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We thank all discussants, and especially the proposer and the seconder of the vote of thanks,
for their insightful and encouraging contributions. We are particularly delighted by the diversity of
philosophical positions found among the respondents (both nullistic and non-nullistic Bayesians,
frequentists, likelihoodists) — apparently we struck a chord among all these groups, which was
exactly what we had hoped for with this paper. We received so many comments that it is impossible
for us to respond to each of them — freely paraphrasing [Diaconis and Freedman, 1986, page 86],
we hope discussants whose remarks were not or not all singled out for reply will not feel insulted,
on the theory that silence is consent, and no news is good news.

We grouped major themes, brought up by several discussants, into Section 1–4. This is followed
by a final section with some more specific issues and questions.

1 GRO(W) Construction: Limitations, Extensions, and Alterna-
tives

Limitations and Extensions I: getting rid of regularity conditions Our main result, The-
orem 1, requires the alternative Q and the composite null to all have densities relative to the same
underlying measure, and also imposes the finite KL condition D(Q∥PW ) < ∞: the KL divergence
between Q and at least some subset of the convex hull of the null has to be finite. All extensions
of Theorem 1 require analogous conditions. As noted by Vovk and Larsson, Ramdas and Ruf, in
nonparametric settings these conditions are quite strong. Relatedly, our basic growth optimality
notion GRO can sometimes trivialize if the finite KL condition does not hold. Luckily though, over
the course of the last year, both Theorem 1 and the GRO notion have been significantly extended.
First, Lardy et al. [2023] replaced the KL divergence by the more general notion of description
gain and extended GRO accordingly. Second, as Larsson, Ramdas and Ruf discuss, in [Larsson
et al., 2024] they managed to come up with further sweeping generalizations of the GRO e-variable,
the reverse information projection and the result linking them, i.e. our Theorem 1. Their gen-
eralization of the GRO e-variable, which they call the numeraire e-variable, exists in complete
generality, under no regularity conditions whatsoever. We are of course very happy that our result
can be generalized in this way, thereby showing that the basic idea underlying our Theorem 1 is
really the same idea as that employed in the construction of various nonparametric e-processes
such as those in [Waudby-Smith and Ramdas, 2024] and those implicitly derived by e.g. Honda
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and Takemura [2010], Agrawal et al. [2021]. In our view, this essentially implies full generality of
the GRO/numeraire e-variable for the case that the alternative Q is (a) a singleton which (b) does
not assign positive probability to any event that is null under every distribution in the convex hull
of the null. But what if (a) or (b) is violated?

Limitations and Extensions II: Changing the Filtration As to (a), as demonstrated in our
Example 8, in the case of composite alternatives in combination with worst-case growth optimality
(GROW and relative GROW), it can be necessary to move to a coarser filtration to obtain the
optimal e-variable. Tian and Yu ask when such coarsening can lead to more (worst-case) growth or
power. Our answer is that at present we only have a partial understanding of this matter, and it is
an exciting area of ongoing research; see for example [Pérez-Ortiz et al., 2024, Choe and Ramdas,
2024]. Violation of (b) often occurs if the outcome Y really represents an infinite sequence of data.
Vovk considers, for example, the case that Y is an infinite binary sequence and the null hypothesis
expresses that the sequence is exchangeable. In this case, (b) is necessarily violated [Ramdas et al.,
2022], for any Q that is not in the null. Then the extended GRO/numeraire e-variable against
any such Q will still exist, but it will have an expected logarithmic growth of ∞ [Larsson et al.,
2024, Theorem 2.5] and this will not tell us anything about whether it is a useful choice in an
e-process defined on finite subsequences of Y. In this case, again, changing the filtration can come
to our rescue: Vovk and collaborators have developed elegant methods for designing e-processes in a
particular coarsened filtration. Interestingly, once one restricts e-processes to the chosen filtration,
expected logarithmic growth again becomes a natural notion of optimality. Given the fact that
different types of filtration-coarsenings (i.e. not just Vovk’s) have been successfully used in e-value
design [Ramdas et al., 2023], we speculate that currently unknown yet useful filtration-coarsening
are still to be discovered, and even that designing e-variables and processes by filtration change
may somehow be unified with design by growth optimality and information projection.

Appropriateness of (RE)GRO(W) It is here that we turn to the insightful comments of Ruodu
Wang, proposer of the vote of thanks. Professor Wang notes that the interpretation of the e-power
(i.e. expected logarithmic growth) of individual e-variables is not clear. We agree that there is a
sore point here: in our paper we define and optimize it for individual e-variables, but it derives
its meaning from the optional continuation setting, in which more and more batches of data may
be added. Wang also provides some intriguing examples in which the e-power is minus infinity
yet the e-variable will quite likely grow large, and cannot become zero, under the alternative. The
reciprocal of this very e-variable can be used to show that the opposite can happen as well: infinite
e-power yet a large probability of being very small in practice. This clearly shows that there is
more to e-variable theory than just GRO and its variations! One option is to turn attention to
concave functions f(E) of E different from the logarithm, i.e. those that are induced if we construct
E-variables by Rényi-projection instead of reverse information projection — Lardy et al. [2023],
Larsson et al. [2024] recently showed that such projections give rise to E-variables as well, and
it appears that the corresponding functions f also admit a monetary interpretation [Soklakov,
2020]. Also the developments in [Grünwald, 2022] suggest that when loss functions may be set in a
data-dependent manner, we may sometimes want to diverge from GRO. Nevertheless, we feel that
the GRO criterion and the reverse information projection will remain central to the area, and we
concur with Wang that the coming years“ will bring better understanding of its advantages and
limitations, after which it will remain the default notion of e-power, with properly acknowledged
caveats.”
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Hennig writes that the GRO-criterion, namely optimising EQ[logE], may not look so attractive
to a gambler who is interested in a payout of E rather than logE. As stated, we agree that GRO
may not always be the criterion of choice, but this particular remark seems besides the point: in our
testing-by-betting game, the pay-off is E, not logE, and we clearly state in the paper why it is not
at all a good idea to optimize for E directly if optional continuation is a possibility. We are similarly
puzzled by the remark “I am not convinced that their [i.e. the author’s monetary] interpretation
of e-values is clearer than the interpretation of p-values. Probabilities and consequently p-values
have been given monetary interpretations as well in the literature”. We would like to turn this
remark on its head and argue that the monetary interpretation of p-values on the contrary makes
clear that they are problematic as a notion of evidence in testing. Such a monetary interpretation
goes as follows: suppose a collection of lottery tickets {Tr : 0 < r < 1} is for sale. Ticket Tr pays
out 1/r euro if the event p ≤ r happens, where p is the observed p-value and 0 otherwise. Now,
under the null hypothesis, the fair price of each ticket Tr is 1 euro. Now suppose you observe a
p-value of p. This indicates that “you have observed an event for which, if you had bought the ticket
Tp in advance, you would now have gained 1/p euro. The problem is with the in advance: you
didn’t know in advance that Tp is the ticket you should have bought (giving you the highest pay-off
among all tickets). Hence, stating p as your evidence against the null, in betting terms, amounts
to a form of cheating. We refer to Shafer [2021] who emphasizes the point and interprets p-to-e
calibration as making p-values honest. Indeed, in his discussion of our paper, Shafer even writes
regarding this issue “...the authors concede too much. Testing with e-values, they tell us, requires
more data than testing with p-values. Was this concession extracted by referees? When we make
p-values honest, e-values do not need more data to catch up.” We agree with this statement and
hasten to say that, when we wrote ‘requires more data’, we referred to a test that outputs merely
a binary accept/reject decision, without a continuous measure of evidence accompanying it.

2 GRO(W) and Power

A Concrete Example Greenland hopes we can explain by example how e-variables should be
chosen in practice, and in particular asks us to consider the case of observing a k-degree-of-freedom
χ2 statistic Y taking value y with p-value p. Greenland himself notes that two possible e-variables
which suggest themselves for this null hypothesis perform terribly in terms of power, and challenges
us to do better. We happily take up the challenge! We first note that in many practical scenarios
in which such a test is done, Y will have a k-degree noncentral χ2-density pδ under the alternative,
with some (usually unknown) noncentrality parameter δ. This suggests to take as our e-variable
a likelihood ratio Eδ(y) := pδ(y)/p0(δ)(y), or a mixture EW (δ)(y) :=

∫
Eδ(y)dW (δ); since the

null is simple, all such Eδ and EW are e-variables. Since the family of noncentral χ2-distributions
is strictly of Pólya (∞)-type [Karlin, 1956], it constitutes a monotone-likelihood ratio family and
therefore, for each δ and W , the corresponding likelihood ratio is a monotone function of the p-
value, facilitating comparison. Like Greenland we henceforth focus on the case with 1 degree of
freedom. As we show in Section 3.1, Proposition 3 of our paper, if we want to test δ = 0 (i.e. the
null hypothesis of central χ2 is correct) vs. δ ≥ δ∗ for some fixed minimal relevant effect size δ∗

then the results of our paper can be directly applied: by the monotone likelihood ratio property,
the GROW criterion prescribes to use the e-value Eδ∗ . In Figure 1 we plot Eδ(y) as function of δ
for fixed data y = 3.84, the observation corresponding to p-value p = 0.05. Now, in practice often
no minimally relevant δ∗ is given. In this case, we may still follow the prescription of our paper and
equip δ with a prior to optimize for the REGROW (relative growth) criterion of Section 4.1-4.3.
Exact computation of the REGROW-optimal prior is difficult; here we merely give an indication
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Figure 1: Eδ(y) as function of δ for fixed y corresponding to p = 0.05.

of what happens by taking an intuitively noninformative prior which puts heavy mass near 0 and
∞: the exponentiated Cauchy prior WCauchy with density

wCauchy(δ) =
1

π

1

δ(1 + log2 δ)
.

With such a prior, we get EWCauchy
(y) = 1.81, for y = 3.84, i.e. p = 0.05, and we get EWCauchy

(y) ≥
20 as soon as y ≥ 11.52, corresponding to a p ≤ 0.0007. Not very impressive, but already an
enormous boost compared to Greenland’s two intentionally naive proposals, the most powerful of
which exceeds 1/α = 20 (‘reject the null’) if p ≤ 0.0000077. However, we would like to do better.
The REGROW criterion has been designed for settings in which data comes in sequentially and
will perform especially well in combination with optional stopping, as in Section 6 of our paper. In
the current one-shot, sample-size-1 setting (where e-values are still useful, because we may want to
multiply them with other e-values later on), the REGROW criterion is not the method of choice.
Instead, to obtain higher power, when α is given, then with monotone likelihood ratio families
one may use the uniformly most powerful (UMP) Bayes factor as an e-variable [Johnson, 2013],
obtained by using a point prior on δ which depends on α — it is designed to achieve, among all
priors, the most power when rejecting if it reaches value ≥ 1/α (while thus being optimized for a
specific α, it keeps its Type-I error guarantee under optional continuation for any other threshold
as well). In our case, this prior puts all mass on δ∗ = 7.378.., and we obtain Eδ∗(y) ≥ 20 if y ≥ δ∗,
i.e. if p ≤ 0.007 — a factor 10 better than what is obtained with the noninformative prior. This is
the best that can be obtained for e-variables of the likelihood ratio form. We aim to investigate the
use of UMP Bayes factors as priors to obtain powerful e-variables more generally in future work.

GRO vs UI Martin, seconder of the vote of thanks, together with V. Dixit, has recently [Dixit and
Martin, 2023] proposed to design e-processes based on predictive recursion combined with universal
inference (UI). Dixit and Martin show that, up to first order, this leads to asymptotic growth rate
comparable to our exact optimal (GRO) growth rate. Martin asks if there are practical or theoretical
benefits to exact growth rate optimality compared to asymptotic growth rate optimality; a similar
question was asked by Tian and Yu. While the precise answer depends on the situation, it turns out
that exact growth rate optimality can be hugely important in some cases. For example, when testing
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parameters of a multivariate d×d Gaussian, it can be shown that UI and GRO have asymptotically
the same expected logarithmic growth (or e-power, in Wang’s terms), up to sublinear terms, yet
if n is not much larger than d the difference both in classical power and in e-power at n can be
extreme. This is suggested by results from Tse and Davison [2022] (see especially the discussion
by Spector et al. [2023]) and also by our own experiments; in ongoing work we make a theoretical
comparison of both methods for exponential family nulls which points in the same direction.

We hasten to add that we really like Martin’s idea to use predictive recursion as an alternative
to e.g. Robbins’ method of mixtures or the plug-in method — loss of power in the nonasymptotic
setting occurs because of replacing GRO by UI, and seems unrelated to the use of predictive
recursion.

Martin also notes that while classical methods (i.e. Neyman-Pearson style tests) do not au-
tomatically accommodate uncertain stopping times, they can be “manually” adjusted to handle
pre-specified sets of stopping times S. When S is somehow restricted, this will lead to procedures
with larger classical power than our e-processes, which are designed to allow for optional stopping
under all stopping times under the given filtration. Of course we concur with this (in fact, the
classical method of α-spending is one way of doing just this), and we very much look forward to see
Martin’s intriguing conjecture that Choquet integration can be leveraged to efficiently handle the
“some stopping times” case. On the other hand, we would like to emphasize that pre-specifying a
set S and then adjusting classical methods deals with (restricted) optional stopping within a study,
but not with optional continuation from one study to the next, which was our main target in this
paper— directly using e-values enables this automatically. Similarly, one of us recently put forward
a rather different motivation for testing with e-values: in contrast to classical p-value based meth-
ods, they can be used to obtain valid (in a certain frequentist sense) risk assessments of decisions
of post-hoc loss functions, that are only determined after the data has been seen [Grünwald, 2022,
2023]. We doubt that this is easily realized by manual adjustment of classical methods.

3 Point- vs. Smooth- vs. No Priors for H0 and H1

Objective Bayes and Reference Priors We agree with Bon and Robert (who, adopting Pawel
and Held ’s terminology further below, we might call nullistic Bayesians) that the central proposal
of our paper is relevant for the so-called objective Bayes approach and we strongly urge them and
other interested readers to have a look at [Pérez-Ortiz et al., 2024, Section 5.2.]: the right-Haar
prior is a standard choice in objective Bayesian modeling, but it has been criticized for not being
uniquely defined in certain settings. This problem disappears if we consider e-variable-based “e-
posteriors” [Grünwald, 2023] rather than Bayesian posteriors. They further write that it remains
unclear to them (i) how to construct the least favorable prior on the null hypothesis on a general
basis, especially from a computational viewpoint, and (ii) whether it degenerates into a point mass.
Our reply is that the version of GRO that is most similar to reference Bayesian analysis is the
REGROW criterion of Section 4.1–4.3, since, if the null is simple, it asymptotically amounts to a
recommendation of Jeffreys’ prior for the alternative. Nevertheless, we concede that it is not clear to
us either how to construct it in general in a computationally efficient manner. In contrast to GROW,
it will generally not lead to point mass priors. In fact one may think of our approach as allowing
objective Bayesians who are willing to use REGROW priors on alternative and corresponding RIPr
priors on the null, and frequentists preferring point priors (e.g. optimizing non-relative GROW)
to collaborate — if they test the same null hypothesis on different data, they may meaningfully
multiply their e-values even though these are based on different underlying inferential principles.

On a related point, Robert and Bon worry that, if the alternative is the Gaussian (unit variance)
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location family equipped with a 0-mean Gaussian prior, whereas the null is a unit variance Gaussian
location family restricted to lie between (−a, a), the corresponding GRO e-variable would use a
prior W0 in the denominator that places all mass on the extremities. It is not clear though whether
this would actually be the case — experiments in similar (but not exactly the same) settings [Hao
et al., 2023] indicate that the mass would be spread out symmetrically over many points or perhaps
even form a continuum in the null (if the Gaussian prior over the alternative had a mean outside
[−a, a], then W0 would indeed be concentrated on a singe point). In fact developing precise, not just
asymptotic e-variables for multivariate Gaussians is a subject of ongoing research, with preliminary
results appearing in [Grünwald et al., 2024].

From Empirical Bayes to Empirical E Consider a collection of e-variables {Eγ : γ ∈ Γ}
with γ representing some nuisance parameter. Rizelli asks if we could still get an ‘approximate’ e-
variable (i.e. its expectation under the null should not be much larger than 1), if, akin to empirical
Bayes methods, we would use the data-optimized e-variable Eγ̂ where γ̂ is determined by the data,
e.g. the value which maximizes Eγ = Eγ(Y) on the given data Y. We hesitate to do so, since
we regard having exact, nonasymptotic Type-I error guarantees and confidence intervals as one of
the attractive features of our approach. On the other hand, one may certainly take the idea as a
starting point, and turn Eγ̂ into a proper e-variable. A simple (not necessarily optimal) means of
doing this would be renormalizing, i.e. setting E′(Y) := Eγ̂(Y)/ supP∈H0

EP [Eγ̂(Y)]. For simple
nulls, this would lead to a variation of the GROW criterion in which, in information theoretic
terms, redundancy is replaced by regret; a similar approach is taken by Orabona and Jun [2024].
We are currently exploring this idea further — it seems fruitful.

GROW vs. Shrinking Anytime-Valid Confidence Intervals Ly notices an inconvenience
in cases where achieving GROW optimality necessitates the use of point priors. In these instances,
the specified point of the point prior (often a minimal relevant effect size δ) never vanishes from
the associated anytime-valid confidence interval. This is problematic, if — as often happens in
applied work — the statistician wants to show the applied scientist at the same time the result of
a null hypothesis test (with null corresponding to δ = 0) and a confidence interval. The confidence
interval should (a) be well-behaved, i.e. one should have the guarantee that its width shrinks to
0 as sample size increases. At the same time, (b) one wants the test and the confidence interval
to be consistent with each other, i.e. the test should reject iff 0 falls outside of the interval. Ly’s
observation implies that for GROW optimal tests one cannot have (a) and (b) at the same time.
We agree that this this is an issue, and we did not realize this to be the case when we developed the
GROW criterion. Ly asks whether some adaptation of GROW ensures that the optimal solution
involves a prior with full support, which avoids this issue. The short answer is: yes, the REGROW
criterion we describe later on in the paper has this property - indeed with simple nulls it leads
to priors that asymptotically agree with Jeffreys’. But the disadvantage of REGROW is that it
does not allow us to make an informed prior guess of the effect size under the alternative. We are
currently exploring the non-local priors of Johnson and Rossell [2010] which, it seems, may give us
(almost) the best of both worlds.

4 Foundational Aspects

Logical Coherence and Likelihood Principles Bickel worries that the GRO-type e-variable
constructions are not logically coherent in the sense of e.g. [Hansen and Rice, 2023], whereas e-
variables based on universal inference [Wasserman et al., 2020] are, and concludes that e-variables
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call for a power-coherence trade-off. While we agree with this conclusion, we do not think the
situation is as bleak as Bickel’s quote of Royall [1997], “We may conclude ‘neither A nor B’ but
we may not conclude ‘not-A’” suggests. The reason is that the GRO e-variable relative to null
hypothesis {Pθ : θ ∈ Θ0} is a valid e-variable relative to any null hypothesis Θ′

0 ⊂ Θ0 that is a
subset of the original null hypothesis Θ0. In practice we often start with one grand null Θ0, for
which we create the GRO e-variable. We can then later keep the same e-variable when we consider
subsets of Θ0, and whenever the data allows us to reject Θ0 based on this e-variable, it will also
allow us to reject any Θ′

0 ⊆ Θ0. Logical incoherence only enters the fray once we start applying
the GRO criterion also to design novel e-variables for subsets Θ′

0. Thus, two statisticians who both
employ GRO, using the same alternative, but using null hypotheses indexed by Θ′

0 and Θ0 with
Θ′

0 ⊊ Θ0, may exhibit logical incoherence; but a single statistician who first considers Θ0 and Θ′
0

may not.
Logical coherence is closely related to adherence to the likelihood principle. Pace and Salvan

claim that ‘Likelihood-based e-values obey the strong likelihood principle, in spite of the opinion
that any frequentist desideratum is irreconcilable with such principle.’ We think that the truth of
this statement, just like Bickel’s claim, depends on quite specific definitions and assumptions —
because of this, Bickel’s conclusion sounds a bit overly pessimistic to us, whereas Pace and Salvan’s
may be a bit overly optimistic. In any case, we are fascinated by connections to foundational notions
such as logical coherence and the likelihood principle, and we plan to study these thoroughly in
future work.

Testing vs. Estimation with Confidence Pawel and Held oppose what they call nullistic
thinking, which lies behind much of testing methodology. We would like to emphasize that we are
in fact very sympathetic to working with confidence intervals or depicting e-values as a function of
the parameter, as they do — as witnessed by the similar figures appearing in the follow-up papers
[Grünwald, 2022, 2023] written by one of us. But to engage in such uncertainty quantification
beyond testing, one first has to get the testing part in order mathematically, as we do in this paper
— even if later one does not aim to use it for actual testing.

Games vs. Measures Shafer believes that the value of our work will become even clearer once
mathematical statisticians no longer distort their ideas to fit them into measure theory. — we fully
agree, and we feel that optional (or ‘free’, as Shafer recently called it) continuation is really best
given a game- rather than measure-theoretic treatment and interpretation, as in fact the example
Shafer gives in his discussion clearly shows. We have to admit though that, while such a treatment
would certainly be cleaner, it may also be quite hard to understand in detail by most statisticians
(including us), who have been accustomed to measure-theoretic thinking since their undergraduate
years.

Statistics meets Probability Theory, as it should Wang, proposer of the vote of thanks,
enthusiastically notes that “The theory of martingales is essential for this methodology [i.e., using
e-values], allowing statisticians to appreciate and contribute to this classic theory in probability.
Conversely, the theory of e-values has successfully attracted probabilists and financial mathemati-
cians to join the journey of statistics” and provides references proving this point. We fully agree, and
we indeed hope and trust that this renewed joining of forces between probabilists and statisticians
will turn out to become even more fruitful in the coming years. In the same vein, Srakar proposes
extensions of the theory to more general stochastic processes — we agree this is a promising avenue.
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Is our method really safe? Pawel and Held have reservations about whether ‘safe’ tests can
make the scientific enterprise more reliable. As they write “For instance, researchers may still prefer
classical non-sequential over sequential study designs, as the latter can be difficult to implement
in practice. For example, interim analyses in randomised clinical trials will require unblinding and
may as such threaten the integrity of the trial”. We disagree: the main point of our paper is
optional continuation, not interim analyses: we want to combine several studies with the same null,
where the decision to start an entire new study may be informed by previous outcomes. The fact
that you can often (not always, see Section 5 of our paper) do interim analysis within a study is
a nice additional bonus feature, but not directly relevant to the main respect in which we claim
‘safety’.

We do agree however, that in retrospect, ‘safe’ may not be such a good name, because it
suggests safety in every sense, and this is of course impossible to achieve. This point was also made
by Hennig. With hindsight, we should perhaps have given the paper a different (indeed, ‘safer’)
name.

We agree with all these discussants that every method, including ours, should be used with utter
care. For example, if outliers may occur (an issue raised by Hennig), we may want to safeguard
against it by modifying any given e-variable E towards (1−γ)E+γ, which is still an e-variable. In
betting terms, this corresponds to keeping a fraction γ of one’s money in one’s pocket. γ can then
in fact be learned from the data by e.g. Robbins’ method of mixtures (essentially, by equipping it
with a prior). Relatedly, Greenland, more implicitly, warns about the lurking danger of e-hacking
— we agree that this is a concern, as do Ramdas et al. [2023].

5 Miscellaneous Points and Questions

From Testing and Confidence Intervals to Estimation Suppose that Eδ is an e-variable for
data Y relative to null hypothesis of effect size δ. Cattaneo suggests to use argmin{δ : Eδ(Y) ≤
1/α} as an estimator of effect size δ, and asks how it behaves under optional continuation. This
is an intriguing suggestion and question - we have not looked at it but we agree it deserves further
study.

Terminology; Unfortunate over-loading of the term e-value Dickhaus and Greenland note
that the term e-value is used with a different meaning in different sub-fields of statistics. We agree
that this is quite unfortunate (we had no idea at the time the term was introduced), but by now
‘our’ use of the term e-value had become so widespread that it seems impossible to change. Alas,
we do not see an easy way out.

Misspecification and Loss-Based Inference Pawel and Held ask whether e-values can be
adjusted for potential model misspecification. One option is to resort to nonparametric e-values
(see Ramdas et al. [2023] for an overview), which avoid the risk of misspecification to some extent.
Sometimes though, one really wants to use some aspects of a quite specific parametric model that
may still be misspecified. Within the Bayesian literature, a popular method in such cases is to either
equip the likelihood with a learning rate or to use a Gibbs posterior, defined on a set of predictors
rather than probability distributions, with the likelihood replaced by the exponentiated loss of the
predictor on the observed data — methods that one of us has argued for already back in the 20th
century [Grünwald, 1999]. It would be most interesting to see if our results can somehow be trans-
planted to this setting, since the mathematical analysis of Gibbs posteriors and e-variables bears
quite some resemblance, both concepts being related to nonnegative supermartingales [Grünwald
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and Mehta, 2020]. And in fact, a first step in this direction has recently been taken by Dey, Mar-
tin and Williams. They generalize the universal inference framework by replacing the statistical
model’s negative log-likelihood with a multiple of the empirical risk and prove that it offers safe,
anytime-valid inference on risk minimizers. We feel this is an exciting development and might call
for a corresponding notion of growth optimality leading to better nonasymptotic behavior, just
like standard GRO provides better growth and power than universal inference in the standard,
likelihood-type setting.

Additional Questions Pace and Salvan note that under likelihood ratio symmetry, the devel-
opments of [Berger et al., 1994] suggests that it may be sensible to replace the threshold 1/α by
(1 − α)/α, making the decision to reject based on an e-value with a Type-I error guarantee of
α equivalent to the Bayesian posterior probability of H0 being smaller than α, thereby bringing
e-value and Bayes factor-based methods even closer. We agree. In fact, one of us has been intrigued
by the very same question for a long time, and the 1994 paper by Berger et al. was a major source
of inspiration for the present paper. A partial answer is given by [Grünwald, 2023, Section 3.2.,Eq.
31]. Essentially, rather than modifying the threshold, it is argued that under likelihood symmetry
a special e-value can be designed which achieves threshold 1/α if a standard, likelihood-ratio based
e-value would reach (1− α)/α. However, it is also made clear that such an e-variable cannot eas-
ily be transferred into an e-process, and thus provides only for optional continuation and not for
optional stopping.

Tian and Yu ask several additional questions, which are partially answered in other recent
papers. For example, they ask about practical applications for our methods — these can be found
in e.g. [Ter Schure et al., 2024, Turner et al., 2024]. Combination with regression is possible
[Pérez-Ortiz et al., 2024] and by now there is a whole lot of literature on nonparametric e-processes
[Ramdas et al., 2023, Waudby-Smith and Ramdas, 2024]. Their construction can often be thought
of as a variation or strict generalization of the GRO criterion of our paper, as made explicit by
Larsson et al. [2024]. They also ask about characterizing admissibility of an e-process — a succinct
characterization is given by Ramdas et al. [2020].

Chai notices unclarity as to whether 0.8 is the Type-II error or the power in our experiments.
It invariably refers to power. She also asks whether there are there any real-life examples where
OC (optional continuation) or OS (optional stopping) is more appropriate? If we can choose either
one, what are the guidelines to decide? The short answer is that OC automatically comes into play
as soon as we deal with meta-analysis [Ter Schure and Grünwald, 2022]; whether OS is appropriate
or not depends on the context. We may certainly be in situations in which they both apply. She
also asks how the e-value compares with Held’s sceptical p-value. A short reply is that, in contrast
to e-values, the sceptical p-value has not been designed to allow continuation of studies more than
two times, let alone indefinitely. A thorough reply would really require an in-depth study, for
technically the ideas seem very different.
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Samuel Karlin. Decision theory for pólya type distributions. case of two actions, i. In Proceedings
of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Con-
tributions to the Theory of Statistics, volume 3, pages 115–129. University of California Press,
1956.

Tyron Lardy, Peter Grünwald, and Peter Harremoës. Universal reverse information projections and
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Muriel Felipe Pérez-Ortiz, Tyron Lardy, Rianne De Heide, and Peter Grünwald. E-statistics, group
invariance and anytime valid testing. The Annals of Statistics, 2024.

Aaditya Ramdas, Johannes Ruf, Martin Larsson, and Wouter Koolen. Admissible anytime-valid
sequential inference must rely on nonnegative martingales. arXiv preprint arXiv:2009.03167,
2020.

Aaditya Ramdas, Johannes Ruf, Martin Larsson, and Wouter M Koolen. Testing exchangeabil-
ity: Fork-convexity, supermartingales and e-processes. International Journal of Approximate
Reasoning, 141:83–109, 2022.

Aaditya Ramdas, Peter Grünwald, Volodya Vovk, and Glenn Shafer. game-theoretic statistics and
safe anytime-valid inference. statistical science, 2023. To appear.

Richard Royall. Statistical evidence: a likelihood paradigm. Chapman and Hall, 1997.

Glenn Shafer. Testing by betting: a strategy for statistical and scientific communication (with
discussion and response). Journal of the Royal Statistic Society A, 184(2):407–478, 2021.

A.N. Soklakov. Economics of disagreement–financial intuition for the rényi divergence. Entropy, 8
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