-and-bound. The novel formulation allows for extensive par-
allelisation on GPUs. Furthermore, it employs a bounding heuristic which significantly
reduces the number of branches necessary for solving the verification problem. BaDNB

is limited to ReLU-based networks and MaxPooling operations.

Beta-CROWN. αβ-CROWN [111] is a bound propagation method combined with
neuron-split constraints, which divides the original problem into sub-problems based
on the activation function’s range. αβ-CROWN leverages neuron-split constraints,
while, in general, other bound propagation methods are not able to handle this type of
constraint. Using the framework presented by Bunel et al. [12], the verifier is complete
and can be efficiently parallelised using GPUs. αβ-CROWN can handle ReLU, Sigmoid
and Tanh activations as well as MaxPooling layers.

MN-BaB. The MN-BaB verifier [29] builds on the multi-neuron constraints un-
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Table 3.2: Instance set size for each benchmark category. Solvable instances are those solved
by at least one (i.e., any) or all of the considered verifiers. We considered any instance that
was found to be sat or unsat as solved. The number of sat and unsat instances, respectively,
can be found in brackets. The column “Verifiers employed” lists (1) BaBSB, (2) Marabou,
(3) Neurify, (4) nnenum, (5) VeriNet, (6) BaDNB, (7) αβ-CROWN or (8) MN-BaB as the
matching suitable algorithm(s) to the respective category.

CPU methods

MNIST CIFAR

Category Total Solvable Total Solvable Verifiers employed

Any (sat/unsat) All (sat/unsat) Any (sat/unsat) All (sat/unsat)

ReLU 2 500 1 913 (169/1 744) 42 (38/4) 2 500 972 (946/26) 0 (0/0) (1),(2),(3),(4),(5)
ReLU + MaxPool 400 5 (0/5) 0 (0/0) 100 0 (0/0) 0 (0/0) (2)
Tanh 600 556 (29/527) 0 (0/0) 600 0 (0/0) 0 (0/0) (5)
Sigmoid 600 581 (37/544) 0 (0/0) 600 0 (0/0) 0 (0/0) (2),(5)
GPU methods

ReLU 2 500 2 308 (128/2 180) 948 (53/895) 2 500 2 364 (2 262/102) 1 048 (1 048/0) (6),(7),(8)
ReLU + MaxPool 400 128 (40/88) 84 (25/59) 100 64 (64/0) 0 (0/0) (6),(7),(8)
Tanh 600 319 (28/291) 0 (0/0) 600 497 (494/3) 0 (0/0) (7),(8)
Sigmoid 600 307 (35/272) 304 (0/0) 600 547 (481/66) 0 (0/0) (7),(8)

derlying the ERAN toolkit [85, 96, 99, 97, 98] as well as GPU-enabled linear bound
propagation in a branch-and-bound framework. MN-BaB uses different verification
modes, including input-domain splitting with bound propagation and full MIP encod-
ings for complete verification. It is capable of handling various activation functions
and layer operations such as ReLU, Sigmoid, Tanh, and MaxPooling.

3.3 Setup for Empirical Evaluation

In the following, we will present an overview of how we set up our benchmark study,
i.e., how we selected problem instances and verification algorithms. Furthermore, we
will provide details on the software we used and the execution environment in which
our experiments were carried out.

3.3.1 Problem Instances

For our assessment, we compiled a high-quality set of problem instances for local
robustness verification. Following best practices in other research areas, such as
optimisation [41, 5], the benchmark should be representative and diverse, where the
former refers to how well the difficulty of the benchmark is aligned with that of real-
world instances from the same problem class, and the latter means that the instance
set should cover a wide range of difficulties.

Overall, our benchmark is comprised of 79 image classification networks, of which
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41 MNIST classifiers
38 CIFAR classifiers

Networks

100 images
per classifier

Instances

5 CPU-based

Verifiers

3 GPU-based

Properties

Local robustness
with 𝜀 = 0.012

Figure 3.1: Schematic overview of the setup of experiments.

38 are trained on the CIFAR-10 dataset and 41 are trained on the MNIST dataset.
To ensure the representativeness of our benchmark set, all networks were sampled
from the neural network verification literature, i.e., networks used in existing work
on local robustness verification and provided in public repositories; in other words,
the characteristics of the networks in our benchmark are assumed to match those of
networks generally used for evaluating verification algorithms. We further want our
instance set to be diverse. Therefore, we paid special attention to ensure that the
networks we considered differ in size, i.e., the number of hidden layers and nodes, as well
as the type of non-linearities (e.g., ReLU or Tanh) and layer operations (e.g., pooling
or convolutional layers) they employ. Notice that some of the networks we considered
were also used in the 2022 VNN Competition. A full overview of the networks used in
our study and their respective sources is provided in Table 3.3 and Table 3.3.

Of each network, we verified 100 local robustness properties; more precisely, we
sampled 100 images from the dataset on which the network has been trained and
verified for local robustness with the perturbation radius ϵ set at {0.004, 0.005, 0.008,
0.01, 0.012, 0.02, 0.025, 0.03, 0.04}. To avoid over-aggregation, we firstly focused our
analysis on a single value of ϵ, where ϵ = 0.012, which represents a radius larger than
1/255, the smallest ϵ-ball distance used in existing literature [71], and centred around
commonly chosen values for ϵ [114, 8, 109].

Lastly, we split our benchmark set into different categories based on verifier com-
patibilities. This means a verifier is only applied to categories it can process. The
categories as well as the instance set size for each category are shown in Table 3.2.
Notice that, in general, the ground truth for any given problem instance is not known
a priori. At the same, even state-of-the-art verifiers are known to sometimes produce
different results for the same instance [10]. As some of the considered verifiers do not
return counterexamples by default, we treated these instance as unsat.
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Table 3.3: Considered neural networks trained on the MNIST dataset, along with their
training method, employed activation function and source repository.

Network Training Activation Source

cnn_max_mninst21 Standard ReLU Marabou
cnn_max_mninst31 Standard ReLU Marabou
convBigA DiffAI ReLU ERAN
convMedA PGD, ϵ = 0.1 ReLU ERAN
convMedB PGD, ϵ = 0.1 Sigmoid ERAN
convMedC PGD, ϵ = 0.1 Tanh ERAN
convMedD PGD, ϵ = 0.3 ReLU ERAN
convMedE PGD, ϵ = 0.3 Sigmoid ERAN
convMedF PGD, ϵ = 0.3 Tanh ERAN
convMedG Standard ReLU ERAN
convMedH Standard Sigmoid ERAN
convMedI Standard Tanh ERAN
convnet1 Standard ReLU ERAN
convSmallA DiffAI ReLU ERAN
convSmallB PGD ReLU ERAN
convSmallC Standard ReLU ERAN
convSuper DiffAI ReLU ERAN
ffnn_6×500A PGD, ϵ = 0.1 ReLU ERAN
ffnn_6×500B PGD, ϵ = 0.1 Sigmoid ERAN
ffnn_6×500C PGD, ϵ = 0.1 Tanh ERAN
ffnn_6×500D PGD, ϵ = 0.3 ReLU ERAN
ffnn_6×500E PGD, ϵ = 0.3 Sigmoid ERAN
ffnn_6×500F PGD, ϵ = 0.3 Tanh ERAN
ffnn_6×500G Standard ReLU ERAN
ffnn_6×500H Standard Sigmoid ERAN
ffnn_6×500I Standard Tanh ERAN
mnist-net Standard ReLU Venus
mnist-net_256×2 Standard ReLU VNN-COMP
mnist-net_256×4 Standard ReLU VNN-COMP
mnist-net_256×6 Standard ReLU VNN-COMP
mnist_3×100 Standard ReLU ERAN
mnist_3×50 Standard ReLU ERAN
mnist_4×1024 Standard ReLU ERAN
mnist_5×100 Standard ReLU ERAN
mnist_6×100 Standard ReLU ERAN
mnist_6×200 Standard ReLU ERAN
mnist_9×100 Standard ReLU ERAN
mnist_9×200 Standard ReLU ERAN
mnist_conv1 Standard ReLU ERAN
mnist_nn Standard ReLU VeriNet
rsl18a-linf01 SDP ReLU MIPVerify

1Employs MaxPooling layers
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Table 3.4: Considered neural networks trained on the CIFAR-10 dataset, along with their
training method, employed activation function and source repository.

Network Training Activation Source

cifar_base_kw [113], ϵ = 1/255 ReLU OVAL
cifar_deep_kw [113], ϵ = 1/255 ReLU OVAL
cifar_wide_kw [113], ϵ = 1/255 ReLU OVAL
cifar_base_kw_simp [113], ϵ = 1/255 ReLU Marabou
cifar_deep_kw_simp [113], ϵ = 1/255 ReLU Marabou
cifar_wide_kw_simp [113], ϵ = 1/255 ReLU Marabou
cifar-net Standard ReLU Venus
cifar_conv1 Standard ReLU ERAN
cifar_4×100 Standard ReLU ERAN
cifar_6×100 Standard ReLU ERAN
cifar_7×1024 Standard ReLU ERAN
cifar_9×200 Standard ReLU ERAN
cifar_4×100 Standard ReLU ERAN
cifar10_2_255 COLT, ϵ = 2/255 ReLU VNN-COMP
cifar10_8_255 COLT, ϵ = 8/255 ReLU VNN-COMP
cifar10_2_255_simplified COLT, ϵ = 2/255 ReLU VNN-COMP
cifar10_8_255_simplified COLT, ϵ = 8/255 ReLU VNN-COMP
convBigB PGD, ϵ = 2/255 ReLU ERAN
convMedJ PGD, ϵ = 2/255 ReLU ERAN
convMedK PGD, ϵ = 2/255 Sigmoid ERAN
convMedL PGD, ϵ = 2/255 Tanh ERAN
convMedM PGD, ϵ = 8/255 ReLU ERAN
convMedN PGD, ϵ = 8/255 Sigmoid ERAN
convMedO PGD, ϵ = 8/255 Tanh ERAN
convMedP Standard ReLU ERAN
convMedQ Standard Sigmoid ERAN
convMedR Standard Tanh ERAN
convSmallE DiffAI ReLU ERAN
convSmallF Standard ReLU ERAN
ffnn_6×500J PGD, ϵ = 2/255 ReLU ERAN
ffnn_6×500K PGD, ϵ = 2/255 Sigmoid ERAN
ffnn_6×500L PGD, ϵ = 2/255 Tanh ERAN
ffnn_6×500M PGD, ϵ = 8/255 ReLU ERAN
ffnn_6×500N PGD, ϵ = 8/255 Sigmoid ERAN
ffnn_6×500O PGD, ϵ = 8/255 Tanh ERAN
ffnn_6×500P Standard ReLU ERAN
ffnn_6×500Q Standard Sigmoid ERAN
ffnn_6×500R Standard Tanh ERAN

1Employs MaxPooling layers
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3.3.2 Evaluation Metrics

In order to assess the performance of the various methods, we compute four perfor-
mance metrics: the average running time, the number of solved instances, the relative
marginal contribution and the relative Shapley value [33] of each verifier to the parallel
portfolio containing all (applicable) verifiers. The first two of these reflect stand-alone
performance, while the last two capture performance complementarity between verifiers
and their contribution to the overall state of the art. Although these metrics present
aggregated measures, they reflect algorithm performance on an instance level and in
relation to other methods included in our comparison; a more detailed explanation
will be provided in the following paragraphs. Notice that we do not penalise timeouts
when computing average running time; i.e., the maximum running time equals the
given time limit.

The marginal contribution is computed as follows. Define V as a set of verifiers and
let s(V ) be the total score of set V . Here, the total score s(V ) consists of the number
of instances verified by at least one verifier in set V within a given cutoff time. We
compute the marginal contribution per algorithm to determine how much the total
performance of all algorithms (in terms of solved instances) decreases when the given
algorithm is removed from the set of all algorithms if they were employed in a parallel
algorithm portfolio. Formally, to determine the marginal contribution of any of the
verifiers v to portfolio V , one needs to know the value of s(V ) and s(V \ {v}), where
V \ {v} is the portfolio minus verifier v. Thus, the marginal contribution of verifier v

is expressed as
MC v(V ) = s(V )− s(V \ {v}) (3.1)

Following this terminology, we can define the number of solved instances by verifier
v as a set consisting only of verifier v, Solvedv = s(v)− s(∅), where s(∅) = 0. In other
words, the number of solved instances employs a set of size one whereas the marginal
contribution employs a set of all verifiers under consideration. The relative marginal
contribution represents the marginal contribution of a given verifier as a fraction of the
sum of every method’s absolute marginal contribution.

Lastly, the Shapley value is the average marginal contribution of a verifier over all
possible joining orders, where joining order refers to the order in which the verifiers
are added to a parallel portfolio. This value complements the previous two metrics, as
it does not assume a particular order in which algorithms are added to the portfolio.
To be precise, the number of solved instances simply represents a joining order in
which the considered algorithm comes first and in which it is the only one added to the
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portfolio, whereas the marginal contribution metric assumes a joining order in which it
comes last. However, using fixed orders, as is the case for the marginal contribution,
might not reveal possible interactions between the given method and other algorithms,
e.g., it might understate the importance of a single algorithm given the presence of
another algorithm with highly correlated performance. In such a case, both algorithms
would be assigned very low marginal contribution, even though one of them should
be included in a potential portfolio. Moreover, the fixed joining order leads to the
marginal contribution metric being very sensitive to the composition of the portfolio in
question; i.e., this metric might change drastically if only a subset of methods would
be included in a given portfolio.

This is captured by the Shapley value: Consider a set of verifiers V of size n (i.e.,
|V | = n) and ΠV as the set of all permutations of V . Notice that each permutation π

in ΠV is of size n, which results in set ΠV being of size n!. Now define V π
v as the set

of verifiers where all verifiers joining after v – i.e., appearing after v in permutation π –
are discarded from π. The Shapley value of verifier v, ϕv, is then calculated as follows:

ϕv(V ) =
1

n!
·
∑

π∈ΠV

(s(V π
v )− s(V π

v \ {v})) (3.2)

The relative Shapley value of a verifier v is obtained by dividing ϕv by the sum
over the (absolute) Shapley values for all verifiers under consideration; it intuitively
represents the fraction of the jointly achieved Shapley values over all verifiers that is
attributed to verifier v.

3.3.3 Execution Environment and Software Used

Our experiments were carried out on a cluster of machines equipped with Intel Xeon
E5-2683 CPUs with 32 cores, 40 MB cache size and 94 GB RAM, running CentOS
Linux 7. Each verification method was limited to using a single CPU core per run. Each
query (i.e., attempt to solve a verification problem instance) was given a time budget
of 3 600 seconds and a memory budget of 3 GB. Generally, we executed the verification
algorithms through the DNNV interface, version 0.4.8. DNNV is a framework that
transforms a network and robustness property into a unified format, which can then be
solved by a given method [95]. More specifically, DNNV takes as input a network in
the ONNX format, along with a property specification, and then translates the network
and property to the input format required by the verifier. After running the verifier on
the transformed problem, it returns the results in a standardised manner, where the
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output is either sat if the property was falsified or unsat if the property was proven
to hold. In cases where a violation is found, DNNV also returns a counter-example
to the property and validates it by performing inference with the network. We note
that for the VeriNet toolkit, its implementation in DNNV lags behind the standalone
implementation of the verifier. While we acknowledge that this could affect observed
performance, we still chose to run each CPU method through the DNNV interface to
benefit from the broader benchmark support provided by DNNV.

For GPU-accelerated methods, we used machines equipped with NVIDIA GeForce
GTX 1080 Ti GPUs with 11 GB video memory. We provided the same time budget
but did not impose any memory constraints. The GPU-based methods we considered
are not supported by DNNV. Hence, we used the standalone implementations of
these algorithms through the αβ-CROWN1, OVAL−BaB2, and MN-BaB3 framework,
respectively. These methods also return a counter-example to the property in cases
where a violation is found.

3.4 Results and Discussion

In the following, we provide an in-depth discussion of the results obtained from our
experiments. We distinguish between CPU-based algorithms and algorithms that
also utilise GPU resources. Table 3.2 shows the categories we devised based on layer
types present in the network, along with the resulting instance set sizes as well as
information on which verifier has been employed for each category. Moreover, we
investigate whether there exists a single algorithm that performs best on all instances
within a given category. If we find this to not be the case, we analyse to what extent
the algorithms we considered complement each other in performance, i.e., show strong
performance on different problem instances.

3.4.1 CPU-Based Methods

Table 3.5 contains the results from our experiments using CPU-based verification
algorithms. It reports the number of problem instances solved by each verifier per
network category (see Table 3.2 for the total number of problem instances per category),
the relative marginal contribution, the relative Shapley value and the average running
time computed over the subset of solvable instances, i.e., instances that could be solved

1Commit 7a46097192207dfbb2fa7135857d6bc4ae7d6cd5
2Commit 9e1606044759da5693f226ce489e9d4dded21bd6
3Commit 2aa12b145bb61342f4c464b64be3467b3a275e46
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Table 3.5: Performance comparison of CPU-based verification algorithms in terms of the
number of solved instances, relative marginal contribution (RMC ), relative Shapley value
(ϕ) and CPU running time averaged per problem instance, computed for each category for
ϵ = 0.012.

ReLU
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time
[CPU s] [CPU s]

BaBSB 358 0.22 0.06 3 241 307 0.00 0.09 2 924
Marabou 1 001 0.19 0.16 1 801 400 0.00 0.12 2 153
Neurify 871 0.25 0.14 1 964 915 0.75 0.42 235
nnenum 1 754 0.17 0.31 389 76 0.05 0.03 3 337
VeriNet 1 799 0.16 0.32 263 841 0.20 0.34 500
ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

Marabou 5 1.00 1.00 57 0 0.00 0.00 3 600
Tanh
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

VeriNet 556 1.00 1.00 55 0 0.00 0.00 3 600
Sigmoid
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

Marabou 0 0.00 0.00 3 600 0 0.00 0.00 3 600
VeriNet 581 1.00 1.00 55 0 0.00 0.00 3 600

by at least one of the considered methods. The relative marginal contribution and the
relative Shapley value are calculated based on the number of solved problem instances.
We provide absolute values for both the marginal contribution and Shapley value in
Table 3.6, 3.8, 3.10 and 3.12. Notice that instances that were not solved within the
time limit were attributed the maximum running time, i.e., 3 600 seconds.

On ReLU-based MNIST networks, we found VeriNet to be the best-performing
verifier, solving 1 799 out of 2 500 instances, while achieving a relative Shapley value
of 0.32. However, taking relative marginal contribution into account, we found that
Neurify achieved the highest relative marginal contribution of 0.25 (compared to 0.16
for VeriNet), indicating that it could verify a sizable fraction of instances on which
other methods failed to return a solution. Moreover, the relative marginal contribution
scores show that each method could solve a sizeable fraction of instances unsolved by
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Table 3.6: Performance comparison of CPU-based verification algorithms in terms of the
number of solved instances, absolute marginal contribution (MC ), absolute Shapley value
(ϕabs) and CPU running time averaged per problem instance, computed for each category
with ϵ set at 0.012.

ReLU
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time
[CPU s] [CPU s]

BaBSB 358 23 118 3 241 307 0 86 2 924
Marabou 1 001 20 312 1 801 400 0 117 2 153
Neurify 871 26 265 1 964 915 119 411 235
nnenum 1 754 18 600 389 76 8 28 3 337
VeriNet 1 799 16 618 263 841 31 330 500
ReLU+MaxPool
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

Marabou 5 5 5 57 0 0 0 3 600
Tanh
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

VeriNet 556 556 556 55 0 0 0 3 600
Sigmoid
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

Marabou 0 0 0 3 600 0 0 0 3 600
VeriNet 581 581 581 55 0 0 0 3 600

any other method.
On ReLU-based CIFAR networks, it should first be noted that there is no verifica-

tion problem instance that can be solved by all verifiers, highlighting the structural
differences between instances and the sensitivity of the verification approaches to those
differences. That said, Neurify slightly outperformed VeriNet in terms of the number
of solved instances (915 vs 841 out of 2 500). Furthermore, Neurify achieved a much
larger relative marginal contribution than VeriNet (0.75 vs 0.20), which means that
the former could solve a relatively large number of instances which could not be solved
by the other methods. Generally, relative marginal contribution scores are much less
evenly distributed among verifiers when compared to the MNIST dataset.

Figure 3.2a and 3.2b show an instance-level comparison of the two best-performing
algorithms (in terms of relative Shapley value) in the ReLU category for each dataset.
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Figure 3.2: Performance comparison of the two top-performing verification methods (in
terms of relative Shapley value) in the ReLU category for CPU-based methods on (a) MNIST
and (b) CIFAR networks as well GPU-based methods on (c) MNIST and (d) CIFAR networks.
Each data point represents an instance, and its position on a given axis represents the
performance in terms of running time of the respective solver. The diagonal line represents
the point on which both verifiers perform equally well. The verifier represented on the x-axis
performs better on instances above the diagonal line, and the verifier represented on the y-axis
performs better on instances below the diagonal line. Instances that were not solved within
the time limit are displayed with the maximum running time (i.e., 3 600 seconds).
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In Figure 3.2a, we see that on MNIST networks, both VeriNet and nnenum solved
instances that the other one, in turn, could not solve within the given time budget.
Concretely, when considering a parallel portfolio containing both algorithms (see
Section 2.4), the number of solved instances slightly increases to 1 817 out of 2 500
(vs 1 799 solved by VeriNet and 1 754 solved by nnenum alone), while supplied with
similar CPU resources (i.e., 1 800 CPU seconds per verifier, adding up to the same
combined maximum running time as running a single verifier with 3 600 CPU seconds).

On CIFAR instances, we found Neurify and VeriNet to also have distinct strengths
over each other. This is shown in Figure 3.2b, where both algorithms could solve a
substantial amount of instances that the other could not return a solution for. Thus,
when combined in a parallel portfolio, 963 instances can be solved (vs 915 solved by
Neurify and 841 solved by VeriNet alone, out of 2 500 instances), while using the same
amount of CPU resources, i.e., 1 800 CPU seconds per verifier. These findings further
emphasise the complementarity between the verification algorithms considered in our
study. All remaining verifiers achieved much lower relative Shapley values and relative
marginal contribution scores, indicating that they would not substantially strengthen
the performance of a portfolio already containing Neurify and VeriNet.

Figure 3.3a shows the cumulative distribution function of running times over the
MNIST problem instances. As seen in the figure, VeriNet tends to solve these problem
instances fastest; however, Neurify tended to show even better performances on those
instances it was able to solve. We note that most of the instances unsolved by Neurify

represent networks that were trained on images with 3 dimensions, whereas Neurify

requires images used as network inputs to have 2 or 4 dimensions.

Figure 3.3b shows a similar plot for the CIFAR problem instances. Here, Neurify

solved the largest fraction in less time than other methods. This suggests that Neurify

is a very competitive verifier when applicable to the specific network or input format.

For each of the remaining categories, we found that there is only one verifier that
could effectively handle the respective problem instances. Specifically, instances from
the ReLU+MaxPooling category can be processed by Marabou, although, only a
modest number of MNIST instances could be solved in this way. Networks containing
Tanh activation functions can, in principle, be verified by VeriNet but the algorithm
did nonetheless not solve any CIFAR instances. Lastly, Sigmoid-based networks can be
handled by both VeriNet and Marabou, however, only the former could solve MNIST
instances within the given time and memory budget.
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Figure 3.3: Cumulative distribution of the fraction of instances solved by the considered
verification algorithms in the ReLU category as a function of CPU running time. The plots
at the top are for CPU-based algorithms, whereas those at the bottom are for GPU-based
algorithms, on MNIST and CIFAR.

3.4.2 GPU-Based Methods

Table 3.7 summarises the results from our experiments using GPU-based verification
algorithms. On ReLU-based MNIST networks, αβ-CROWN outperformed other
methods in terms of both the number of solved problem instances as well as the average
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Table 3.7: Performance comparison of GPU-based verification algorithms in terms of the
number of solved instances, relative marginal contribution (RMC ), relative Shapley value (ϕ)
and average GPU running time, computed for each category for ϵ = 0.012.

ReLU
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time
[GPU s] [GPU s]

BaDNB 1 188 0.31 0.19 1 760 2 332 0.90 0.45 116
β-CROWN 2247 0.00 0.42 96 1 828 0.03 0.29 814
MN-BaB 2 103 0.69 0.39 325 1 639 0.07 0.26 1 110
ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

BaDNB 85 0.00 0.22 1 399 0 0.00 0.00 3 600
β-CROWN 128 1.00 0.44 0.4 0 0.00 0.00 3 600
MN-BaB 115 0.00 0.34 366 64 1.00 1.00 0.008
Tanh
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

β-CROWN 319 1.00 1.00 1.16 497 1.00 1.00 0.70
MN-BaB 0 0.00 0.00 3 600 0 0.00 0.00 3 600
Sigmoid
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

β-CROWN 306 0.66 0.50 13 538 0.95 0.68 60
MN-BaB 305 0.33 0.50 24 338 0.05 0.32 1 376

running time. At the same time, the relative Shapley values of αβ-CROWN and
MN-BaB indicate that these methods complement each other with respect to their
performance on this instance set.

On ReLU-based CIFAR networks, Table 3.7 shows that BaDNB outperformed
both MN-BaB and αβ-CROWN, with the former solving 2 332 and the latter solving
1 639 and 1 828 out of 2 500 verification problem instances, respectively. Furthermore,
both BaDNB and αβ-CROWN achieve large relative Shapley values, suggesting their
complementarity in an algorithm portfolio.

Figure 3.2c and 3.2d show the instance-level comparison of the two best-performing
algorithms (in terms of relative Shapley value) in the ReLU category for each dataset.
Looking at Figure 3.2c, one can see that there is a fairly large number of MNIST
instances unsolved by αβ-CROWN but solved by MN-BaB as well as the other way
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Table 3.8: Performance comparison of GPU-based verification algorithms in terms of the
number of solved instances, absolute marginal contribution (MC ), absolute Shapley value
(ϕabs) and average GPU running time, computed for each category with ϵ set at 0.012.

ReLU
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time
[GPU s] [GPU s]

BaDNB 1 188 8 440 1 760 2 332 250 1 066 116
β-CROWN 2247 0 966 96 1 828 7 693 818
MN-BaB 2 103 18 903 325 1 639 20 604 1 110
ReLU+MaxPool
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

BaDNB 85 0 29 1 399 0 0 0 3 600
β-CROWN 128 12 56 0.4 0 0 0 3 600
MN-BaB 115 0 44 366 64 64 64 0.008
Tanh
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

β-CROWN 319 319 319 1.16 497 496 497 0.70
MN-BaB 0 0 0 3 600 0 0 0 3 600
Sigmoid
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

β-CROWN 306 2 154 13 538 209 374 60
MN-BaB 305 1 153 24 338 9 174 1 376

around.

On the other hand, BaDNB and αβ-CROWN seem to have distinctive strengths
over each other on CIFAR instances, as can be seen in Figure 3.2d: The data points
indicating performance on each verification instance are spread out widely around the
line of equal performance, showing that there are many instances that one method can
solve faster than the other and vice versa.

Concurrently, MN-BaB solves a large fraction of CIFAR instances in less time than
other methods, although BaDNB solves more instances overall, which is also reflected
in Figure 3.3d. On MNIST instances, MN-BaB solves more instances in less time than
αβ-CROWN, although αβ-CROWN solves more instances overall; see also Figure 3.3c.

On MNIST networks containing ReLU activation functions and MaxPooling op-
erations, we again found relatively large Shapley values for both αβ-CROWN and
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Figure 3.4: Frequency of error types returned by the considered verification algorithms
on instances in the Tanh category. The total number of instances in this category is 600 for
MNIST and 600 for CIFAR.

MN-BaB, as presented in Table 3.7, indicating their potential complementarity in an
algorithm portfolio. However, the relative marginal contribution values indicate that
there are no instances unsolved by αβ-CROWN that could be solved by other methods.
CIFAR instances in this category could only be verified by MN-BaB, due to verifier
incompatibilities with the respective network structures unrelated to the MaxPooling
operations.

Table 3.7 further shows results for the Tanh category. We found that instances in
this category could effectively only be handled the αβ-CROWN verifier. Concretely,
MN-BaB returned an error for the instances in this category; see also Figure 3.4 for
additional details.

Lastly, networks containing Sigmoid activation functions can be handled by both
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BaDNB and αβ-CROWN and achieve perfectly similar relative Shapley values on the
MNIST instances in this category, indicating their complementarity in an algorithm
portfolio. However, as seen in Table 3.7, this does not hold for CIFAR instances, where
αβ-CROWN seems to dominate in performance.

3.4.3 Error Analysis

Although the verification methods should, in principle, be able to solve the instances
in the category they are applied to, we found many instances left unsolved, not only
due to time or memory constraints but also due to other, unexpected issues. Hence,
to understand better why certain instances could not be solved by a given verifier,
we categorised and counted the errors returned by each verification system. For this
analysis, we focused on instances in the ReLU category; results for the remaining
categories are presented in Figure 3.5 and 3.6.

The number of instances solved by each method can be found in Table 3.5 for
CPU- and Table 3.7 for GPU-based algorithms. The total number of instances in
the ReLU category is 2 500 for MNIST and CIFAR, respectively. We distinguish
between timeouts, out-of-memory and miscellaneous errors, where the latter includes
verifier-specific errors of which most are undefined and not trivial to resolve, especially
without in-depth knowledge of the verifier at hand.

Figure 3.7a and 3.7b show the errors returned by CPU-based methods for MNIST
and CIFAR instances, respectively. On MNIST, most verifiers failed to solve a given
instance due to timeouts, except for nnenum, which mostly ran into memory issues,
and Neurify, which requires images used as network inputs to have 2 or 4 dimensions,
as mentioned in Section 5.1. Notice that when supplied with a larger memory budget,
nnenum could not solve substantially more instances, but produced a comparably large
number of timeouts instead; more details can be found in Figure 3.8.

Interestingly, we made different observations with regard to the CIFAR instances.
Here, each method mostly returned errors related to the network structure (or undefined
errors). Besides this, nnenum again failed to verify a sizable fraction of instances due to
memory limitations. Overall, we found CIFAR networks to be much less supported by
the CPU-based methods we considered (as implemented in the DNNV framework) than
MNIST networks, arguably due to the increased complexity of the former. We note that
some of these errors could potentially be circumvented by resorting to the standalone
implementations of the respective verifiers. However, overall, DNNV provides the
broadest support for different network structures and operations [95].
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Figure 3.5: Frequency of error types returned by the considered verification algorithms on
instances in the ReLU+MaxPool category. The total number of instances in this category is
400 for MNIST and 100 for CIFAR.

On the other hand, GPU-based verifiers show greater support for the considered
networks than CPU-based methods. As seen in Figure 3.7c, only BaDNB failed to solve
a relatively large number of MNIST instances due to unsupported network structures
or other, unspecified technical reasons.

In contrast, BaDNB could solve almost all CIFAR instances, as shown in Figure 3.7d.
However, both MN-BaB and αβ-CROWN returned several errors of which most are
undefined.

Overall, our results suggest that many verification toolkits only support a limited
set of networks. This occurs despite the fact that these networks are provided in onnx
format, which should, in principle, be supported by each method considered in this
study. Similar findings have been reported in the literature (see, e.g., [80]).
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Figure 3.6: Frequency of error types returned by the considered verification algorithms on
instances in the Sigmoid category. The total number of instances in this category is 600 for
MNIST and 600 for CIFAR.

3.4.4 Analysis on Broader Set of Perturbation Radii

So far, we have considered a single value of ϵ, but it stands to reason that changing the
perturbation radius may affect algorithm behaviour. Therefore, we conducted further
analysis on a broader set of perturbation radii, i.e., with ϵ set to values of 0.004, 0.005,
0.008, 0.01, 0.012, 0.02, 0.025, 0.03 and 0.04.

Table 3.9 shows the results for the CPU-based algorithms on this extended set of
problem instances. Overall, we found VeriNet remains the best-performing CPU-based
verifier (in terms of solved instances and relative Shapley value) on ReLU-based MNIST
networks. With regard to ReLU-based CIFAR networks, Table 3.9 shows that, overall,
Neurify remained the best-performing CPU-based method.

However, we observed substantial differences between small and large values of ϵ in
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Figure 3.7: Frequency of error types returned by the considered verification algorithms on
instances in the ReLU category.

the relative marginal contribution for each algorithm. More precisely, we analysed the
relative marginal contribution of each verification algorithm for every given value of
ϵ and show this in Figure 3.9c. Interestingly, one can see how the relative marginal
contribution of Marabou steeply increases for increasingly larger epsilons, while that
of other methods declines. Similarly, the solved instances and relative Shapley value
achieved by each method changes as the perturbation radius varies; this is visualised in
Figure 3.9a and 3.9e. In terms of both metrics, Marabou is strongly outperformed by
most of the other algorithms for small values of ϵ but ends up achieving competitive or
even better performance when ϵ is large.

An analogous investigation for CIFAR is shown in Figure 3.9d. In contrast to
MNIST, one can see that the relative marginal contribution of each method is relatively
weakly affected by the perturbation radius and, except for some divergence around
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Figure 3.8: Top row: Frequency of error types returned by the two top-performing
verification methods (in terms of the number of solved instances) on instances in the ReLU
category, with a memory limit of (a) 3GB or (b) 30GB. Bottom row: Performance comparison
of the two top-performing verification methods (in terms of relative Shapley value) in the
ReLU category for CPU-based methods, with a memory limit of (c) 3GB or (d) 30GB.

ϵ = 0.005, remains at a stable level. This holds for both solved instances and relative
Shapley value as shown in Figure 3.9b and 3.9f.

We performed a similar analysis for GPU-based methods and present results,
aggregated over all values of ϵ, in Table 3.11. Among these algorithms, αβ-CROWN
performed best on MNIST networks in the ReLU category, while BaDNB performed best
on CIFAR networks in the same category. However, we found that the relative marginal
contribution of each algorithm for every considered value of ϵ differs substantially

45



3.4. Results and Discussion

Table 3.9: Performance comparison of CPU-based verification algorithms in terms of the
number of solved instances, relative marginal contribution (RMC ), relative Shapley value (ϕ)
and average CPU running time, computed for each category and ϵ ∈ {0.004, 0.005, 0.008,
0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time
[CPU s] [CPU s]

BaBSB 3 716 0.06 0.06 3 223 2 690 0.00 0.09 2 964
Marabou 9 457 0.44 0.19 1 721 3 651 0.01 0.12 2 145
Neurify 8 206 0.12 0.14 1 899 8 173 0.71 0.41 289
nnenum 15 144 0.16 0.30 543 744 0.04 0.03 3 315
VeriNet 15 800 0.23 0.32 367 7 674 0.24 0.35 486
ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

Marabou 316 1.00 1.00 50 0 0.00 0.00 3 600
Tanh
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

VeriNet 4 307 1.00 1.00 59 0 0.00 0.00 3 600
Sigmoid
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

Marabou 0 0.00 0.00 3 600 0 0.00 0.00 3 600
VeriNet 4 728 1.00 1.00 59 0 0.00 0.00 3 600

between small and large values of ϵ on MNIST instances, as shown in Figure 3.10c.
For example, when ϵ = 0.02, BaDNB and MN-BaB both achieve relative marginal
contribution scores close to 0.5 but then strongly converge as ϵ becomes larger. Notably,
these changes are not reflected in the relative Shapley values achieved by each method,
where αβ-CROWN and MN-BaB both reach values close to 0.40 for every value of ϵ;
see Figure 3.10e for more details.

On CIFAR instances, Figure 3.10d indicates that the relative marginal contribution
scores are only marginally affected by the chosen perturbation radius. More precisely,
BaDNB achieves the largest relative marginal contribution for every value of ϵ, while
the relative marginal contributions of αβ-CROWN and MN-BaB only change slightly
as the perturbation radius increases. At the same time, the observed Shapley values
are mostly stable with regard to the perturbation radius, as shown in Figure 3.10f.

46



Chapter 3. Critically Assessing the State of the Art in NNV

Table 3.10: Performance comparison of CPU-based verification algorithms in terms of
the number of solved instances, absolute marginal contribution (MC ), absolute Shapley
value (ϕabs) and average CPU running time, computed for each category with aggregated
ϵ ∈ {0.004, 0.005, 0.008, 0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time
[CPU s] [CPU s]

BaBSB 3 716 103 1 062 3 223 2 690 0 759 2 964
Marabou 9 457 784 3 309 1 721 3 651 8 1 078 2 145
Neurify 8 206 212 2 418 1 899 8 173 1 059 3 662 289
nnenum 15 144 288 5 093 543 744 61 268 3 315
VeriNet 15 800 411 5 442 367 7 674 365 3 061 486
ReLU+MaxPool
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

Marabou 316 316 316 50 0 0 0 3 600
Tanh
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

VeriNet 4 307 4 307 4 307 59 0 0 0 3 600
Sigmoid
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

Marabou 0 0 0 3 600 0 0 0 3 600
VeriNet 4 728 4 728 4 728 59 0 0 0 3 600

Lastly, we again compared the performance of the two best-performing CPU as well
as GPU methods on an instance-level for all MNIST and CIFAR networks, respectively,
from the ReLU category and show the results in Figure 3.11. In each case, we found that
one method could solve some instances that were unsolved by the other, irrespective of
the perturbation radius. Notice that our findings hold even for a much larger value of
ϵ. Specifically, we ran the two best-performing CPU-based algorithms, nnenum and
VeriNet, on the MNIST instances for ϵ = 0.2 and present the results in Figure 3.12.

Overall, this clearly demonstrates that our observation of performance comple-
mentarity between verification algorithms holds for a broad range of perturbation
radii.
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Figure 3.9: Performance of CPU-based verifiers for different values of ϵ in the ReLU
category.

3.4.5 Joint Analysis of CPU- and GPU-Based Methods

As previously explained, directly comparing CPU- and GPU-based algorithms is a
challenging endeavour, due to the different parallelisation schemes as well as the
costs associated with running these algorithms. Here, we seek to capture both of
these aspects by conducting a cost-calibrated analysis. More concretely, we compared
these methods whilst factoring in the price of operating them on a prominent cloud
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Table 3.11: Performance comparison of GPU-based verification algorithms in terms of
the number of solved instances, relative marginal contribution (RMC ), relative Shapley
value (ϕ) and average GPU running time, computed for each category and aggregated
ϵ ∈ {0.004, 0.005, 0.008, 0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time
[GPU s] [GPU s]

BaDNB 9 886 0.71 0.19 1 864 21 438 0.90 0.45 100
β-CROWN 18 955 0.02 0.42 148 17 014 0.03 0.30 783
MN-BaB 17 799 0.27 0.39 363 14 675 0.07 0.25 1 174
ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

BaDNB 720 0.03 0.22 1 493 0 0.00 0.00 3 600
β-CROWN 1127 0.96 0.46 19 0 0.00 0.00 3 600
MN-BaB 966 0.01 0.32 366 576 1.00 1.00 0.008
Tanh
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

β-CROWN 2576 1.00 1.00 1.16 4 535 1.00 1.00 0.75
MN-BaB 0 0.00 0.00 3 600 0 0.00 0.00 3 600
Sigmoid
Verifier MNIST CIFAR

Solved RMC ϕ Avg. Time Solved RMC ϕ Avg. Time

β-CROWN 2617 0.66 0.50 23 4 961 0.97 0.69 46
MN-BaB 2 601 0.33 0.50 44 3 042 0.03 0.31 1 420

computing platform. To this end, we investigated the price difference between Amazon
EC2 CPU instances comparable to the resources allocated in this study.4 Notice that
this hardware is not the exact hardware used in our experiments but is being used
here as a substitute for calculating the cost of running similar hardware. Based on
this cost difference, we reduced the time budget for GPU-based methods by a factor
of 46.9, thereby ensuring that these methods cannot exceed the cost budget given to
the CPU-based algorithms. While we carefully calibrated this factor based on existing
prices, it must be noted that this analysis is based on many assumptions, and therefore,
the comparison between CPU and GPU-based solvers serves only illustrative purposes.

4We selected the t2.medium and the g4dn.8xlarge instances, which cost $0.0464 and $2.176 per
hour, respectively, see https://aws.amazon.com/ec2/pricing/on-demand/. Notice that there also
exists the even cheaper t2.small instance with only a single CPU core; however, we did not select this
machine as it has only 2 GB RAM.
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Table 3.12: Performance comparison of GPU-based verification algorithms in terms
of the number of solved instances, absolute marginal contribution (MC ), absolute Shap-
ley value (ϕabs) and average GPU running time, computed for each category with ϵ ∈
{0.004, 0.005, 0.008, 0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time
[GPU s] [GPU s]

BaDNB 9 886 287 3 832 1 864 21 438 2 251 9 823 100
β-CROWN 18 955 6 8 226 148 17 014 72 6 521 784
MN-BaB 17 799 110 7 700 363 14 675 170 5 401 1 174
ReLU+MaxPool
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

BaDNB 720 5 244 1 493 0 0 0 3 600
β-CROWN 1127 160 525 19 0 0 0 3 600
MN-BaB 966 1 365 531 576 576 576 0.009
Tanh
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

β-CROWN 2576 2 576 2 576 1.16 4 535 4 535 4 535 0.75
MN-BaB 0 0 0 3 600 0 0 0 3 600
Sigmoid
Verifier MNIST CIFAR

Solved MC ϕabs Avg. Time Solved MC ϕabs Avg. Time

β-CROWN 2617 32 1 325 23 4 961 1 983 3 472 46
MN-BaB 2 601 16 1 309 44 3 042 64 1 553 1 421

Results from this analysis can be found in Table 3.13 for ϵ = 0.012 and Table 3.14
for the full range of values of ϵ we considered. First and foremost, it can be seen
that despite the higher costs associated with GPU resources, GPU-based verification
tools (in particular β-CROWN, MN-BaB) are in many scenarios the most cost-efficient
verifiers. However, the results also show that there exist scenarios in which CPU-based
methods complement GPU-based methods in their performance. More concretely,
Table 3.14 shows that the CPU-based verifier Marabou achieved the largest relative
marginal contribution among all methods on MNIST networks from the ReLU category,
indicating that it could solve a sizeable number of instances, which none of the other
CPU- or GPU-based methods were able to solve within the same budget. In addition,
the CPU-based verifier VeriNet achieved competitive marginal contribution and Shapley
values. Furthermore, in the Tanh category, VeriNet was able to solve a large fraction of
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Figure 3.10: Performance of GPU-based verifiers for different values of ϵ in the ReLU
category.

instances for which β-CROWN failed to return a solution; this observation holds when
analysing both a single value of ϵ as well as the whole set of considered perturbation
radii.
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Figure 3.11: Performance comparison of the two top-performing verification methods (in
terms of relative Shapley value) in the ReLU category for CPU-based methods on (a) MNIST
and (b) CIFAR networks as well GPU-based methods on (c) MNIST and (d) CIFAR networks,
using multiple values of the perturbation radius ϵ.

3.4.6 Analysis of unsat Instances

To gain further insights, we performed an analysis of unsat (i.e., robust) instances;
see Table 3.2 for the number of unsat instances that were found in each network
category. More concretely, we considered only unsat instances as solved, since several
verification methods considered in this study use counter-example generation mostly
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Figure 3.12: Top row: Frequency of error types returned by the two top-performing
verification methods (in terms of the number of solved instances) on instances in the ReLU
category, when (a) ϵ = 0.012 or (b) ϵ = 0.02. Bottom row: Performance comparison of the
two top-performing verification methods (in terms of relative Shapley value) in the ReLU
category for CPU-based methods, when (c) ϵ = 0.012 or (d) ϵ = 0.02.

as an early stopping opportunity. Thus, unsat instances pose an interesting subset
of the benchmark, as it measures the ability of a method to determine robustness in
cases where no such counter-example exist. Furthermore, commonly used robustness
metrics, such as adversarial accuracy, are computed by means of the fraction of unsat
instances in a given instance set. Therefore, verification methods that can efficiently
solve those instances enable a more accurate calculation of these metrics.

Table 3.15 shows result from this analysis for ϵ = 0.012 while Table 3.16 shows
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Table 3.13: Performance comparison of CPU- and GPU-based verification algorithms
in terms of the number of solved instances, relative marginal contribution (RMC ), relative
Shapley value (ϕ), computed for each category and ϵ = 0.012.

ReLU
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

BaDNB 1 171 0.12 0.25 2 217 0.46 0.43
BaBSB 358 0.00 0.00 307 0.00 0.00
β-CROWN 2245 0.00 0.23 1 819 0.27 0.34
Marabou 1 001 0.06 0.03 400 0.00 0.00
MN-BaB 2 083 0.71 0.38 1 622 0.28 0.19
Neurify 871 0.06 0.03 915 0.00 0.03
nnenum 1 754 0.00 0.03 76 0.00 0.00
VeriNet 1 799 0.06 0.03 841 0.00 0.01
ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

BaDNB 69 0.00 0.05 0 0.00 0.00
β-CROWN 128 1.00 0.67 0 0.00 0.00
Marabou 5 0.00 0.00 0 0.00 0.00
MN-BaB 115 0.00 0.27 64 1.00 1.00
Tanh
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

β-CROWN 319 0.09 0.19 198 1.00 1.00
MN-BaB 0 0.00 0.00 0 0.00 0.00
VeriNet 556 0.91 0.81 0 0.00 0.00
Sigmoid
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

β-CROWN 306 0.00 0.03 538 0.96 0.82
Marabou 0 0.00 0.00 0 0.00 0.00
MN-BaB 305 0.00 0.03 338 0.04 0.18
VeriNet 581 1.00 0.93 0 0.00 0.00

results aggregated over the full range of ϵ values we considered. First of all, we found
that the total number of solved instances decreases when only unsat instances are
considered. This is particularly noticeable for CIFAR, where the majority of instances
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Table 3.14: Performance comparison of CPU- and GPU-based verification algo-
rithms in terms of the number of solved instances, relative marginal contribution
(RMC ), relative Shapley value (ϕ), computed for each category and aggregated ϵ ∈
{0.004, 0.005, 0.008, 0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

BaDNB 9 455 0.10 0.20 20 408 0.48 0.43
BaBSB 3 716 0.00 0.00 2 690 0.00 0.00
β-CROWN 18 907 0.03 0.18 16 997 0.31 0.36
Marabou 9 457 0.44 0.20 3 651 0.00 0.00
MN-BaB 17 601 0.14 0.24 14 581 0.20 0.16
Neurify 8 206 0.04 0.02 8 173 0.00 0.03
nnenum 15 144 0.00 0.03 744 0.00 0.00
VeriNet 15 800 0.24 0.12 7 674 0.00 0.01
ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

BaDNB 580 0.00 0.00 0 0.00 0.00
β-CROWN 1 127 0.99 0.74 0 0.00 0.00
Marabou 316 0.00 0.00 0 0.00 0.00
MN-BaB 966 0.00 0.22 576 1.00 1.00
Tanh
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

β-CROWN 2 576 0.17 0.24 4 535 1.00 1.00
MN-BaB 0 0.00 0.00 0 0.00 0.00
VeriNet 4 307 0.83 0.76 0 0.00 0.00
Sigmoid
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

β-CROWN 2 617 0.00 0.05 4 961 0.97 0.83
Marabou 0 0.00 0.00 0 0.00 0.00
MN-BaB 2 601 0.00 0.05 3 042 0.03 0.17
VeriNet 4 728 1.00 0.90 0 0.00 0.00

are non-robust or, in other words, sat. Furthermore, we observed only minor changes
in the relative performance and complementarity of the given verifiers on MNIST
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instances across all categories. Specifically, we found that for the broader set of ϵ

values, the RMC and Shapley value of Marabou improve substantially, while those
for VeriNet strongly deteriorate. This indicates that on unsat instances, Marabou can
solve a large fraction of instances unsolved by other methods, while VeriNet mainly
contributes when sat instances are also considered. For CIFAR, we also noticed that
the relative performance of the given verifiers changed. Specifically, MN-BaB, which
previously achieved competitive relative performance does not seem to complement
other methods on unsat instances; instead, most instances are solved by BaDNB and
αβ-CROWN, which also show strong complementarity in the ReLU category.

3.4.7 Analysis of the 2022 VNN Competition Results

To see if and to what extent our observations hold for a larger set of verifiers as
well as different benchmarks, we analysed the results of the 2022 edition of the VNN
competition. We refer to the accompanying report [87] for more information about the
participating tools, benchmarks and further technical details. Again, we present a joint
as well as a separate analysis of CPU- and GPU-based verification algorithms. We
excluded CGDTest from the set of methods considered in our analysis, as it represents
the only incomplete verification approach participating in the competition, while our
work focuses on complete verification. In addition, CGDTest produced a substantial
number of incorrect results in the competition, casting doubts on the soundness of the
method.

Table 3.17 shows the results from the VNN competition for CPU-based verification
algorithms. It reports the number of problem instances solved by each verifier per
network category, marginal contribution as well as Shapley values, both in absolute and
relative terms. Most notably, we observe strong complementarity between the verifiers
considered in two of the three benchmark categories. Concretely, in the CNN+ResNet

category, Marabou and VeraPak achieved relative Shapley values of 0.44 and 0.24,
respectively. Indeed, as depicted in Figure 3.13c, there are several instances solved by
one of the verifiers but unsolved by the other.

In the FC category, Marabou, nnenum and PerigiNN achieved a similar relative
Shapley value of 0.24, again highlighting the complementarity between these algorithms.
Given the similar relative Shapley values, we resort to the relative marginal contribution
to determine the two best-performing methods in this context; i.e., among these three
methods, nnenum and PerigiNN achieved the largest relative marginal contributions
and are, thus, considered the two best-performing methods. Again, we compare their
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Figure 3.13: Performance comparison of the two top-performing verification methods (in
terms of relative Shapley value) in each category from the 2022 VNN Competition. Instances
that were not solved within their respective time limit are displayed with the maximum
running time attributed to any instance in the benchmark set (i.e., 1 800 seconds). (Part 1 of
2)

performance on an instance level, as shown in Figure 3.14a. As can be observed,
instances spread out widely around the equal performance line of the plot, with many
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Figure 3.14: Performance comparison of the two top-performing verification methods (in
terms of relative Shapley value) in each category from the 2022 VNN Competition. Instances
that were not solved within their respective time limit are displayed with the maximum
running time attributed to any instance in the benchmark set (i.e., 1 800 seconds). (Part 2 of
2)

instances solved by nnenum but unsolved by PerigiNN, and vice versa.

In the Complex category, nnenum and PeregriNN achieved Shapley values of 0.46
and 0.50, respectively. However, Figure 3.13a reveals that nnenum dominates in
performance over PeregriNN on most instances. We note that the Shapley value
represents the average contribution made by a given verifier over all possible sets of
algorithms in a portfolio. Hence, it indicates that nnenum could solve many instances
unsolved by other methods from the full set of algorithms under consideration; however,
nnenum does not complement PeregriNN in terms of solved instances.

Next, we discuss the results from the 2022 VNN Competition for GPU-based
verification algorithms; these are presented in Table 3.18. Surprisingly, for GPU-based
methods, our findings from analysing the competition results differ from those made in
our previous assessment, as they do not reveal strong complementarity between the
algorithms. Specifically, β-CROWN dominates in performance on every instance in
each category, although relative Shapley values indicate complementary (for similar
reasons as those outlined above).

This reflected in Figure 3.13b, Figure 3.13d and Figure 3.14b. Concretely, these
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plots show the performance on an instance level for the two top-performing methods in
each category (in terms of relative Shapley values). In the Complex and FC category,
these are β-CROWN and MN-BaB, while in the CNN+ResNet category, these are
β-CROWN and VeriNet. The latter category represents the only category in which
a small degree of complementarity can be observed, as both verifiers solved some
instances unsolved by the other. However, the fraction solved by VeriNet remains
comparably small.

Finally, Table 3.19 presents the joint analysis of CPU- and GPU-based methods
based on the competition results. Notice that we did not perform a cost calibration
in this case, as verifiers were employed on hardware with about equal costs. Most
interestingly, we observed performance complementary between these methods in the
CNN+ResNet category. More specifically, the CPU-based Marabou solver could solve
several instances unsolved by GPU-based β-CROWN verifier, although the latter solved
the most instances overall, as reflected in the relative Shapley values (0.53 vs 0.32).
Again, this shows that there exist scenarios in which CPU-based methods complement
GPU-based methods in their performance.

Overall, we find that the biggest difference between the results of the VNN compe-
tition and the results obtained in this study is the degree of complementarity between
the GPU-based verification algorithms, as reflected by the marginal contribution and
Shapley values. While the results from the VNN competition suggest that there is a
single best GPU-based verifier that broadly dominates all other methods, the results
presented in our study reveal a more nuanced story. This difference can most likely be
attributed to the size and the diversity of the proposed benchmark: while the 2022 VNN
Competition considered 17 neural networks as test cases for local robustness verification,
our benchmark consists of 79 networks. At the same time, the competition provides
valuable insights into how the considered verifiers perform when carefully adapted to a
specific benchmark. Moreover, while both analyses have clear contributions, our results
highlight the importance of introducing a larger and more diverse benchmark set.

3.5 Conclusions and Future Work

In this chapter, we sought to answer the question of what constitutes the state of
the art in neural network verification and, thus, address RQ1 of this thesis. To
this end, we assessed the performance of a collection of well-known, complete local
robustness verification algorithms, i.e., algorithms used to verify the robustness of
an image classification network against small input perturbations. We found that
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all of these methods support ReLU-based networks, while other network types are
strongly under-supported. While this has been suspected in the community, it has, to
our knowledge, not yet been subject to formal study. Generally, we observed that all
considered verification algorithms show severe limitations with regard to the network
structures they can process – in many cases due to unsupported layer operations and
in others due to undefined errors.

Furthermore, and more importantly, we presented evidence for strong performance
complementarity: even within the same benchmark category (as defined based on verifier
compatibility), any two verification systems outperform each other on distinct subsets
of instances. Thereby, the state of the art in neural network verification cannot be
described by a single algorithm but rather several algorithms that contribute to varying
degrees with their own strengths. As we have demonstrated, this complementarity can
be exploited by combining individual verifiers into parallel portfolios. At the same
time, automated portfolio construction comes with its own challenges, leaving room
for further research into the development and evaluation of appropriate frameworks.

Lastly, we showed that, in general, the performance of verifiers strongly differs
between image datasets, with some methods achieving the best performance on MNIST
(in terms of the number of solved instances and average running time) while falling
behind on CIFAR and vice versa. In addition, even for the same dataset, we found that
the performance of a given verifier can change drastically depending on the perturbation
radius; i.e., an algorithm that performs well for a small value of ϵ might degrade in
performance as the value of ϵ increases.

In future work, it would be interesting to analyse in more detail how the relative
performance of verifiers depends on the given perturbation radius and other performance-
relevant characteristics of the given networks and image classification tasks. We suspect
this to be an interesting yet challenging research direction, as it requires a novel
definition of features specific to neural network verification problem. To the best
of our knowledge, no research on the development of such meta-features has been
conducted yet. Due to the specifics of both the verification problem instances as well
as the verification algorithms that should be systematically explored, we consider this
a non-trivial but important challenge to be solved in future work. This line of research
would also enable empirical performance modelling. An empirical performance model
is a model that predicts the performance, e.g., the running time, of algorithms on
previously unseen input, including previously unseen problem instances. Finally, it
would be interesting to expand this analysis to other datasets and machine learning
tasks beyond supervised image classification.
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Table 3.15: Performance comparison of CPU- and GPU-based verification algorithms
in terms of the number of unsat instances, relative marginal contribution (RMC ), relative
Shapley value (ϕ), computed for each category and ϵ = 0.012.

ReLU
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

BaDNB 1 072 0.13 0.25 86 0.65 0.63
BaBSB 161 0.00 0.00 0 0.00 0.00
β-CROWN 2 143 0.00 0.23 61 0.35 0.36
Marabou 995 0.07 0.03 6 0.00 0.00
MN-BaB 2 025 0.80 0.40 16 0.00 0.00
Neurify 748 0.00 0.00 20 0.00 0.00
nnenum 1 686 0.00 0.03 26 0.00 0.00
VeriNet 1 675 0.00 0.03 20 0.00 0.00
ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

BaDNB 59 0.00 0.10 0 0.00 0.00
β-CROWN 88 1.00 0.52 0 0.00 0.00
Marabou 5 0.00 0.00 0 0.00 0.00
MN-BaB 86 0.00 0.38 0 0.00 0.00
Tanh
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

β-CROWN 291 0.09 0.18 3 1.00 1.00
MN-BaB 0 0.00 0.00 0 0.00 0.00
VeriNet 527 0.91 0.82 0 0.00 0.00
Sigmoid
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

β-CROWN 272 0.00 0.03 66 1.00 0.00
Marabou 0 0.00 0.00 0 0.00 0.00
MN-BaB 272 0.00 0.03 0 0.00 0.00
VeriNet 544 1.00 0.94 0 0.00 0.00
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Table 3.16: Performance comparison of CPU- and GPU-based verification algo-
rithms in terms of the number of unsat instances, relative marginal contribution
(RMC ), relative Shapley value (ϕ), computed for each category and aggregated ϵ ∈
{0.004, 0.005, 0.008, 0.01, 0.012, 0.02, 0.025, 0.03, 0.04}.

ReLU
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

BaDNB 8 059 0.15 0.21 1 069 0.63 0.59
BaBSB 2 303 0.00 0.00 0 0.00 0.00
β-CROWN 17 433 0.04 0.19 866 0.36 0.39
Marabou 9 290 0.61 0.25 60 0.00 0.00
MN-BaB 16 588 0.20 0.28 144 0.00 0.00
Neurify 6 992 0.00 0.00 168 0.00 0.00
nnenum 14 601 0.00 0.03 223 0.00 0.01
VeriNet 14 317 0.00 0.02 177 0.00 0.00
ReLU+MaxPool
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

BaDNB 418 0.00 0.08 0 0.00 0.00
β-CROWN 573 1.00 0.50 0 0.00 0.00
Marabou 274 0.00 0.02 0 0.00 0.00
MN-BaB 566 0.00 0.40 0 0.00 0.00
Tanh
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

β-CROWN 2248 0.15 0.22 151 1.00 1.00
MN-BaB 0 0.00 0.00 0 0.00 0.00
VeriNet 3 993 0.85 0.78 0 0.00 0.00
Sigmoid
Verifier MNIST CIFAR

Solved RMC ϕ Solved RMC ϕ

β-CROWN 2290 0.00 0.04 575 1.00 1.00
Marabou 0 0.00 0.00 0 0.00 0.00
MN-BaB 2 302 0.00 0.04 0 0.00 0.00
VeriNet 4 448 1.00 0.92 0 0.00 0.00
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Table 3.17: Performance comparison of CPU-based verification algorithms in terms of
the number of solved instances, absolute and relative marginal contribution (MC, RMC ),
absolute and relative Shapley value (ϕabs, ϕ) as well as average running time, computed for
each category from the 2022 VNN Competition.

Complex
Verifier

Solved MC RMC ϕabs ϕ Avg. Time

AveriNN 0 0 0.00 0 0.00 192
Debona 2 0 0.00 1 0.04 192
FastBATLLNN 0 0 0.00 0 0.00 192
Marabou 0 0 0.00 0 0.00 192
nnenum 23 0 0.00 11 0.46 190
PeregriNN 24 1 1.00 12 0.50 189
VeraPak 0 0 0.00 0 0.00 192
CNN + ResNet
Verifier

Solved MC RMC ϕabs ϕ Avg. Time

AveriNN 0 0 0.00 0 0.00 357
Debona 0 0 0.00 0 0.00 357
FastBATLLNN 0 0 0.00 0 0.00 357
Marabou 122 91 0.61 106 0.44 264
nnenum 81 17 0.11 48 0.20 273
PeregriNN 57 0 0.00 28 0.12 325
VeraPak 72 42 0.28 57 0.24 254
FC
Verifier

Solved MC RMC ϕabs ϕ Avg. Time

AveriNN 100 0 0.00 20 0.05 166
Debona 339 3 0.30 82 0.19 91
FastBATLLNN 32 1 0.10 10 0.0 0.5
Marabou 404 0 0.00 102 0.24 53
nnenum 411 1 0.10 105 0.24 37
PeregriNN 397 2 0.20 102 0.24 48
VeraPak 50 3 0.30 13 0.03 66
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Table 3.18: Performance comparison of GPU-based verification algorithms in terms of
the number of solved instances, absolute and relative marginal contribution (MC, RMC ),
absolute and relative Shapley value (ϕabs, ϕ) as well as average running time, computed for
each category from the 2022 VNN Competition.

Complex
Verifier

Solved MC RMC ϕabs ϕ Avg. Time

β-CROWN 191 66 1.00 0 0.62 72
MN-BaB 125 0 0.00 0 0.28 164
VeriNet 60 0 0.00 0 0.10 187
CNN + ResNet
Verifier

Solved MC RMC ϕabs ϕ Avg. Time

β-CROWN 312 28 1.00 0 0.42 107
MN-BaB 254 0 0.00 0 0.28 179
VeriNet 259 0 0.00 0 0.30 171
FC
Verifier

Solved MC RMC ϕabs ϕ Avg. Time

β-CROWN 448 11 1.00 0 0.35 15
MN-BaB 433 0 0.00 0 0.33 30
VeriNet 435 0 0.00 0 0.32 21
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Table 3.19: Performance comparison of GPU- and CPU-based verification algorithms in
terms of the number of solved instances, absolute and relative marginal contribution (MC,
RMC ) as well as absolute and relative Shapley value (ϕabs, ϕ), computed for each category
from the 2022 VNN Competition.

Complex
Verifier

Solved MC RMC ϕabs ϕ

AveriNN 0 0 0.00 0 0.00
β-CROWN 191 66 0.99 20 0.91
Debona 2 0 0.00 0 0.04
FastBATLLNN 0 0 0.00 0 0.00
Marabou 0 0 0.00 0 0.00
MN-BaB 125 0 0.00 2 0.09
nnenum 23 0 0.00 0 0.46
PeregriNN 24 1 0.01 0 0.50
VeraPak 0 0 0.00 0 0.00
VeriNet 60 0 0.00 0 0.10
CNN + ResNet
Verifier

Solved MC RMC ϕabs ϕ

AveriNN 0 0 0.00 0 0.00
β-CROWN 312 15 0.28 6 0.32
Debona 0 0 0.00 0 0.00
FastBATLLNN 0 0 0.00 0 0.00
Marabou 122 36 0.68 10 0.53
MN-BaB 254 0 0.00 1 0.05
nnenum 81 0 0.00 0 0.00
PeregriNN 57 0 0.00 0 0.00
VeraPak 72 2 0.04 1 0.05
VeriNet 259 0 0.00 1 0.05
FC
Verifier

Solved MC RMC ϕabs ϕ

AveriNN 100 0 0.00 0 0.00
β-CROWN 448 9 1.00 3 1.00
Debona 339 0 0.00 0 0.00
FastBATLLNN 32 0 0.00 0 0.00
Marabou 404 0 0.00 0 0.00
MN-BaB 433 0 0.00 0 0.00
nnenum 411 0 0.00 0 0.00
PeregriNN 397 0 0.00 0 0.00
VeraPak 50 0 0.00 0 0.00
VeriNet 435 0 0.00 0 0.00
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Chapter 4

Speeding Up MIP-Based Neural
Network Verification via
Automated Algorithm
Configuration

As outlined in the previous chapter, formal network verification methods tends to be
computationally expensive, making it difficult to verify networks with a large number
of units and/or on a large number of inputs. At the same time, we have shown that
there exist performance complementarity among different verification algorithms. This
can be exploited by constructing algorithm portfolios in a principled manner; i.e.,
constructing them in such a way that they contain a set of solvers that complement
each other in the most effective way possible.

As mentioned in Chapter 2.2.3, it is possible to formulate the verification task as a
constraint optimisation problem using mixed integer programming (MIP). In light of
this, recent work by Tjend et al. [104] presented a verification tool, called MIPVerify,
which formulates the verification task as a minimisation problem, which is then solved
using a commercial MIP solver. More specifically, the optimisation task is to apply a
perturbation to the original sample that maximises model error, while staying close
to the initial example, i.e., keeping the distance at a minimum. In other words, the
verifier takes an image and a trained neural network as inputs and produces either
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an adversarial example or, if the optimisation problem cannot be solved, a certificate
of local robustness. While MIPVerify can verify a larger number of instances than
previous methods, such as those from the works of Wong et al. [113], Dvijotham et al.
[26] or Raghunathan et al. [93], it is computationally costly (in terms of CPU time
required per verification query). Specifically, depending on the classifier to be verified,
we found that some instances required several thousand CPU seconds of running time
of the MIP solver, while a sizeable fraction of instances could not be solved at all, even
within a rather generous time limit of 38 400 CPU seconds per sample.

The same holds for other MIP-based verification systems, such as Venus [8]. Here,
our experiments showed that, depending on the classifier to be verified, the computa-
tional cost per query remains subject to great variance as outlined above, with many
instances resulting in timeouts.

We note that, to date, the performance of MIPVerify and Venus has not been
compared directly, which motivates our decision to consider both as contributors to
the state of the art in MIP-based neural network verification.

Previous work has demonstrated that automated configuration of MIP solvers can
yield substantial improvements [46, 44, 45, 76]. Building on these findings, we seek to
improve the performance of MIP-based neural network verification tools by leveraging
automated algorithm configuration techniques to optimise the hyperparameters of the
solver at the heart of these verifiers. As such, the proposed method can be used
regardless of the underlying MIP problem formulation, and its improvements are
orthogonal to any advances made with regard to the formulation. Put differently, we
argue that automated algorithm configuration can benefit any verification approach
relying on MIP solving or similar techniques.

Automated algorithm configuration of neural network verification engines is a non-
trivial task and comes with several challenges. Most prominently, the high running times
and heterogeneity/diversity of instances pose problems that are not easily solved by
standard configuration approaches, such as SMAC [45]. More precisely, we consistently
found in our experiments that a single configuration could not significantly improve
mean CPU time over the default. In fact, we observed that a single configuration
could achieve a 500-fold speedup on a given instance over the default, but then time
out on another, which the default, in turn, could solve. Therefore, we decided to
adapt Hydra [116], an advanced approach that combines algorithm configuration and
per-instance algorithm selection, to automatically construct a parallel portfolio of MIP
solver configurations optimised for solving neural network verification problems.

We demonstrate the effectiveness of our approach for both aforementioned verifica-
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tion tools. These systems both rely on MIP solving, yet they are conceptually different
enough to show the generalisability of our method. To the best of our knowledge,
ours is the first study to pursue this direction. In brief, the main contributions of this
chapter are as follows:

• A framework for automatically constructing a parallel portfolio of MIP solver
configurations optimised for neural network verification, which can be applied to
any MIP-based verification method;

• an extensive evaluation of this framework on two well known verification engines,
namely Venus [8] and MIPVerify, improving their performance on (i) SDPdMLPA

- an MNIST classifier designed for robustness [93], (ii) mnistnet - an MNIST
classifier from the neural network verification literature [8] and (iii) the ACAS
Xu benchmark [51, 55].

On the SDPdMLPA benchmark, we achieved substantial improvements in CPU
time by average factors of 4.7 and 10.3 for MIPVerify and Venus, respectively, on a
solvable subset of instances from the MNIST dataset. This subset excludes all instances
that cannot be solved by any of the baseline approaches we consider. Beyond that, the
number of timeouts was reduced by a factor of 1.42 and 1.6, respectively.

On the mnistnet benchmark, we again achieved substantial improvements in CPU
time, this time by average factors of 1.61 and 7.26 for MIPVerify and Venus, respectively,
on solvable instances. We furthermore reduced timeouts on this benchmark by average
factors of 1.14 and 2.81, respectively.

Finally, we strongly improved the performance of the Venus verifier on the ACAS
Xu benchmark, attaining a 2.97-fold reduction in average CPU time. We note that
on this benchmark, we found MIPVerify to be unable to solve most of the instances
within the kinds of computational budgets considered in our experiments.

4.1 Background

The following section provides details of MIP-based neural network verification algo-
rithms. It further puts focus on the limitations of current approaches and introduces
the concepts behind automated algorithm configuration and portfolio construction.
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4.1.1 MIP-Based Neural Network Verification

MIPVerify combines and extends existing approaches to MIP-based robustness veri-
fication [17, 75, 25, 32] and presents a verifier that encodes the network as a set of
mixed-integer linear constraints. Following [104], a valid adversarial example x′ for
input x with true class label λ(x) (encoded as integer) corresponds to the solution to
the problem where we minimise:

d(x′, x) (4.1)

subject to
argmaxi(fi(x

′)) ̸= λ(x) (4.2)

x′ ∈ (G(x) ∩Xvalid), (4.3)

where d(·, ·) denotes a distance metric (e.g., the l∞-norm), fi(·) is the i-th network
output (i.e., indicating whether it predicts the input to belong to the i-th class) and
G(x) = {x′ | ∀i : −ε ≤ (x − x′)i ≤ ε}. Intuitively, G(x) denotes the region around
an input x corresponding to all allowable perturbations within a pre-defined radius ε.
Xvalid represents the domain of valid inputs (e.g., the pixel value range of a normalised
image, in case of image classification). Note that this formulation assumes that the
network predicts a single class label for each observation (i.e., the arg max operator in
Eq. 4.2 returns a single element); other behaviour is undefined.

MIPVerify achieves speed-ups through optimised MIP formulations or, more specifi-
cally, tight formulations for non-linearities and a pre-solving algorithm that reduces the
number of binary variables, i.e., the number of unstable ReLU nodes. More specifically,
the information provided by G(x) is used to reduce the interval of the input domain
propagated through the network during the calculation of the pre-activation bounds.
This is combined with progressive bounds tightening, which represents a method for
choosing procedures to determine pre-activation bounds, i.e., interval arithmetic or
linear programming, based on the potential improvement to the problem formulation.

The MIP-based verifier Venus [8] achieves performance gains over previous meth-
ods, such as NSVerify [1], through dependency-based pruning to reduce the search
space during branch-and-bound and combines this dependency analysis approach with
symbolic interval arithmetic and domain splitting techniques.

Moreover, both [104] and [8] report state-of-the-art performance on various network
architectures and datasets but their tools consume very substantial amounts of CPU
time. Depending on the classifier to be verified, we observed that finding a solution
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can easily take up to several hours of computation time for a single instance. Network
verification can therefore turn into an extremely time-consuming endeavour, even for a
relatively small dataset, such as MNIST. At the same time, a verifier fails to maintain
the premise of completeness, meaning that it can certify every input example it is
presented with if many instances are subject to timeouts, which we also found to be
the case for the verification methods considered in this study.

4.1.2 Automated Configuration of MIP Solvers

Commercial tools for combinatorial problem solving usually come with many hyper-
parameters, whose settings may have strong effects on the running time required for
solving given problem instances. Deviating from the default and manually setting these
performance parameters is a complex task that requires extensive domain knowledge
and experimentation, and can be automated using algorithm configuration techniques,
which are outlined in Section 2.3.

In this study, we use SMAC [45], a widely known, freely available, state-of-the-art
configurator based on sequential model-based optimisation (also known as Bayesian
optimisation). The main idea of SMAC is to construct and iteratively update a
statistical model of target algorithm performance (specifically: a random forest regressor;
[9]) to guide the search for good configurations. The random forest regressor allows
SMAC to handle categorical parameters and therefore makes it suitable for MIP solvers,
which have many configurable categorical parameters; SMAC has been shown to
improve the performance of the commercial CPLEX solver over previous configuration
approaches on several widely studied benchmarks [45].

4.1.3 Automatic Portfolio Construction

As mentioned in Section 2.4, for the configuration procedure to work effectively, the
problem instances of interest have to be sufficiently similar, such that a configuration
that performs well on a subset of them also performs well on others. In other words,
the instance set should be homogeneous. If a given instance set does not satisfy
this homogeneity assumption, automated configuration likely results in performance
improvements on some instances, while performance on others might suffer, making it
difficult to achieve overall performance improvements.

This problem can be addressed through automatic portfolio construction [116, 52,
78, 72]. The general concept behind automatic portfolio construction techniques is to
create a set of algorithm configurations that are chosen such that they complement
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Figure 4.1: Schematic diagram of the proposed framework.

each other’s strengths and weaknesses. This portfolio should then be able to exploit
per-instance variation much more effectively than a single algorithm configuration,
which is designed to achieve high overall performance but may perform badly on certain
types or subsets of instances.

More specifically, Hydra [116] automatically constructs portfolios containing multi-
ple instances of the target algorithm with different configurations. The key idea behind
Hydra is that a new candidate configuration is scored with its actual performance only
in cases where it works better than any of the configurations in the existing portfolio,
but with the portfolio’s performance in cases where it performs worse. Thereby, a con-
figuration is only rewarded to the extent that it improves overall portfolio performance
and is not penalised for performing poorly on instances for which it should not be run
anyway. More details can be found in Chapter 2.4.

Once a portfolio has been constructed, there are essentially two ways to leverage
the performance complementarity of the configurations contained in the portfolio. The
first option is to extract instance-specific features and use those to train a statistical
model that predicts the performance of each configuration in the portfolio individually.
These predictions can then be used to select the configuration with the best-predicted
performance (see, e.g., Xu et al. [118]). Alternatively, all configurations can be run in
parallel on a given problem instance, which implicitly ensures that we always benefit
from the best-performing configuration in the portfolio, at the cost of increased use
of parallel resources. An empirical comparison between both approaches has been
presented by Kashgarani et al. [54].
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Figure 4.2: Performance comparison of the configurations in the portfolios constructed
for (a) MIPVerify and (b) Venus on the mnistnet benchmark. The plots show, that each
configuration outperforms the other on some instances, while none of the configurations is
dominating in performance across the entire benchmark set. This illustrates the complementary
strengths of the configurations, which are exploited through portfolio construction. Note that
there are also several instances on which one of the configurations reaches the time limit, but
which are solved by the other. These are not shown in the figure due to the scaling of the
axes. The diagonal line indicates equal performance of the two configurations.

4.2 Network Verification with Parallel MIP Solver

Portfolios

In order to reduce complexity, [104] mainly focused on reducing the number of variables
in the verification problem. On the other hand, [8] rely on pruning the search space
during the branch-and-bound procedure. However, the embedded MIP solver and
its numerous parameters were left untouched in both cases. More specifically, both
methods employed a commercial MIP solver with default settings. This decision, along
with their problem formulation, forms the starting point for our work.

More concretely, we seek to improve the performance of MIP-based neural network
verification through configuring the MIP solver embedded in these systems, and
constructing a portfolio of solver configurations optimised for the benchmark set at
hand; Figure 4.1 provides an overview of the framework we propose. In brief, for a
given network-example pair, we employ the verifier with several, differently configured
instances of the embedded MIP solver. This portfolio of solvers is run in parallel and

73



4.2. Network Verification with Parallel MIP Solver Portfolios

finishes once one solver has returned a solution or a global time limit has been reached.

In the following sections, we describe details of the configuration procedure as well
as the MIP solver we configured.

4.2.1 Configuration Procedure

In this study, we configure the commercial MIP solver Gurobi; see Section 4.2.2 for
further details. Though it should be noted that, in principle, our approach works for
any MIP solver.

The configuration procedure employs running Hydra over a predefined set of itera-
tions to construct a portfolio of solver configurations with complementary strengths.
The number of iterations is a hyper-parameter of the Hydra algorithm and has to be
specified by the user. Since we cannot know the optimal portfolio size for a given
benchmark in advance, we run Hydra over a reasonably larger number of iterations and,
once the procedure has finished, discard configurations that did not improve portfolio
performance on the validation set, i.e. that led to stagnation or reduction in total
CPU time compared to the previous iteration. Note that the portfolio can contain the
default configuration of the MIP solver.

Interestingly enough, we consistently observed strong heterogeneity among the
instances in our benchmarks sets, making the use of a single configuration, i.e., a
portfolio of size 1, ineffective. This is illustrated in Figure 4.2: Employing two different
configurations individually on the same benchmark set shows that none of them
outperforms the other, i.e., consistently achieves better performance across the entire
set of instances. Combining both configurations into a portfolio, however, makes use of
the complementary strengths of the configurations, and thereby achieves the highest
overall performance, which motivates our choice of the portfolio approach.

Leveraging standard multi-core CPU architectures, we run the configurations in
the portfolio in parallel until one of them returned a solution or until an overall limit
on CPU time was exceeded. We note that, in principle, automated algorithm selection
(see, e.g., [66]) could be used to determine from this portfolio the configuration likely
to solve any given instance most efficiently, though this requires substantial amounts of
training data and creates uncertainty from sub-optimal choices made by the machine
learning technique at the heart of such selection approaches.
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4.2.2 MIP Solver

Following Tjeng et al. [104] and Botoeva et al. [8], we used the Gurobi MIP solver with
a free academic license. Using the online documentation on Gurobi’s parameters, we
selected 62 performance-relevant parameters for configuration. These parameters can
be categorical, e.g., the simplex variable pricing strategy parameter can take the values
{Automatic (-1), Partial Pricing (0), Steepest Edge (1), Devex (2), and Quick-Start
Steepest Edge (3)}, or continuous, e.g., the parameter controlling the magnitude of
the simplex perturbation can take any value in the range {0, ∞}.

To control and limit the computational resources given to the solver, we fixed the
number of CPU cores, i.e., the parameter Threads, to the value of 1. Thereby, we also
ensure that the solver is optimised in such a way that it uses minimal computational
resources, which, in turn, allows for more efficient parallelisation. In contrast, the
default value of this parameter is an automatic setting, which means that the solver
will generally use all available cores in a machine. There are further parameters that
have an automatic setting as one of their values. In those cases, we allowed for the
“automatic” value to be selected, but also other values.

While configuring the MIP solver embedded in MIPVerify is a rather straightforward
task, additional considerations arise when configuring the solver embedded in Venus.
Essentially, Venus can run two modes, which lead to changes in the configuration
space of the MIP solver: (i) Venus with ideal cuts and dependency cuts activated
(default mode), in which case several cutting parameters are deactivated in Gurobi

and therefore should be left untouched during the configuration procedure; (ii) Venus

with its cutting mechanism deactivated, which allows for Gurobi’s full parameter
space to be optimised upon. Along with other, previously mentioned challenges, these
considerations illustrate the complexity of adapting automated algorithm configuration
techniques to the domain of neural network verification.

In order to maximally exploit the potential of automated hyperparameter optimisa-
tion, we decided to provide the configurator with full access to the configuration space
and, thus, employ Venus with ideal cuts and dependency cuts deactivated and Gurobi’s
cutting parameters activated during portfolio construction.

4.3 Setup of Experiments

We test our method on several benchmarks, which will be introduced in the follow-
ing, along with the objective of our configuration approach and the computational
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environment in which experiments were carried out.

4.3.1 Configuration Objective

The objective of our configuration experiments is to minimise mean CPU time over
all instances from the benchmark set. This choice deviates from the commonly used
performance metric in the neural network verification literature, where evaluation is
typically performed by operating on a fixed number of CPU cores while measuring
wall-clock time. However, we do not consider wall-clock time a sensible performance
measure when the evaluated methods use different numbers of cores. Instead, we decide
to capture performance by means of CPU time, as it compensates for the possible
difference in utilised cores. In other words, by choosing CPU time over wall-clock time,
we ensure a more rigorous performance evaluation of our method as well as the baseline
approaches, as one could easily gain performance in terms of wall-clock time through
parallelisation, while heavily compromising in CPU time. Furthermore, we consider
CPU time to be the more sensible performance measure, due to the cost associated with
computational efforts. In fact, the rates for cloud services increase with the number of
cores in a machine.

Generally, if the cost metric is running time, configurators typically optimise
penalised average running time (PAR), notably PARk, as the metric of interest, which
penalises unsuccessful runs by counting runs exceeding the cutoff time tc as tc × k. In
line with common practice in the algorithm configuration literature, we use k = 10 and
refer to the cost metric as PAR10.

4.3.2 Details of the Configuration Procedure

The parameters for the configuration procedure were set as follows. Hydra ran over a
predefined set of four iterations, during which it performed two independent runs of
SMAC with a time budget of 24 hours each. Thus, running Hydra took 4×2×24 = 192

hours for training, in addition to a variable amount of time spent on validation. In
theory, the number of iterations could be set to a larger value; however, we refrained
from this to keep our experiments within reasonable time frames. Lastly, we set k = 1,
which means that after every run, Hydra added one configuration to the portfolio,
i.e., the configuration that yielded the largest gain in overall training performance.
The final output, therefore, is a portfolio containing a minimum number of 1 and a
maximum number of 4 solver configurations.
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4.3.3 Data

Our benchmark sets were comprised of randomly chosen verification problem instances
created by MIPVerify and Venus, respectively, using the network weights of two MNIST
classifiers as well as the property-network pairs from the ACAS Xu repository [51, 55].
ACAS Xu contains an array of neural networks trained for horizontal manoeuvre
advisory in unmanned aircraft. The MNIST classifiers were taken from the works of
[104] and [8], respectively, and used to cross-test each verifier on both networks. The
ACAS Xu benchmark was chosen to find out whether a high diversity in networks (the
ACAS Xu repository contains 45 different neural networks) poses any challenges to the
configuration procedure.

MNIST. Firstly, we created problem instances using the network weights of the
robust classifier SDPdMLPA from [93]. Among the networks considered in the work of
[104], we regard this one as the most difficult to verify, since it shows the largest average
solving times and optimality gaps for many examples, even compared to classifiers
trained on the typically more challenging CIFAR-10 benchmark. Secondly, we used
the weights of the network mnistnet from the Venus repository [8], which is the only
MNIST classifier considered in their study. In both cases, we created 184 instances,
which were split 50-50 into disjoint training and validation sets. The training and
validation sets were used during the configuration procedure, whereas the remaining
9 816 instances form the test set and were used to evaluate the final portfolio.

ACAS Xu. For this benchmark, we only considered verification problem instances
created by Venus, as MIPVerify at default reached the time limit of 38 400 CPU seconds
for more than 80% of the instances. This makes automated configuration infeasible, as
these instances do not only cause the default solver to time out but also any solver
configuration tried by SMAC. Thereby, the configurator can hardly identify promising
regions of the hyperparameter space and, consequently, not exploit them. Using Venus,
we created 20 instances for different property-network pairs and, again, split them into
disjoint training and validation sets. The remaining 152 instances are used for testing
the final portfolio. Note that ACAS-Xu shows the highest average solving time among
all benchmarks considered in the work of [8].

4.3.4 Execution Environment and Software Used

Our experiments were carried out on Intel Xeon E5-2683 CPUs with 32 cores, 40 MB
cache size and 94 GB RAM, running CentOS Linux 7. We used MIPVerify version
0.2.3, Venus version 1.01, SMAC version 2.10.03, Hydra version 1.1 and the Gurobi
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Table 4.1: Timeouts, adversarial error and PAR10 scores for different solver configurations
of the MIP solver embedded in the MIPVerify engine on the MNIST dataset. Note that all
approaches were given the same budget in terms of CPU time (the number of cores times the
cutoff time). Using our portfolio, we achieved better performance than method of [104] as
well as the default configuration of Gurobi using different numbers of cores. Boldfaced values
indicate statistically significant improvements according to a binomial test with α = 0.05 for
timeouts and error bounds, and a permutation test with the number of permutations set at
10 000 and significance threshold of 0.05 for PAR10 scores.

Configuration Cores Cutoff Timeouts Adversarial Error PAR10
[Seconds] Lower Upper [CPU s]

Bound Bound

SDPdMLPA

Default 32 1 200 21.29% 14.37% 30.67% 39 772
Default 4 9 600 17.74% 14.40% 27.49% 22 065
Default 1 38 400 17.66% 14.36% 27.58% 20 117
Portfolio 4 9 600 14.96% 14.43% 23.86% 8 478

mnistnet
Default 1 38 400 1.57% 69.96% 70.16% 2 969
Portfolio 2 19 200 1.38% 70.13% 70.14% 1 844

solver version 9.0.1.

4.4 Results

We report empirical results for our new approach and each baseline in the form of
(i) the fraction of timeouts; and (ii) bounds on adversarial error (the fraction of the
dataset for which a valid adversarial example can be found), complement to adversarial
accuracy (the fraction of the dataset known to be robust); (iii) CPU time (i.e., PAR10

scores) on solvable instances, i.e., instances that were solved by our portfolio or any
of the baselines within the given cutoff time. Aggregated performance numbers are
presented in Table 4.1 for MIPVerify and Table 4.2 for Venus, whereas Figure 4.3
and Figure 4.4 visualise penalised running time of our portfolio approach against the
baselines on an instance level. Generally, we determined statistical significance using a
binomial test with α = 0.05 for timeouts and error bounds, and a permutation test
with the number of permutations set at 10 000 and significance threshold of 0.05 for
PAR10 scores.
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4.4.1 MIPVerify

The results from our configuration experiments on the SDPdMLPA classifier are
compared against multiple baselines. Firstly, we evaluated our portfolio approach
against Gurobi, as used by Tjeng et al. [104], using all 32 cores per CPU available on
our compute cluster, with the cutoff time set to 1 200× 32 = 38 400 CPU seconds (i.e.,
1 200 seconds wall-clock time on a CPU without any additional load). In addition, since
our parallel portfolio used 1 core for each of its 4 component configurations, we gathered
additional baseline results from running the default configuration of Gurobi on the
same number of cores and with the same cutoff as our portfolio, i.e., 9 600× 4 = 38 400

CPU seconds. Lastly, to maximise the number of instances processed in parallel,
we considered Gurobi in its default configuration limited to a single CPU core, with
cutoff time of 38 400 seconds. In short, we compared our approach against baselines
with a variable number of cores and a constant budget in terms of CPU time. From
these approaches, we considered only the best-performing one as the baseline for our
configuration experiments on the mnistnet classifier.

As seen in Table 4.1, our portfolio was able to certify a statistically significantly
larger fraction of instances, while reducing CPU time by an average factor of 4.7 on the
solvable instances (8 478 vs 39 772 CPU seconds). Furthermore, the portfolio strongly
outperformed this baseline in terms of timeouts (14.96% vs 21.29%). More concretely,
694 instances solved by the portfolio timed out in the default setup with 32 cores; see
Fig 4.3a for more details. 1 435 instances were neither solved by the default nor the
portfolio within the given time limit. 61 instances on which the portfolio timed out
were solved by the default solver.

The default configuration of Gurobi running on 4 cores was also clearly outperformed
by our portfolio in terms of CPU time (8 478 vs 22 065 CPU seconds). Furthermore,
the portfolio was able to reduce the number of timeouts (14.96% vs 17.74%), while
improving on the upper bound (23.86% vs 27.49%). In other words, the portfolio
certified more instances using fewer computational resources, although it was provided
with the same number of cores and overall time budget. Fig 4.3b shows per-instance
results for this set of experiments. Here, the default solver timed out on 378 instances,
which were solved by the portfolio. On 109 instances, only the portfolio timed out. On
1 374 instances, both setups resulted in timeouts.

Lastly, we compared the portfolio against the default configuration of Gurobi

running on a single-core. Here, our portfolio showed improved performance in terms of
PAR10 (8 478 vs 20 117 CPU seconds) as well as the fraction of timeouts (14.96% vs
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Figure 4.3: Evaluation of our parallel portfolio approach for MIPVerify on the MNIST
dataset (n=10 000) using weights from the SDPdMLPa and mnistnet classifiers, respectively.
Each dot represents a problem instance and the penalised running time for that instance
achieved by the baseline approach (x-axis) vs our portfolio (y-axis). For SDPdMLPa, the
baselines we considered are (a) the default solver running on all available, i.e., 32 cores, as in
the work of [104], (b) the default solver running on 4 cores and (c) the default solver running
on 1 core. Our parallel portfolio, using 4 cores, achieved substantially fewer timeouts than
any of the baselines and lower CPU times (in terms of PAR10 scores). Points grouped at the
top and right border represent instances for which the solver reached the time limit, and are
measured according to their penalised running time values.
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17.66%) and the upper bound (23.86% vs 27.58%). More specifically, the single-core
default timed out on 378 instances that could be solved by the portfolio. On 108
instances, only the portfolio timed out. On 1 388 instances, both setups resulted in
timeouts; see Fig 4.3c for more details.

On the mnistnet classifier, our portfolio also outperformed the single-core baseline
in terms of PAR10 (1 844 vs 2 969 CPU seconds) as well as the fraction of timeouts
(1.38% vs 1.57%), although to a smaller extent. To be precise, the default baseline
timed out on 44 instances that the portfolio was able to solve (Fig 4.3d). On 25
instances, only the portfolio reached the time limit. 113 instances were neither solved
by the default nor the portfolio. The default baseline timed out on 44 instances that
the portfolio was able to solve. On 25 instances, only the portfolio reached the time
limit. 113 instances were neither solved by the default nor the portfolio. These results
could be explained by the mnistnet network being comparatively smaller and, thus,
easier to verify than the SDPdMLPA classifier, as the latter results in a much larger
number of timeouts when verified with equal settings.

4.4.2 Venus

The results from our configuration experiments are compared against two baseline
approaches. Firstly, we evaluated our portfolio against Venus as employed by Botoeva
et al. [8], i.e., using the same hyperparameter settings for the verifier. We refer to
this setup as default∗, as the MIP solver is left in its default configuration, while the
verification engine is deployed with optimised hyperparameter settings. We note that
the number of cores is equivalent to the number of parallel workers, which is set as a
hyperparameter of the verifier. More precisely, we were running Venus using 2 workers,
i.e., 2 cores per CPU available on our compute cluster, with the cutoff time set to
7 200 × 2 = 14 400 CPU seconds. In this setup, Venus employs 2 instances of the
MIP solver in parallel, while we ensured that each solver is using exactly 1 CPU core.
This way, we are giving the same amount of resources to the verifier and the portfolio.
It should be noted that for the ACAS Xu benchmark, we also ran Venus with the
hyperparameter settings reported by Botoeva et al. [8], however with different numbers
of workers. That is, we ran the verifier using 4 workers, 2 workers, and 1 worker, i.e.,
CPU core(s), to assess the effects of parallelism, and found CPU time to be constant
with regards to the number of workers running in parallel. We, therefore, consider each
of these baselines to be equally competitive and only report results for Venus running
with 2 active workers, i.e., on 2 CPU cores and, thus, similar to the number of cores
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Table 4.2: Timeouts, adversarial error and PAR10 scores for different configurations of the
MIP solver embedded in the Venus engine on the MNIST and ACAS Xu datasets. Note that
all approaches were given the same budget in terms of CPU time (the number of cores times
the cutoff time). Using our portfolio, we achieved better performance than the method of
[8]. Boldfaced values indicate statistically significant improvements according to a binomial
test with α = 0.05 for timeouts and error bounds, and a permutation test with the number of
permutations set at 10 000 and significance threshold of 0.05 for PAR10 scores. The asterisk
marks Venus runs using the hyperparameter settings suggested by Botoeva et al. [8], yet with
Gurobi at default.

Configuration Cores Cutoff Timeouts Adversarial Error PAR10
[Seconds] Lower Upper [CPU s]

Bound Bound
mnistnet
Default∗ 2 7 200 1.63% 70.33% 71.96% 1 975
Portfolio 2 7 200 0.58% 70.61% 71.19% 272

SDPdMLPA

Default 1 14 400 9.76% 14.36% 24.12% 6 534
Portfolio 2 7 200 6.10% 14.31% 20.41% 636

ACAS Xu
Default∗ 2 7 200 1.75% 20.34% 22.09% 1 314
Portfolio 2 7 200 1.17% 20.34% 21.21% 443

utilised by the portfolio.

As there is no optimal setting of Venus hyperparameters provided for the SDPdMLPA

classifier, we used Venus with default settings as the baseline for our configuration
experiments on this benchmark. In this setup, Venus is running with 1 active worker,
which uses the same overall time budget of 14 400 CPU seconds.

As Table 4.2 shows, the portfolio strongly outperformed Venus with default∗ settings.
On the mnistnet benchmark, it was able to certify a statistically significantly larger
fraction of instances, while reducing CPU time by an average factor of 7.26 on the
solvable instances (272 vs 1 975 CPU seconds). Furthermore, the portfolio strongly
reduced the number of timeouts (1.63% vs 0.58%) on this benchmark. More specifically,
the verifier timed out for 115 instances that were solved by the portfolio. On the other
hand, the portfolio reached the time limit on 10 instances, which could be solved by
the default. On 48 instances, both approaches resulted in timeouts; see Figure 4.4a for
more details.
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This baseline was also used to evaluate our portfolio approach on the ACAS
Xu benchmark and, as previously mentioned, employed the verifier using the same
hyperparameter settings as reported by Botoeva et al. [8], although with the number of
workers or CPU cores fixed at 2. Essentially, the portfolio was able to slightly improve
the number of timeouts and statistically significantly reduce CPU time by an average
factor of 2.97 on the solvable instances (443 vs 1 314 CPU seconds). In concrete terms,
the portfolio could solve 1 instance on which the default solver reached the time limit;
see Figure 4.4c. For clarification, we achieved comparable performance gains over
Venus running with 4 workers in parallel (443 vs 1 337 CPU seconds) as well as Venus

running with 1 worker (443 vs 1 306 CPU seconds).
On the SDPdMLPA benchmark, the default baseline, i.e., Venus with default

settings, was outperformed by the portfolio in terms of PAR10 (636 vs 6 534 CPU
seconds) as well as the fraction of timeouts (6.10% vs 9.76%). In this setup, the default
timed out on 379 instances solved by the portfolio (Figure 4.4b). On 15 instances, only
the portfolio reached the time limit. 597 instances were neither solved by the default
nor the portfolio. Lastly, the portfolio strongly improved on the upper bound (20.41%
vs 24.12%), which overall clearly demonstrates the strength of the portfolio approach.

4.5 Conclusions and Future Work

In this study, we have demonstrated the effectiveness of automated algorithm configu-
ration and portfolio construction in the context of neural network verification, thereby
providing an answer to the second research question (RQ2) of whether we can improve
the performance of a MIP-based verification system by leveraging automated algorithm
configuration techniques.

Applying these techniques to neural network verification is by no means a trivial
extension, due to the high running times and heterogeneity of the problem instances to
be solved. In order to address this heterogeneity, we constructed a parallel portfolio
of optimised MIP solver configurations with complementary strengths. The potential
of this method is supported by the notion of complementarity as explained in 3. Our
method advises on the ideal number of configurations in the portfolio and can be
used in combination with any MIP-based neural network verification system. We
empirically evaluated our method on two recent, well known MIP-based verification
systems, MIPVerify and Venus.

Our results show that the portfolio approach can significantly reduce the CPU
time required by these systems on various verification benchmarks, while reducing the
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Figure 4.4: Evaluation of our parallel portfolio approach for Venus on the MNIST dataset
(n=10 000) using weights from the SDPdMLPa and mnistnet classifiers, respectively, and
on the 172 property-network pairs from the ACAS Xu benchmark. Each dot represents a
problem instance and the penalised running time for that instance achieved by the verifier
with the embedded MIP solver at default (x-axis) vs our portfolio (y-axis). Overall, our
parallel portfolio achieved fewer timeouts than the baseline and lower CPU times (in terms of
PAR10 scores).
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number of timeouts and, thus, certifying a larger fraction of instances.

In more concrete terms, we strongly improved the performance of MIPVerify via
speed-ups in CPU time by an average factor of 4.7 on the MNIST classifier SDPdMLPA

from [93] and 1.61 on the MNIST classifier mnistnet from [8]. At the same time,
we were able to lower the number of timeouts for both benchmarks and tighten
previously reported bounds on adversarial error. For the Venus verifier, we achieved
even larger improvements, i.e., 10.3- and 7.26-fold reductions in average CPU time on
the SDPdMLPA and mnistnet networks, respectively. Beyond that, we strengthened
the performance of Venus on the ACAS Xu benchmark, attaining a 2.97-fold speedup
in average CPU time. Overall, our results highlight the potential of employing MIP-
based neural network verification systems with optimised solver configurations and
demonstrate how our method can consistently improve neural network verifiers that
make use of MIP solvers. At the same time, we note that our method is inherently
dependent on the default performance of the verifier at hand. In other words, we
acknowledge that this approach alone cannot scale existing methods to network sizes
that are completely beyond the capabilities of these methods. However, our approach
can significantly improve the running time of the verifier on the benchmarks it is able
to certify, and thus moves the boundary of network/input combinations accessible to
the verifier.

We see several fruitful directions for future work. Firstly, we plan to explore the use
of per-instance algorithm configuration techniques to further reduce the computational
cost of our approach. While our parallel portfolio approach is robust and makes good
use of parallel computing resources, judicious use of per-instance algorithm selection
techniques could potentially save some computational costs. We note that this will
require the development of grounded descriptive attributes (so-called meta-features)
for neural network verification, which we consider an interesting research project in its
own right.

The neural network verification systems we considered in this study have additional
hyperparameters. While our current approach focuses on the hyperparameters of the
internal MIP solver, in future work, we will also configure the hyperparameters at the
verification level. Due to the potential impact that this has on the MIP formulation
and therefore on the running time of a given instance, this poses specific challenges for
the algorithm configuration methods we use.

Finally, the portfolios we construct consist of multiple configurations of the same
verification engine. In light of the results presented in Chapter 3, we could also consider
heterogeneous portfolios that contain configurations of different verification engines,
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which could lead to further improvements in the state of the art in neural network
verification, and ultimately make it possible to verify networks far beyond the sizes
that can be handled by the methods we have introduced here.
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Chapter 5

Dynamic Algorithm Termination
for Branch-and-Bound-based
Neural Network Verification

As mentioned in previous chapters, much recent work has been concerned with the
development of more efficient verification algorithms, e.g., by employing the Branch
and Bound (BaB) method for solving the verification problem [22, 11, 109, 12, 27] or
by tightening bounds in the problem formulation using symbolic interval propagation
[8, 40, 110, 111] and abstraction [4, 99, 119, 35, 98] techniques. However, even in light
of recent developments, neural network verification remains a challenging and expensive
computational task, especially as network complexity and dataset size increase.

Recall that neural network verification can be divided into local and global veri-
fication [100]. As in previous chapters, we focus on local robustness verification in
this study. Local robustness verification typically considers a trained neural network,
along with a set of inputs and a verification property specification. Considering the
computational complexity of the verification problem, the required computational
resources can grow substantially with the size of the network to be verified and the set
of inputs.

We propose a novel approach enabling the efficient allocation of compute resources
during the verification procedure. Specifically, we introduce a method to classify
verification instances as solvable or unsolvable within a predefined time budget based
on cheaply computable features. Furthermore, we operationalise these predictions to
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terminate the verification procedure early for instances where a solution can not be
obtained within the given time budget. Thereby, we avoid spending compute resources
on attempting to verify instances that ultimately do not inform us about the robustness
of the network. We evaluated our approach on a broad set of state-of-the-art verification
algorithms and benchmarks, including benchmarks from recent VNN competitions
[10, 87, 3], and show that we can reliably terminate verification runs for instances that
are unsolvable within a given cutoff time without solving considerably fewer instances
overall. In summary, the contributions of this chapter are as follows:

• We present features of branch-and-bound-based neural network verification in-
stances that enable predictions about their solubility within a given time budget;

• we introduce a novel method based on those features that reliably identifies
instances that cannot be solved within a given time budget;

• we evaluate our method on a broad set of benchmarks and across multiple
verification tools;

• we show how this approach can be leveraged to terminate unsolvable instances
early in the verification process, leading to savings of 64% in terms of running
time on average with a comparable number of solved instances relative to the
current state-of-the-art approach.

5.1 Method

As previously explained, solving the neural network verification task is computationally
challenging. In addition, it is not known what makes certain instances harder to
solve than others. Therefore, it cannot be decided a priori whether an instance could
be solved successfully within a given time budget, potentially leading to ineffective
resource allocation; i.e., allocating compute time to unsolvable instances. In light of
this, we leverage running time prediction techniques to classify instances as solvable
or unsolvable within a given time budget. This allows us to greatly accelerate the
verification procedure, by ensuring that resources are only spent on solvable instances.

5.1.1 Problem Formulation

As we are interested in the task of terminating instances that cannot be solved within
a given time budget, we consider a binary classification problem. Hence, the vector y
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introduced in Chapter 2 contains as performance measures binary variables describing
whether an instance has been solved or not.

Our goal is to reduce the computational burden demanded by the verification
procedure, ensuring the most effective use of resources by not spending the full budget
on unsolvable instances. In addition, we need to avoid classifying solvable instances as
unsolvable; otherwise, the number of certified instances would be reduced, which might
lead to inaccurate conclusions about the robustness of a given neural network.

5.1.2 Dynamic Algorithm Termination for BaB-based Neural
Network Verification

As explained in Chapter 2, to perform running time prediction, we need to define a
feature space F from which we can obtain a list of features z characterising a problem
instance Specifically, we utilise cheaply computable features that, in part, relate directly
to the internal operations of the given verifier.

We distinguish between static and dynamic features, where the former are computed
only once and do not change during the solving process. Examples of static features
include the lower bound obtained by an incomplete verification method at the beginning
of the verification process. Conversely, dynamic features aim to capture the dynamically
changing state of the verification algorithm at any point in time; examples include the
current number of nodes in the BaB tree and the current global bounds. Generally,
static features reflect the inherent complexity of the verification instance, while dynamic
features capture the progress made thus far in solving the query. A detailed discussion
of the features we have developed is provided later in this section.

To best leverage the evolving nature of our dynamic features, we propose a novel
method that dynamically terminates verification queries when a classification model
determines that the given instance will not be solved in the remaining time budget. We
give a schematic overview of our method in Algorithm 1. The procedure is parameterised
by the frequency tfreq at which the current progress of the verification process is assessed
to predict whether the given instance will be solved in the remaining time, and by the
maximum allotted running time per instance, tcutoff. We refer to the points in time
at which the verification query is examined as a checkpoint. For each checkpoint, we
train a classifier Ct with t denoting the time of the checkpoint. Ct is trained on the
feature values of the verification instances in the training set at time t along with their
corresponding label indicating whether the instances were solved within tcutoff seconds.
In addition, we trained the classifier on verification instances from our training set that
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were successfully solved before the current checkpoint with their feature values when
the verification process was completed; thereby, the classifier can learn, which feature
values define a completed instance.

Furthermore, our proposed method is configurable via a confidence parameter θ,
which defines the threshold that the prediction value for the positive class must exceed
such that an instance is labelled accordingly. The incorporation of this parameter
ensures that a user can choose whether the algorithm should stop potentially unsolvable
instances as soon as possible (θ = 0.5) or whether, in case of doubt, more information
should be collected. The verification algorithm is then terminated only in case of a
highly confident classifier prediction (θ = 0.99). We note that θ can also be understood
as a tuning parameter between exploitation and exploration. Therefore, θ should be
chosen according to the user’s needs, prioritising either a substantial reduction of the
computational burden or a higher number of certified instances.

In summary, our method operates as follows. Given tfreq, tcutoff, θ, a verification
algorithm, a neural network and a training set of verification instances, we initially
collect feature values for each training instance at every checkpoint t by executing the
verification algorithm on each query for tcutoff seconds. In addition, we record whether
the instance was solved or not. Subsequently, we train a classification model Ct for
every checkpoint t on the collected data. During classification, given a verification
query, we start by executing the verification algorithm for tfreq seconds to collect an
initial set of features for the given instance. Thereafter, we employ the classifier for the
first checkpoint to predict whether the instance will be solved in the remaining time
budget. If the confidence of this prediction exceeds θ, we terminate the verification
run for the given instance and record its result as unknown; otherwise, we continue
the verification process for tfreq seconds and update the dynamic instance features
accordingly. Next, we query the classification model for the following checkpoint and
decide whether to terminate the run. We repeat this process until the verification
algorithm solves the instance under consideration or reaches the given cutoff time.

5.1.3 Static Instance Features

To perform running time prediction, we need to define instance features that allow us
to make performance predictions for a given algorithm. We begin by introducing our
proposed static features.

Prediction margin (∆). This feature is defined as the difference between the two
highest class scores. i.e., given a neural network f with input x0 ∈ X and corresponding
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Algorithm 1 Dynamic termination for BaB-based neural network verification

1: Input: Verification instance (x0, ϵ); maximum per-instance running time tcutoff;
dynamic termination frequency tfreq; set of classifiers C = {Ctfreq , C2tfreq , . . . , Ctcutoff};
confidence parameter θ; verification algorithm Verify((x, ϵ), tfreq) that pauses
after tfreq seconds to return the features and result of the instance.

2: Output: result or unknown
3: solved, features ← Verify((x0, ϵ), tfreq)
4: telapsed ← tfreq
5: while ¬ solved and telapsed < tcutoff do
6: if Ctelapsed(features) > θ then
7: return unknown
8: else
9: solved, features ← Verify((x0, ϵ), tfreq)

10: telapsed ← telapsed + tfreq
11: end if
12: end while
13: return solved

correct label y0 ∈ Y , we have ∆ := fy0
(x0)−maxy∈Y\y0

fy(x0), where fy refers to the
output for class y. The prediction margin can be seen as a proxy for the closeness of
the input image to the decision boundary. It heuristically captures how much change
in the input space is required to change the neural network’s prediction and, thus, the
likelihood of an adversarial attack succeeding. This feature has recently been used in
the context of adversarially robust model selection [64].

Initial Incomplete Bound. Each verifier we consider first attempts to solve the
verification instance using an incomplete method. We utilised the resulting global
upper and lower bounds as features.

Improved Incomplete Bound. If the initial problem bounds do not suffice to
solve the problem, Oval and αβ-CROWN follow up with a tighter bounding method to
further optimise last layer bounds. The initial and improved bounds give an estimate
of how much improvement on the lower bound is realisable through (incomplete) bound
optimisation methods. Furthermore, these bounds are the starting point for BaB and,
thus, indicate the improvements required during BaB for solving the problem.

Initial Percentage of Safe Constraints. While VeriNet does not employ bound
optimisation, the first call to the LP solver with the initial SIP bounds can already
determine that some (or all) linear equations are unsatisfiable; these output constraints
do then not have to be examined further during BaB. Thus, the percentage of initial
safe constraints also provides an indication of the additional computation VeriNet will
require subsequently.
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Adversarial Attack Margin. Each of the considered verifiers initially carries
out an adversarial attack that seeks to minimise the margin between the correct and
incorrect classes. If the attack remains unsuccessful, its output can still be utilised
to estimate the upper bound of the verification problem. Therefore, we included the
adversarial attack margin, i.e., the difference between the two highest scoring classes on
the adversarial candidate, as an estimation of the upper bound of the given verification
instance.

Number of Unstable Neurons. Lastly, we also included the absolute number of
unstable neurons in our feature set. This number does not only indicate how many
non-linearities have to be approximated but also bounds the maximum depth of the
BaB tree.

5.1.4 Dynamic Instance Features

The dynamic features of BaB-based verification instances are subject to change during
the BaB process, as they capture the progress made while solving the given problem
instance.

Branch Characteristics. We included the number of visited branches that are
already bounded as well as the total number of branches, also including those that
have been created through branch splits but still need to be bounded. We further
included the fraction of verified branches; these correspond to the leaves of the BaB
tree and do not need to be split further. Once this number reaches a value of 1, the
verification system has proven that the property holds.

Current Global Bounds. Furthermore, we included the current global bounds of
the BaB tree. When the MIP formulation of the problem was solved by αβ-CROWN, we
also recorded the resulting global bounds. This constitutes another way of capturing the
progress of the given query, as once any global bound changes its sign, the verification
process has been completed.

Depth of the BaB Tree. One important characteristic of the BaB tree that
indicates instance complexity is its current depth, as it indicates how many neuron
splits are present in the leaf nodes.

Number of GPU Batches. For Oval and αβ-CROWN, which perform the BaB
algorithm in batches on a GPU, we included the number of batches that have been
already computed. This feature enables a running time predictor to relate the BaB
features to the internal operations of the verifiers.

Batch Computation Time. In addition, we computed the time used for the
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computation of the last completed batch; this number indicates the computational
hardness of the problem instance at hand, also in relation to the execution environment
used for running the verifier. If feature collection occurs while a batch is still being
processed, we additionally considered the computation time already spent on that
batch.

5.1.5 Classification Model

For each checkpoint, we trained a random forest classifier with 200 decision trees and
otherwise default hyperparameter settings. It has been shown in the past that random
forests perform very well in the context of running time prediction tasks [48]. We also
experimented with automatic hyperparameter configuration using auto-sklearn [30],
but did not observe substantial improvements. Before training and classification, all
features were standardised, i.e., we removed the mean of each feature and scaled it to
have unit variance, using the mean and standard deviation of each feature over the
training set.

5.2 Experiments

We evaluated our approach on several benchmarks, which we will introduce in the
following, along with details on the performance data collection and feature computation
process.

Each benchmark was run on a compute cluster node equipped with two Intel Xeon
Platinum 8480+ processors with 56 cores and a cache size of 105MB, 2TB of RAM
and four NVIDIA H100 GPUs with 80GB of video memory, running Rocky Linux 9.4.
Each run utilised 28 CPU cores, one GPU and 448GB of RAM.

5.2.1 Benchmarks

We considered a wide and diverse set of benchmarks taken from the ERAN repository
[86, 99] and the VNN Competition [10, 87, 3], which have been commonly used by the
neural network verification community [60, 10, 87, 3, 111, 99].

For our evaluation, we included two usage scenarios. First, we considered an
approach aligned with an end-user’s needs in assessing the robustness of a neural
network. Here, we verified the correctly classified images from the first 1000 test
set instances. We also included a competition scenario, where we generated problem
instances according to the VNN Competition instance generation protocols.
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In the first scenario, we included two convolutional (Conv Big and Conv Small)
and two fully connected networks (5 100 and 8 100 ) trained on the MNIST dataset
that were taken from the ERAN repository. For the CIFAR-10 dataset, we considered
a small ResNet proposed by Wang et al. [111] (ResNet 2B). We verified the first 1000
test images against l∞ perturbations with ϵ-values chosen in line with those used in
previous studies [60, 111, 96].

For the second scenario, we included benchmarks directly taken from different
editions of the VNN competition [10, 87, 3]. We employed the instance generation
scripts provided in the competitions to generate 500 instances per benchmark that
follow specific selection criteria such as correct classification or robustness against
adversarial attacks. Concretely, we included the Marabou, Oval21, SRI ResNet and
ViT benchmarks that consist of networks trained on the CIFAR-10 dataset. If the
benchmarks included multiple networks or ϵ value specifications, we chose the configu-
rations that yielded the most timeouts in the VNN competition, i.e., the presumably
most challenging problem instances.

Lastly, we included two benchmarks from the VNN Competition that consider the
more complex CIFAR-100 and Tiny ImageNet datasets [87]. For both datasets, we
chose the medium-size models for our evaluation. With this collection of networks and
benchmarks, we ensured to include instances that have been studied extensively in the
literature and that are challenging to solve by state-of-the-art verification tools.

5.2.2 Evaluation Setup

We first collected all performance data and feature values by running the verification
tools and saving the result of the verification query, the consumed running time and
the values of the considered instance features during the verification procedure. In
Table 5.1, we report the number of solved instances and the running time for each
verification tool and benchmark Missing values indicate that the benchmarks could not
be used with the respective verification tools, due to unsupported network architectures.

We then evaluated our method by simulating it on the collected data. Generally,
we followed a 5-fold cross validation protocol. To ensure that our training and testing
sets were representative, we included in each fold the same proportion of verification
instances solved before the first checkpoint, after the first checkpoint and unsolved
instances; however, we only report metrics on instances that ran beyond the first
checkpoint, as otherwise, we would predict timeouts after the instance has already
been solved.

94



Chapter 5. Dynamic Algorithm Termination for BaB-based NNV

αβ-CROWN VeriNet Oval

Benchmark # Inst. # Solved Time
[GPU h] # Solved Time

[GPU h] # Solved Time
[GPU h]

5 100 960 868 31.44 580 66.65 430 90.77
8 100 947 767 41.32 501 76.64 387 94.69
Conv Big 929 918 1.50 868 11.29 842 15.34
Conv Small 980 979 1.26 931 11.96 958 6.06
ResNet 2B 703 619 15.16 576 22.72 - -
Marabou 500 193 51.73 176 54.28 187 53.32
Oval21 500 210 50.47 158 58.45 201 52.50
ViT 500 251 41.86 - - - -
SRI ResNet A 500 198 51.74 133 62.01 - -
CIFAR-100 500 361 24.73 279 40.25 - -
Tiny ImageNet 500 421 14.63 356 29.47 - -

Table 5.1: Overview of benchmarks used in our evaluation, including the number of certified
instances and running time for each verification tool. Instances are from the first 1000 test
set images for the first 5 benchmarks and otherwise from the VNN Competition [10, 87, 3]
instance selection procedure. All experiments used a per-instance timeout of 600 seconds and
GPU acceleration.

We evaluated the performance of our method in terms of accuracy, true positive
rate (TPR) and false positive rate (FPR). The TPR reflects the fraction of correctly
classified timeouts out of all unsolved instances while the FPR indicates the fraction
of solved instances wrongly classified as timeouts out of all solved instances. On the
convolutional networks for αβ-CROWN, some folds did not include true negatives or
true positives. If these folds were used as the holdout set, we excluded them when
computing the average TPR and FPR. In addition, we also compared our method to
the standard verification procedure in terms of the overall number of solved instances
(including those completed before the first checkpoint) and the required running time.

To run the verification algorithms, we used the configurations provided by the
respective authors for their entries in the VNN Competitions. We chose a maximum
running time of 600 seconds in wall-clock time per instance (tcutoff = 600s) and
predicted whether the instance will be solved within the remaining time budget every
10 seconds (tfreq = 10s). Lastly, we set the decision threshold θ to 0.99 to ensure that
our method solves as many instances as possible.
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αβ-CROWN VeriNet Oval

Benchmark Acc. TPR FPR Acc. TPR FPR Acc. TPR FPR

5 100 0.99 0.95 0.00 0.89 0.87 0.04 0.97 0.96 0.00
8 100 0.99 0.99 0.00 0.92 0.91 0.02 0.99 0.99 0.07
Conv Big 0.47 0.43 0.00 0.88 0.74 0.00 0.78 0.75 0.05
Conv Small 0.82 1.00 0.20 0.81 0.39 0.00 0.79 0.09 0.00
ResNet 2B 0.98 0.98 0.00 0.77 0.71 0.00 - - -
Marabou 0.99 0.99 0.10 0.93 0.95 0.53 0.96 0.96 0.13
Oval21 0.97 0.98 0.05 0.89 0.88 0.07 0.96 0.95 0.03
ViT 1.00 1.00 0.00 - - - - - -
SRI ResNet A 0.99 1.00 0.02 0.91 0.90 0.00 - - -
CIFAR-100 0.99 1.00 0.03 0.85 0.79 0.00 - - -
Tiny ImageNet 0.98 0.99 0.03 0.88 0.67 0.00 - - -

Table 5.2: Results for timeout prediction with continuous feature collection in terms of
accuracy, true positive and false positive rate as averages over five folds. We display results for
θ = 0.99, i.e., the confidence threshold that must be reached before an instance is terminated.

5.3 Results and Discussion

In the following, we present results from our experimental evaluation of our dynamic
algorithm termination method for the various verification algorithms we considered,
and we show how our approach can be leveraged to allocate available resources more
efficiently by terminating instances that will result in timeouts earlier in the verification
process.

5.3.1 Classification Metrics

We report the classification metrics of our proposed method in Table 5.2 as averages over
all five folds. We obtained very high TPR scores while maintaining a FPR close to 0 for
most verifiers and benchmarks. Concretely, on average, our classifier correctly identified
85% of timeouts while incorrectly classifying 5% of solvable instances. Noticeably,
across all verifiers, there were several benchmarks with TPRs above 90% and FPRs of
almost zero. Lower TPR scores on the Conv Big and Conv Small benchmarks were
due to the relatively small number of timeouts occurring in these benchmarks, leading
to a lack of training examples for this class. Similarly, we observed higher FPR scores
for the Marabou benchmark. This is likely due to the small number of queries solved
after the first checkpoint, again resulting in less diverse training data.
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αβ-CROWN VeriNet Oval

Benchmark Time [GPU h] # Solved Time [GPU h] # Solved Time [GPU h] # Solved

5 100 21.97 (70%) 868 (±0) 18.81 (28%) 576 (-4) 7.88 (9%) 430 (±0)
8 100 17.86 (43%) 766 (-1) 16.75 (22%) 500 (-1) 3.57 (4%) 386 (-1)
Conv Big 1.01 (68%) 918 (±0) 5.48 (49%) 868 (±0) 6.36 (41%) 841 (-1)
Conv Small 1.00 (80%) 969 (-10) 11.30 (94%) 931 (±0) 6.08 (100%) 958 (±0)
ResNet 2B 4.30 (28%) 619 (±0) 10.45 (46%) 576 (±0) - - - -
Marabou 2.47 (5%) 192 (-1) 6.36 (12%) 168 (-8) 4.97 (9%) 185 (-2)
Oval21 7.57 (15%) 207 (-3) 15.04 (26%) 155 (-3) 10.02 (19%) 199 (-2)
ViT 2.00 (5%) 251 (±0) - - - - - - - -
SRI ResNet A 3.86 (7%) 197 (-1) 8.71 (14%) 133 (±0) - - - -
CIFAR-100 5.10 (21%) 360 (-1) 19.37 (48%) 279 (±0) - - - -
Tiny ImageNet 4.58 (31%) 420 (-1) 19.92 (68%) 355 (-1) - - - -

Table 5.3: Results for dynamic termination of verification queries with θ = 0.99. We
display the running time and the number of solved instances accumulated over five folds. In
parentheses, we provide the fraction of running time used and the difference in the number of
solved instances compared to the standard verification procedure.

5.3.2 Dynamic Algorithm Termination

We display the results of our method in terms of total cumulative running time and
number of solved instances aggregated over all folds for each benchmark and verifier in
Table 5.3.

Most importantly, we obtained substantial speed-ups, while only a small amount
of solvable instances was terminated prematurely. On average, our approach solved
comparably many instances in 36% of the original running time. Notably, the largest
acceleration occurred on the Marabou benchmark, where up to 95% of the standard
running time could be saved. However, we also observed moderate penalties in terms of
the absolute difference of solved instances for the Marabou benchmark on VeriNet and
the Conv Small benchmark on αβ-CROWN, due to the reasons stated earlier. Moreover,
on several benchmarks, all solvable instances were certified using substantially reduced
running time; e.g., the 5 100 benchmark for Oval and αβ-CROWN or the ResNet A
benchmark for VeriNet.

Overall, we found that our approach substantially improves neural network verifica-
tion in terms of running time of several verification algorithms on a broad range of
benchmarks.

5.4 Conclusions and Future Work

In this study, we have shown that the computational resources demanded by neural
network robustness verification can be greatly reduced by identifying and terminating
runs on verification instances that will not be solved within their remaining time budget.
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This answers the third research question (RQ3) of whether and to which extent we
can predict the running time of a given verification algorithm for a specific problem
instance: although it seems impossible to precisely extrapolate the running time to
previously unseen instances, we show that a timeout can be reliably predicted for a
given instance and time budget. Concretely, we showed that our method accelerates
the verification procedure by 64% on average compared to the current state-of-the-art
approach across a diverse set of benchmarks from the verification literature, while
certifying a comparable number of instances. To predict whether an instance will be
solved, we leveraged running time prediction techniques that employ novel static and
dynamic features capturing both characteristics of the verification instance as well as
features related to the internal operations of the given verifier.

The success of the proposed method was enabled by several design decisions. First,
we leveraged the evolving nature of our dynamic features by regularly predicting
timeouts throughout the verification procedure. Moreover, we included a confidence
parameter θ that controls the threshold the prediction value of the timeout class must
exceed before an instance is terminated. Using this parameter, a user can adjust the
method to either prioritise savings in compute resources or a higher number of solved
instances. We show that for a high value of θ our method substantially accelerates
the verification procedure while solving comparably many instances as the standard
verification.

In future work, we seek to extend our approach to further BaB-based verification
approaches (e.g., MN-BaB). Furthermore, we plan to investigate if our proposed
features could be applied in other contexts, such as algorithm selection or satisfiability
prediction. Lastly, we are interested in further studying the running time prediction
capabilities of our features, possibly enabling empirical scaling models of BaB-based
verification.
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Chapter 6

Adversarially Robust Model
Selection via Racing

In the previous chapters, we have introduced several meta-algorithmic approaches to
formally verify the robustness of neural network models against perturbations in their
inputs, such as the ones that occur in adversarial attacks. Nonetheless, this particular
verification task remains computationally challenging.

In addition to other performance metrics of a neural network model, such as
accuracy, one can compute robust accuracy by counting the fraction of inputs that
are provably robust with regard to the given property. However, this adds significant
overhead to the evaluation procedure, due to the high computational demands incurred
by most formal verification algorithms, as explained earlier (see, e.g., Chapter 2. This
overhead grows substantially if multiple models are considered and compared against
each other in (robust) performance; this challenge is not only faced by practitioners
(e.g., during model evaluation) but also encountered during Neural Architecture Search
(NAS), where the goal is to select a suitable model from a large search space (see, e.g.,
Elsken et al. [28]). In this context, adding robust accuracy as a selection criterion
would hardly be feasible due to the large computational costs.

In this chapter, we seek to improve the efficiency of local robustness verification
from a previously unexplored, meta-algorithmic point of view. Specifically, we propose
a method to efficiently evaluate and compare the robustness of different neural network
models (or variations of the same model) against adversarial attacks. Moreover, we
consider the problem of selecting the most robust model, i.e., the model with the
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highest certified robust accuracy, from a given set of trained neural networks, whilst
making the most efficient use of the computational budget.

In a nutshell, our proposed method employs a racing algorithm, in which a given
set of neural network models are subjected to local robustness verification with respect
to adversarial attacks. After each input iteration, the performance of each network (in
terms of robust accuracy) is measured, and the verification procedure stops for a given
network as soon as its robust accuracy is lower than the robust accuracy obtained by
its competitors. Racing approaches are well studied and have already been successfully
employed in other, resource-intense domains, such as hyperparameter optimisation
[45, 7].

Complementary to the racing approach, we propose a novel sampling strategy based
on the likelihood of a given input instance being adversarially robust. Essentially, this
strategy prioritises input instances during the verification procedure that are most
likely to expose vulnerabilities of the neural network model and, therefore, provide
valuable insights into its robustness after fewer input iterations of the verification
procedure and, hence, at a lower computational cost. At the same time, it reduces
the risk of selecting sub-optimal models, which might show higher robust accuracy
than other candidate models after verifying some randomly sampled input instances
but might perform worse overall. In fact, when using random sampling, the only way
to mitigate this risk would be to increase the number of input iterations – with the
associated costs involved.

To enable the proposed sampling strategy, we must define or estimate the likelihood
of a network input being adversarially robust. In our case, this involves estimating the
proximity of a network input to the decision boundaries of the model, captured by
means of ∆-values, which will be explained in the following. Using this strategy, we can
bias the sampling towards inputs for which adversarial attacks are most likely to occur.
Although the relation between adversarial examples and the decision boundary of a
neural network has been extensively studied [23, 120, 20, 38, 74], we are not aware of
any existing work leveraging these insights in the context of local robustness verification
procedures. In summary, the main contributions of this chapter are as follows:

• We propose an efficient model selection method based on a novel heuristic that
quantifies the likelihood of a network being adversarially robust with respect to
a given input;

• we introduce ∆-values, which serve as a proxy for the distance of an input instance
to the decision boundaries of a neural network model;
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• we provide statistical evidence demonstrating significant differences in the empiri-
cal cumulative distribution of ∆-values between robust and non-robust instances;

• we evaluate our method on two diverse sets of neural networks trained on the
MNIST and CIFAR-10 datasets, achieving a 108-fold reduction in cumulative
running time for MNIST networks and a 42-fold reduction for CIFAR-10 networks.

6.1 Adversarially Robust Model Selection

Given a set of neural network models N = {N1, N2, . . . , Nm} and a set of input
instances X , the objective is to identify the model N∗ ∈ N that maximises robust
accuracy with respect to adversarial attacks. Notice that robust accuracy is computed
by verifying all instances x ∈ X , measuring the fraction of cases in which the model
correctly classifies an instance and adversarial input perturbations do not change the
original output produced by the model.

To address this problem, we propose a method with two main components: a racing
approach and a sampling strategy based on a sorting mechanism for the input instances
on which the network is verified. We considered two variants of the racing approach.
The first one is a naïve racing approach in which the best-performing candidate models
are selected at every input iteration, whereas the second one represents an adaptation
of the F-Race algorithm [7], which gathers statistical evidence against some candidate
models before they are discarded. Both variants of the racing approach as well as our
proposed sorting mechanism will be further explained in the following.

6.1.1 Naïve Racing Approach

Generally, the idea of a racing approach is to evaluate a finite set of candidate models
while allocating the computational resources among them in a systematic way (see,
e.g., [79]). To do so, the racing approach verifies step-by-step each candidate model
in the given set, where in this context, a step corresponds to an input instance on
which the neural network models are verified. At each step, all the remaining candidate
models are verified, possibly in parallel, and candidate models are discarded once they
are outperformed by others, i.e., once one or more networks have obtained a higher
robust accuracy.

An overview of this approach, which we refer to as the naïve racing approach for the
remainder of this chapter, can be found in Algorithm 2. After each iteration over the
input instances, it identifies the model with the highest robust accuracy (determined
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Algorithm 2 Racing approach for robust model selection

Require: Trained neural network models N = {N1, N2, . . . , Nm}; Network input
instances X = {x1, x2, . . . , xn}; Verification algorithm Verify(Ni, xj) that returns
sat, unsat or unsolved ;

Ensure: Model with highest robust accuracy: Nselected
1: C ← N
2: ui ← 0 with i = 1, 2, . . . , |N |
3: for all xj ∈ X do
4: for all Ni ∈ C do
5: if Verify(Ni, xj) is unsat then
6: ui ← ui + 1
7: end if
8: end for
9: C ← {Ni | i ∈ argmaxi{ui} }

10: end for
11: Randomly select one element Nselected from set C
12: Return Nselected

based on ui which represents the number of unsat instances for network Ni) and updates
the set of candidate models C accordingly. Notice that the selection criterion on line 9
can by virtue of the arg max operator return a set of multiple networks. Moreover, ui

increases whenever a network Ni is found to be robust, i.e., unsat, w.r.t. to a given
input. On the other hand, an instance that is misclassified by the model would be
considered as sat. The algorithm stops once all input instances have been processed,
and the final output is the model with the highest determined robust accuracy.

6.1.2 F-Race

An important aspect of the model selection problem outlined above is that it can be
viewed as a stochastic problem. In fact, although the process of formally verifying
the behaviour of a neural network model with respect to certain input instances is
deterministic (i.e., multiple runs on the same input instance will always lead to the
same result), its outcome depends on the particular instance to which it is applied.
Concurrently, the specific instance being verified can be regarded as having been
sampled from an underlying probability distribution, which may be unknown. For the
naïve racing approach, this could lead to models being prematurely discarded after
a few input iterations, even if that model would achieve the highest robust accuracy
overall, i.e., if it was verified with respect to all available input instances.

To address this stochasticity, the authors of [7] proposed F-Race, a widely known,
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Figure 6.1: Empirical cumulative probability distribution of normalised ∆-values for sat,
unsat and unsolved instances for the considered MNIST and CIFAR networks, respectively.
Notably, the plot shows a statistically significant difference between the empirical distribution
functions of ∆-values for sat and unsat instances. Specifically, for both MNIST and CIFAR
networks, sat instances generally have smaller ∆-values than unsat instances. Statistical
significance is determined by means of a Kolmogorov–Smirnov test with a significance threshold
of 0.05.

state-of-the-art racing algorithm. F-Race can be considered an extension of the naïve
racing approach, where the naïve selection criterion (line 9 in Algorithm 2) is replaced
with a statistical test. Concretely, after each iteration over the input instances, F-Race
performs a statistical test, typically, the non-parametric Friedman test, to determine if
there are significant differences in the number of unsat instances per neural network
model. If the null hypothesis is rejected or, in other words, significant differences exist,
F-Race applies post-tests to identify the models which are performing statistically
significantly worse than the best, and updates C accordingly. The algorithm stops
when all input instances have been processed, and the final output is the model with
the highest robust accuracy.

Since we are interested in the fraction of instances that are unsat, we used Cochran’s
Q test to determine if there are significant differences among the unsat counts for each
of the networks. Notice that the Cochran’s Q test is identical to the Friedman test but
applicable when the responses are binary. When only two candidate networks remain,
we used the McNemar test (without continuity correction), which can be seen as a
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special case of Cochran’s Q test [102]. Any significant Cochran’s Q (or McNemar)
statistic is followed by Dunn’s post-hoc test with a significance threshold of p= 0.05,
and networks are selected if they have a significantly higher certified robust accuracy
than their competitors.

6.1.3 Sorting Mechanism

In addition, we propose a sampling strategy based on a mechanism that sorts the
considered input instances according to their likelihood of being adversarially robust.
The key idea behind this mechanism is that by exposing a neural network model to
inputs that are least likely to be adversarially robust, we can more quickly gather
insights into its vulnerability or, similarly, its robustness. In other words, if we initially
verify a neural network model on its most “challenging” input instances, i.e., instances
on which it is most likely not robust, but obtain robustness guarantees for these
instances, we can at least heuristically assume the model to also be robust with respect
to the remaining instances.

To enable this sorting mechanism, we must define or estimate the likelihood of
a neural network model input being adversarially robust. In our case, this involves
estimating their distance from the decision boundaries of the model, captured by means
of network outputs. Intuitively, if an input lies very close to the boundary between two
classes, it can be assumed that small perturbations, such as those applied to adversarial
examples, have a higher chance to change the prediction made by the model.

In this study, we estimate the distance to an adjacent class boundary as the difference
between the neural network output corresponding to the most likely class and that corre-
sponding to the second-most likely class, and we refer to this difference as ∆. Formally,
we define ∆ := max({y1, y2, . . . , yn}) − max({y1, y2, . . . , yn} \ max({y1, y2, . . . , yn})),
where yn refers to the network output for a given class n. Based on the resulting
∆-values, we can, for each neural network model individually, sort the input instances
in an non-decreasing order, where the smaller the value of ∆, the closer we assume an
instance to lie to an adjacent class boundary.

6.2 Setup of Experiments

We compiled two sets of neural network models: one set consisting of 31 neural networks
trained on the MNIST dataset and one set containing 27 neural networks trained on
the CIFAR-10 dataset. All networks were taken from the repository of the ERAN
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verification system [85, 96, 99, 97, 98] and greatly vary in terms of architecture, training
method as well as robust accuracy. Details of the considered networks can be found
in the supplementary material. We verified each network for local robustness with
respect to the first 100 instances in the test set of the MNIST and CIFAR-10 datasets,
respectively.

To verify the MNIST networks, we used the state-of-the-art complete CPU-based
verification algorithm VeriNet [40] with a perturbation radius of ϵ = 0.04, which lies
well within the range of commonly chosen values for ϵ when verifying networks trained
on MNIST [114, 8, 109]. Verification queries ran with a time budget of 3600 seconds
on a cluster of machines equipped with Intel Xeon E5-2683 CPUs with 32 cores, 40
MB cache size and 94 GB RAM, running CentOS Linux 7.

To verify the more challenging CIFAR networks, we used αβ-CROWN, a state-of-
the-art complete GPU-accelerated verification method [111]. For these networks, we
verified local robustness with ϵ = 0.008, a value in line with commonly chosen values
of ϵ for networks trained on CIFAR (see, e.g., [87]). Again, all verification queries
ran with a time budget of 3600 seconds on machines equipped with NVIDIA GeForce
GTX 1080 Ti GPUs with 11 GB video memory. Overall, the verification of the CIFAR
networks used in our study consumed 558 hours in GPU time, whereas the verification
of the MNIST networks demanded a total of 1380 CPU hours.

We note that, although the verification algorithms presented above are complete,
they were sometimes unable to solve an instance due to time or memory limitations;
we report such instances as unsolved.

6.3 Empirical Results

In the following, we will compare our proposed selection method against the F-Race
approach, the naïve racing approach as well as selection based on exhaustive evaluation.
The latter represents the conceptually simplest baseline for selecting the most robust
model from a given set of neural network models. Using this approach, each model is
verified with respect to all available input instances during the verification procedure.
At each input iteration, the candidate model with the highest certified robust accuracy
is selected as the incumbent; i.e., the model that would be returned if the process
were terminated at the given iteration. Differently from the racing approaches, the
exhaustive evaluation approach does not eliminate any candidate models during the
selection process; therefore, when run to completion, it will always achieve a regret of
zero.
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Figure 6.2: Number of candidate models as determined by each method after every input
iteration. For the three methods that do not use the sorting mechanism, the line represents
the average number of candidate models over 200 random input orders, each with different
random seeds, along with along with the respective 95% confidence intervals. Clearly, naïve
racing, coupled with our proposed sorting mechanism, reduces the number of candidates
after substantially fewer input iterations than other methods. Notice that selection based on
exhaustive evaluation does not eliminate models from the set of candidates, which, therefore,
does not decrease in size.

We evaluated each method in terms of cumulative running time and regret. The
former describes the total running time consumed by the verification algorithm until
all given input instances have been processed and the most robust model has been
determined. Regret, in the context of model selection, describes the difference between
the performance of the selected model and the performance of the best model that
could have been chosen based on complete and perfect knowledge. In other words, it
represents the loss incurred by selecting a sub-optimal model.

Formally, the regret R is defined as follows. Suppose we have a set of candidate
models C = {C1, C2, . . . , Cn}, and we want to select one model from this set based on
certified robust accuracy. Let Cbest be the best model in the set, i.e., the model with
the highest certified robust accuracy ra. Then, R := ra(Cbest)− ra(Cselected), where
ra(Cbest) represents the robust accuracy of the best model and ra(Cselected) the robust
accuracy of the selected model.
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Figure 6.3: Regret achieved by the considered methods, where regret describes the difference
between the performance of the selected model and the performance of the best model that
could have been chosen given all available information. For methods not using the sorting
mechanism, the regret was averaged over 200 random input orders, each with different random
seeds, and is shown with a 95% confidence interval. The plots show that naïve racing, coupled
with our proposed sorting mechanism, achieves optimal regret with fewer input iterations
than other methods.

6.3.1 Local Robustness at the Decision Boundary

First of all, we investigated the relationship between the local robustness of a neural
network model and the estimated distance of an input instance from the decision
boundary of the model. More specifically, we examined the empirical cumulative
probability distribution of ∆-values across all considered models, giving rise to 3100
individual verification problem instances for MNIST and 2800 for CIFAR. Remember
that ∆-values serve as a proxy for the distance of an instance from the closest adjacent
class boundary. We normalised these values per network under consideration.

The empirical cumulative distribution of the ∆-values is visualised in Figure 6.1.
Notice that some instances could not be verified due to timeouts or memory limitations;
we show these instances as unsolved. The plots clearly show that sat instances, i.e.,
instances for which an adversarial example could be found, tend to have a smaller
∆-value than those that are unsat, i.e., robust. The difference in distributions is
determined as statistically significant by means of a Kolmogorov–Smirnov test with a
standard significance threshold of 0.05.
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Figure 6.4: Regret as a function of cumulative running time for each of the considered
methods. Running time represents wall-clock time on the machine on which the experiments
were carried out. For methods not using the sorting mechanism, the regret was averaged
over 200 random input orders, each with different random seeds, and is shown with a 95%
confidence interval. The plots show that naïve racing, coupled with our proposed sorting
mechanism, achieves optimal regret while using substantially less compute time than other
methods. Each line ends once a specific method has processed all given input instances.

At the same time, Figure 6.1 shows that there exist instances, which are found to
be sat despite having a relatively large ∆-value, i.e., a ∆-value close to the end of the
(normalised) range of values. Upon further investigation, we found that for MNIST,
such instances occurred for 12 out of the 31 neural network models we considered
and for 15 out of the 27 CIFAR networks. Notice that for these models, no instance
was found to be robust, which indicates that large ∆-values can occur also for sat
instances if a neural network model generally suffers from poor robustness. However,
this observation does not affect the performance of our proposed selection method, as
models which are non-robust with respect to any input instance would be discarded
from the set of candidate models early in the selection process regardless of their
∆-value and, hence, the sorting of input instances. Notice that when removing these
neural network models from the set, the difference in ∆-values between sat and unsat
instances grows even larger; more details can be found in the supplementary material.
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6.3.2 Evaluation of Our Proposed Selection Method

We evaluated our proposed selection method, naïve racing coupled with the sorting
mechanism, in terms of cumulative running time and regret, and compared its perfor-
mance against the following three baselines: (i) F-Race, (ii) naïve racing without a
sorting mechanism and (iii) selection based on exhaustive evaluation. For methods that
do not employ the sorting mechanism (i.e., all baselines), we repeated the selection
process 200 times, where each time the order of the input instances was based on a
different random seed. We report the average running time over all runs, along with
the respective 95% confidence intervals.

Figure 6.2a displays the size of the set of candidate networks trained on the MNIST
dataset throughout the selection process. It shows that our proposed selection method
reduces the number of candidate models after fewer iterations compared to each
considered baseline. At the same time, for the exhaustive evaluation approach, the
number of considered models remains constant, resulting in a larger number of queries
that need to be performed at every input iteration.

As the number of candidate models reduces very quickly, it could be assumed that
the aggressive nature of our selection method might lead to a sub-optimal outcome
of the model selection process. We investigated this potential trade-off and show
the results in Figure 6.3a. As can be seen, every method reached an optimal regret,
indicating that the significant speed-up does not necessarily compromise on the quality
of the selection process. However, we note that some of the MNIST networks were
found to be fully robust. These are, consequently, always selected by any of the selection
methods, even those that are more aggressive. Lastly, notice that F-Race eliminates
candidate models based on statistical evidence, which can lead to models being selected
that are less robust than others but where this difference is not found to be statistically
significant at the given iteration.

We also tested our method on networks trained on the more challenging CIFAR
dataset. Neural networks trained on this dataset are generally more difficult to verify
than those trained on the MNIST dataset [71]. Figure 6.2b shows the size of the set of
candidate CIFAR networks throughout the selection process. Again, we found that our
proposed selection method eliminates candidate models after fewer iterations compared
to other methods. Concurrently, the difference between the naïve racing approach with
and without the sorting mechanism is much smaller than the difference observed on
MNIST networks.

However, Figure 6.3b shows the advantage of the sorting mechanism: the naïve
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racing approach using the sorting mechanism very quickly converges towards an optimal
regret, while other methods either require substantially more iterations or do not reach
the optimum at all. In fact, on this set of models, the naïve racing approach without
the sorting mechanism always resulted in a sub-optimal model choice. Overall, these
results clearly demonstrate that our new method can effectively select the most robust
model, and does so in a more efficient way than F-Race, which discards models only
after it obtained statistical significance between the robust accuracy of the candidate
models.

Lastly, we studied in more detail the efficiency of our method compared to the
baselines we considered, in terms of regret achieved for a specific time budget. This is
visualised in Figure 6.4a for MNIST networks and Figure 6.4b for CIFAR networks.
Notably, these plots reveal that for both sets of models, our method selects the best-
performing, i.e., most robust model while demanding less compute time than any of the
considered baselines, especially selection based on exhaustive evaluation. In fact, for
MNIST networks, the cumulative running required to complete the selection process is
reduced by several orders of magnitude, i.e., a 108-fold speedup factor, when compared
to selecting based on exhaustive evaluation (1380.93 vs 12.83 hours). Furthermore, for
CIFAR networks, our selection method achieved a 41-fold speedup compared to the
exhaustive evaluation approach (558.44 vs 13.18 hours). Generally, this decrease in
cumulative running time occurs because our selection method iteratively eliminates
models from the set of candidates, subsequently reducing the number of verification
queries in the following iterations, as previously explained. We note that the number
of verification queries directly depends on the number of models, which decreases
throughout the selection process.

These results highlight that our proposed selection method is well-suited for scenarios
in which computing resources are limited, as it is likely to select, within any given
amount of running time, models that are more robust than those determined by the
baselines considered in our study.

6.4 Conclusions and Future Work

In this chapter, we have demonstrated the effectiveness of advanced model selection
techniques in the context of neural network verification. Specifically, we studied the
problem of selecting the most robust neural network model from a given set of models,
whilst reducing the compute time needed to obtain robustness certificates for the given
input instances.
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To enable our proposed selection method, we introduced a novel sorting mechanism
based on the likelihood of an input instance being robust with respect to adversarial
input perturbations. This likelihood is captured by means of ∆-values, which serve
as a proxy for the distance of an input instance to the model decision boundaries,
and we present statistical evidence indicating significant differences in the empirical
cumulative distribution of these values for robust and non-robust instances. Overall,
our method guides the allocation of computing resources required to perform local
robustness verification towards adversarially robust models and can, in principle, be
used in combination with any verification system.

We empirically evaluated our method on two diverse sets of 31 and 27 neural
networks, trained on the MNIST and CIFAR-10 datasets, respectively. Our results
clearly show that our proposed model selection method significantly reduces the
cumulative running time required to select the most robust neural network model from
these sets. Thereby, we provide an answer to the fourth research question (RQ4) of
how to efficiently select the neural network model from a given set of models that
achieves the highest certified robust accuracy. Specifically, compared to the exhaustive
evaluation approach, our method achieved a speedup factor of 108 for the set of MNIST
networks and a speedup factor of 42 for the set of CIFAR networks while still selecting
the most robust model.

In future work, we plan to apply our method to other verification tasks (e.g.,
robustness verification under bias field perturbations), network architectures and
datasets, and to perform a systematic analysis of the relationship between ∆-values and
the robustness of neural network models. In addition, we are interested in the precise
relationship between the ∆-value and the distance to the nearest decision boundary.
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Chapter 7

Conclusions and Outlook

In this chapter, we revisit the research questions presented in Chapter 1 and provide
a detailed discussion on how each question has been addressed. Lastly, we discuss
directions for future research.

7.1 Answers to Research Questions

In Chapter 1, we presented four research questions that guided the exploration and
structure of this thesis. In the following, we will revisit each research question, outlining
the methods we used to address them and summarising our key findings.

RQ1: What constitutes the state of the art in neural network verification?

In Chapter 3, we performed a comprehensive performance analysis of various CPU-
and GPU-based neural network verification methods and revealed an algorithmic
landscape characterised by significant performance diversity across different types of
verification problem instances. From this study, we concluded that no single verifier
consistently outperforms other methods in every scenario, challenging the notion of a
universally superior algorithm within the neural network verification domain. Instead,
we observed high levels of complementarity, i.e., instances solved by one verifier that
other verifiers could not solve and vice versa, quantified by means of marginal con-
tribution and Shapley values. Moreover, these findings highlight the complex nature
of neural network verification problems and suggest the usage of algorithm portfolios
for optimal verification outcomes. Notice that these findings are in line with those for
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other NP-hard problems; e.g., the work of Leyton-Brown et al. [70].

RQ2: How can we leverage automated algorithm configuration techniques to improve
the performance of a MIP-based verification system?

In Chapter 4, we investigated the application of automated algorithm configuration
techniques to enhance the operational efficiency of MIP-based verification systems.
Notably, we observed strong heterogeneity among different problem instances, which is
not handled well by standard configuration approaches. Instead, we employed advanced
portfolio construction techniques, which combine different solver configurations with
complementary strengths into a parallel portfolio. This portfolio runs the solver config-
urations in parallel, stopping each configuration as soon as one of them has returned
a solution. This implicitly ensures the we always benefit from the best-performing
algorithm in the portfolio. Notably, we achieved substantial improvements in terms
of running time and an increased number of successfully solved instances, despite the
increased overhead demanded by the parallel portfolio. These outcomes highlight the
potential of automated configuration and portfolio construction techniques as a fruitful
approach for improving the performance of combinatorial solvers employed in the
context of neural network verification systems, thereby streamlining the verification
procedure overall. This confirms findings from previous work on related problems,
notably mixed integer linear programming [46, 44, 45, 76].

RQ3: To which extent can we predict the running time of a given verification al-
gorithm for a specific problem instance?

In Chapter 5, we investigated the possibilities of running time prediction for neural
network verification algorithms. While we found that precise running time prediction
(i.e., regression) remains a challenging task, we developed a timeout prediction model
that anticipates the feasibility of completing a verification query within a predefined
time budget. This was enabled by newly defined features of the problem instance and
the verification algorithm in use. Using this approach, we achieved a more efficient
allocation of computational resources, strongly enhancing the overall efficiency of the
verification procedure. Furthermore, our timeout prediction method could be lever-
aged in the context of parallel algorithm portfolios or, more specifically, per-instance
algorithm selection; given several algorithms that run in parallel on a specific instance,
our method could terminate those that are not able to solve the instance in the given
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time budget. However, the verification algorithms we considered in our study did
not display sufficient performance complementarity on the benchmarks we used. This
could be explained by the fact that the verification algorithms were employed with
configurations specifically tailored to the given benchmarks.

RQ4: How can we efficiently select the neural network model from a given set of
models that achieves the highest certified robust accuracy?

In Chapter 6, we introduced a novel racing algorithm designed to guide the selection
process of the most robust neural network model from a set of candidate models. In this
context, we proposed a novel heuristic that captures the likelihood of a given instance
to be robust or non-robust. Using this heuristic, we can guide the search towards
neural network models that are most likely to show a high adversarial robustness. We
found that our proposed solution significantly reduces the computational costs typically
associated with model selection by iteratively eliminating less promising candidates,
thereby facilitating a more efficient selection process of the optimal, i.e., most robust
model. This approach presents a practical solution to the challenge of robust model
selection, ensuring computational resources are utilised judiciously while selecting the
model with the highest robustness.

7.2 Directions for Future Research

With the work presented in this thesis, we sought to enable future progress in the field
of neural network verification. These methods offer great potential for obtaining safety
guarantees for neural-network-based AI systems, which is a crucial requirement for
their use in high-risk domains, such as medical diagnosis or advanced driver assistant
systems. At the same time, computational complexity remains a major challenge and
current methods do not scale to complex architectures, such as large language models.

One general direction involves expanding this work to encompass a broader spectrum
of neural network architectures and verification problems beyond local robustness for
image classification models. Such an expansion would not only further validate the
generalisability of the findings presented in this thesis but also potentially reveal new
insights and challenges that could further refine the state of the art in neural network
verification. While we considered only local robustness properties in this thesis, mainly
due to their prominence in the literature and the availability of suitable benchmarks
and solvers, these properties do not capture semantic changes or domain-specific noise
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models; these would require different distance metrics that take into account the
dependencies among input variables and, possibly, novel approaches for reasoning over
the resulting properties.

Furthermore, we focused on the automated configuration of MIP-based verification
systems. At the same time, verification algorithms have additional hyperparameters,
also unrelated to MIP solvers; e.g., configuring αβ-CROWN [111, 119] gives rise to
several choices ranging from the selection of a bounding method to the number of
branches for non-linear branching. Automatically configuring these algorithms could
lead to substantial performance improvements and enhance usability, given the vast
hyperparameter space presented by some of these methods.

Another fruitful direction for future work lies in the enhancement of running time
prediction models. Enabling running time regression could provide a more nuanced
understanding of the verification process, leading to improved resource allocation and
process efficiency. Specifically, it would be desirable to predict the running time needed
to solve a specific instance beyond a given cutoff point. This would, firstly, require to
study the behaviour of verification algorithms when supplied with large time budgets
to see if and when hard instances get solved and, potentially, the definition additional
features.

In addition, applying the insights and methodologies developed in this thesis to a
variety of real-world scenarios holds considerable promise, such as medical diagnosis.
Such applications would not only test the practical implications of the research but also
uncover new challenges and opportunities for innovation in the field of neural network
verification. For example, assessing the robustness of a neural network model used for
the classification of ECG measurements requires the definition of robustness properties
with respect to specific noise models, such as baseline wander or power-line interference
[81]. Furthermore, the scalability of verification methods to neural network models
used in practice would be interesting to study.

Finally, the methods and findings presented in this thesis could be jointly utilised
in the context of neural architecture search. Given the task of finding a neural network
architecture that achieves a high level of robustness, it becomes necessary to perform
verification as efficiently as possible, as multiple network architectures or configurations
need to evaluated to guide the search process. This would require well-calibrated
verifiers as well as efficient resource allocation, and a joint framework that can handle
both the neural architecture search process as well as the verification system.

Overall, these future research directions hold the potential to significantly advance
the research are of neural network verification, building on the contributions of this
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thesis to explore new frontiers in neural network verification and automated machine
learning. This can ultimately foster the employment of neural-network-based AI
systems in safety-critical tasks, as neural network verification provides a method to
formally prove that the system behaves as intended for a given operational domain. In
fact, proving the safety (and, specifically the robustness) of an AI System is demanded
by the European AI Act [106], underlining the relevance and importance of the concepts
and methods introduced in this thesis.
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Summary

In an era marked by the widespread deployment of neural networks, the criticality of
ensuring their reliability and safety cannot be overstated. This thesis delves into the
sphere of neural network verification, a crucial yet challenging task aimed at proving
the correctness of neural network models. Moreover, this thesis seeks to introduce
novel techniques and strategies that could significantly improve the efficiency of neural
network verification algorithms, thereby contributing to the development of more secure
and reliable deep learning applications.

In Chapter 3, the thesis presents a detailed examination of the current landscape in
neural network verification, specifically focusing on local robustness verification. The
diversity within the field, both in terms of verification techniques and neural network
architectures, presents a complex challenge for practitioners aiming to ensure the safety
and reliability of these systems. We conduct a thorough empirical analysis of several
prominent verification algorithms, revealing the fragmented nature of the state of the
art. The findings suggest that there is no single dominant algorithm that excels across
all types of verification instances. Instead, the performance of these algorithms is highly
complementary, indicating the potential benefits of employing algorithm portfolios
to enhance verification efficiency. This nuanced view highlights the importance of
considering a range of methods and techniques to address the varied challenges posed
by different neural network configurations and verification properties.

Following this, Chapter 4 delves into the realm of mixed integer programming
(MIP)-based neural network verification, with a particular focus on speeding up the
verification process through automated algorithm configuration. The chapter introduces
novel approaches to harness algorithm portfolios, demonstrating how the performance of
MIP-based verification systems can be significantly improved. By adopting automated
configuration techniques, we present a systematic approach to tailor verification methods
more closely to the specific characteristics of a given neural network, thereby reducing
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computational costs and enhancing the efficiency of the verification task.
Chapter 5 introduces a novel perspective on verification by exploring the predictabil-

ity of the running time of various verification algorithms for specific problem instances.
This approach seeks to allocate computational resources more judiciously, focusing
efforts on instances with a higher likelihood of being solvable within reasonable time
budgets. The integration of running time predictions into the verification process
represents a strategic shift towards more resource-aware methodologies, potentially
transforming the efficiency and applicability of neural network verification in real-world
scenarios.

In the final thematic chapter, Chapter 6, the research focuses on the task of robust
model selection within the domain of adversarial robustness. We propose a sophisticated
racing algorithm that leverages simple yet novel heuristics to efficiently determine the
most robust neural network model from a given set. This method not only streamlines
the model selection process but also significantly reduces the computational overhead
associated with evaluating multiple candidate models.

Therefore, we have demonstrated how automated machine learning, or meta-
algorithmic approaches in general, can improve the performance and practical efficiency
of neural network verification systems, thereby contributing to a safer and more reli-
able usage of deep neural networks in the evolving landscape of artificial intelligence
applications.
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Samenvatting

In een tijdperk dat gekenmerkt wordt door de wijdverspreide inzet van neurale
netwerken, kan het belang van het waarborgen van hun betrouwbaarheid en veiligheid
niet genoeg worden benadrukt. In dit proefschrift staat de verificatie van neurale
netwerken centraal, een cruciale maar uitdagende taak gericht op het bewijzen van
de robuustheid van neurale netwerkmodellen. Daarnaast introduceert deze dissertatie
nieuwe technieken en strategieën die de efficiëntie van verificatiealgoritmen voor neurale
netwerken aanzienlijk verbeteren en zo bijdragen aan de ontwikkeling van veiligere en
betrouwbaardere toepassingen van deep learning.

Hoofdstuk 3 presenteert een gedetailleerd onderzoek van het huidige landschap in
verificatie van neurale netwerken, specifiek gericht op de verificatie van lokale robuus-
theid. De diversiteit binnen het onderzoeksveld, zowel wat betreft verificatietechnieken
als neurale netwerkarchitecturen, vormt een complexe uitdaging voor experts die de
veiligheid en betrouwbaarheid van deze systemen willen garanderen. We voeren een
grondige empirische analyse uit van een aantal prominente verificatiealgoritmen en
brengen daarmee de gefragmenteerde aard van het onderzoeksveld aan het licht. De
bevindingen suggereren dat er niet één algoritme domineert in alle verificatieproblemen.
In plaats daarvan zijn de prestaties van verschillende algoritmen zeer complementair,
wat wijst op de potentiële voordelen van het gebruik van algoritmeportfolio’s om de
verificatie-efficiëntie te verbeteren. Deze genuanceerde kijk benadrukt het belang van
het overwegen van een reeks methoden en technieken om de gevarieerde uitdagingen van
verschillende neurale netwerkconfiguraties en verificatie-eigenschappen aan te pakken.

Hoofdstuk 4 gaat vervolgens in op mixed integer programming (MIP)-gebaseerde
verificatie van neurale netwerken, met speciale aandacht voor het versnellen van
het verificatieproces door middel van geautomatiseerde algoritmeconfiguratie. Het
hoofdstuk introduceert nieuwe benaderingen om algoritmeportfolio’s in te zetten en
laat zien hoe de prestaties van MIP-gebaseerde verificatiesystemen aanzienlijk kunnen
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worden verbeterd. Door gebruik te maken van geautomatiseerde configuratietechnieken
toont het hoofdstuk de mogelijkheid om verificatiemethoden beter af te stemmen op
de specifieke kenmerken van een specifiek neurale netwerk, waardoor de berekenkosten
worden verlaagd en de efficiëntie van de verificatietaak wordt verbeterd.

Hoofdstuk 5 introduceert een nieuw perspectief op verificatie door de voorspel-
lende mogelijkheden te onderzoeken met betrekking tot de rekentijd van verschillende
verificatiealgoritmen voor specifieke problemen. Deze benadering is erop gericht om
rekenkracht adequater onder verschillende problemen toe te wijzen, door de inspannin-
gen te richten op verificatieproblemen waarvan de kans groter is dat ze binnen redelijke
tijdbudgetten kunnen worden opgelost. De integratie van voorspelling van de benodigde
rekentijd in het verificatieproces vertegenwoordigt een strategische verschuiving naar
methodologieën die bewust omgaan met reken middelen, die mogelijk de efficiëntie
en toepasbaarheid van verificatie van neurale netwerken in echte scenario’s kunnen
veranderen.

In het laatste thematische hoofdstuk, hoofdstuk 6, spitst de discussie zich toe op de
kritieke taak van robuuste modelselectie binnen het domein van adversariële robuustheid.
We stellen een geavanceerd race-algoritme voor dat gebruik maakt van eenvoudige maar
nieuwe heuristieken om efficiënt het meest robuuste neurale netwerkmodel te bepalen
uit een gegeven set. Deze methode stroomlijnt niet alleen het modelselectieproces,
maar vermindert ook aanzienlijk de computationele verspilling die gepaard gaat met
het evalueren van meerdere kandidaatmodellen.

Concreet hebben we aangetoond hoe geautomatiseerde machine learning, of meta-
algoritmische benaderingen in het algemeen, de prestaties en praktische efficiëntie van
verificatiesystemen voor neurale netwerken kunnen verbeteren en daarmee bijdragen aan
een veiliger en betrouwbaarder gebruik van diepe neurale netwerken in het ontwikkelende
landschap van kunstmatige intelligentietoepassingen.
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