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ABSTRACT
Very preterm infants are a unique and highly vulnerable group of patients that have a 
narrow physiological margin within which interventions are safe and effective. The increased 
understanding of the foetal to neonatal transition marks the intricacy of the rapid and major 
physiological changes that take place, making delivery room stabilisation and resuscitation 
an increasingly complex and sophisticated activity for caregivers to perform. While modern, 
automated technologies are progressively implemented in the neonatal intensive care 
unit (NICU) to enhance the caregivers in providing the right care for these patients, the 
technology in the delivery room still lags far behind. Diligent translation of well-known and 
promising technological solutions from the NICU to the delivery room will allow for better 
support of the caregivers in performing their tasks. In this review we will discuss the current 
technology used for stabilisation of preterm infants in the delivery room and how this could 
be optimised in order to further improve care and outcomes of preterm infants in the near 
future.
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INTRODUCTION 
Because of their immaturity, very preterm infants are a unique and highly vulnerable group 
of patients that have a narrow physiological margin within which interventions are safe 
and effective. A large amount of scientific research along with technological innovations 
have improved care for preterm infants in the neonatal intensive care unit (NICU). In the 
NICU, infants are monitored meticulously and devices are used to provide treatment in 
a safe and sophisticated manner. The arrival of automated technologies, whether or not 
in combination with artificial intelligence (servo-controlled incubator, algorithm driven 
ventilators, automated oxygen titration, predictive monitoring) has decreased the manual 
work in the NICU and improved care and outcome in the last twenty years. 

While these automated technologies are increasingly being used in the NICU, technology 
in the delivery room still lags far behind. Preterm infants can be difficult to manage in the 
intensive care unit, but this task is considerably more complex at birth due to the infant’s 
rapidly changing physiology. Particularly at birth, automated technologies and/or artificial 
intelligence could be highly relevant, since the infant’s physiology is undergoing large 
and rapid changes. We now start to understand that the transition to life after birth is an 
extremely critical phase of life which greatly impacts an individual’s risk of death, injury [1, 
2] or life-long disability [3, 4], particularly infants born very preterm. 

Stabilisation of preterm infants in the delivery room is usually brief, but many interventions 
need to be performed in order to stabilise the infant’s temperature, (spontaneous) ventilation 
and oxygenation in a time sensitive manner. It has been shown that some interventions 
are not as effective as caregivers assumed and that the provision of an optimal and safe 
treatment during this stressful moment is a major challenge for caregivers. [5-8] It also has 
been demonstrated that caregivers have difficulty in assimilating the complex and rapidly 
changing physiological information that is required to make accurate strategic decisions 
with regard to assisting preterm infants as they transition to newborn life [6-10].

In this review we will discuss the current technology used for stabilisation of preterm infants 
in the delivery room and how this could be optimised by the provision of purpose-built 
devices and technology that assimilates all of the physiology data and supports decision 
making processes. 
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TEMPERATURE MANAGEMENT
The first step of neonatal stabilisation is the prevention of heat loss, which easily occurs in 
the exposed and wet infants through convection, conduction, radiation and evaporation, 
resulting in a decreased body temperature. Hypothermia after birth has been recognised 
as a significant contributor to neonatal morbidity and mortality. [11, 12] Although less is 
known about the acute and long-term impact of hyperthermia after birth, the potential 
risks for both hypothermia and hyperthermia are currently recognised in the international 
resuscitation guidelines with the advice to keep the body temperature of the infant between 
36.5 and 37.5°C. [13, 14] While measures to prevent hypothermia – such as increased room 
temperature and the use of a head cap, a wrap, a radiant heater, a thermal mattress and 
heated and humidified gases - are commonly performed, keeping the body temperature 
within the normal range during stabilisation at birth proves to be challenging. [15-18] 

Currently, the temperature is often only measured at NICU admission, which does not allow 
us to take correcting measures until that moment. Although standardised thermoregulation 
protocols, training, and audits have shown to improve our temperature management 
[19-21], frequent or continuous measurement of temperature, in combination with a 
temperature dependent protocol, can further improve this. [22, 23] However, temperature 
management based on continuous measurements requires constant attention and is more 
labour intensive. Technology could assist in this process by providing visual or audible cues 
when the recommended ranges are exceeded in order to capture the attention of the 
caregiver or by providing decision support on the timing and type of heat loss measures to 
take. Technology could even further assist caregivers by enabling automated regulation via 
servo-controlled mattresses and radiant warmers, which are commonly used in the NICU. 

Although a recent multi-centre study reported that the use of servo-controlled radiant 
warmers on the delivery room showed no benefits over the use of radiant warmers on 
maximal output [24], studies implementing servo-controlled radiant warmers combined 
with a temperature dependent protocol for additional measures show the highest overall 
scores of normothermia at NICU admission, ranging from 74% to 100%. [25-28] As infants 
are much more exposed in the delivery room as compared to the NICU, full automation of 
thermoregulation in the delivery room probably asks for completely different closed-loop 
solutions minimising the effects of the environment on their temperature.
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TACTILE STIMULATION
As of 2005, local and international resuscitation guidelines recommend tactile stimulation in 
the form of warming, drying and rubbing the back or soles of the feet to evoke spontaneous 
breathing in newborn infants. [13, 14, 29] While experimental studies demonstrated tactile 
stimulation to increase respiratory effort [30, 31], the clinical guidelines are still largely 
based on many years of experience and expert opinion as there is lack of data on this topic 
in human infants. 

Several retrospective studies recently evaluated current practice, showing a wide variation 
between caregivers and between centres concerning timing, duration and method of 
stimulation. [32-36] In addition, stimulation turned out to be often omitted, in particular in 
preterm infants placed in a polyethylene bag. [34-36] A recent randomised trial showed that 
repetitive tactile stimulation in preterm infants increased oxygenation, while less oxygen was 
needed, and improved respiratory effort. [37] However, the trial also led to a high incidence 
of stimulation in the standard group. This effect could be attributed to the Hawthorne effect 
and/or the increased focus on tactile stimulation during the study, which in turn implies that 
omission of stimulation happens because it is simply forgotten. 

Albeit the most optimal way of stimulation remains unclear, automated mechanical 
stimulation could ensure tactile stimulation to be provided, in a more consistent way. [38] 
Several closed-loop vibratory stimulation devices to treat apnoea’s of preterm infants 
admitted to the NICU have been described in literature, but currently none of these are 
commercially available. [39-42] No studies have been performed in the delivery room, but 
mechanical vibratory stimulation in preterm infants in the NICU proved to be as effective as 
manual stimulation in aborting apnoeic episodes in two preliminary studies, [42, 43] and 
two other observational studies reported that their closed-loop pulsating and vibrating 
devices were able to terminate 90% of all apnoea’s. [44, 45] Applying this technique in the 
delivery room has the potential to replace manual intervention, eliminating the chance that 
stimulation will be forgotten. 

OXYGENATION
Currently, oxygen administration is guided by predefined oxygen saturation (SpO2) target 
ranges. [46] Caregivers manually titrate the fraction of inspired oxygen (FiO2) accordingly 
to avoid hypoxia and hyperoxia. At birth, hypoxia can lead to suppression of spontaneous 
breathing, and hypoxia that persists for more than 5 minutes after birth is associated with 
an increased risk of mortality and the development of intraventricular haemorrhages. [47-
50] On the other hand, hyperoxia needs to be avoided as this increases the production of 
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free radicals, but also can inhibit the respiratory centre. [51, 52] As such, it is critical to 
adequately control oxygenation during this period. However, this is an incredibly difficult 
and complex task given the fact that immediately after birth, the lung is constantly and 
rapidly changing. 

It has been shown that maintaining SpO2 values within a predefined target range with 
manual titration is extremely difficult in the delivery room as well as in the NICU. [53-
59] Randomised trials demonstrated the potential of closed-loop titration of FiO2 in the 
NICU, increasing the time spent within the SpO2 target range with a decrease in extreme 
deviations in oxygenation, including both the duration and the number of episodes. [60-
69] The use of a closed-loop oxygen controller in the delivery room has so far only been 
studied once in a preterm lamb model. [70] In this study, the effect of a closed-loop oxygen 
controller with timeout restrictions of 30s after each titration step was compared to manual 
titration of oxygen after evaluation of SpO2 to be performed every 30s. Results show similar 
time within the SpO2 target range and below the target range, while time above the target 
range was significantly shorter in the automatic titration group. [70] 

However, this technique cannot just simply be extrapolated to the delivery room, as there 
are considerable differences with regard to target ranges, physiology and devices used. In 
the NICU, the SpO2 target range is static, while this is dynamic in the first minutes after birth. 
Oxygen exchange in the lungs is largely determined by the surface area available for gas 
exchange and the oxygen concentration gradient between the alveoli and adjacent capillaries. 
At birth, when the airways are mostly liquid-filled, the surface area available for gas exchange 
is small and a high oxygen concentration is required for adequate exchange (Figure 1A). As 
the lungs aerate, the surface area available for gas exchange increases exponentially and as 
such a much lower oxygen concentration is needed for adequate oxygenation (Figure 1B). 
The oxygen concentration administered after birth should thus be adjusted according to the 
degree of lung aeration. This would require the closed-loop titration mechanism to adjust 
the SpO2 target range continuously based on the time after birth. In addition, the algorithm 
of the closed-loop oxygen controller should also be calibrated based on the factors present 
at birth which influence the position of the oxygen-haemoglobin dissociation curve.

Furthermore, titration of oxygen using a T-piece ventilator, which is commonly used for 
respiratory support at birth [14], can result in a delay between the moment of titration and 
the delivery of the corresponding FiO2 at the face mask of the infant. [71] The algorithm 
used by the closed-loop oxygen controller that is used with the T-piece resuscitator should 
therefore reckon with this delay.
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CONTINUOUS POSITIVE AIRWAY PRESSURE
Although most preterm infants breathe at birth, the breathing effort is often insufficient 
to ensure the large pulmonary physiological changes that are needed to survive the foetal 
to neonatal transition. While continuous positive airway pressure (CPAP) is often used to 
support the infant’s breathing, there is no data on the optimal pressure level. The CPAP level 
of 4-8 cmH2O that is currently used is predominantly extrapolated from data from CPAP 
later in the NICU, while the underlying physiology during the neonatal transition is strikingly 
different. [13, 72] 

Considering the physiological changes that need to occur during transition, it would be 
more logical to use a dynamic CPAP strategy wherein the CPAP levels suit the different 
phases of the transition. In the first phase of the transition (Figure 1A), the role of CPAP is 
to promote lung aeration and assist movement of lung liquid across the distal airway wall 
into the interstitial tissue. As a result, the resistance in the airways is high due to the high 
viscosity of liquid (compared with air) moving across the airway epithelium requiring higher 
CPAP levels to overcome this. [73-77] Once the lungs become more aerated and liquid is 
accumulated in the interstitial tissue, the lung characteristics change quickly and the role 
of CPAP converts to maintaining lung aeration. During this phase of the transition (Figure 

A B

Figure 1. Overview of the alveoli, surrounded by capillaries. A: Directly at birth, lung liquid needs to be 
replaced with air. The movement of liquid into the interstitial tissue causes a high airway resistance and the 
partially liquid-filled alveoli reduces the surface area available for gas exchange. B: As the liquid moves into the 
interstitial tissue surrounding the alveoli, the airway resistance decrease while the interstitial pressure and lung 
recoil increase. This causes alveolar collapse and liquid re-entry at end-expiration. Nevertheless, the surface 
area available for gas exchange increases.
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1B), airway resistance is considerably lower (~100 fold), but lung recoil and interstitial tissue 
pressure increase which promote alveolar collapse and liquid re-entry at end-expiration. 
[73-81] Lower CPAP levels are likely sufficient to maintain aeration and support breathing, 
while decreasing the risk for lung overexpansion and/or adverse effect on pulmonary blood 
flow. This dynamic CPAP approach, following the pulmonary physiological changes during 
transition, has been called physiological based (PB)-CPAP. 

Experimental studies in spontaneously breathing preterm animal models demonstrated 
that PB-CPAP should ideally start with CPAP of 15 cmH2O which is stepwise decreased to 8 
cmH2O. These studies also showed that PB-CPAP promotes lung aeration (functional residual 
capacity; FRC)), breathing effort and pulmonary blood flow, without causing bulging of the 
lungs or pneumothoraxes. [82, 83] These results were translated into a small randomised 
controlled trial wherein PB-CPAP was compared to 5-8 cmH2O CPAP. This feasibility study 
demonstrated that PB-CPAP led to a quicker restoration of heart rate and shorter duration 
of mask ventilation, likely reflecting lung aeration. Nevertheless, post-trial evaluations 
indicated that caregivers found it difficult to combine standard care with a CPAP protocol 
that requires constant evaluations and changes in CPAP levels. [84] 

This is where technological innovation could help the caregiver in assimilating complex 
physiological changes and fine-tuning and optimising the respiratory support. Mathematical 
modelling with currently available physiological data could be used to create algorithms, 
which will allow us to develop a decision or even automated pressure support system in the 
delivery room.

POSITIVE PRESSURE VENTILATION
If preterm infants fail to clear their lung liquid, establish FRC and initiate spontaneous 
breathing to facilitate gas exchange [85], manual non-invasive positive pressure ventilation 
(NIPPV) is provided by occluding the aperture of a T-piece resuscitator with a thumb or 
finger. The sufficiency of the provided tidal volumes is confirmed by adequate chest 
rise, auscultation or, indirectly, by an increase in heart rate. [86] However, due to rapidly 
changing pulmonary physiology and inconsistent respiratory drive of infants at birth, 
variable tidal volume are administered that might be inadequate or excessive. Large tidal 
volumes could overstretch the delicate alveoli and airways (volutrauma), while small tidal 
volumes could lead to loss of lung volume or cycling between collapse and recruitment 
(atelectotrauma) thereby injuring the lungs. [87, 88] A recent multicentre trial evaluating 
tidal volume monitoring during manual ventilation reported that, despite using a respiratory 
function monitor (RFM)(Figure 2), ineffective ventilation <4 mL/kg and potentially harmful 
ventilation >8 mL/kg was provided 40.7% and 20.0% of the time, respectively. [89] 
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Figure 2.  Respiratory Function Monitor Display

The high percentage of ineffective manual ventilation could be caused by pharyngeal 
ventilation as the glottis is predominantly closed after birth and only opens when a 
spontaneous breath is taken. [90] When ventilation is provided to a closed glottis, no air 
is able to enter into the lungs. [90] Providing inflations which coincides with spontaneous 
breaths would be more effective, but also increases the risks of high tidal volumes and 
thus the risk of lung and/or cerebral injury. [91] As it is difficult for caregivers to evaluate 
the presence and quality of spontaneous breathing at birth [8], especially during manual 
ventilation [7], this hampers safe and effective ventilation at birth.

Again, automation can offer a solution. In this case, several solutions already exist and are 
being applied as features of a neonatal ventilator. Replacing the T-piece resuscitator for 
a regular neonatal ventilator in the delivery room therefore brings several opportunities 
to prevent inappropriate ventilation. The first solution is automated synchronised NIPPV 
(sNIPPV). Caregivers can only detect breathing after a breath has been taken, while a 
ventilator can detect the start of a breath. This enables ventilators to synchronise their 
ventilation. In addition, caregivers have to keep overview of the clinical condition of the infant 
and are, therefore, not able to continuously focus on the infant’s breathing while a ventilator 
can. Although there is no evidence for the effectiveness of synchronised ventilation in the 
delivery room, it has shortened the duration and improved the effectiveness of ventilation 
in the NICU. [92, 93] 
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Even with sNIPPV, it remains difficult to provide tidal volumes in a safe target range. To 
date, caregivers are only able to apply pressure-limited manual ventilation in the delivery 
room due to the lack of appropriate technology. However, a recent neonatal resuscitation 
simulation study showed it is feasible to use a ventilator with RFM in the delivery room as it 
increased the proportion of tidal volumes within the target range and reduced the number of 
large tidal volumes during different simulated scenarios of changing pulmonary mechanics 
commonly encountered at birth. [86] Also, the delivery of consistent tidal volumes during 
changing pulmonary mechanics could be improved by implementing volume-targeted 
ventilation. While, this ventilation mode showed to improve outcome and is a widely 
accepted in the NICU, there is no data on using this mode in preterm infants at birth. [87, 
94, 95] This effect might even be increased when using a ventilator with synchronised 
ventilation and/or volume-targeted ventilation.

MONITORING
Regular feedback on the patient’s physiological state is a pivotal element of neonatal 
stabilisation after birth, guiding corrective actions and clinical decision making of the 
caregivers. Despite its importance, monitoring in this critical period is still relatively basic 
compared to the continuous and extensive monitoring techniques used in the NICU. 

The current guidelines recommend the use of pulse oximetry and/or ECG for physiological 
feedback instead of rudimentary methods such as auscultation, palpation of the umbilical 
cord and assessment of skin colour, as these methods proved to be prone to subjectivity 
[96, 97]. The same applies to the assessment of administered tidal volumes by observing 
chest excursions [98] but the evidence for using a RFM instead remains conflicting. Although 
manikin studies demonstrated that providing continuous feedback on ventilation pressures, 
tidal volumes, mask leak, SpO2, heart rate and FiO2 via a RFM improved the performance 
of the caregiver during PPV [86, 99-101],  a recent multicentre randomized controlled 
trial showed no difference between neonatal resuscitation with or without integrated 
feedback by RFM. [89] This result might be explained by previous findings that the use and 
interpretation of a RFM in the delivery room is experienced as challenging and therefore not 
helpful to all caregivers in critical decision making. [7], [102]

Although continuous, objective and accurate data acquisition is necessary to further 
implement modern technological innovations such as closed-loop interventions and 
prediction models, the question is whether presenting all this data directly to the caregivers 
is always useful. Future research should also be focused on which data to present, and 
in particular in what manner, to facilitate quick assimilation and easy interpretation by 
caregivers so that they can recognize and act upon abnormalities or changes in physiology. 
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In other words, in the design or development of monitoring methods, one should consider 
carefully whether the data is processed by algorithms or a human brain.

MAN AND MACHINES
Our understanding of the foetal to neonatal transition and the underlying physiological 
changes has evidently increased in the recent decades, facilitating clear opportunities 
aiming to improve clinical outcome. However, these insights also underscore the eminent 
complexity of the transition process, especially in ill or preterm infants who cannot meet the 
required physiological challenges on their own. 

Whilst the expansion of monitoring solutions and intervention strategies and the finetuning 
of protocols and target ranges can definitely aid caregivers in providing the right support, 
it makes the resuscitation process increasingly sophisticated. As of today, caregivers 
continuously have to assimilate and interpret many physiological parameters from different 
devices in order to decide if, when and which intervention is required, in just a small-time 
window. The more difficult, dynamic and versatile the process, the more prone it becomes 
to human errors such as forgetfulness and lack of continued focus.

Over the last decades the development and adoption of automated medical technology 
has tremendously increased and accordingly revolutionised medical practice, but not yet 
in the delivery room. We argue that the development and implementation of automation, 
closed-loop systems and artificial intelligence could serve as a next iteration in improving 
resuscitation management by reducing human error and unwanted variability in human 
behaviour. However, this can only be achieved if we critically validate the added value using 
a holistic approach; not only taking into account the patient but also the caregivers. This 
means that we should not blindly use existing solutions for new problems but find new 
ones fitting the entire context. We should not use or implement innovations because it 
is technically feasible, but because it is desirable and we should not endlessly extend and 
expand existing solutions but come up with solutions that replace a bundle of existing ones.

Although some might dream, and others fear, a completely automated transition support 
system, it is more likely that technology will take on an integral part of resuscitation 
management, resulting in an increased caregiver-machine interaction. Given the growing 
complexity of automated systems, the poor explainability of artificial intelligence and the 
consequences of possible erroneous automated interventions, a paradigm shift is necessary. 
Caregivers should not only be clinically aware, understanding the status of the patient with 
regard to the interlinked physiological changes, but be situational aware, also understanding 
the status of all automated devices, systems and software during the transition process. 
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Shaping this role is however not the sole responsibility of the caregivers. To make the 
most out of it, designers and developers should indeed focus on the explainability and 
interpretability of automated systems and error prone interfaces including clear user 
feedback. Managers and medical engineers should moreover ensure that caregivers are 
trained like pilots; focussing on the capabilities to identify and respond to system errors 
or failure. As it is utopian to think that capitalising some strength of computers will fully 
replace human weaknesses, caregivers have to accept that improvement of care will always 
remain an iterative process. 

CONCLUSION
Although the complexity of stabilisation after birth increases by our growing understanding 
of the complex physiology, the development and implementation of technology to assist 
in this process lags behind. Implementing state-of-the-art technology during the neonatal 
stabilisation would enable us to i) prevent hypo- and hyperthermia through closed-loop 
temperature management, ii) stimulate spontaneous breathing by providing automatic 
repetitive tactile stimulation to all infants , iii) control oxygenation in relation to neonatal 
transition through closed-loop oxygenation, iv) support spontaneous breathing during 

Figure 3. Visualisation of evolving technologies for use in the delivery room. From providing manual heat loss 
measures, manual tactile stimulation, manual supplemental oxygen control and manual CPAP and NIPPV with 
a T-piece resuscitator (A) to automated thermoregulation, automated tactile stimulation, automated oxygen 
control and automated ventilation using a ventilator (B). 

A B
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neonatal transition by automated PB-CPAP algorithms and v) provide safe and effective 
ventilation by using synchronised volume targeted ventilation (Figure 3). By using technology 
to assist caregivers to provide the optimal care, caregivers would be able to comprehend an 
overview of the infant’s clinical condition more easily and finetune the stabilisation where 
appropriate. 

Although most of the technology discussed in this review is already used in the NICU, it 
cannot simply be extrapolated to the delivery room because of the difference in physiology, 
environment and situation. The adoption of automation has great potential to improve 
the care we provide in the delivery room, as long as we put humans, not technology, first. 
Above all, we must realise that technology does not make man superfluous: the clinical view 
remains necessary.
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