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ABSTRACT

It is nearly impossible to open a textbook on Newtonian mechanics without
encountering the concept of inertial frames: the frames that are privileged by the
theory’s dynamics. In this paper, | argue that extant definitions of inertial frames are
unsatisfactory. | criticize two common definitions of inertial frames: law-based
definitions, according to which inertial frames are simply those in which the laws
are true, and structure-based definitions, according to which inertial frames are
those that are ‘adapted’ to spatiotemporal structure. | then offer a new, symmetry-
based definition of inertial frames. This definition offers a non-conventional way of
specifying the dynamically privileged frames. The result clarifies the foundations of
Newtonian mechanics and accounts for the empirical success of coordinate-
dependent formulations of it.

ARTICLE HISTORY Received 22 November 2022; Revised 8 January 2024

KEYWORDS inertial frames; classical mechanics; symmetries; spacetime structure; laws of nature; empirical
content

But no person whose mode of thought is logical can rest satisfied with [Newton’s law] ... . How
does it come about that certain [frames of reference] ... are given priority over other [frames of
reference]? What is the reason for this preference?

Einstein (1916/1954: 71-72)

1. Introduction

Newton’s laws are not just true (in so far as they are true) fout court. Rather, they hold
true within certain frames of reference: ‘inertial’ ones. Consider a coordinate-dependent
formulation of Newton’s second law: F = ma. Without further information, this is
incomplete in the same way that the statement ‘the house is on the left’ is without
further context: a point of view is required to evaluate this expression. In the case of
Newton’s laws, this ‘point of view’ is a frame of reference (hence the expression, some-
times used, of ‘referring’ the laws to a certain frame). The full statement of the theory is:
within (and only within) the inertial frames, Newton’s laws are satisfied.

I claim that the usual definitions of inertial frames are insufficient to ‘complete’
coordinate-dependent formulations of Newton’s laws. I will distinguish two types of
definitions. On the first, inertial frames are grounded in the laws: they are those
frames in which Newton’s laws are satisfied (§3). This definition is too liberal: for
almost any world there exists some frame of reference in which Newton’s laws are

satisfied. On the second type of definition, inertial frames are grounded in
© 2025 Australasian Association of Philosophy
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spatiotemporal structure: they are frames that are ‘adapted’ to said structure (§4).
Again, however, almost any world turns out to satisfy the laws in some adapted
frame. This would trivialize Newton’s theory.

I will offer a different, symmetry-based definition of inertial frames: inertial frames
are those frames that ‘mesh’ with the dynamical symmetries of the theory (§5). On this
view, inertial frames are jointly grounded in dynamical and spatiotemporal structure.

Foundational discussions of classical mechanics typically involve coordinate-free
formulations in the language of differential geometry (Friedman 1983; Malament
2012). The correct definition of inertial coordinates may seem irrelevant. But coordi-
nate-based versions of classical mechanics are both historically and philosophically sig-
nificant: discussions of mechanics have proceeded, both in the past and often at
present, in terms of coordinates." Despite their coordinate-dependence, these formu-
lations seem to correctly identify the content of Newtonian mechanics. Of course, such
formulations presume certain geometric concepts, such as that of a vector quantity.
But their equations relate those quantities as expressed in a system of coordinates.
If I am correct that common definitions of inertial frames fail, then it is a puzzle
how coordinate-dependent versions of Newtonian mechanics could work. This
paper offers a solution to that puzzle.

Before I move on, I will clarify ‘Newtonian mechanics’: it is a theory that describes
the motion of point-like massive particles under forces. The kinematics of the theory
are that of ‘Galilean’ spacetime.” We can thus represent spacetime as a differentiable
manifold, M, on which are defined a spatial ‘metric’ h, a temporal ‘metric’ t,, and
an affine connection V. For any pair of points one can meaningfully speak of the dur-
ation between them, and for any pair of points at the same time one can meaningfully
speak of the distance between them. But there is no meaningful notion of distance
between points at different times, and so one can say neither how far nor how fast par-
ticles move across time. The connection does, however, provide an objective standard
of acceleration. It is of course also possible to define Galilean spacetime directly in
terms of coordinates (Wallace 2019).

The dynamics of Newtonian mechanics consist of Newton’s laws (Morin 2008: 51):

1. NI: A body moves with constant velocity (which may be zero) [in so far as] acted
on by a [net external] force (dv/dt = 0).}

2. NIIL The time rate of change of the momentum of a body equals the [net exter-
nal] force acting on the body (F = ma).

3. NIII: For every force on one body, there is an equal and opposite force on
another body (Fi; = —Fy)).

The coordinate expressions of these laws hold only when referred to a certain class of pri-
vileged frames. In a rotating frame, for instance, F = ma fails to hold due to the presence of
so-called ‘fictitious forces’. Itis true that one can alter the form of the laws to account for such
forces: the altered laws hold for a particular class of non-inertial frames. These expressions
are syntactically more complex than the standard ones due to the presence of additional

! For a defence of coordinate-based approaches, see Wallace 2019.

2 Or, perhaps, ‘Maxwellian” spacetime; cf. Saunders (2013).

* Hoek (2023) convincingly argues that ‘in so far as’ is a more faithful translation of the original Latin than
the standard ‘unless’, but the difference does not matter for the purposes of this paper.
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terms. Strictly, then, Newton’s laws hold true in their simplest form only when referred to
inertial frames. The inertial frames are of particular interest because within them
Newton’s laws are afforded a particularly simple formulation.*

Without any force law Newtonian mechanics is just a framework, not a theory. The
law of universal gravitation determines the gravitational force F;, that one particle
exerts on another, given their masses m;, m, and positions x;, X;:

mymy

F12 =G (X2 - xl)

I, — x|
where G is the gravitational constant. When one conjoins the law of universal gravita-
tion to Newtonian mechanics, the result is Newtonian Gravitation. Of course, there are
other forces than gravity, but I will not consider those here.

2. Frames and Coordinates

I first draw a distinction between (inertial) frames and (inertial) coordinates. I mostly
follow Earman and Friedman’s (1973) account.” The only point of departure lies in the
definition of inertial coordinates.

Firstly, define:

Frame of reference An identification of points of space over time, that is, a time-
like vector field X which ‘threads’ the manifold M.

In effect, a choice of frame amounts to a choice of which bodies to regard as being at
rest. Secondly, define:

Coordinate system A smooth and injective function x* from the manifold M into
R*, such that x° is constant across surfaces of simultaneity.

This definition assumes the existence of a foliation of spacetime into hyperplanes of
simultaneity, which follows from the requirement that forces cannot act backwards
in time (Brown 2005: §2.2.3).

Coordinate systems are connected to reference frames as follows:

Adapted coordinates A coordinate system x* is adapted to a frame of reference F iff
x' = constant (i = 1, 2, 3) along the integral curves of X.

Put differently, coordinates are adapted to a frame whenever the spatial coordinates of
the bodies that are considered at rest within that frame are constant over time.

With this connection between frames and coordinates, it is now possible to define
inertial frames. Following Earman and Friedman:

Inertial frame A frame of reference F is inertial iff there exists an inertial coordinate
system adapted to F.

This definition appeals to inertial coordinates, which I have not yet defined—their
definition is the topic of this paper. Earman and Friedman define them in terms of

* Weatherall (2021) criticizes this notion of a ‘simplest form’ of an equation, partly for the same reason that I
object to law-based definitions below.
® For different ways of drawing this distinction, see Torretti 1983: §1.4 or Brown 2005: §2.3.
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an affine connection stipulated to vanish in inertial coordinates. This is a structure-
based definition of inertial coordinates, which I will discuss in §4.

The notion of inertial coordinates is prior to that of inertial frames: the latter are
defined in terms of the former. So, although physicists often speak of the laws holding
within inertial frames, it seems more appropriate to speak of the laws holding within a
system of inertial coordinates. It is a consequence of the invariance of Newtonian mech-
anics under Galilean transformations that if the laws hold in one inertial coordinate
system adapted to F, then so they do in any other. The difference therefore does not
matter much in practice. Indeed, Brown (2005: 2.3) simply defines inertial frames as
equivalence classes of inertial coordinates systems. For this reason, I will use the
expressions ‘inertial frame’ and ‘inertial coordinates’ interchangeably in what follows.

In what follows, I will use the notational convention that the spatial coordinates
of a particle i at time ¢ in a coordinate system x* are represented by a position
vector x;(f) = (x!(t), x}(t), x}(t)). The velocity of i is then defined as
vi(t)defdx;/dt = (dxl-1 /dt, dxiz/dt, dxi3 /dt), so v; is the coordinate derivative of x;
with respect to t. Acceleration is likewise defined as the coordinate derivative of v;
with respect to t: a;(t)defdv;(t)/dt.

These vector quantities are by definition coordinate-dependent. For x and v this is no
surprise, since absolute position and velocity are not Galilean-invariant. But acceleration
is invariant, so it may seem odd to define it as the derivative of a coordinate-dependent
quantity. After all, the kinematical structure of Galilean spacetime enables one to
define acceleration ‘intrinsically’ as an invariant tensorial quantity. Once so defined, an
equation such as F = ma is independent of coordinates. It simply equates two tensor
fields. Yet acceleration is not treated this way in the standard formulation of classical
mechanics under discussion. For if acceleration is defined intrinsically, the second law
will hold no matter what coordinates are used. This would contradict the familiar
claim that F = ma only holds in inertial coordinates, because otherwise one has to
account for fictitious forces. Indeed, inertial frames are often defined as those in which
the laws, in their simple form, hold true. But if those laws are coordinate-independent,
they will hold true in any arbitrary frame. Therefore, a coordinate-based formulation
of classical mechanics must define acceleration in a coordinate-dependent way. Whenever
a occurs in this paper, then, it is the second coordinate derivative of a position vector.

3. Law-Based Definitions

On law-based definitions, inertial frames are defined in terms of the satisfaction of the
laws. In particular, it is common to see inertial frames defined as those in which
Newton’s first law holds true. This is the standard view found in many physics text-
books (Blagojevic 2001; Morin 2008; Pfister and King 2015), as well as foundational
philosophical works (Nagel 1961; Brown 2005).

3.1 Laws and Inertial Frames

In more detail, the standard view holds that Newton’s first law defines (or allows one
to construct) a class of inertial frames, namely those in which force-free bodies move
(or would move) uniformly. It is not the first law by itself that defines inertial frames,
since a force-law is also required to identify the force-free bodies. Another way to see
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this is that NI is invariant under projective transformations, whereas inertial frames are
related by the subset of Galilean transformations. How to identify these force-free
bodies independently remains a subtle question. For the sake of argument, I will
assume that one can independently characterize force-free bodies, for example as those
far away from each other; see Eisenbud (1958; Pfister 2004; Brown 2005) for further
discussion.

Having found the inertial frames, one can evaluate the second and third law with
respect to them. This view is expressed well by Morin’s (2008: 52) limerick:

For things moving free or at rest,
Observe what the first law does best.

It defines a key frame,

‘Inertial’ by name,

Where the second law then is expressed.

In fact, NI does more than just offer a definition: it also asserts that inertial frames exist
(this entails the actual or counterfactual possibility of free particles). This provides a
sense in which the first law is more than a definition.

In summary, a law-based approach defines inertial coordinates as follows:

Inertial coordinate system (law-based) A coordinate system in which force-free
bodies move with constant velocity (that is, dv/dt = 0 for them).

The inertial frames are those that admit of inertial coordinates. One can refer the
second and third law to them. For example, the second law will read:

NII-LAW Within those frames in which force-free bodies move with constant vel-
ocity (that is, dv/dt = 0 for them), F = ma.

On this view the first law is not a consequence of the second law. The first law asserts that
there exist certain frames with respect to which the second law is supposed to hold. The
second law thus does not even make sense without the first law to define those frames.

3.2 Too Many Inertial Frames

Unfortunately, this popular definition of inertial frames fails. It is too liberal: there are
inertial frames in which NII-LAW holds true even for patently non-Newtonian worlds.
Consider the following pair of worlds:

e W: a world in which #n free particles each move with uniform velocity (with
respect to the affine background structure);

e W*: a world exactly like W, except that one of the particles—call it ‘Curvy’—
moves haphardly about in a non-linear fashion (with respect to the affine back-
ground structure).

The first world, W, is Newtonian by stipulation. The second world, W*, is clearly
not Newtonian. As Morin (2008: 52) puts it: ‘we can’t have a bunch of free particles
moving with constant velocity while another one is doing a fancy jig’. But that is
exactly what Curvy is doing in W*. If the law-based account correctly identifies the
inertial frames, however, then W and W* will both satisfy Newton’s laws even in
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their simplest form—as I will now show. Therefore, law-based definitions do not
correctly identify the inertial frames.

It is helpful here to distinguish between a particle’s coordinate acceleration and
its physical acceleration. The former refers to the value of a for some particle within
a coordinate system x*, while the latter refers to the particle’s acceleration
with respect to the affine structure independently from any coordinate system. The
same physical acceleration has different coordinate representations in different
coordinate systems.

Consider first W. Since the physical acceleration of all free particles in W is zero,
W is Newtonian. Suppose that it is possible to construct an inertial coordinate
system x* such that the coordinate accelerations of all particles are zero: a; = 0 for
all i. By stipulation, F; = 0 too, and hence F; = ma; for all i. NII-LAW is satisfied;
W is Newtonian.

Consider W* next. It may seem that NII-LAW must fail to hold in W* when
referred to the same coordinates. But since x* is a function defined on the points of
W and not those of W*, it is impossible to compare (coordinate) accelerations in W
and W* directly. Instead, one must independently construct a coordinate system for
W*. The problem is that it turns out to be possible to construct an inertial coordinate
system for W* within which NII-LAW is satisfied. To see this, assume that there exists
a diffeomorphism (that is, a smooth bijection between spacetime points), ¢, that maps
the linear trajectory of Curvy in W onto the haphazard trajectory of the same particle
in W*.° If (7) represents the trajectory of Curvy in W, then Curvy’s trajectory in W* is
represented by ’)/k(T)g¢ o y(7), where 7is a dimensionless parameter. Next, define the
coordinate system x'* <x* o ¢!, By construction, the coordinates x* assigns to ¥(7)
are the same as those that x'* assigns to y*(7). It follows that the coordinate accelera-
tions of the free particles in W* with respect to x'* are the same as those of the particles
in W with respect to x*, namely zero. Thus x'* is an inertial coordinate system for W*.
Because F = 0 = ma in this coordinates system, NII-LAW is satisfied in w7

But this verdict is clearly incorrect: W* is a world in which the physical acceleration
of a force-free particle, Curvy, is not zero, contrary to the first law! This is a reductio ad
absurdum of the law-based definition of inertial frames.

The above story may seem to rest on a confusion: acceleration should be defined
with respect to the affine structure, which is unaffected by coordinate transformations.®
But as I pointed out in the previous section, this implies a coordinate-free expression of
the second law which is true independently from one’s chosen coordinates. Such a
coordinate-free expression equally cannot privilege x* over x'*. The law-based
approach therefore fails either way.

The objection to law-based definitions generalizes: one can apply an arbitrary
diffeomorphism to the particle trajectories of a Newtonian world—even ones subject
to forces, unlike in the above toy example. There is always a coordinate transformation
that ‘undoes’ this diffeomorphism, such that Newton’s laws hold in the same form with
respect to the ‘primed’ coordinates. Pooley notes this possibility:

® This assumption is without (much) loss of generality: it requires only that W and W* concur on whether
Curvy’s trajectory intersects the trajectories of any other particle.

7 If you are inclined to think that x'* is faulty because it is not ‘adapted’ to spacetime’s affine structure—such
a claim is characteristic of structure-based definitions, which I discuss in the next section.

®1 thank an anonymous reviewer for this point.
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Suppose, for example, that the only spatiotemporal information one retains is
that which is common to all coordinatizations of the particle trajectories obtain-
able from an initial inertial coordinate system by smooth but otherwise arbitrary
coordinate transformations that preserve the timelike directedness of the trajec-
tories. ... Many Newtonian worlds involving complex histories of relative dis-
tances and interactions will be topologically equivalent to histories where all
particles maintain constant distance from one another. (Pooley 2013, fn. 88)

However, Pooley’s objection is slightly different from mine. Pooley argues that if arbi-
trary coordinates are allowed, Newton’s laws are not the simplest ones. For example,
one can almost always find coordinates such that all trajectories ‘seem uniform’, in
which case the simplest law is that v = 0 for all particles. The present objection, on
the other hand, applies even if Newton’s laws are the simplest ones in some arbitrary
coordinate systems. The problem is rather that it is too easy to find coordinates in
which the laws are at least as simple as those of Newton.

The advocate of a law-based definition might adopt a form of functionalism in
response, such as Knox’s (2013) ‘inertial frame functionalism’. This type of functionalist
claims that force-free bodies define inertial trajectories, so that there is no real sense in
which Curvy’s trajectory in W* is not uniform; force-free bodies provide a ‘coordinative
definition’ of the world’s inertial structure (DiSalle 1990). This entails that there just are
no worlds that differ only over whether some force-free particle moves inertially or not.
This position is more radical than simple relationism, since W and W* differ over the
distance between Curvy and the other particles. I do not find it plausible that such
worlds could not exist, and so will not further discuss this approach here.

4, Structure-Based Definitions

I noted that a diffeomorphism between W and W* need not preserve spatiotemporal
structure. In particular, it need not preserve metrical structure. But the distances
between particles in W according to x* are the same as the distances between particles
in W* according to x'*, so if the former correctly represents distances then the latter
must misrepresent them. And if the x’* coordinates misrepresent distances, surely one
should not evaluate the laws with respect to them.

The requirement that appropriate coordinates do not only make the laws true but
also match the world’s metrical structure is expressed by Brown:

The coordinates x* are special not just because the equation of motion expressed in
terms of them takes [a] special simple form ... ; the coordinates x' (i = 1, 2, 3) should
also be special in relation to the metrical properties of space. When Newton talks of
uniform speeds, he means equal distances being traversed in equal times, and these
distances are meant in the sense of Euclid. (Brown 2005: 18)

On structure-based definitions, inertial frames are partially defined in terms of some
spatiotemporal structure, such as the Euclidean metric.

It seems that historical definitions of inertial frames due to Neumann, Lange and
Mach are in part structure-based, as they require inertial coordinates to respect the metri-
cal structure of space. Of Neumann’s construction, Barbour writes that it is ‘explicitly
constructed from the observable relative distances and relative velocities’ (1989: 669),
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and of Mach that he ‘accepted distance measurements as given’ (685). Since the aim of
this paper is not historical, however, I will not further comment on these matters.

In more detail, the procedure of a structure-based definition is to (i) stipulate some
spatiotemporal structure, (ii) claim that certain coordinates best represent this
structure, and (iii) restrict the inertial coordinates to just those ones.

I am sceptical of step (ii): I see no reason to believe that certain numerical represen-
tations of, say, metrical structure are intrinsically—that is, independent of dynamical
considerations—better than others.” This means that the satisfaction of the laws
becomes dependent on one’s choice of representational convention. Just as law-
based definitions, structure-based definitions of inertial frames fail to distinguish
worlds in which Newtonian mechanics is true from worlds in which it is false.

4.1 Structure and Inertial Frames

The claim that certain coordinates are ‘adapted’ to spatiotemporal structure is widespread:

Every spacetime will have a preferred set of frames that reflects the structure
inherent in the spacetime. (Earman 1989: 29)

The intrinsic geometrical structure of space and time according to Newton entails
that special sets of coordinates exist. ... the existence of such convenient coordi-
nates ... follow[s] from the spacetime structure itself. (Maudlin 2012: 31-32)

Both substantivalists and relationalists will view certain coordinate systems as kine-
matically privileged in the sense of being optimally adapted to the particular spatio-
temporal quantities that they each recognize. (Pooley 2013: 528)

As the final quote illustrates, such claims are neutral between substantivalism and rela-
tionism. Of course, these positions disagree on which spatiotemporal structure inertial
coordinates are adapted to. The substantivalist posits an affine connection; a coordi-
nate system is adapted to the connection whenever trajectories that are straight with
respect to this connection are parametrized by linear equations. The relationist, mean-
while, typically only posits a weaker Leibnizian spatiotemporal structure, which con-
sists just of a temporal and spatial metric.'?

It would seem that substantivalism and relationism must differ over the definition
of adapted coordinates. But the issue is more subtle. Earman and Friedman (1973: 339)
show that these procedures pick out the same class of frames: either (i) one stipulates
that x* is adapted to affine structure (that is, the connection vanishes); or (ii) one sti-
pulates that x* is adapted to Leibnizian structure and that the first law holds within
these coordinates."’ Therefore, regardless of whether or not a connection is posited
one can define inertial frames as those that are adapted to metrical structure and in
which force-free bodies move uniformly. Since adaptation to metrical structure is
common between substantivalism and relationism, I will focus on it in what follows.

°1 should note that Brown may well concur with this point, since on his dynamical approach spacetime
structure depends on dynamical structure.

19 The fact that relationism takes seriously spatiotemporal structure does not mean that it believes in the
existence of spacetime; cf. North (2018).

"'In their paper, these correspond to Def. 4 and Def. 6 of inertial frames respectively.
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The remainder of this paper concerns the definition of ‘Leibnizian coordinates’: coor-
dinates adapted to metrical structure. I also focus on the spatial metric, for simplicity;
adaptation to the temporal metric is to be treated analogously. Once one has defined a
class of ‘Leibnizian’ coordinates, one can define the class of inertial coordinates by
appeal to the first law. But I claim that structure-based definitions cannot even correctly
characterize the Leibnizian coordinates, which dooms their effort to define inertial frames.

In summary, a structure-based approach defines inertial coordinates as follows:

Inertial coordinate system (structure-based) A coordinate system that is adapted to
metrical structure, and in which force-free bodies move with constant (coordinate)
velocity.

The inertial frames are again those that admit of inertial coordinates. The second law
then reads:

NII-STR Within those frames adapted to the metric and in which force-free bodies
move with constant (coordinate) velocity, F = ma.

Because NII-STR is stronger than NII-LAW, it promises to rule out the problematic
coordinate systems discussed in the previous section.

4.2 Which Metric?

It is still unclear what it means for a coordinate system to be ‘adapted’ to the metric. I
believe that there is no unequivocal notion of adaptation. Whether coordinates are
adapted to metrical structure depends on the way this structure is represented. This
is a matter of convention. I resist the claim that certain coordinate systems are intrin-
sically better adapted to some structure than others. On different conventions, different
coordinates are adapted to the same metric. Problematically, for some of these conven-
tions there exist adapted coordinate systems within which Newton’s laws are satisfied
even in patently non-Newtonian worlds.

Unfortunately, little has been written on this crucial notion of adaptation. Some-
times, it is suggested that coordinates adapted to the Euclidean metric are such that
the physical distance between points should equal their Pythagorean distance:

In Euclidean space, a frame is ‘adapted’ to some reference body if it is at rest at
the origin of the frame, the axes are orthogonal and distances along the axes
equal to the distances from the body. (Huggett 2006: 46)

The ways in which a coordinate system can be adapted to these quantities is
straightforward ... spatial coordinates are chosen so that, for all particles i, j and
for all times, |x; — xj| = 135, where rjj is the instantaneous inter-particle distance
between i and j. (Pooley 2013: 529)

Both authors claim that within an adapted coordinate system, the Pythagorean dis-

tance |x; — xﬂg\/ (x; — xj)2 + (yi — yj)2 + (z; — zj)2 should equal the physical dis-
tance between particles (in some chosen unit), where x; and x; are the position

vectors in coordinates x* of particles i and j respectively. Call a coordinate system
x* adapted to the Pythagorean metric iff, for any pair of particles i, j, the distance
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between i and j in some chosen unit is equal to |x; — x;|. (I will shortly explain why I
call this metric ‘Pythagorean’ and not ‘Euclidean’.) The coordinates adapted to the
Pythagorean metric are the familiar Cartesian ones. The requirement that coordinates
are adapted to this metric thus rules out the problematic coordinate systems from the
previous section. If it could be shown that the Cartesian coordinates are uniquely well-
adapted to the world’s metrical structure, the structure-based approach might succeed.

But the issue is more complicated. Distinguish between metric functions and their
coordinate representations. A metric function on a space X is a function
d:X x X — R from pairs of points into real numbers such that:'*

di,j) =0 i=]j
d(i, j) = d(j, i)
d(i, k) < d(i, j) + d(j, Ik).

The value of d(i, j) then represents the distance between i and j as expressed in some
particular unit.
In addition to these axioms, the Euclidean metric also satisfies Ptolemy’s inequality:

d(i, j) - d(k, 1) + d(j, k) - d(i, [) > d(G, k) - d(j, ]).

The Euclidean metric represents distances in a Newtonian world, since the geometry
of three-dimensional hyperplanes of simultaneity of Galilean spacetime is Euclidean.
This definition is independent of coordinates: d is a function from points themselves to
real numbers, not from their coordinates. In particular, the Euclidean metric defined here
is not the Pythagorean metric discussed above, although they are often identified. The
former is a function of pairs of points, the latter of pairs of position vectors. It is the
former metric that codifies the theory’s physical content, namely the physical distances
between points or particles. The latter metric only defines their coordinate distance.

However, it is often convenient to represent a metric as a function on coordinates.
We will say that a function :R®> x R* — R represents a metric d in a coordinate
system x* iff r(x;, X;) = d(i, j). If d satisfies the axioms for a metric then so does r,
so r itself is a metric on R*—but not on X.

It is easy to see that r represents the Euclidean metric in a coordinate system x* iff x* is
adapted to . Therefore a representation r of a metric d defines a class of adapted coordi-
nates, namely those in which r does represent d. For the Pythagorean metric, this is the
class of Cartesian coordinates: if d assigns to each pair of points their Euclidean distance
in some particular unit, then the function r(x;, x;)def|x; — x;| represents d iff x* is a
Cartesian coordinate system. This explains why the authors quoted above focus on the
Pythagorean metric.

However, the Pythagorean metric is not the only representation of Euclidean distance.
Given an arbitrary diffeomorphism ¢ of X, one can define another representation as
follows. First, notice that ¢ induces a coordinate transformation x* — x’* such that
K (p) = x*(p(p)). In brief, x'* assigns the same coordinates to p as x* does to ¢(p).
Second, define a function r such that r4(x;, X';) = r(x;, X;). By construction, r4 represents
the Euclidean metric in x'* iff r represents the same metric in x*. Conversely, this means
that ry defines a different class of coordinates from r. Whenever ¢ is not an isometry of
the metric space (X, d), the coordinates adapted to ry are distinct from those adapted to

12 The space X here is a hyperplane of simultaneity of the manifold M.



AUSTRALASIAN JOURNAL OF PHILOSOPHY 1

r. The upshot is that which coordinates are adapted to the Euclidean metric depends on the
way one numerically represents that metric. Although this point is mathematically trivial, it
is not often noted by philosophers; van Fraassen (1970: §1.3) is an exception.

The central problem for structure-based definitions is that whether NII-STR is
satisfied depends on the way in which Euclidean distance is represented. If one
chooses to represent physical distances by the Pythagorean metric, then NII-STR is
satisfied in certain worlds. But if one chooses to represent physical distances by
some other metric, NII-STR may fail to hold in those very same worlds. Whether
those worlds count as Newtonian, by the light of the structure-based definition of iner-
tial frames, thus depends on which numerical representation one chooses.

For an illustration, consider again the pair of worlds presented in §3:

e W:a world in which #n free particles each move with uniform velocity;
e W*: a world exactly like W, except that one of the particles—call it ‘Curvy’—
moves haphardly about in a non-linear fashion.

W is a Newtonian world; W* is not. We have seen that F = ma is true in W with respect
to the coordinates x*, but that it is also true in W* with respect to the coordinates x'*. The
structure-based definition must therefore rule that x'* is inadmissible because it does not
reflect the Euclidean distances between particles. This is indeed the case if one were to
impose the condition that d(i, j) = |x; — x;|. But recall that x'* = x* o ¢! for some dif-
feomorphism ¢ from W to W*. If one instead were to impose the condition that
d(i, j) = r¢(x;, X;), then it is x* that is inadmissible. Under that condition, NII-STR is sat-
isfied not in W but in W*. There is no physical reason to use r rather than r: both func-
tions represent the same Euclidean metric, so the choice between them is only a matter of
representational convention. Just like the law-based definition discussed in the previous
section, then, structure-based definitions run the risk of erroneously classifying certain
patently non-Newtonian worlds as Newtonian.

The core of this objection to structure-based definitions is that no representation is
better than any other. Before I move on to my symmetry-based proposal for the
definition of inertial frames, let me discuss two responses that would privilege
certain representations. First, the pragmatist response claims that Cartesian coordi-
nates are simpler or more convenient. Maudlin (2012: 31-32), for instance, writes
that ‘[ijn the most convenient coordinatizations of Newtonian space and time, the
acceleration of a trajectory through time is proportional to the second derivative of
the spatial coordinates with respect to the time coordinate.” But how does one charac-
terize simplicity here? One cannot define the simplest coordinates as those in which the
laws have their simplest form, as that would reduce to a law-based definition. The most
straightforward definition of simple coordinates is that they are the most convenient:
‘[bly a convenient frame, I mean one in which the calculations will be easy to do’
(Maudlin 2012: 171). But whether calculations are easy seems to provide a merely sub-
jective account of simplicity, which should not play a role in our formulation of the
theory. It does not seem unlikely, for example, that some alien community of scientists
finds it much easier to carry out calculations in non-Cartesian coordinates. Although
convenience may explain why we prefer Cartesian coordinates, it does not explain why
the laws are true in their simple form in just those coordinates.

The second, naturalist response is that certain coordinates ‘naturally’ represent
Euclidean distance. North (2021), for instance, believes that Cartesian coordinates
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are more natural because they ‘have straight, mutually orthogonal coordinate axes’,
and that their ‘numerical values reflect the relative locations of the points in a particu-
larly clear manner’. Sometimes, ‘naturalness’ seems to reduce to simplicity. But other
times, North states that certain coordinates ‘respect’ spatiotemporal structure better
than others. For example, she writes that it is ‘better to use coordinate systems
whose continuity matches the continuity structure—the topology—of the space’ (cf.
Maudlin (2012: 27)). It is not just easier to use continuous coordinates, North believes,
but such coordinates more perspicuously reflects the continuity of space itself. Like-
wise, Cartesian coordinates are said to more perspicuously reflect the Euclidean metric.

I find this response unsatisfactory for several reasons."” Firstly, the notion of ‘nat-
uralness’ is far from clear. What reason is there to believe that some alien community
of scientists would not find non-Cartesian coordinates more natural? Secondly,
North’s claim that certain coordinates better ‘reflect’ some structure seems to presup-
pose a representational convention of that very structure. Consider a map of the Earth.
The map seems to misrepresent Earth’s curvature: the Earth is spherical, the map is flat.
It is well-known that as a consequence, maps must distort features such as relative land
mass. The Mercator projection, for instance, distorts the relative size of the continents.
North would presumably say that the ‘map-coordinates’ cannot reflect the geometry of
the Earth perspicuously. But there is a sense in which any map offers an entirely accu-
rate representation of the Earth—once one has adopted an appropriate represen-
tational convention. Nguyen (2020: 1027) makes this point for the Mercator
projection: ‘Features like “being of equal area” on the map, don’t have to be interpreted
as representing “being of equal area” on the Earth’s surface. In fact, if one had a
sufficiently good understanding of the projection used to create the map, then one
could provide an interpretation function that delivered truths about area properties
of the Earth, despite the dissimilarities between these and the area properties of the
map.” On the convention that the area of a continent on the map is proportional to
the area of a continent on Earth, the map’s coordinatisation of the Earth’s surface is
mal-adapted. But on the alternative convention that the proportionality depends on
the continent’s latitude, the map’s coordinates are perfectly well-adapted. The map-
coordinates only seem unnatural when one tries to judge the relative area of the con-
tinents by a convention not appropriate to the map. The same is the case for the topo-
logical features of space. On the convention that a discontinuity in coordinates
represents a discontinuity in spacetime, the map’s coordinates are mal-adapted to
spacetime’s topological structure. But on the alternative convention that the —180°
and 180° coordinates represent adjacent locations, the map does represent the Earth
as round. (Compare this to a clock face: the fact that the number 1 does not come
after the number 12 does not mean that one o’clock does not follow noon!) Therefore,
an appeal to natural representation cannot save the structure-based approach.

5. Symmetry-Based Definitions

In response to the failure of standard definitions of inertial frames, I want to propose a
different definition: a symmetry-based one. As far as I am aware, this type of definition
has not been suggested before. The account that comes closest is Landau and Lifshitz’s
(1976: 5) definition of an inertial frame as one ‘in which space is homogeneous and

13 For another critical response to North, see Barrett 2022.
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isotropic and time is homogeneous’. But it is left unclear what it means for space to be
homogeneous or isotropic ‘in’ an inertial frame. The symmetry-based account I
propose elucidates what it means for a frame to possess these features.

Moreover, it is unclear what justifies this demand that coordinates are homo-
geneous and isotropic. I base this demand on the dynamical symmetries of Newtonian
mechanics, namely the invariance of the laws under translations and rotations. Put
more precisely, the account I propose justifies the choice of the Pythagorean metric
as a privileged representation of Euclidean distance within the context of Newtonian
mechanics because it meshes with the theory’s dynamical laws. Unlike structure-
based definitions, it does not claim that certain spatiotemporal structures are intrinsi-
cally better represented by some coordinates. Rather, certain coordinates mesh better
with the dynamics. If the dynamics were different, different coordinates would be pri-
vileged—even if the structure of spacetime is kept fixed. If the laws were spherically sym-
metric around a dynamically special point, for example, then spherical coordinates
would mesh better with the theory’s dynamics even if space were still Euclidean. Simi-
larly, the appropriate metric for Lorentz’s aether theory is one that is invariant under
the theory’s relativistic symmetries—the Lorentz transformations—despite the fact
that this theory was set on a classical spacetime (cf. Bradley (2021)). For these
reasons I consider the symmetry-based account a novel approach that succeeds
where the above definitions fail.

5.1 Symmetry Constraints

Recall that the laws of Newtonian mechanics (in their simple form) are invariant under
spatial and temporal translations, as well as under spatial rotations. It does not matter
for the satisfaction of the laws whether one uses some set of coordinates x* or a
different set of coordinates x'* related to the first by a transformation of the
‘Newton group’ (Pooley 2013):

x—>Rx+¢ t—t+d,

where ¢ and d are constant and R is an orthogonal matrix with determinant + 1. If the
laws are true when referred to a coordinate system x*, then so they are when referred
to a coordinate system related to x* by these transformations.'*

Crucially, this is true even when one uses non-standard coordinates, such as the
ones adapted to rq from the previous section. This is because the translation- and
rotation-invariance of Newtonian mechanics is a consequence of the form of the
laws themselves. So, if there is some world in which the laws of Newtonian mechanics
are satisfied in certain non-Cartesian coordinates, then the laws of Newtonian mech-
anics remain satisfied when those coordinates are translated or rotated.

The fact that the laws are invariant under these transformations means that it
should not matter which coordinates are chosen from an equivalence class closed
under the action of the Newton group. This is true for the standard Cartesian coor-
dinates. In particular, the Pythagorean metric is itself invariant under translations
and rotations in that |x; — x;| = [x; — X/;| whenever x* and x'* are related by a New-
tonian transformation. For example, it is invariant under a translation x - x+¢

" Of course, the laws are also invariant under boosts, which leads to the Galilei group. But since I have
restricted the discussion to Leibnizian structure only, I will set these aside for now.
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since |(x; + ¢) — (x; + ¢)| = |x; — Xj|. When one uses the Pythagorean metric to rep-
resent distances, then, it does not matter whether one uses one system of coordinates
or another one related to the first by a translation or rotation.

But the same is not the case for alternative representations of the metric. Consider
an arbitrary representation ry as defined above. Generally—when ¢ is not an
isometry—the effect of a translation or rotation on a coordinate system is to
change the distances between particles: the distance between i and j as determined
by r4 in a non-Cartesian coordinate system x* is different from the distance
between i and j as determined by the same ry in the transformed coordinate
system x'*. In arbitrary coordinates the difference between transformed coordinates
does matter, contrary to the fact that these transformations are symmetries of New-
tonian mechanics. In other words, non-Cartesian representations make it seem as if
certain coordinate systems are better adapted to the distances between particles than
others even when those coordinates are symmetry-related, contrary to the symmetry-
invariance of the dynamics. Yet another way to make the point is that it is desirable
for the theory’s active symmetries (symmetries of the laws) to match the theories
passive symmetries (coordinate transformations): this is the case whenever the rep-
resentation of the metric is invariant under the action of the Newton group.'” It is on
this basis that non-standard coordinates are ruled out on the symmetry-based
approach.

5.2 Derivation of the Pythagorean metric

Based on the dynamical symmetries Newtonian mechanics, it is reasonable to con-
strain the coordinate representation of Euclidean distance as follows:

Translation Invariance r(x;, X;) = r(x; + ¢, X; + ).

Rotation Invariance r(x;, x;) = r(Rx;, Rx;).

From Translation Invariance, it follows that r(x;, ;) = f(x; — X;). From Rotation
Invariance it follows that the distance does not depend on the direction but only on
the magnitude of the difference x; — x;, so r(x; — x;) = g(Ix; — x;). 16

These invariance principles do not yet yield the Pythagorean metric. For example,
the discrete metric r(x;, X;) =1 for i # j and 0 otherwise also satisfies them. But
with one further assumption one can derive the Pythagorean metric up to a propor-
tionality factor:

Absolute Homogeneity r(ax;, ax;) = |a|r(x; X;).

This principle states that the metric scales with coordinates. This may seem

1> See Gomes 2022 for a similar idea applied to the diffeomorphism invariance of GR.

'S There is a more technical way of putting this point. Instead of a function r(x;, x;), we can think of a metric
as represented by a tensor that assigns at any point p a scalar to every pair of vectors X, Y, from the tangent
space at p. The Euclidean metric tensor as represented in Cartesian coordinates is invariant under trans-
lations, rotations and reflections. But not all metric tensors are so invariant. The spherical metric, for
instance, varies under translations because it has a distinguished origin. The requirement that the represen-
tation of the metric is invariant under rotations and translations is then equivalent to the requirement that
the metric tensor in adapted coordinates is proportional to diag(1, 1, 1). This is just the requirement put in
by hand by Earman and Friedman (1973), but they have not justified it on the basis of symmetries or in
another way.
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controversial: scaling transformations are not dynamical symmetries of Newtonian
mechanics.'” The effect of a scaling is to increase the distance between all particles
by a constant factor. But if all particles were, say, twice as far away from each other
as they actually are, then the gravitational attraction between them would be
weaker. The trajectories of the particles would differ as a result.

However, scalings are symmetries when considered as passive transformations.
A passive transformation is a mere change of units, say from metres to inches. It
does not affect the actual trajectories. Importantly, the value of the gravitational con-
stant, G, changes under a passive scaling because it has dimensions proportional to
[L]’. The increase in distances is therefore balanced by a higher value for G.
Because we are now concerned with passive transformations, the numerical represen-
tation of the metric itself must also transform. This just amounts to a change of units. If
the scale factor is equal to 100, for example, the transformation is a change from metres
to centimetres. When we conceive of scaling transformations as passive, Absolute
Homogeneity is uncontroversial.

It is easy to see that r(|x;—xj|) satisfies Absolute Homogeneity iff
r(|x; — x;]) = k|x; — x;|, which is just the Pythagorean metric up to a multiplicative
constant. The constant k reflects our freedom to choose a unit of length.

We have thus derived that in symmetry-adapted coordinates the distance r;
between particles i and j as measured in some unit is proportional to the Pythagorean
distance |x; — x;|. This is just the requirement formulated by Huggett and Pooley, but
here it is justified rather than asserted. The notion of adaptation is defined in terms of
invariance under dynamical symmetries. The coordinates for which this is the case are
the familiar Cartesian ones. Therefore, the Cartesian coordinates are uniquely adapted
to the Leibnizian structure of spacetime, given the dynamics of Newtonian mechanics.
The Cartesian coordinates are preferable for purely physical reasons.

Let me briefly compare this account to that of Wallace (2019), who uses the passive
symmetries of dynamical equations in a somewhat similar manner. Where Wallace
uses dynamical symmetries to determine a theory’s spacetime structure—metric
incluis—my approach assumes the existence of a metric function and uses dynamical
symmetries to constrain the coordinate representation of this function. Although our
approaches have a similar spirit, they answer slightly different questions.

5.3 Defining Inertial Frames

The above procedure gives us only a class of ‘Leibnizian’ coordinates. In order to define
inertial frames, it is also required that coordinates are adapted to spacetime’s inertial
structure. But recall that Earman and Friedman offered a definition of inertial
frames as those that are adapted to Leibnizian spatiotemporal structure and in
which Newton’s first law is satisfied. This definition was problematic because their par-
ticular notion of adaption—essentially the demand that coordinates are Pythagorean—
was left unmotivated. But now that this demand is justified it is possible to follow suit
and define the inertial coordinates as follows:

7But see Gryb and Sloan 2021 for a different perspective, calling such transformations ‘dynamical
similarities’.
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Inertial coordinate system (symmetry-based) A coordinate system that is adapted to
a symmetry-invariant metric, and in which force-free bodies move with constant
(coordinate) velocity.

The inertial frames are those frames that admit of inertial coordinates adapted to them.
The second law then reads:

NII-SYM Within those frames that are adapted to a symmetry-invariant metric and
in which force-free bodies move with constant (coordinate) velocity, F = ma.

I have thereby shown that any inertial coordinate system is adapted to the metrical
structure of spacetime, in the sense that physical distances between particles as
measured in some unit are proportional to the Pythagorean distance between their
coordinates. From the dynamical symmetries of a theory one can construct a coordi-
nate system that is unique up to time-dependent translations and rotations. The
additional stipulation that the first law must hold constrains this to an equivalence
class of frames that is closed under time-independent translations and rotations as
well as boosts: the Galilean transformations. These frames are the inertial ones, and
within them the laws hold true in their simplest form.

What if one were to consider the laws in a more complex form? It is possible that
those expressions have different symmetries than the Galilean ones. In that case the
coordinate representation of the Euclidean metric must also remain invariant under
different transformations, so different coordinate systems are adapted. This does not
pose a problem: of course an expression of the laws in different coordinates requires
a different coordinate representation of the metric! The form of the laws and the iner-
tial frames are determined jointly. I leave it open whether there is any reason other
than convenience to prefer one expression of the laws over another. Given an
expression of the laws, however, there is always a uniquely privileged class of inertial
coordinates relative to it, determined by its symmetries.

6. Conclusion

I have discussed three definitions of inertial frames. The first two definitions—law-
based and structure-based ones—are typically found in foundational treatments of
classical mechanics, but both are deficient: they fail to pick out the correct space of
physically possible worlds. I then presented a novel, symmetry-based definition
which does pick out the correct space of possibilities. In particular, symmetry consider-
ations uniquely determine a numerical representation of the Euclidean metric, from
which one can define the class of Cartesian coordinates.

In close, recall that problems with the inertial frame concept have led some philoso-
phers to move away from a coordinate-dependent formulation of Newtonian mechanics
towards a coordinate-independent formulation. But this disregards the fact that physics
has used the inertial frame concept successfully for centuries.'® To quote Brown:

In their influential 1973 article on Newton’s first law of motion, John Earman
and Michael Friedman claimed that no rigorous formulation of the law is

'8 Of course, Newton’s own formulation of his theory made no appeal to inertial frames (Maudlin 2012:
24ff).
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possible except in the language of 4-dimensional geometric objects. But the
appearance of systematic studies of the 4-dimensional geometry of Newtonian
spacetime is relatively recent ... . It is curious that so much success had been
achieved by the astronomers in applying Newton’s theory of universal gravity
to the solar system ... well before this date. How could this be if the astronomers
were unable to fully articulate the first law of motion, and hence the meaning of
inertial frames? ... How tempting it is in physics to think that precise abstract
definitions are if not the whole story, then at least the royal road to enlighten-
ment. (Brown 2005: 23)

I concur with Brown that the history of physics has shown that it is far too easy to
dismiss the inertial frame concept. However, I am more positive about the possibility
of ‘precise abstract definitions’. I hope to have shown that one can offer a precise and
correct definition of inertial frames, based on fairly abstract symmetry principles.
These results put coordinate-dependent formulations of Newtonian mechanics on a
surer footing and further emphasize the central role of symmetries in physics.
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