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CHAPTER 4

Activation of classifiers in word production:

insights from lexico-syntactic probability

distributions

This article is published as: Wang, Y., Witteman, J., & Schiller,
N. O. (2025). Activation of classifiers in word production: insights
from lexico-syntactic probability distributions. Language, Cognition
and Neuroscience,40(7), 987–1001.
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Abstract: In speech production, speakers need to activate and
select appropriate lexico-syntactic features of words to plan gram-
matically correct sentences. While previous studies have focused
on situations with a single grammatically correct option, Mandarin
Chinese classifiers present a case where multiple options are correct.
In this study, we asked native Mandarin Chinese speakers to name
target pictures using a picture-word interference paradigm while
recording EEG. Distractor words with varying degrees of classi-
fier distribution similarity were superimposed while controlling for
dominant classifier congruency. Distractors with dissimilar classi-
fier distributions resulted in a more positive P600-like effect, but no
behavioural effect was observed, compared to distractor nouns hav-
ing similar classifier distributions. Based on this result, we propose
that, when producing a bare noun, multiple compatible classifiers
are activated at the lexical level with the degree of activation be-
ing determined by their corresponding compatibility with the given
noun.

Keywords: Language production; classifier probability distribu-
tions; Jensen Shannon divergence (JSD); Mandarin Chinese classi-
fiers; picture-word interference (PWI); bare noun naming; P600
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4.1 Introduction

To produce grammatically correct sentences, speakers must retrieve
lexico-syntactic features such as grammatical gender or classifiers
for a given noun. The number of grammatically correct options
for a lexico-syntactic feature can be either single or multiple. For
instance, grammatical gender of nouns in many Indo-European lan-
guages has a single grammatically correct option, e.g. Haus (‘house”)
is neuter in German (not feminine or masculine) and maison is fem-
inine in French (not masculine), etc. In contrast, multiple grammat-
ically correct options are also common, for instance, in the case of
classifiers for nouns in Mandarin Chinese. Specifically, Mandarin
Chinese classifiers are a grammatically mandated component of a
noun when expressing quantities or definitions of an entity. This
function is realised via the “this/that + classifier + noun” struc-
ture.

The exact choice of the classifier in this setting is, to some ex-
tent, determined by the intended meaning and/or semantic features
of the object (Lakoff, 1986; Tai, 1994; Wu & Bodomo, 2009). Clas-
sifiers perform various functions. For instance, sometimes the clas-
sifier is used as a means to count a noun, such as in the case of e.g.
三本书(/san1ben3shu1/, three + CL: “unit of a book” + books).
Or the classifier serves to specify a unit of measurement such as in
the case of, e.g. 三杯水(/san1bei1shui3/, three + CL: cups [of] +
water). Alternatively, a classifier plays a role as a descriptor of the
shape of a noun, such as in the case of 一条蛇(/yi4tiao2she2/, a
+ CL: longness + snake). Importantly, a given noun is (typically)
compatible with multiple classifiers, though (grammatically speak-
ing) only one classifier can be used at a time. Between the various
compatible classifiers for a given noun, each classifier serves to em-
phasise a different perspective of the given noun. For instance, 邮
票(/you2piao4/, stamp; digits refer to different tones, i.e. 1-4) is
“flat and thin” and “tiny”, which makes it compatible with both
张(/zhang1/, i.e. the classifier associated with long and thin en-
tities) and 枚(/mei2/, i.e. the classifier associated with tiny enti-
ties) (Wu & Bodomo, 2009). Hence, both 那张邮票(“that zhang1



92 The lexico-semantic representation of words

stamp”) and 那枚邮票(“that mei2 stamp”) are grammatically cor-
rect. However, corpus research shows that张(/zhang1/) is the most
common choice of classifier for 邮票(/you2piao4/, stamp), making
it its dominant classifier. The dominant classifier, together with all
other possible classifiers and their probabilities of co-occurrence,
yields a classifier probability distribution for a given noun. Impor-
tantly, the probability of classifiers for a given noun can take the
value of 0, denoting full incompatibility of a classifier with the given
noun, i.e. grammatically incorrect classifier for the given noun (Liu
et al., 2019; Wu & Bodomo, 2009). A value of 1 would indicate full
compatibility of the classifier with the noun.

Studies regarding Mandarin Chinese classifiers have thus far
been simplified to dichotomous situations where only the dominant
classifier is presumed to be correct (e.g., Huang & Schiller, 2021;
Wang et al., 2019; Wang et al., 2024). In part, this is done based on
existing language production models not accounting for situations
where multiple grammatically correct options for lexico-syntactic
features exist. For example, in Levelt’s model, language production
is divided into three sequential strata: the conceptual stratum, the
lemma stratum, and the phonological word-form stratum (Levelt
et al., 1999; Roelofs, 1992). In order to produce a bare noun or
a noun phrase (NP), speakers first conceptualise the meaning at
the conceptual level, then the meaning becomes lexicalised at the
lemma level before finally being articulated. At the stage of lexical-
isation, the corresponding lexico-syntactic features of a given noun
(e.g. gender, number, case, etc.) will be activated and subsequently
selected when needed for the task. This activation and selection
process is realised through a unidirectional flow of activation from
the lexicalised concept to the grammatically correct option of the
corresponding lexico-syntactic features (Levelt et al., 1999; Roelofs,
1992). For instance, when a speaker intends to produce the German
form Hauses, the features neuter gender, singular number, and gen-
itive case become activated.

Experimentally, the activation and selection procedure of the
single grammatically correct option for the lexico-syntactic feature
during language production is manifested at the behavioural level.
For instance, in the picture-word interference (PWI) paradigm,
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naming latencies are shorter when the participants are asked to
name a picture with a determiner NP such as de appel (“the ap-
ple” in Dutch) whilst being presented with a distractor noun under
congruent vs. incongruent grammatical gender conditions (Schiller
& Caramazza, 2003; Schriefers, 1993). However, when the activated
lexico-syntactic information is not needed for the task, such as in
bare noun naming where no gender-marked items are produced, the
corresponding lexico-syntactic features will not be selected. This is
reflected by the absence of a detectable behavioural effect of gram-
matical gender congruency in the PWI paradigm (La Heij et al.,
1998).

In theory, in the absence of any behavioural effects, lexico-
syntactic features could still be activated at the lemma level. Such
activation without selecting a lexico-syntactic feature can be ob-
served at the electrophysiological level. For instance, Wang et al.
(2019) reported that in the PWI paradigm, naming of bare nouns
in Mandarin Chinese resulted in a significantly more negative N400
component for dominant classifier incongruent vs. congruent con-
ditions, although no significant difference was observed at the be-
havioural level. This result is consistent with sentence comprehen-
sion studies which manipulated the classifier-noun congruency and
observed an N400, suggesting that Chinese classifier-noun integra-
tion was primarily semantically driven (Qian & Garnsey, 2015). In
our own previous study (i.e., Wang et al., 2024), we observed a
more positive P600 effect instead for the same conditions as tested
in Wang et al. (2019), similarly without any behavioural effects.
In that study, we hypothesised that the difference in the observed
event-related components between the two studies (the N400 effect
in Wang et al., 2019 vs. the P600 effect in Wang et al., 2024 arises
from a difference in the underlying classifier processing mechanism
(semantically vs. lexico-syntactically driven activation) due to the
varying degrees of influence between semantic features and classi-
fier congruency in these two studies. Importantly, both Wang et al.
(2024) and Wang et al. (2019) came to the same conclusion that
the dominant classifier is activated but not selected. However, in
the absence of co-varying semantic features, classifier congruency
could elicit a lexico-syntactically driven P600.
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Although the current literature has so far only explored single
grammatically correct options for lexico-syntactic features, in Man-
darin Chinese (as outlined above) a given noun can, based on corpus
research, be thought as having a classifier distribution (illustrated
in Figure 4.1a). Such a distribution is defined as the probability of
co-occurrence between the choice of a lexico-syntactic feature and
its associated noun. The probability of each option in this distri-
bution can be seen as their extent of compatibility with the given
noun. That is, for a given noun, multiple classifiers are compati-
ble (grammatically correct) in Mandarin Chinese. However, some
are used more often than others, and the most often used one is
called the dominant classifier. The other non-dominant classifiers
have varying degrees to which they are used with the noun. Hence,
all together, for a given noun, there is a probability distribution of
compatible classifiers.

This distribution can also be thought of as a technically generic
version of the single grammatically correct case for lexico-syntactic
features. That is, for the single grammatically correct option, the
given noun always co- occurs with the grammatically correct option
in an NP, and thus the probability of the corresponding option is
1 (i.e. fully compatible - see Figure 4.1b for illustration) whereas
grammatically incorrect options have probabilities of 0 (i.e. fully
incompatible). Thus, this approach of representing the probabil-
ity of grammatically correct option(s) for a lexico-syntactic feature
co-occurring with a given noun can accommodate both single and
multiple grammatically correct options. Thus, we posit that such
a lexico-syntactic probability distribution could more precisely ac-
count for the encoding of lexico-syntactic features in language pro-
duction.

Such hypothetical encoding of multiple grammatical options for
a lexico-syntactic feature in language production can be experi-
mentally tested with the PWI paradigm by manipulation of the
similarities between probability distributions of the classifier(s) of
the target and distractor nouns. To achieve this, the Jensen- Shan-
non divergence (JSD) metric was used to quantify the degree of
dissimilarity between two distributions. Values of the JSD metric
range between 0 and 1, with larger values denoting more dissimi-
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Figure 4.1: The lexico-syntactic feature probability distributions for
the a) Chinese and b) Dutch nouns translating to factory.

larity/divergence between two probability distributions. The JSD
is calculated according to Equation 4.1 (Menéndez et al., 1997;
Nielsen, 2020). For instance, here we have three different probabil-
ity distributions of classifiers i.e. for noun A {ge: 0, zhi:0.3, tiao:
0.7}, noun B {ge: 0.7, zhi:0, tiao: 0.3}, and noun C {ge: 0.1, zhi:0.2,
tiao: 0.7}. Noun A and B have the same probabilities distributed
over different classifiers, whereas noun A and C only differ in the
probability of classifier “zhi” and “ge”. The similarity captured by
JSD between noun A and B is lower than between noun A and C.
Thus, in the current study, when we obtain the classifier probability
distribution for any given noun, we included in all classifiers in the
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classifier probability distribution for the given noun by assigning
fully incompatible classifiers a probability of zero.

JSD(P ||Q) =
1

2
D(P ||M) +

1

2
D(Q||M) (4.1)

Where P and Q are classifier probability distributions for two nouns,
respectively.

D(P ||M) =
∑

i P (i)log P (i)
M(i)

, D(Q||M) =
∑

iQ(i)log Q(i)
M(i)

,M =
1
2
(P +Q)

4.1.1 The current study

In the current study, we investigated the Mandarin Chinese clas-
sifier as an example of a language where there are multiple gram-
matically correct options in bare noun naming, which is in contrast
to the existing literature about the lexico-syntactic features with
respect to gender where typically only one grammatically correct
option exists. This allows us to investigate to what extent mod-
els that have been formulated based on gender agreement also can
account for more complex speech production in Mandarin Chinese.
Note that for a given noun, its classifier probability distribution also
defines the dominant classifier and thus necessitates controlling for
dominant classifier effects in the experimental design.

Based on Levelt’s model, one would hypothesise that lexico-
syntactic features are encoded by a probability distribution in lan-
guage production at the lemma-level and on the electrophysiolog-
ical level therefore a P600-like ERP wave would be expected for
dissimilar classifier distributions as compared to similar classifier
distributions, akin to the P600 found for classical syntactic viola-
tion (such as agreement). Note that this hypothesis does not con-
tradict the standard Levelt model but is a generalisation of Levelt’s
model (Levelt et al., 1999; Roelofs, 1992) to cases where multiple
grammatically correct options for a lexico-syntactic feature exist.

Regarding the classifier probability distribution, we expect a
more positive ERP amplitude between 275–575 ms post stimulus
onset for the similar vs. dissimilar classifier probability distribution
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(i.e. lexico-syntactically driven P600 effect), but no behavioural ef-
fects. Regarding dominant classifier effects, we manipulated dom-
inant classifier congruency in such a way that its effect was not
confounded with any possible lexico-syntactic probability distribu-
tion effects. However, we predict that the dominant classifier re-
sults in no behavioural effect, in line with previous studies (Wang
et al., 2019; Wang et al., 2024) and semantically-driven processing
of classifiers, i.e. a significantly more negative amplitude between
275–575 ms (i.e. a N400 effect) for dominant classifier incongruent
vs. congruent conditions (Wang et al., 2019; Wang et al., 2024).
The predictions were made based on the assumption that classifier
compatibility operates at the lemma-level because the Mandarin
Chinese classifier is a lexico-syntactic feature, which is activated at
the lemma-level in Levelt’s model.

4.2 Methods

4.2.1 Participants

Thirty-six native Mandarin Chinese speakers (two of which were
removed from further analysis later) meeting the pre-determined
eligibility criteria gave informed consent to participate in this study
(Detailed information regarding the sample size justifications can be
found in section 4.2.2). The inclusion criteria were as follows: aged
from 18–35, having normal or corrected-to-normal vision, earned
(or studying for) a university degree, and no self-reported history
of neurological/psychological impairments or language disorders.
Each participant received e 15 as compensation for their partici-
pation in this study. Given these selection criteria, we assume that
participants have sufficient knowledge to grasp the relationships be-
tween the target and distractor words at the classifier level although
we did not explicitly ask them about this information. The study
was approved by the ethics committee of the Faculty of Humanities
at Leiden University.



98 The lexico-semantic representation of words

4.2.2 Materials

We reused nouns from Bürki et al. (2020) by translating them into
Mandarin Chinese, yielding 168 nouns in Mandarin Chinese. We
used the nouns from Bürki et al. (2020) because this study can
be seen as a landmark study on the effect of semantic category
relationships in the literature and by using their system of cate-
gorising nouns, we transparently connect our study to the existing
literature. The translations were performed using Google Translate
and verified through two methods: (1) translating Chinese back
to English to ensure the original word could be retrieved, and (2)
manual verification by the first author. No further norming was
deemed necessary with respect to semantic categories because we
used the categorisation published in Bürki et al. (2020). The fre-
quency of distractors and the distributions of classifiers for all nouns
employed in the current study were determined by calculating fre-
quency of (co-)occurrence in the Chinese Wikipedia data released
on 2021- 11-01 (Wikipedia, 2024) with only taking 1-gram and 2-
gram into account after word-segmentation with the library pkuseg
in Python (Luo et al., 2019). Detailed information about the classi-
fier probability distributions for each word in this study, the skew-
ness of its distribution, and distractor word frequency can be found
at https://github.com/Yufanggg/LexicoProbDistri.

Based on these distributions, we first calculated the JSD value
for each word pair. Then, we only selected word pairs which have
extremely dissimilar (D-, i.e. JSD values greater than or equal to
0.6) or similar (D+, i.e. less than or equal to 0.4) distributions to
maximise the chance of detecting the effects of probability distri-
bution similarities (Mack, 2016). These thresholds were chosen to
make sure that the D- and D+ conditions were sufficiently differ-
ent in JSD value to allow for the detection of the effect with our
design. The dominant classifier was defined as the classifier having
the highest probability for a given noun and further validated by
using the Xinhua dictionary (11th edition, Linguistics Institute of
Chinese Academy of Social Sciences, 2011).

We also used the Xinhua dictionary Xinhua dictionary (11th edi-
tion, Linguistics Institute of Chinese Academy of Social Sciences,
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2011) to validate the number of strokes of distractor nouns. The dis-
tractor nouns were selected based on the similarity (similar, D+, vs.
dissimilar, D-) of classifier probability distributions and congruency
of dominant classifier (congruent, C+, vs. incongruent, C-) with
the target nouns (see Figure 4.2 for an example). The frequency of
distractors was determined by calculating frequency of occurrence
in the Chinese Wikipedia data released on 2021-11-01 (Wikipedia,
2024). The distractor words have similar word frequency, number
of strokes, and lengths in characters across all conditions. Specif-
ically, frequency (F = 1.202, df = (2, 99), p = 0.305), number of
strokes (F = 0.137, df = (2, 99), p = 0.872), and length of dis-
tractor nouns in characters (F = 0.905, df = (2, 99), p = 0.408)
showed no significant difference between conditions. Distractors in
the current study had no orthographic or phonological relationship
with target picture names.
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Figure 4.2: An example of target noun (手臂, /shou3bi4/, “arm”)
and its paired distractors for each condition (“bug” for D-C+, “fac-
tory” for D-C-, “foot” for D+C+, “alligator” for D+C-).

In the end, we selected 38 target nouns corresponding to black-
and-white drawings, which we produced ourselves (see at https://
github.com/Yufanggg/LexicoProbDistri). Regarding the employed
target words in this study, a small number of them were chosen
to be more formal (written) rather than more common (spoken)
words, which might have influenced the results. However, this ap-
plied only to the following two words, i.e. 手臂(/shou3bi4/, arm),
and 披风(/pi1feng1/, cloak), thus only having minimal impact.
The targets and the corresponding distractor nouns used in the
study, together with their properties (i.e. word frequency, number
of strokes, length in characters, and the semantic congruency with
the targets) also can be found at https://github.com/Yufanggg/
LexicoProbDistri.

In summary, in this experiment, we manipulated the classifier
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probability distribution similarity (similar, D+, vs. dissimilar, D-)
and dominant classifier congruency (congruent, C+, vs. incongru-
ent, C-) with the target nouns. We also accounted for other vari-
ables, e.g. number of strokes, word frequency, and length of the
distractors (Bürki et al., 2020) that might affect the outcomes of
this study according to the literature. We also included the semantic
category congruency effect to (1) control for semantic relatedness
and (2) verify that our study design can replicate this established
effect. As outlined in the introduction, no behavioural classifier ef-
fect is expected, but a semantic congruency effect is. We decided
to sufficiently power our study to detect this effect, in order to (1)
replicate the result (2) and enable us to detect ERP effects of sim-
ilar size for classifier congruency. Therefore, the sample size was
determined to detect the semantic congruency effect as found in
Bürki et al. (2020), namely the semantic (category) interference ef-
fect. We performed power simulations to calculate the number of
participants necessary to detect the effect. A detailed results of the
simulations is provided in the Appendix 4.

4.2.3 Experimental procedure

This experiment consisted of familiarisation, practice, and experi-
mental sessions. In the familiarisation session, the target pictures
(see Figure 4.3 below) were presented with their names underneath
for three seconds. Participants were required to have a thorough
look at the picture and their name underneath. In the practice
session, the same pictures with the string “XXX” superimposed
were shown for three seconds. Participants were required to name
the target pictures while ignoring the string “XXX.” In the ex-
perimental session (as shown in Figure 4.3), each trial included a
fixation cross (“+”, 300 ms), followed by a blank screen (200 ms),
a picture-distractor display (3,000 ms), and another blank screen
(500 ms). Picture-distractor displays included a picture paired with
a distractor word (from one of the four conditions) at the centre.
Participants were required to produce the picture’s name as quickly
and accurately as possible while ignoring the superimposed distrac-
tor. The order of trials was pseudo-random to prevent consecutive



102 The lexico-semantic representation of words

repetitions of identical target nouns and order effects. The whole
experimental session was divided into two blocks with a short break
in between.

Figure 4.3: Sequence of events of each trial in the experimental
session.

E-prime version 3 was used for stimulus presentation. During
the experiment, participants sat in front of a computer screen in a
dimly lit room and completed the task while vocal responses and the
electroencephalogram (EEG) were being recorded simultaneously.

4.2.4 Audio and electroencephalography record-
ings

During the experiment, the vocal responses were recorded via E-
prime version 3 using inline scripts and BrainVision Recorder soft-
ware (version 1.23.0001) from Brain Products GmbH. Together
with recording the vocal responses, the EEG was recorded using
32-channel EasyCap electrodes according to the international 10/20
system plus additional electrodes. The additional electrodes were
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placed above and below the left eye (VEOG) to monitor vertical eye
movements and on the external canthus of each eye (HEOG) for the
horizontal electrooculogram and on the mastoids. Impedance dur-
ing the experiment was controlled and kept below 5 kΩ, and the
sampling rate was 1,024 Hz using actiCAP control software (version
1.2.5.3).

4.2.5 Data analysis

Behavioural data analysis

Trials with incorrect vocal responses or latencies longer than 3,000
ms were regarded as incorrect trials. Naming latencies for correct
trials were extracted from the sound recordings using Praat version
6.1.09 (Boersma, 2007). Trials with naming latencies larger than
3 SDs away from the individual subject and item mean were ex-
cluded (2.95% of all data, i.e. 1.17% for D-C+, 2.96% for D-C-,
3.22% for D+C+, and 4.49% for D+C-). Naming accuracies and
naming latencies were analyzed with the glmer() function in the
lmer library (version 1.1-29) in R (version 4.1.1) with the bino-
mial and Gamma (identity) as link functions, respectively (Lo &
Andrews, 2015). More specifically, items and participants were in-
cluded as random factors. The word frequency of distractor words,
the number of strokes in distractor nouns and length of distractor
nouns in characters were first centred and then included as (fixed)
nuisance factors together with the congruency of semantic related-
ness (related, S+ vs. unrelated, S-) to adjust potential confounds.
The congruency of the dominant classifier (congruent vs. incongru-
ent) (sum coded, 1 vs. -1) and similarity of the classifier distribution
(similar vs. dissimilar) (sum coded, -1 vs. 1) were included as fixed
predictors. The maximal random effect structure was determined
using a backward elimination strategy, where the BIC, AIC (Kuha,
2004), and/or approximate likelihood ratio tests (Lewis et al., 2011)
were employed as criteria for model selection (Bates et al., 2014;
Bates, 2007). When non-convergence and/or singular fits occurred,
the random effect structure was simplified until the model does not
have these issues (Barr et al., 2013). The model assumptions were
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checked by visualising residuals and model predicted values.

EEG data analysis

EEG data pre-processing
The MATLAB 2017b toolbox EEGLab 14 0 0b (Delorme &Makeig,
2004) was used for the off-line pre-processing of the EEG data. The
pre-processing included re-referencing, band-pass filtering, notch fil-
tering, resampling, extracting epochs, baseline correction, bad chan-
nel interpolation, visual trial rejections, removing artifacts, and trial
rejection. Re-referencing was performed based on the average of
both mastoid electrodes. The band-pass filter was performed from
0.1–30 Hz, and a notch filter was applied from 48 to 52 Hz to
decrease power line noise interference (Ahmad et al., 2012). This
ensures that the ERP effect is preserved (Zhang et al., 2024) and
that the current study remains comparable with previous research
(Wang et al., 2019; Wang et al., 2024). Resampling was done from
1,024–256 Hz to be comparable with previous studies (Huang &
Schiller, 2021; Wang et al., 2019; Wang et al., 2024). The baseline
correction was performed using the -200-0 ms pre-stimulus inter-
val. For noisy channels, interpolation was carried out. Noisy tri-
als were rejected based on visual inspection. Artifact rejection was
performed using independent component analysis (ICA) with AD-
JUST v1.1.1. (Mognon et al., 2011). Finally, automatic rejection
was carried out on trials with an amplitude of more than ±100 µV.
Participants with more than 2/3 of the trials rejected were not in-
cluded for further analysis. As a result, thirty-four of the original
thirty-six participants remained for further analysis in this study.

A priori amplitude analyses in time windows
To be able to compare the results with the existing literature, we
first conducted a priori analyses at the identical time windows and
electrodes used in previous studies (Wang et al., 2019; Wang et al.,
2024). Specifically, we included the amplitude of F3, FC1, FC5, C3,
CP1, CP5, P3, PO3, F4, FC2, FC6, C4, CP2, CP6, P4, and PO4 in
the 275–575 ms time window as the dependent variable. Electrodes
were grouped into centro-parietal (CP1, CP5, P3, PO3, CP2, CP6,



Activation of classifiers in word production: insights from
lexico-syntactic probability distributions 105

P4, and PO4) and frontocentral regions (F3, FC1, FC5, C3, F4,
FC2, FC6, and C4). Time was also mean-centred and standardised
within the 275–575 ms time window and included in fixed effects
in the linear mixed model. Otherwise, all modelling steps were the
same as for the behavioural data analysis (see in section 4.2.5).

Exploratory permutation-based cluster mass analyses (200–700 ms)

Next, in order to capture the full temporospatial extent of the ma-
nipulated variables on the EEG, a permutation-based mass univari-
ate cluster test was performed. First, a permutation linear mixed
model with threshold-free cluster enchantment (TFCE) as Type-
I error correction was conducted (E = 0.66, H = 2; see Smith &
Nichols, 2009) to identify time windows and channels where an ef-
fect was present across the combined four levels of the two main
effects (Visalli et al., 2024) (Visalli et al., 2024). The family-wise
error for the cluster permutation test was set at 5%. Amplitude
∼ Number of strokes + Frequency of distractor + Conditions (the
combined four levels of the two main effects) + (1 | participant) +
(1 | item) was the formula used to conduct the permutation test to
meet the criteria of exchangeability under the null hypothesis of the
permutation test across the combined four levels of the two main
effects, corresponding to the four conditions in total. The results
of this permutation-based mass univariate cluster test were then
followed up with a linear mixed model (with the modelling steps as
described previously).

4.3 Results

4.3.1 Results of the behavioural data analysis

Regarding naming accuracies (see Table 4.1), a binomial generalised
mixed model (with logit as the link function) showed neither a se-
mantic relatedness effect (β = 0.239, SE = 0.202, 95%CI = [0.157,
0.635], z = 1.183, p = 0.237), nor a dominant classifier (C) congru-
ency effect (β = 0.097, SE = 0.159, 95%CI = [-0.215, 0.410], z =
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0.610, p = 0.542) nor an effect of classifier probability distribution
similarity (β= 0.019, SE = 0.132, 95% CI = [-0.239, 0.277], z =
0.143, p = 0.886).

Table 4.1: Detailed information on the best-fitting model for naming
accuracies

Formula: Naming accuracies ∼ Number of strokes + Frequency of
distractor + Semantic relatedness (S+ vs. S-) + Length of distractor

in characters+ Dominant classifier congruency (C+ vs. C-) +
Similarity (D+ vs. D-) between classifier probability distributions +

(1 | subject) + (1 | target)

Fixed effects Estimate
95% CI

[low, high]
z-value Pr(> |z|)

(Intercept) 4.285 [2.733, 5.837] 5.412 < 0.001

Number of strokes -0.175 [-0.430, 0.079] -1.349 0.177

Frequency of the
distractor

-0.020 [-0.171, 0.210] 0.201 0.840

Length of
Distractor

0.191 [-0.130, 0.513] 1.168 0.243

S- 0.239 [-0.157, 0.635] 1.183 0.237

C+ 0.097 [-0.215, 0.410] 0.610 0.542

D- 0.019 [-0.239, 0.277] 0.143 0.886

S-:C+ -0.118 [-0.464, 0.228] -0.668 0.504

Random effects

σ2 1.000

τitem 2.280

τparticipant 1.206

Nitem 38

Nparticipant 34
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ICC 0.516

Observations 3,196

Marginal/Conditional R2 0.011/ 0.520

As for naming latencies for correct responses (see Table 4.2 and
Figure 4.4), a generalised mixed effects model with Gamma distri-
bution and identity link showed that (1) the semantically unrelated
conditions have significantly shorter naming latencies (β = 18.675,
SE = 5.076, 95% CI = [-28.623, -8.727], z = 3.679, p = 0.002) than
the related conditions; (2) the dominant classifier congruency failed
to reach significance (β = 6.782, SE = 3.599, 95% CI = [-0.272,
13.835], z = 1.884, p = 0.060); (3) Similarly, the similar classifier
probability distribution conditions showed no significant difference
from the dissimilar classifier probability distribution conditions (β
= 6.084, SE = 3.362, 95% CI = [0.506, 12.674], z = 1.809, p =
0.070).

Table 4.2: Detailed information on the best-fitting model for naming
latencies

Formula: Naming latencies ∼ Number of strokes + Frequency of
distractor + Semantic relatedness (S+ vs. S-) + Length of distractor

in characters + Dominant classifier congruency (C+ vs. C-) +
Similarity (D+ vs. D-) between classifier probability distributions +

(1 | subject) + (1 | target)

Fixed effects Estimate
95% CI

[low, high]
z-value Pr(> |z|)

(Intercept) 880.212 [861.168, 899.255] 90.594 < 0.001 ∗ ∗∗

Number of
strokes

-0.735 [-7.759, 6.289] -0.205 0.837

Frequency of the
distractor

-4.646 [-8.747, -0.545] -2.220 0.026*

Length of
Distractor

2.497 [-5.189, 10.183] 0.637 0.524

S- -18.675 [-28.623, -8.727] -3.679 0.002 ***
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C+ 6.782 [-0.272, 13.835] 1.884 0.060

D- 6.084 [-0.506, 12.674] 1.809 0.070

S-:C+ -0.509 [-7.769, 6.752] -0.137 0.891

Random effects

σ2 0.041

τitem 1257.580

τparticipant 2823.471

Nitem 38

Nparticipant 34

ICC 1.000

Observations 2,985

Marginal/Conditional R2 0.073/ 1.000
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Figure 4.4: Naming latencies across the conditions of the Classifier
Distribution Similarity and Dominant Classifier Congruency.

4.3.2 EEG data analysis

Results of planned analyses

Amplitude for a priori selected channels in the 275 - 575 ms time
window (see Table 4.3, Figures 4.5 and 4.6 shows that (1) the



110 The lexico-semantic representation of words

semantically unrelated conditions have significantly more negative
amplitudes (β = -0.262, SE = 0.013, df = 2964779.559, 95% CI =
[0.287, -0.237], t = 20.463, p < 0.001) than the related conditions;
(2) the dominant classifier-incongruent conditions have a signifi-
cantly more negative amplitude relative to the congruent ones (β
= -0.209, SE = 0.0122, df = 3700151.141, 95% CI = [0.186, -0.232],
t = 17.816, p < 0.001); (3) the dissimilar classifier distributions
have a significantly more positive amplitude relative to the similar
classifier distribution (β = 0.122, SE = 0.011, df = 3690045.045,
95% CI = [0.101, 0.144], t = 11.159, p < 0.001). Last, the more neg-
ative dominant classifier effect was more negative for similar at the
centro-parietal region (β = 0.040, SE = 0.014, df = 3706478.978,
95% CI = [0.068, 0.012], t = 2.817, p = 0.005). The larger classifier
distribution similarity effect was more negative for similar at the
centro-parietal region (β = 0.101, SE = 0.014, df = 3706478.980,
95%CI = [0.073, 0.129], t = 7.099, p < 0.001) than in other regions.
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Figure 4.5: Mean amplitudes at CP1, CP5, P3, PO3, CP2, CP6,
P4, and PO4 for dominant classifier congruent and incongruent
conditions from – 200 ms to 700 ms (grey window is 275–575 ms).

Figure 4.6: Mean amplitudes at CP2, CP6, P4, and PO4 for similar
and dissimilar classifier probability distributions from – 200 ms to
700 ms (grey window is 275–575 ms).
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Table 4.3: Details on the best-fitting model for electrophysiological
response of F3, FC1, FC5, C3, CP1, CP5, P3, PO3, F4, FC2, FC6,
C4, CP2, CP6, P4, and PO4 in the time window of 275-575 ms.

Formula: Voltage ∼ Time + Frequency of distractor + Number of strokes
+ Semantic relatedness (S + vs. S-) + Length of distractor in characters

+ Elec (centro-parietal vs. frontocentral) + Dominant classifier
congruency (C + vs. C-) + Similarity (D- vs. D+) between classifier
probability distribution + Semantic relatedness:Dominant classifier
congruency + Classifier Congruency: Elec + Similarity between
classifier probability distribution:Elec + (1|Subject) + (1|Target)

Fixed effects Estimate
95% CI

[low, high]
z-value Pr(> |z|)

(Intercept) 9.326 [7.593, 11.060] 10.682 < 0.001 ∗
∗∗

Time 1.852 [1.840 1.864] 305.587 < 0.001 ∗
∗∗

Frequency of the

distractor
-0.150 [-0.161, -0.139] -26.641 < 0.001 ∗

∗∗

Number of strokes 0.179 [0.162, 0.196] 20.820 < 0.001 ∗
∗∗

S- -0.242 [-0.267, -0.217] -18.807 < 0.001 ∗
∗∗

Length of Distractor -0.181 [-0.202, -0.161] -17.448 < 0.001 ∗
∗∗

Elec: frontocentral -2.542 [-2.567, -2.517] -196.916 < 0.001 ∗
∗∗

C+ 0.216 [0.193, 0.239] 18.410 < 0.001 ∗
∗∗

D- 0.138 [0.116, 0.159] 15.531 < 0.001 ∗
∗∗

S-:D- -0.148 [-0.168, -0.129] 15.103 < 0.001 ∗
∗∗
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Elec frontocentral: C+ -0.040 [-0.068, -0.01] 2.818 0.005 ∗ ∗∗

Elec frontocentral: D- 0.101 [0.073, 0.129] 7.100 < 0.001 ∗
∗∗

Random effects

σ2 136.113

τitem 1.097

τparticipant 24.878

Nitem 38

Nparticipant 34

ICC 0.160

Observations 3,706,560

Marginal/Conditional R2 0.186/ 0.031

Results of exploratory permutation-based TFCE analyses

A mass univariate cluster permutation test using a linear mixed
model Amplitude ∼ congruency of semantic category + Number
of strokes + Frequency of distractor + Conditions (the combined
four levels of the two main effects) + (1 | Subject) + (1 | Target)
and TFCE to control the Type-I error at 5% was performed (see
Figure 4.7). The cluster is in the centro-parietal area and occurs
between 275–425 ms post-stimulus onset. Based on the permutation
test results, the following channels were selected for the cluster:
CP5, P7, P3, PO3, and O1.
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Figure 4.7: Result of permutation-based TFCE analyses.

For the cluster highlighted in Figure 4.7, the mixed model re-
vealed similar results in the exploratory permutation-based TFCE
analyses as in the analyses reported above. That is (see Table 4.4,
Figures 4.8 and 4.9), (1) semantically unrelated conditions have
less negative amplitudes (β = 0.157, SE = 0.025, df = 162746.157,
95% CI = [0.108, 0.206], t = 6.278, p < 0.001) relative to the se-
mantically related conditions; (2) dominant classifier- incongruent
conditions display significantly more negative amplitudes compared
to dominant classifier-congruent conditions (β = 0.210, SE = 0.018,
df = 579156.103, 95% CI = [0.174, -0.246], t = 11.473, p <0.001);
(3) the dissimilar classifier probability distribution condition has a
significantly more positive amplitude relative to the similar classifier
probability distribution (β = 0.142, SE = 0.016, df = 527393.715,
95% CI = [0.110, 0.174], t = 8.730, p < 0.001).
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Figure 4.8: Mean amplitudes at CP5, P7, P3, PO3, and O1 for
congruent vs. incongruent dominant classifier conditions from – 200
ms to 700 ms (grey window is 275 - 425 ms).

Figure 4.9: Mean amplitudes at CP5, P7, P3, PO3, and O1 for
similar vs. dissimilar classifier probability distributions from – 200
ms to 700 ms (grey window is 275 - 425 ms).
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Table 4.4: Detailed information on the best-fitting model for elec-
trophysiological response of CP5, P7, P3, PO3, and O1 at the time-
window of 275 - 425 ms.

Formula: Voltage ∼ Time + Frequency of distractor + Number of
strokes + Semantic relatedness (S + vs. S-) + Length of distractor
in characters + Dominant classifier congruency (C + vs. C-) +

Similarity (D- vs. D+) between classifier probability distribution +
Semantic relatedness:Dominant classifier congruency + (1|subject) +

(1|target)

Fixed effects Estimate
95% CI

[low, high]
z-value Pr(> |z|)

(Intercept) 7.039 [5.635, 8.443] 9.950 < 0.001 ∗
∗∗

Time 0.655 [0.631, 0.678] 55.002 < 0.001 ∗
∗∗

Frequency of the
distractor

-0.129 [-0.150, -0.107] -11.659 < 0.001 ∗
∗∗

Number of strokes 0.068 [0.035, 0.101] 4.066 < 0.001 ∗
∗∗

S- 0.160 [0.110, 0.209] 6.352 < 0.001 ∗
∗∗

Length of Distractor -0.022 [0.062, 0.018] -1.096 0.273

C+ 0.211 [0.175, 0.247] 11.509 < 0.001 ∗
∗∗

D- 0.144 [0.112, 0.176] 8.797 < 0.001 ∗
∗∗

S-:C+ -0.117 [-0.154, -0.079] 6.057 < 0.001 ∗
∗∗

Random effects

σ2 86.223
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τitem 0.514

τparticipant 16.343

Nitem 38

Nparticipant 34

ICC 0.164

Observations 608,850

Marginal/Conditional R2 0.005/ 0.168

4.4 Discussion

To summarise, we found that producing an intended Mandarin Chi-
nese noun in the presence of distractor nouns that have dissimilar
classifier probability distributions results in a more positive ERP
amplitude relative to distractor nouns having a similar classifier
probability distribution in the time window 275-425/575 ms after
stimulus onset. However, we did not observe any effects of classifier
probability distribution similarity at the behavioural level. Regard-
ing dominant classifiers, we found that producing an intended Man-
darin Chinese noun in the presence of dominant classifier- incon-
gruent distractor nouns results in more negative amplitudes of the
electrophysiological response in the same time window 275–425/575
ms compared to dominant classifier-congruent distractor nouns. At
the behavioural level, we did not observe any dominant classifier
effects either. Regarding semantic relatedness, at the behavioural
level, we observed longer naming latencies for related conditions
compared to unrelated conditions, replicating the well-established
semantic interference effect (Wang et al., 2019; see Bürki et al.,
2020 for a meta-study). At the electrophysiological level, we ob-
served a more negative effect for semantically unrelated vs. related
conditions in planned analyses in the time window between 275-575
ms at the centro-parietal region (CP1, CP5, P3, PO3, CP2, CP6,
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P4, and PO4). However, we observed a more positive effect for se-
mantically unrelated vs. related conditions in permutation-based
TFCE analyses in the time window between 275–425 ms at the left
centro-parietal-occipital region (CP5, P7, P3, PO3, and O1).

The successful replication effect of longer naming latencies for
semantically related vs. unrelated conditions indicates that our ex-
perimental design could detect expected effects. The electrophys-
iological effect we observed under such conditions in the planned
analysis is opposite to the findings of the permutation- based TFCE
analysis but in line with previous studies (Blackford et al., 2012;
Costa et al., 2009; Greenham et al., 2000; Wang et al., 2019). We ar-
gue that this contradiction results from the permutation test being
conducted over the combined four levels comprising both dominant
classifier congruency and classifier distribution similarity probabil-
ity. This combination of levels during the TFCE analysis results in
a mismatch between the criteria used for determining the spatio-
temporal windows and those used for analyzing the semantic relat-
edness effect. Thus, the permutation-based TFCE analysis yields
different results regarding semantic relatedness from that of the
planned analysis and literature (Blackford et al., 2012; Costa et
al., 2009; Greenham et al., 2000; Wang et al., 2019) - which could
explain the contradictory findings.

Regarding the dominant classifier congruency effect, we observed
more negative amplitudes for the electrophysiological responses of
the incongruent dominant classifiers compared to congruent domi-
nant classifiers around 400 ms post stimulus onset with a maximum
at centro-parietal regions, in line with the classic N400 effect. This
N400 effect, combined with the absence of any behavioural effect
for the dominant classifier incongruent vs. congruent conditions, is
in line with our prediction and with previous studies that classi-
fiers are activated but not selected (Wang et al., 2019; Wang et al.,
2024). Therefore, we will not discuss the dominant classifier effect
and its implications in more detail here. Instead, we will focus our
discussion in the following section on the classifier probability distri-
bution effect and its implications for language production models,
specifically the model developed by Levelt and colleagues.
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4.4.1 Classifier probability distribution effect

To the best of our knowledge, the present study is the first to in-
vestigate whether models of language production can be extended
to situations where multiple options for lexico-syntactic features
are grammatically allowed. Current models of language production
have been constructed based on previous findings in Indo- European
languages where single grammatically correct options are available.
For instance, La Heij et al. (1998) and Starreveld & La Heij (2004)
conducted behavioural studies on grammatical gender in Dutch
and concluded that the lexico-syntactic features are not selected
in bare noun naming because no behavioural gender congruency
effects were found in PWI tasks. More recent studies wherein elec-
trophysiological results were combined with behavioural observa-
tions concluded that, although not ultimately selected, the dom-
inant classifier is still activated (Wang et al., 2019; Wang et al.,
2024).

In the current study, we investigated the role of the similarity
between the classifier probability distributions of target and dis-
tractor words whilst controlling for dominant classifier congruency
effects and semantic relatedness. We did not observe any effect of
the similarity between classifier probability distributions at the be-
havioural level. Even though this absence of the classifier proba-
bility distribution effect at the behavioural level might be due to
a Type II error (i.e. false negative), it could also imply that none
of the classifiers that make up the classifier probability distribution
are selected. This line of thinking is consistent with the reasoning
employed in existing literature (La Heij et al., 1998; Starreveld &
La Heij, 2004; Wang et al., 2019; Wang et al., 2024). Regarding
the electrophysiological responses, we observed more positive am-
plitudes for dissimilar vs. similar classifier probability distribution
conditions.

We attributed this electrophysiological effect to the P600-like ef-
fect based on the following reasons. First, we manipulated a lexico-
syntactic feature (similarity of classifier probability distributions),
which is known to elicit P600 effects in prior research (Wang et
al., 2024) and has been suggested to be elicited for theoretical rea-



120 The lexico-semantic representation of words

sons (Hagoort & Brown, 2000; Popov et al., 2020; Wang et al.,
2019). Second, the peaks of ERP waveforms for each condition
were positive-going and located around 550 ms post-stimulus on-
set, which aligns with the typical P600 component time window
(although the observed differences span the 275-575 ms time win-
dow) (Kappenman & Luck, 2012). Finally, the effect was maximal
at centro-parietal electrodes, which has also been observed previ-
ously (Wang et al., 2024) and is consistent with the typical P600
effect (Hagoort et al., 1993; Osterhout & Holcomb, 1992).

Assuming that the P600 effect is syntactically driven, we specu-
late that when producing a given bare noun (1) multiple compatible
classifiers are activated with the degree of activation being deter-
mined by their compatibility with the given noun even though none
of them is finally selected (La Heij et al., 1998; Levelt, 1999; Levelt
et al., 1999; Starreveld & La Heij, 2004) and (2) that the activation
of these classifiers is lexico-syntactically driven.

4.4.2 Implications for Levelt’s language produc-
tion model

Based on the findings and associated interpretations of the current
study, we propose an extension of Levelt’s model of language pro-
duction to allow it to accommodate lexico-syntactic features that
have multiple grammatically correct options (see Figure 4.10). Note
that we attributed the observed effects to lexical level processing as
Mandarin Chinese classifiers belong to the family of lexico-syntactic
features, and we controlled for semantic relatedness in data analy-
sis.

To illustrate, producing a particular noun such as, e.g. “arm”,
the noun will first have to be activated at the conceptual level
and then lexicalised at the lexical level before finally being artic-
ulated. The lexicalised item representing the noun, located at the
lemma-level, has a unidirectional link from the lexicalised item to its
corresponding classifier probability distribution. Through this link,
automatic activation of multiple compatible classifiers occurs when
producing a bare noun, albeit to differing degrees. The degree of ac-
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Figure 4.10: Illustration of proposed modified version of Levelt’s
model of language production incorporating the case where lexico-
syntactic features have multiple grammatically correct options, rep-
resented herein by the Mandarin Chinese classifiers as an example.
CLASSIFIER here is a placeholder (see also Wang et al., 2019)

tivation for an individual classifier could depend on its compatibility
with the given noun. For instance, according to the classifier proba-
bility distribution associated with 工厂(/gong1chang3/, “factory”,
the normalised co-occurrence (i.e. compatibility) for the classifiers
条(/tiao2/) and只(/zhi1/( are 0.246 and 0.579, respectively. Thus,
we speculate that when producing工厂(/gong1chang3/, “factory”)
the classifiers 条(/tiao2/) and 只(/zhi1/) are activated with their
degrees of activation being determined by their compatibility with
the given noun 工厂(/gong1chang3/, “factory”). Classifiers which
are fully incompatible with a given noun we consider not to be
activated.

However, since classifiers are not needed for the task of produc-
ing a bare noun, none of the classifiers will be finally selected. In
case classifiers are needed, speakers will select the classifier that is
either (1) most strongly activated (Zhan & Levy, 2018), or (2) clos-
est to their intended meaning. For example, 张(/zhang1/) is used
for 邮票(/you2piao4/, “stamp”) when emphasising the stamp as a
long and thin entity, while 枚(/mei2/) is used when emphasising
the stamp as a small item (Wu & Bodomo, 2009).

As such, this extension of Levelt’s model of language produc-
tion can accommodate both the case where lexico-syntactic features
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have multiple grammatically correct options and the case where
lexico-syntactic features have single grammatically correct options.

4.5 Conclusion

In conclusion, the current study investigated the encoding of Man-
darin Chinese classifiers during speech production, where multiple
lexico-syntactic features are possible for a given noun. Our results
indicate that, when producing a bare noun, multiple compatible
classifiers are activated. These results extend our understanding of
the underlying mechanism of speech production when there is more
than one grammatically correct option for a lexico-syntactic feature
for a given noun.
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Appendix 4

Appendix 4A. Stimuli used in the experiment

Target Distractor
Distribution
Similarity

Classifier
Congruency

蚂蚁
/ma2yi/
ant

手套
/shou3tao4/,glove

Dissimilar Incongruent

蟒蛇
/mang3she2/,python

Dissimilar Incongruent

鸟/niao3/,bird Similar Congruent

蜗牛/wo1niu2/,snail Similar Congruent

手臂
/shou3bi4/
arm

飞虫
/fei1chong2/, bug

Dissimilar Incongruent

工厂
/gong1chang3/, factory

Dissimilar Incongruent

脚
/jiao3/, foot

Similar Incongruent

鳄鱼
/e4yu2/, crocodile

Similar Incongruent

凉鞋
/liang2xie2/
sandal

骆驼
/luo4tuo2/, camel

Dissimilar Congruent

风车
/feng1che1/, windmill

Dissimilar Incongruent

鞋子
/xie2zi/, shoe

Similar Congruent
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拖鞋
/tuo1xie2/, slipper

Similar Incongruent

冰鞋
/bing1xie2/
skate

梨
/li2/, pear

Dissimilar Congruent

矛
/mao2/, spear

Dissimilar Incongruent

碗
/wan3/, bowl

Similar Congruent

袋鼠
/dai4shu3/, kangaroo

Similar Incongruent

熊
/xiong2/
bear

黄蜂
/huang2feng1/, wasp

Dissimilar Congruent

猿
/yuan2/, ape

Dissimilar Incongruent

企鹅
/qi3e2/, penguin

Similar Congruent

海狸
/hai3li2/
beaver

鸵鸟
/tuo2niao3/, ostrich

Dissimilar Congruent

奶牛
/nai3niu2/, cow

Dissimilar Incongruent

仓鼠
/cang1shu3/, hamster

Similar Congruent

麻袋
/ma2dai4/
sack

电视
/dian4shi4/, television

Dissimilar Congruent

长笛
/chang2di2/, flute

Dissimilar Incongruent

滑梯
/hua2ti1/, slide

Similar Congruent

脸
/lian3/
face

水壶
/shui3hu2/, kettle

Dissimilar Congruent

贝雷帽
/bei4lei2mao4/, beret

Dissimilar Incongruent

桌子
/zhuo1zi/, desk

Similar Congruent

心
/xin1/
heart

螺丝钉
/luo2si1ding1/, screw

Dissimilar Congruent

橙子
/cheng2zi/ orange

Dissimilar Incongruent

星星
/xing1xing1/, star

Similar Congruent
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腿
/tui3/
leg

藤蔓
/teng2man4/, vine

Dissimilar Congruent

背心
/bei4xin/, vest

Dissimilar Incongruent

河
/he2/, river

Similar Congruent

尾巴
/wei3ba1/
tail

面包
/mian4bao1/, bread

Dissimilar Congruent

鹰
/ying1/, eagle

Dissimilar Incongruent

长裤
/chang2ku4/, trousers

Similar Congruent

腰带
/yao1dai4/
belt

瓢虫
/piao2chong2/, ladybug

Dissimilar Congruent

火鸡
/huo3ji1/, turkey

Dissimilar Incongruent

舌头
/she2tou4/, tongue

Similar Congruent

比基尼
/bi3ji1ni2/
bikini

苹果
/ping2guo3/, apple

Dissimilar Congruent

大象
/da4xiang4/, elephant

Dissimilar Incongruent

盘子
/pan2zi/, plate

Similar Congruent

短袜
/duan3wa4/
sock

大象
/da4xiang4/, elephant

Dissimilar Congruent

马
/ma3/, horse

Dissimilar Incongruent

青蛙
/qing1wa1/, frog

Similar Congruent

尺子
/chi3zi/
ruler

火炬
/huo3ju4/, torch

Dissimilar Congruent

骰子
/shai1zi4/, dice

Dissimilar Incongruent

菜刀
/cai4dao1/, chopper

Similar Congruent

萝卜
/luo2bo4/
carrot

冰淇淋
/bing1ji1ling2/, ice cream

Dissimilar Congruent

报纸
/bao4zhi3/, newspaper

Dissimilar Incongruent
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螺栓
/luo2shuan1/, bolt

Similar Congruent

汉堡
/han4bao3/
hamburger

马甲
/ma3jia2/, waistcoat

Dissimilar Congruent

潜艇
/qian2ting3/, submarine

Dissimilar Incongruent

背包
/bei1bao1/, backpack

Similar Congruent

抽屉
/chou1ti2/
drawer

大篷车
/da4peng2che1/, caravan

Dissimilar Congruent

马车
/ma3che1/, carriage

Dissimilar Incongruent

月亮
/yue4liang4/, moon

Similar Congruent

衣柜
/yi1gui4/
wardrobe

锅
/guo1/, pot

Dissimilar Congruent

天鹅
/tian2e2/, swan

Dissimilar Incongruent

圆
/yuan2/, circle

Similar Congruent

项链
/xiang4lian4/
necklace

鲨鱼
/sha1yu2/, shark

Dissimilar Congruent

斑马
/ban1ma3/, zebra

Dissimilar Incongruent

领带
/ling3dai4/, tie

Similar Congruent

手指
/shou3zhi3/
finger

芦苇
/lu2wei3/, reed

Dissimilar Congruent

灯塔
/deng1ta3/, lighthouse

Dissimilar Incongruent

拇指
/mu2zhi3/, thumb

Similar Incongruent

手
/shou3/
hand

葡萄
/pu2tao2/, grape

Dissimilar Incongruent

苍蝇
/cang1ying2/, fly

Similar Congruent

城堡
/cheng2bao3/
castle

头盔
/tou2kui1/, helmet

Dissimilar Incongruent

小丘
/xiao3qiu1/, hill

Similar Congruent
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披风
/pi1feng1/
cloak

冰屋
/bing1wu1/, igloo

Dissimilar Incongruent

毛衣
/mao2yi1/, sweater

Similar Congruent

裤子
/ku4zi/
pants

燕麦
/yan4man4/, oats

Dissimilar Incongruent

头巾
/tou2jing1/, turban

Similar Congruent

衬衫
/chen4shan1/
shirt

香蕉
/xiang1jiao1/, banana

Dissimilar Incongruent

夹克
/jia2ke4/, jacket

Similar Congruent

钢笔
/gang1bi3/
fountain pen

卡车
/ka3che1/, truck

Dissimilar Incongruent

笔
/bi3/, pen

Similar Congruent

铅笔
/qian1bi3/
pencil

刷子
/shua1zi/, brush

Dissimilar Incongruent

箭
/jian4/, arrow

Similar Congruent

鹰嘴豆
/ying1zui3dou4/
chickpeas

监狱
/jian1yu4/, prison

Dissimilar Incongruent

蝴蝶
/hu2die2/, butterfly

Similar Congruent

玉米
/yu4mi3/
corn

黄油
/huang2you2/, butter

Dissimilar Congruent

火车
/huo3che1/, train

Dissimilar Incongruent

蜡烛
/la4zhu2/
candle

蛋糕
/dan4gao1
/ cake

Dissimilar Incongruent

烟斗
/yan1dou2/, pipe

Similar Congruent

长椅
/chang2yi3/
bench

耳环
/er2huan2/, earring

Dissimilar Incongruent

凳子
/deng4zi/, stool

Similar Congruent

闹钟
/nao4zhong1/
alarm clock

刺猬
/ci4wei3/, hedgehog

Dissimilar Incongruent
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马克杯
/ma3ke4bei1/, mug

Similar Congruent

厨师
/chu2shi1/
chef

竹林
/zhu3lin2/, forest

Dissimilar Incongruent

医生
/yi1sheng1/, doctor

Similar Congruent

蜜蜂
/mi4feng1/
bee

鲤鱼
/li3yu2/, carp

Dissimilar Incongruent

松鼠
/song1shu3/, squirrel

Similar Congruent

耳朵
/er2duo1/
ear

手提箱
/shou3ti2xiang1/, suitcase

Dissimilar Incongruent

鸭子
/ya1zi/, duck

Similar Congruent

眼睛
/yan3jing1/
eye

骨头
/gu3tou2/, bone

Dissimilar Incongruent

山羊
/shan1yang2/, goat

Similar Congruent

戒指
/jie4zhi3/
ring

火箭
/huo3jian4/, rocket

Dissimilar Congruent

直升机
/zhi2sheng1ji1/, helicopter

Dissimilar Incongruent

手榴弹
/shou3liu2dan4/, grenade

Similar Congruent
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Appendix B. Power curve for determining the sample size
of participants


