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How (Not) to Define Inertial Frames
Caspar Jacobs 

Leiden University

ABSTRACT
It is nearly impossible to open a textbook on Newtonian mechanics without 
encountering the concept of inertial frames: the frames that are privileged by the 
theory’s dynamics. In this paper, I argue that extant definitions of inertial frames are 
unsatisfactory. I criticize two common definitions of inertial frames: law-based 
definitions, according to which inertial frames are simply those in which the laws 
are true, and structure-based definitions, according to which inertial frames are 
those that are ‘adapted’ to spatiotemporal structure. I then offer a new, symmetry- 
based definition of inertial frames. This definition offers a non-conventional way of 
specifying the dynamically privileged frames. The result clarifies the foundations of 
Newtonian mechanics and accounts for the empirical success of coordinate- 
dependent formulations of it.

ARTICLE HISTORY Received 22 November 2022; Revised 8 January 2024

KEYWORDS inertial frames; classical mechanics; symmetries; spacetime structure; laws of nature; empirical 
content

But no person whose mode of thought is logical can rest satisfied with [Newton’s law] … . How 
does it come about that certain [frames of reference] … are given priority over other [frames of 

reference]? What is the reason for this preference?
Einstein (1916/1954: 71–72)

1. Introduction

Newton’s laws are not just true (in so far as they are true) tout court. Rather, they hold 
true within certain frames of reference: ‘inertial’ ones. Consider a coordinate-dependent 
formulation of Newton’s second law: F = ma. Without further information, this is 
incomplete in the same way that the statement ‘the house is on the left’ is without 
further context: a point of view is required to evaluate this expression. In the case of 
Newton’s laws, this ‘point of view’ is a frame of reference (hence the expression, some
times used, of ‘referring’ the laws to a certain frame). The full statement of the theory is: 
within (and only within) the inertial frames, Newton’s laws are satisfied.

I claim that the usual definitions of inertial frames are insufficient to ‘complete’ 
coordinate-dependent formulations of Newton’s laws. I will distinguish two types of 
definitions. On the first, inertial frames are grounded in the laws: they are those 
frames in which Newton’s laws are satisfied (§3). This definition is too liberal: for 
almost any world there exists some frame of reference in which Newton’s laws are 
satisfied. On the second type of definition, inertial frames are grounded in 
© 2025 Australasian Association of Philosophy
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spatiotemporal structure: they are frames that are ‘adapted’ to said structure (§4). 
Again, however, almost any world turns out to satisfy the laws in some adapted 
frame. This would trivialize Newton’s theory.

I will offer a different, symmetry-based definition of inertial frames: inertial frames 
are those frames that ‘mesh’ with the dynamical symmetries of the theory (§5). On this 
view, inertial frames are jointly grounded in dynamical and spatiotemporal structure.

Foundational discussions of classical mechanics typically involve coordinate-free 
formulations in the language of differential geometry (Friedman 1983; Malament 
2012). The correct definition of inertial coordinates may seem irrelevant. But coordi
nate-based versions of classical mechanics are both historically and philosophically sig
nificant: discussions of mechanics have proceeded, both in the past and often at 
present, in terms of coordinates.1 Despite their coordinate-dependence, these formu
lations seem to correctly identify the content of Newtonian mechanics. Of course, such 
formulations presume certain geometric concepts, such as that of a vector quantity. 
But their equations relate those quantities as expressed in a system of coordinates. 
If I am correct that common definitions of inertial frames fail, then it is a puzzle 
how coordinate-dependent versions of Newtonian mechanics could work. This 
paper offers a solution to that puzzle.

Before I move on, I will clarify ‘Newtonian mechanics’: it is a theory that describes 
the motion of point-like massive particles under forces. The kinematics of the theory 
are that of ‘Galilean’ spacetime.2 We can thus represent spacetime as a differentiable 
manifold, M, on which are defined a spatial ‘metric’ hab, a temporal ‘metric’ tab and 
an affine connection ∇. For any pair of points one can meaningfully speak of the dur
ation between them, and for any pair of points at the same time one can meaningfully 
speak of the distance between them. But there is no meaningful notion of distance 
between points at different times, and so one can say neither how far nor how fast par
ticles move across time. The connection does, however, provide an objective standard 
of acceleration. It is of course also possible to define Galilean spacetime directly in 
terms of coordinates (Wallace 2019).

The dynamics of Newtonian mechanics consist of Newton’s laws (Morin 2008: 51): 

1. NI: A body moves with constant velocity (which may be zero) [in so far as] acted 
on by a [net external] force (dv/dt = 0).3

2. NII: The time rate of change of the momentum of a body equals the [net exter
nal] force acting on the body (F = ma).

3. NIII: For every force on one body, there is an equal and opposite force on 
another body (F12 = − F21).

The coordinate expressions of these laws hold only when referred to a certain class of pri
vileged frames. In a rotating frame, for instance, F = ma fails to hold due to the presence of 
so-called ‘fictitious forces’. It is true that one can alter the form of the laws to account for such 
forces: the altered laws hold for a particular class of non-inertial frames. These expressions 
are syntactically more complex than the standard ones due to the presence of additional 

1 For a defence of coordinate-based approaches, see Wallace 2019.
2 Or, perhaps, ‘Maxwellian’ spacetime; cf. Saunders (2013).
3 Hoek (2023) convincingly argues that ‘in so far as’ is a more faithful translation of the original Latin than 
the standard ‘unless’, but the difference does not matter for the purposes of this paper.
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terms. Strictly, then, Newton’s laws hold true in their simplest form only when referred to 
inertial frames. The inertial frames are of particular interest because within them 
Newton’s laws are afforded a particularly simple formulation.4

Without any force law Newtonian mechanics is just a framework, not a theory. The 
law of universal gravitation determines the gravitational force F12 that one particle 
exerts on another, given their masses m1, m2 and positions x1, x2:

F12 = G
m1m2

|x2 − x1|
3 (x2 − x1) 

where G is the gravitational constant. When one conjoins the law of universal gravita
tion to Newtonian mechanics, the result is Newtonian Gravitation. Of course, there are 
other forces than gravity, but I will not consider those here.

2. Frames and Coordinates

I first draw a distinction between (inertial) frames and (inertial) coordinates. I mostly 
follow Earman and Friedman’s (1973) account.5 The only point of departure lies in the 
definition of inertial coordinates.

Firstly, define:

Frame of reference An identification of points of space over time, that is, a time- 
like vector field X which ‘threads’ the manifold M.

In effect, a choice of frame amounts to a choice of which bodies to regard as being at 
rest. Secondly, define:

Coordinate system A smooth and injective function xm from the manifold M into 
R4, such that x0 is constant across surfaces of simultaneity.

This definition assumes the existence of a foliation of spacetime into hyperplanes of 
simultaneity, which follows from the requirement that forces cannot act backwards 
in time (Brown 2005: §2.2.3).

Coordinate systems are connected to reference frames as follows:

Adapted coordinates A coordinate system xm is adapted to a frame of reference F iff 
xi = constant (i = 1, 2, 3) along the integral curves of X.

Put differently, coordinates are adapted to a frame whenever the spatial coordinates of 
the bodies that are considered at rest within that frame are constant over time.

With this connection between frames and coordinates, it is now possible to define 
inertial frames. Following Earman and Friedman:

Inertial frame A frame of reference F is inertial iff there exists an inertial coordinate 
system adapted to F.

This definition appeals to inertial coordinates, which I have not yet defined—their 
definition is the topic of this paper. Earman and Friedman define them in terms of 

4 Weatherall (2021) criticizes this notion of a ‘simplest form’ of an equation, partly for the same reason that I 
object to law-based definitions below.
5 For different ways of drawing this distinction, see Torretti 1983: §1.4 or Brown 2005: §2.3.
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an affine connection stipulated to vanish in inertial coordinates. This is a structure- 
based definition of inertial coordinates, which I will discuss in §4.

The notion of inertial coordinates is prior to that of inertial frames: the latter are 
defined in terms of the former. So, although physicists often speak of the laws holding 
within inertial frames, it seems more appropriate to speak of the laws holding within a 
system of inertial coordinates. It is a consequence of the invariance of Newtonian mech
anics under Galilean transformations that if the laws hold in one inertial coordinate 
system adapted to F, then so they do in any other. The difference therefore does not 
matter much in practice. Indeed, Brown (2005: 2.3) simply defines inertial frames as 
equivalence classes of inertial coordinates systems. For this reason, I will use the 
expressions ‘inertial frame’ and ‘inertial coordinates’ interchangeably in what follows.

In what follows, I will use the notational convention that the spatial coordinates 
of a particle i at time t in a coordinate system xm are represented by a position 
vector xi(t) = (x1

i (t), x2
i (t), x3

i (t)). The velocity of i is then defined as 
vi(t)defdxi/dt ; dx1

i /dt, dx2
i /dt, dx3

i /dt
( 􏼁

, so vi is the coordinate derivative of xi 

with respect to t. Acceleration is likewise defined as the coordinate derivative of vi 
with respect to t: ai(t)defdvi(t)/dt.

These vector quantities are by definition coordinate-dependent. For x and v this is no 
surprise, since absolute position and velocity are not Galilean-invariant. But acceleration 
is invariant, so it may seem odd to define it as the derivative of a coordinate-dependent 
quantity. After all, the kinematical structure of Galilean spacetime enables one to 
define acceleration ‘intrinsically’ as an invariant tensorial quantity. Once so defined, an 
equation such as F = ma is independent of coordinates. It simply equates two tensor 
fields. Yet acceleration is not treated this way in the standard formulation of classical 
mechanics under discussion. For if acceleration is defined intrinsically, the second law 
will hold no matter what coordinates are used. This would contradict the familiar 
claim that F = ma only holds in inertial coordinates, because otherwise one has to 
account for fictitious forces. Indeed, inertial frames are often defined as those in which 
the laws, in their simple form, hold true. But if those laws are coordinate-independent, 
they will hold true in any arbitrary frame. Therefore, a coordinate-based formulation 
of classical mechanics must define acceleration in a coordinate-dependent way. Whenever 
a occurs in this paper, then, it is the second coordinate derivative of a position vector.

3. Law-Based Definitions

On law-based definitions, inertial frames are defined in terms of the satisfaction of the 
laws. In particular, it is common to see inertial frames defined as those in which 
Newton’s first law holds true. This is the standard view found in many physics text
books (Blagojevic 2001; Morin 2008; Pfister and King 2015), as well as foundational 
philosophical works (Nagel 1961; Brown 2005).

3.1 Laws and Inertial Frames

In more detail, the standard view holds that Newton’s first law defines (or allows one 
to construct) a class of inertial frames, namely those in which force-free bodies move 
(or would move) uniformly. It is not the first law by itself that defines inertial frames, 
since a force-law is also required to identify the force-free bodies. Another way to see 
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this is that NI is invariant under projective transformations, whereas inertial frames are 
related by the subset of Galilean transformations. How to identify these force-free 
bodies independently remains a subtle question. For the sake of argument, I will 
assume that one can independently characterize force-free bodies, for example as those 
far away from each other; see Eisenbud (1958; Pfister 2004; Brown 2005) for further 
discussion.

Having found the inertial frames, one can evaluate the second and third law with 
respect to them. This view is expressed well by Morin’s (2008: 52) limerick:

For things moving free or at rest,
Observe what the first law does best.
It defines a key frame,
‘Inertial’ by name,
Where the second law then is expressed.

In fact, NI does more than just offer a definition: it also asserts that inertial frames exist 
(this entails the actual or counterfactual possibility of free particles). This provides a 
sense in which the first law is more than a definition.

In summary, a law-based approach defines inertial coordinates as follows:

Inertial coordinate system (law-based) A coordinate system in which force-free 
bodies move with constant velocity (that is, dv/dt = 0 for them).

The inertial frames are those that admit of inertial coordinates. One can refer the 
second and third law to them. For example, the second law will read:

NII-LAW Within those frames in which force-free bodies move with constant vel
ocity (that is, dv/dt = 0 for them), F = ma.

On this view the first law is not a consequence of the second law. The first law asserts that 
there exist certain frames with respect to which the second law is supposed to hold. The 
second law thus does not even make sense without the first law to define those frames.

3.2 Too Many Inertial Frames

Unfortunately, this popular definition of inertial frames fails. It is too liberal: there are 
inertial frames in which NII-LAW holds true even for patently non-Newtonian worlds.

Consider the following pair of worlds: 

. W: a world in which n free particles each move with uniform velocity (with 
respect to the affine background structure);

. W∗: a world exactly like W, except that one of the particles—call it ‘Curvy’— 
moves haphardly about in a non-linear fashion (with respect to the affine back
ground structure).

The first world, W, is Newtonian by stipulation. The second world, W∗, is clearly 
not Newtonian. As Morin (2008: 52) puts it: ‘we can’t have a bunch of free particles 
moving with constant velocity while another one is doing a fancy jig’. But that is 
exactly what Curvy is doing in W∗. If the law-based account correctly identifies the 
inertial frames, however, then W and W∗ will both satisfy Newton’s laws even in 
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their simplest form—as I will now show. Therefore, law-based definitions do not 
correctly identify the inertial frames.

It is helpful here to distinguish between a particle’s coordinate acceleration and 
its physical acceleration. The former refers to the value of a for some particle within 
a coordinate system xm, while the latter refers to the particle’s acceleration 
with respect to the affine structure independently from any coordinate system. The 
same physical acceleration has different coordinate representations in different 
coordinate systems.

Consider first W. Since the physical acceleration of all free particles in W is zero, 
W is Newtonian. Suppose that it is possible to construct an inertial coordinate 
system xm such that the coordinate accelerations of all particles are zero: ai = 0 for 
all i. By stipulation, Fi = 0 too, and hence Fi = mai for all i. NII-LAW is satisfied; 
W is Newtonian.

Consider W∗ next. It may seem that NII-LAW must fail to hold in W∗ when 
referred to the same coordinates. But since xm is a function defined on the points of 
W and not those of W∗, it is impossible to compare (coordinate) accelerations in W 
and W∗ directly. Instead, one must independently construct a coordinate system for 
W∗. The problem is that it turns out to be possible to construct an inertial coordinate 
system for W∗ within which NII-LAW is satisfied. To see this, assume that there exists 
a diffeomorphism (that is, a smooth bijection between spacetime points), f, that maps 
the linear trajectory of Curvy in W onto the haphazard trajectory of the same particle 
in W∗.6 If g(t) represents the trajectory of Curvy in W, then Curvy’s trajectory in W∗ is 
represented by g∗(t)def

f ◦ g(t), where t is a dimensionless parameter. Next, define the 
coordinate system x′m def xm ◦ f− 1. By construction, the coordinates xm assigns to g(t) 
are the same as those that x′m assigns to g∗(t). It follows that the coordinate accelera
tions of the free particles in W∗ with respect to x′m are the same as those of the particles 
in W with respect to xm, namely zero. Thus x′m is an inertial coordinate system for W∗. 
Because F = 0 = ma in this coordinates system, NII-LAW is satisfied in W∗.7

But this verdict is clearly incorrect: W∗ is a world in which the physical acceleration 
of a force-free particle, Curvy, is not zero, contrary to the first law! This is a reductio ad 
absurdum of the law-based definition of inertial frames.

The above story may seem to rest on a confusion: acceleration should be defined 
with respect to the affine structure, which is unaffected by coordinate transformations.8

But as I pointed out in the previous section, this implies a coordinate-free expression of 
the second law which is true independently from one’s chosen coordinates. Such a 
coordinate-free expression equally cannot privilege xm over x′m. The law-based 
approach therefore fails either way.

The objection to law-based definitions generalizes: one can apply an arbitrary 
diffeomorphism to the particle trajectories of a Newtonian world—even ones subject 
to forces, unlike in the above toy example. There is always a coordinate transformation 
that ‘undoes’ this diffeomorphism, such that Newton’s laws hold in the same form with 
respect to the ‘primed’ coordinates. Pooley notes this possibility: 

6 This assumption is without (much) loss of generality: it requires only that W and W∗ concur on whether 
Curvy’s trajectory intersects the trajectories of any other particle.
7 If you are inclined to think that x′m is faulty because it is not ‘adapted’ to spacetime’s affine structure—such 
a claim is characteristic of structure-based definitions, which I discuss in the next section.
8 I thank an anonymous reviewer for this point.
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Suppose, for example, that the only spatiotemporal information one retains is 
that which is common to all coordinatizations of the particle trajectories obtain
able from an initial inertial coordinate system by smooth but otherwise arbitrary 
coordinate transformations that preserve the timelike directedness of the trajec
tories. … Many Newtonian worlds involving complex histories of relative dis
tances and interactions will be topologically equivalent to histories where all 
particles maintain constant distance from one another. (Pooley 2013, fn. 88)

However, Pooley’s objection is slightly different from mine. Pooley argues that if arbi
trary coordinates are allowed, Newton’s laws are not the simplest ones. For example, 
one can almost always find coordinates such that all trajectories ‘seem uniform’, in 
which case the simplest law is that v = 0 for all particles. The present objection, on 
the other hand, applies even if Newton’s laws are the simplest ones in some arbitrary 
coordinate systems. The problem is rather that it is too easy to find coordinates in 
which the laws are at least as simple as those of Newton.

The advocate of a law-based definition might adopt a form of functionalism in 
response, such as Knox’s (2013) ‘inertial frame functionalism’. This type of functionalist 
claims that force-free bodies define inertial trajectories, so that there is no real sense in 
which Curvy’s trajectory in W∗ is not uniform; force-free bodies provide a ‘coordinative 
definition’ of the world’s inertial structure (DiSalle 1990). This entails that there just are 
no worlds that differ only over whether some force-free particle moves inertially or not. 
This position is more radical than simple relationism, since W and W∗ differ over the 
distance between Curvy and the other particles. I do not find it plausible that such 
worlds could not exist, and so will not further discuss this approach here.

4. Structure-Based Definitions

I noted that a diffeomorphism between W and W∗ need not preserve spatiotemporal 
structure. In particular, it need not preserve metrical structure. But the distances 
between particles in W according to xm are the same as the distances between particles 
in W∗ according to x′m, so if the former correctly represents distances then the latter 
must misrepresent them. And if the x′m coordinates misrepresent distances, surely one 
should not evaluate the laws with respect to them.

The requirement that appropriate coordinates do not only make the laws true but 
also match the world’s metrical structure is expressed by Brown: 

The coordinates xm are special not just because the equation of motion expressed in 
terms of them takes [a] special simple form … ; the coordinates xi (i = 1, 2, 3) should 
also be special in relation to the metrical properties of space. When Newton talks of 
uniform speeds, he means equal distances being traversed in equal times, and these 
distances are meant in the sense of Euclid. (Brown 2005: 18)

On structure-based definitions, inertial frames are partially defined in terms of some 
spatiotemporal structure, such as the Euclidean metric.

It seems that historical definitions of inertial frames due to Neumann, Lange and 
Mach are in part structure-based, as they require inertial coordinates to respect the metri
cal structure of space. Of Neumann’s construction, Barbour writes that it is ‘explicitly 
constructed from the observable relative distances and relative velocities’ (1989: 669), 
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and of Mach that he ‘accepted distance measurements as given’ (685). Since the aim of 
this paper is not historical, however, I will not further comment on these matters.

In more detail, the procedure of a structure-based definition is to (i) stipulate some 
spatiotemporal structure, (ii) claim that certain coordinates best represent this 
structure, and (iii) restrict the inertial coordinates to just those ones.

I am sceptical of step (ii): I see no reason to believe that certain numerical represen
tations of, say, metrical structure are intrinsically—that is, independent of dynamical 
considerations—better than others.9 This means that the satisfaction of the laws 
becomes dependent on one’s choice of representational convention. Just as law- 
based definitions, structure-based definitions of inertial frames fail to distinguish 
worlds in which Newtonian mechanics is true from worlds in which it is false.

4.1 Structure and Inertial Frames

The claim that certain coordinates are ‘adapted’ to spatiotemporal structure is widespread: 

Every spacetime will have a preferred set of frames that reflects the structure 
inherent in the spacetime. (Earman 1989: 29)

The intrinsic geometrical structure of space and time according to Newton entails 
that special sets of coordinates exist. … the existence of such convenient coordi
nates … follow[s] from the spacetime structure itself. (Maudlin 2012: 31–32)

Both substantivalists and relationalists will view certain coordinate systems as kine
matically privileged in the sense of being optimally adapted to the particular spatio
temporal quantities that they each recognize. (Pooley 2013: 528)

As the final quote illustrates, such claims are neutral between substantivalism and rela
tionism. Of course, these positions disagree on which spatiotemporal structure inertial 
coordinates are adapted to. The substantivalist posits an affine connection; a coordi
nate system is adapted to the connection whenever trajectories that are straight with 
respect to this connection are parametrized by linear equations. The relationist, mean
while, typically only posits a weaker Leibnizian spatiotemporal structure, which con
sists just of a temporal and spatial metric.10

It would seem that substantivalism and relationism must differ over the definition 
of adapted coordinates. But the issue is more subtle. Earman and Friedman (1973: 339) 
show that these procedures pick out the same class of frames: either (i) one stipulates 
that xm is adapted to affine structure (that is, the connection vanishes); or (ii) one sti
pulates that xm is adapted to Leibnizian structure and that the first law holds within 
these coordinates.11 Therefore, regardless of whether or not a connection is posited 
one can define inertial frames as those that are adapted to metrical structure and in 
which force-free bodies move uniformly. Since adaptation to metrical structure is 
common between substantivalism and relationism, I will focus on it in what follows.

9 I should note that Brown may well concur with this point, since on his dynamical approach spacetime 
structure depends on dynamical structure.
10 The fact that relationism takes seriously spatiotemporal structure does not mean that it believes in the 
existence of spacetime; cf. North (2018).
11 In their paper, these correspond to Def. 4 and Def. 6 of inertial frames respectively.
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The remainder of this paper concerns the definition of ‘Leibnizian coordinates’: coor
dinates adapted to metrical structure. I also focus on the spatial metric, for simplicity; 
adaptation to the temporal metric is to be treated analogously. Once one has defined a 
class of ‘Leibnizian’ coordinates, one can define the class of inertial coordinates by 
appeal to the first law. But I claim that structure-based definitions cannot even correctly 
characterize the Leibnizian coordinates, which dooms their effort to define inertial frames.

In summary, a structure-based approach defines inertial coordinates as follows: 

Inertial coordinate system (structure-based) A coordinate system that is adapted to 
metrical structure, and in which force-free bodies move with constant (coordinate) 
velocity.

The inertial frames are again those that admit of inertial coordinates. The second law 
then reads: 

NII-STR Within those frames adapted to the metric and in which force-free bodies 
move with constant (coordinate) velocity, F = ma.

Because NII-STR is stronger than NII-LAW, it promises to rule out the problematic 
coordinate systems discussed in the previous section.

4.2 Which Metric?

It is still unclear what it means for a coordinate system to be ‘adapted’ to the metric. I 
believe that there is no unequivocal notion of adaptation. Whether coordinates are 
adapted to metrical structure depends on the way this structure is represented. This 
is a matter of convention. I resist the claim that certain coordinate systems are intrin
sically better adapted to some structure than others. On different conventions, different 
coordinates are adapted to the same metric. Problematically, for some of these conven
tions there exist adapted coordinate systems within which Newton’s laws are satisfied 
even in patently non-Newtonian worlds.

Unfortunately, little has been written on this crucial notion of adaptation. Some
times, it is suggested that coordinates adapted to the Euclidean metric are such that 
the physical distance between points should equal their Pythagorean distance: 

In Euclidean space, a frame is ‘adapted’ to some reference body if it is at rest at 
the origin of the frame, the axes are orthogonal and distances along the axes 
equal to the distances from the body. (Huggett 2006: 46)

The ways in which a coordinate system can be adapted to these quantities is 
straightforward … spatial coordinates are chosen so that, for all particles i, j and 
for all times, |xi − xj| = rij, where rij is the instantaneous inter-particle distance 
between i and j. (Pooley 2013: 529)

Both authors claim that within an adapted coordinate system, the Pythagorean dis

tance |xi − xj|def
������������������������������������

(xi − xj)2 + (yi − yj)2 + (zi − zj)2
􏽱

should equal the physical dis
tance between particles (in some chosen unit), where xi and xj are the position 
vectors in coordinates xm of particles i and j respectively. Call a coordinate system 
xm adapted to the Pythagorean metric iff, for any pair of particles i, j, the distance 
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between i and j in some chosen unit is equal to |xi − xj|. (I will shortly explain why I 
call this metric ‘Pythagorean’ and not ‘Euclidean’.) The coordinates adapted to the 
Pythagorean metric are the familiar Cartesian ones. The requirement that coordinates 
are adapted to this metric thus rules out the problematic coordinate systems from the 
previous section. If it could be shown that the Cartesian coordinates are uniquely well- 
adapted to the world’s metrical structure, the structure-based approach might succeed.

But the issue is more complicated. Distinguish between metric functions and their 
coordinate representations. A metric function on a space X is a function 
d:X × X→ R from pairs of points into real numbers such that:12

d(i, j) = 0⇔ i = j
d(i, j) = d( j, i)

d(i, k) ≤ d(i, j)+ d( j, lk).

The value of d(i, j) then represents the distance between i and j as expressed in some 
particular unit.

In addition to these axioms, the Euclidean metric also satisfies Ptolemy’s inequality:

d(i, j) · d(k, l)+ d( j, k) · d(i, l) ≥ d(i, k) · d( j, l).

The Euclidean metric represents distances in a Newtonian world, since the geometry 
of three-dimensional hyperplanes of simultaneity of Galilean spacetime is Euclidean.

This definition is independent of coordinates: d is a function from points themselves to 
real numbers, not from their coordinates. In particular, the Euclidean metric defined here 
is not the Pythagorean metric discussed above, although they are often identified. The 
former is a function of pairs of points, the latter of pairs of position vectors. It is the 
former metric that codifies the theory’s physical content, namely the physical distances 
between points or particles. The latter metric only defines their coordinate distance.

However, it is often convenient to represent a metric as a function on coordinates. 
We will say that a function r:R3 × R3 → R represents a metric d in a coordinate 
system xm iff r(xi, xj) = d(i, j). If d satisfies the axioms for a metric then so does r, 
so r itself is a metric on R3—but not on X.

It is easy to see that r represents the Euclidean metric in a coordinate system xm iff xm is 
adapted to r. Therefore a representation r of a metric d defines a class of adapted coordi
nates, namely those in which r does represent d. For the Pythagorean metric, this is the 
class of Cartesian coordinates: if d assigns to each pair of points their Euclidean distance 
in some particular unit, then the function r(xi, xj)def |xi − xj| represents d iff xm is a 
Cartesian coordinate system. This explains why the authors quoted above focus on the 
Pythagorean metric.

However, the Pythagorean metric is not the only representation of Euclidean distance. 
Given an arbitrary diffeomorphism f of X, one can define another representation as 
follows. First, notice that f induces a coordinate transformation xm→ x′m such that 
x′m(p) = xm(f(p)). In brief, x′m assigns the same coordinates to p as xm does to f(p). 
Second, define a function rf such that rf(x′i, x′j) ; r(xi, xj). By construction, rf represents 
the Euclidean metric in x′m iff r represents the same metric in xm. Conversely, this means 
that rf defines a different class of coordinates from r. Whenever f is not an isometry of 
the metric space X, d〈 〉, the coordinates adapted to rf are distinct from those adapted to 

12 The space X here is a hyperplane of simultaneity of the manifold M.
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r. The upshot is that which coordinates are adapted to the Euclidean metric depends on the 
way one numerically represents that metric. Although this point is mathematically trivial, it 
is not often noted by philosophers; van Fraassen (1970: §1.3) is an exception.

The central problem for structure-based definitions is that whether NII-STR is 
satisfied depends on the way in which Euclidean distance is represented. If one 
chooses to represent physical distances by the Pythagorean metric, then NII-STR is 
satisfied in certain worlds. But if one chooses to represent physical distances by 
some other metric, NII-STR may fail to hold in those very same worlds. Whether 
those worlds count as Newtonian, by the light of the structure-based definition of iner
tial frames, thus depends on which numerical representation one chooses.

For an illustration, consider again the pair of worlds presented in §3: 

. W: a world in which n free particles each move with uniform velocity;

. W∗: a world exactly like W, except that one of the particles—call it ‘Curvy’— 
moves haphardly about in a non-linear fashion.

W is a Newtonian world; W∗ is not. We have seen that F = ma is true in W with respect 
to the coordinates xm, but that it is also true in W∗ with respect to the coordinates x′m. The 
structure-based definition must therefore rule that x′m is inadmissible because it does not 
reflect the Euclidean distances between particles. This is indeed the case if one were to 
impose the condition that d(i, j) = |xi − xj|. But recall that x′m = xm ◦ f− 1 for some dif
feomorphism f from W to W∗. If one instead were to impose the condition that 
d(i, j) = rf(xi, xj), then it is xm that is inadmissible. Under that condition, NII-STR is sat
isfied not in W but in W∗. There is no physical reason to use r rather than rf: both func
tions represent the same Euclidean metric, so the choice between them is only a matter of 
representational convention. Just like the law-based definition discussed in the previous 
section, then, structure-based definitions run the risk of erroneously classifying certain 
patently non-Newtonian worlds as Newtonian.

The core of this objection to structure-based definitions is that no representation is 
better than any other. Before I move on to my symmetry-based proposal for the 
definition of inertial frames, let me discuss two responses that would privilege 
certain representations. First, the pragmatist response claims that Cartesian coordi
nates are simpler or more convenient. Maudlin (2012: 31–32), for instance, writes 
that ‘[i]n the most convenient coordinatizations of Newtonian space and time, the 
acceleration of a trajectory through time is proportional to the second derivative of 
the spatial coordinates with respect to the time coordinate.’ But how does one charac
terize simplicity here? One cannot define the simplest coordinates as those in which the 
laws have their simplest form, as that would reduce to a law-based definition. The most 
straightforward definition of simple coordinates is that they are the most convenient: 
‘[b]y a convenient frame, I mean one in which the calculations will be easy to do’ 
(Maudlin 2012: 171). But whether calculations are easy seems to provide a merely sub
jective account of simplicity, which should not play a role in our formulation of the 
theory. It does not seem unlikely, for example, that some alien community of scientists 
finds it much easier to carry out calculations in non-Cartesian coordinates. Although 
convenience may explain why we prefer Cartesian coordinates, it does not explain why 
the laws are true in their simple form in just those coordinates.

The second, naturalist response is that certain coordinates ‘naturally’ represent 
Euclidean distance. North (2021), for instance, believes that Cartesian coordinates 
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are more natural because they ‘have straight, mutually orthogonal coordinate axes’, 
and that their ‘numerical values reflect the relative locations of the points in a particu
larly clear manner’. Sometimes, ‘naturalness’ seems to reduce to simplicity. But other 
times, North states that certain coordinates ‘respect’ spatiotemporal structure better 
than others. For example, she writes that it is ‘better to use coordinate systems 
whose continuity matches the continuity structure—the topology—of the space’ (cf. 
Maudlin (2012: 27)). It is not just easier to use continuous coordinates, North believes, 
but such coordinates more perspicuously reflects the continuity of space itself. Like
wise, Cartesian coordinates are said to more perspicuously reflect the Euclidean metric.

I find this response unsatisfactory for several reasons.13 Firstly, the notion of ‘nat
uralness’ is far from clear. What reason is there to believe that some alien community 
of scientists would not find non-Cartesian coordinates more natural? Secondly, 
North’s claim that certain coordinates better ‘reflect’ some structure seems to presup
pose a representational convention of that very structure. Consider a map of the Earth. 
The map seems to misrepresent Earth’s curvature: the Earth is spherical, the map is flat. 
It is well-known that as a consequence, maps must distort features such as relative land 
mass. The Mercator projection, for instance, distorts the relative size of the continents. 
North would presumably say that the ‘map-coordinates’ cannot reflect the geometry of 
the Earth perspicuously. But there is a sense in which any map offers an entirely accu
rate representation of the Earth—once one has adopted an appropriate represen
tational convention. Nguyen (2020: 1027) makes this point for the Mercator 
projection: ‘Features like “being of equal area” on the map, don’t have to be interpreted 
as representing “being of equal area” on the Earth’s surface. In fact, if one had a 
sufficiently good understanding of the projection used to create the map, then one 
could provide an interpretation function that delivered truths about area properties 
of the Earth, despite the dissimilarities between these and the area properties of the 
map.’ On the convention that the area of a continent on the map is proportional to 
the area of a continent on Earth, the map’s coordinatisation of the Earth’s surface is 
mal-adapted. But on the alternative convention that the proportionality depends on 
the continent’s latitude, the map’s coordinates are perfectly well-adapted. The map- 
coordinates only seem unnatural when one tries to judge the relative area of the con
tinents by a convention not appropriate to the map. The same is the case for the topo
logical features of space. On the convention that a discontinuity in coordinates 
represents a discontinuity in spacetime, the map’s coordinates are mal-adapted to 
spacetime’s topological structure. But on the alternative convention that the − 180◦
and 180◦ coordinates represent adjacent locations, the map does represent the Earth 
as round. (Compare this to a clock face: the fact that the number 1 does not come 
after the number 12 does not mean that one o’clock does not follow noon!) Therefore, 
an appeal to natural representation cannot save the structure-based approach.

5. Symmetry-Based Definitions

In response to the failure of standard definitions of inertial frames, I want to propose a 
different definition: a symmetry-based one. As far as I am aware, this type of definition 
has not been suggested before. The account that comes closest is Landau and Lifshitz’s 
(1976: 5) definition of an inertial frame as one ‘in which space is homogeneous and 

13 For another critical response to North, see Barrett 2022.
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isotropic and time is homogeneous’. But it is left unclear what it means for space to be 
homogeneous or isotropic ‘in’ an inertial frame. The symmetry-based account I 
propose elucidates what it means for a frame to possess these features.

Moreover, it is unclear what justifies this demand that coordinates are homo
geneous and isotropic. I base this demand on the dynamical symmetries of Newtonian 
mechanics, namely the invariance of the laws under translations and rotations. Put 
more precisely, the account I propose justifies the choice of the Pythagorean metric 
as a privileged representation of Euclidean distance within the context of Newtonian 
mechanics because it meshes with the theory’s dynamical laws. Unlike structure- 
based definitions, it does not claim that certain spatiotemporal structures are intrinsi
cally better represented by some coordinates. Rather, certain coordinates mesh better 
with the dynamics. If the dynamics were different, different coordinates would be pri
vileged—even if the structure of spacetime is kept fixed. If the laws were spherically sym
metric around a dynamically special point, for example, then spherical coordinates 
would mesh better with the theory’s dynamics even if space were still Euclidean. Simi
larly, the appropriate metric for Lorentz’s aether theory is one that is invariant under 
the theory’s relativistic symmetries—the Lorentz transformations—despite the fact 
that this theory was set on a classical spacetime (cf. Bradley (2021)). For these 
reasons I consider the symmetry-based account a novel approach that succeeds 
where the above definitions fail.

5.1 Symmetry Constraints

Recall that the laws of Newtonian mechanics (in their simple form) are invariant under 
spatial and temporal translations, as well as under spatial rotations. It does not matter 
for the satisfaction of the laws whether one uses some set of coordinates xm or a 
different set of coordinates x′m related to the first by a transformation of the 
‘Newton group’ (Pooley 2013):

x→ Rx + c; t→ t + d, 

where c and d are constant and R is an orthogonal matrix with determinant +1. If the 
laws are true when referred to a coordinate system xm, then so they are when referred 
to a coordinate system related to xm by these transformations.14

Crucially, this is true even when one uses non-standard coordinates, such as the 
ones adapted to rf from the previous section. This is because the translation- and 
rotation-invariance of Newtonian mechanics is a consequence of the form of the 
laws themselves. So, if there is some world in which the laws of Newtonian mechanics 
are satisfied in certain non-Cartesian coordinates, then the laws of Newtonian mech
anics remain satisfied when those coordinates are translated or rotated.

The fact that the laws are invariant under these transformations means that it 
should not matter which coordinates are chosen from an equivalence class closed 
under the action of the Newton group. This is true for the standard Cartesian coor
dinates. In particular, the Pythagorean metric is itself invariant under translations 
and rotations in that |xi − xj| = |x′i − x′j| whenever xm and x′m are related by a New
tonian transformation. For example, it is invariant under a translation x→ x+ c 

14 Of course, the laws are also invariant under boosts, which leads to the Galilei group. But since I have 
restricted the discussion to Leibnizian structure only, I will set these aside for now.
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since |(xi + c) − (xj + c)| = |xi − xj|. When one uses the Pythagorean metric to rep
resent distances, then, it does not matter whether one uses one system of coordinates 
or another one related to the first by a translation or rotation.

But the same is not the case for alternative representations of the metric. Consider 
an arbitrary representation rf as defined above. Generally—when f is not an 
isometry—the effect of a translation or rotation on a coordinate system is to 
change the distances between particles: the distance between i and j as determined 
by rf in a non-Cartesian coordinate system xm is different from the distance 
between i and j as determined by the same rf in the transformed coordinate 
system x′m. In arbitrary coordinates the difference between transformed coordinates 
does matter, contrary to the fact that these transformations are symmetries of New
tonian mechanics. In other words, non-Cartesian representations make it seem as if 
certain coordinate systems are better adapted to the distances between particles than 
others even when those coordinates are symmetry-related, contrary to the symmetry- 
invariance of the dynamics. Yet another way to make the point is that it is desirable 
for the theory’s active symmetries (symmetries of the laws) to match the theories 
passive symmetries (coordinate transformations): this is the case whenever the rep
resentation of the metric is invariant under the action of the Newton group.15 It is on 
this basis that non-standard coordinates are ruled out on the symmetry-based 
approach.

5.2 Derivation of the Pythagorean metric

Based on the dynamical symmetries Newtonian mechanics, it is reasonable to con
strain the coordinate representation of Euclidean distance as follows:

Translation Invariance r(xi, xj) = r(xi + c, xj + c). 

Rotation Invariance r(xi, xj) = r(Rxi, Rxj).

From Translation Invariance, it follows that r(xi, xj) ; f (xi − xj). From Rotation 
Invariance it follows that the distance does not depend on the direction but only on 
the magnitude of the difference xi − xj, so r(xi − xj) ; g(|xi − xj|). 16

These invariance principles do not yet yield the Pythagorean metric. For example, 
the discrete metric r(xi, xj) = 1 for i = j and 0 otherwise also satisfies them. But 
with one further assumption one can derive the Pythagorean metric up to a propor
tionality factor: 

Absolute Homogeneity r(axi, axj) = |a|r(xi, xj).

This principle states that the metric scales with coordinates. This may seem 

15 See Gomes 2022 for a similar idea applied to the diffeomorphism invariance of GR.
16 There is a more technical way of putting this point. Instead of a function r(xi, xj), we can think of a metric 
as represented by a tensor that assigns at any point p a scalar to every pair of vectors Xp, Yp from the tangent 
space at p. The Euclidean metric tensor as represented in Cartesian coordinates is invariant under trans
lations, rotations and reflections. But not all metric tensors are so invariant. The spherical metric, for 
instance, varies under translations because it has a distinguished origin. The requirement that the represen
tation of the metric is invariant under rotations and translations is then equivalent to the requirement that 
the metric tensor in adapted coordinates is proportional to diag(1, 1, 1). This is just the requirement put in 
by hand by Earman and Friedman (1973), but they have not justified it on the basis of symmetries or in 
another way.
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controversial: scaling transformations are not dynamical symmetries of Newtonian 
mechanics.17 The effect of a scaling is to increase the distance between all particles 
by a constant factor. But if all particles were, say, twice as far away from each other 
as they actually are, then the gravitational attraction between them would be 
weaker. The trajectories of the particles would differ as a result.

However, scalings are symmetries when considered as passive transformations. 
A passive transformation is a mere change of units, say from metres to inches. It 
does not affect the actual trajectories. Importantly, the value of the gravitational con
stant, G, changes under a passive scaling because it has dimensions proportional to 
[L]3. The increase in distances is therefore balanced by a higher value for G. 
Because we are now concerned with passive transformations, the numerical represen
tation of the metric itself must also transform. This just amounts to a change of units. If 
the scale factor is equal to 100, for example, the transformation is a change from metres 
to centimetres. When we conceive of scaling transformations as passive, Absolute 
Homogeneity is uncontroversial.

It is easy to see that r(|xi − xj|) satisfies Absolute Homogeneity iff 
r(|xi − xj|) ; k|xi − xj|, which is just the Pythagorean metric up to a multiplicative 
constant. The constant k reflects our freedom to choose a unit of length.

We have thus derived that in symmetry-adapted coordinates the distance rij 
between particles i and j as measured in some unit is proportional to the Pythagorean 
distance |xi − xj|. This is just the requirement formulated by Huggett and Pooley, but 
here it is justified rather than asserted. The notion of adaptation is defined in terms of 
invariance under dynamical symmetries. The coordinates for which this is the case are 
the familiar Cartesian ones. Therefore, the Cartesian coordinates are uniquely adapted 
to the Leibnizian structure of spacetime, given the dynamics of Newtonian mechanics. 
The Cartesian coordinates are preferable for purely physical reasons.

Let me briefly compare this account to that of Wallace (2019), who uses the passive 
symmetries of dynamical equations in a somewhat similar manner. Where Wallace 
uses dynamical symmetries to determine a theory’s spacetime structure—metric 
incluis—my approach assumes the existence of a metric function and uses dynamical 
symmetries to constrain the coordinate representation of this function. Although our 
approaches have a similar spirit, they answer slightly different questions.

5.3 Defining Inertial Frames

The above procedure gives us only a class of ‘Leibnizian’ coordinates. In order to define 
inertial frames, it is also required that coordinates are adapted to spacetime’s inertial 
structure. But recall that Earman and Friedman offered a definition of inertial 
frames as those that are adapted to Leibnizian spatiotemporal structure and in 
which Newton’s first law is satisfied. This definition was problematic because their par
ticular notion of adaption—essentially the demand that coordinates are Pythagorean— 
was left unmotivated. But now that this demand is justified it is possible to follow suit 
and define the inertial coordinates as follows: 

17 But see Gryb and Sloan 2021 for a different perspective, calling such transformations ‘dynamical 
similarities’.
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Inertial coordinate system (symmetry-based) A coordinate system that is adapted to 
a symmetry-invariant metric, and in which force-free bodies move with constant 
(coordinate) velocity. 

The inertial frames are those frames that admit of inertial coordinates adapted to them. 
The second law then reads:

NII-SYM Within those frames that are adapted to a symmetry-invariant metric and 
in which force-free bodies move with constant (coordinate) velocity, F = ma.

I have thereby shown that any inertial coordinate system is adapted to the metrical 
structure of spacetime, in the sense that physical distances between particles as 
measured in some unit are proportional to the Pythagorean distance between their 
coordinates. From the dynamical symmetries of a theory one can construct a coordi
nate system that is unique up to time-dependent translations and rotations. The 
additional stipulation that the first law must hold constrains this to an equivalence 
class of frames that is closed under time-independent translations and rotations as 
well as boosts: the Galilean transformations. These frames are the inertial ones, and 
within them the laws hold true in their simplest form.

What if one were to consider the laws in a more complex form? It is possible that 
those expressions have different symmetries than the Galilean ones. In that case the 
coordinate representation of the Euclidean metric must also remain invariant under 
different transformations, so different coordinate systems are adapted. This does not 
pose a problem: of course an expression of the laws in different coordinates requires 
a different coordinate representation of the metric! The form of the laws and the iner
tial frames are determined jointly. I leave it open whether there is any reason other 
than convenience to prefer one expression of the laws over another. Given an 
expression of the laws, however, there is always a uniquely privileged class of inertial 
coordinates relative to it, determined by its symmetries.

6. Conclusion

I have discussed three definitions of inertial frames. The first two definitions—law- 
based and structure-based ones—are typically found in foundational treatments of 
classical mechanics, but both are deficient: they fail to pick out the correct space of 
physically possible worlds. I then presented a novel, symmetry-based definition 
which does pick out the correct space of possibilities. In particular, symmetry consider
ations uniquely determine a numerical representation of the Euclidean metric, from 
which one can define the class of Cartesian coordinates.

In close, recall that problems with the inertial frame concept have led some philoso
phers to move away from a coordinate-dependent formulation of Newtonian mechanics 
towards a coordinate-independent formulation. But this disregards the fact that physics 
has used the inertial frame concept successfully for centuries.18 To quote Brown: 

In their influential 1973 article on Newton’s first law of motion, John Earman 
and Michael Friedman claimed that no rigorous formulation of the law is 

18 Of course, Newton’s own formulation of his theory made no appeal to inertial frames (Maudlin 2012: 
24ff).
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possible except in the language of 4-dimensional geometric objects. But the 
appearance of systematic studies of the 4-dimensional geometry of Newtonian 
spacetime is relatively recent … . It is curious that so much success had been 
achieved by the astronomers in applying Newton’s theory of universal gravity 
to the solar system … well before this date. How could this be if the astronomers 
were unable to fully articulate the first law of motion, and hence the meaning of 
inertial frames? … How tempting it is in physics to think that precise abstract 
definitions are if not the whole story, then at least the royal road to enlighten
ment. (Brown 2005: 23)

I concur with Brown that the history of physics has shown that it is far too easy to 
dismiss the inertial frame concept. However, I am more positive about the possibility 
of ‘precise abstract definitions’. I hope to have shown that one can offer a precise and 
correct definition of inertial frames, based on fairly abstract symmetry principles. 
These results put coordinate-dependent formulations of Newtonian mechanics on a 
surer footing and further emphasize the central role of symmetries in physics.
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