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CHAPTER 6

DiscussioN

In this thesis, I present a number of studies of cytotoxic T cells in the tumor microenvironment.
This work demonstrates that for a multitude of tumors, the landscape of immunologically foreign
neoantigens is substantial (Chapter ), allowing for the application of immunotherapy beyond its
poster child, melanoma. Following up on this, we evaluated T cell checkpoint blockade therapy in
triple negative breast cancer and identified early molecular markers of clinical response (Chapter
3), further supporting the notion that T cell attack of varying tumor types is realistic. Moving over
to more fundamental research projects on how T cell activity sculpts the tumor microenvironment,
we first demonstrated that when T cells encounter cells that present the 'right’ (cognate) antigen in
the tumor microenvironment, they release IFN-vy that reaches (far) beyond the antigen-presenting
cell, whereas TNF-« is strongly localized (Chapter [5). We also tested for the loss of neoantigenic
mutations as a consequence of T cell pressure in treatment-naive tumors, but found no evidence for
it (Chapter ). A high level summary of these studies would be that T cell recognition of cancer is
expected to occur for many types of cancer (Chapter ), can be boosted using combinations of T
cell checkpoint blockade and other therapies in TNBC (Chapter 3) and that its repercussions reach
far and wide in the tumor microenvironment (Chapter 5) but do not occur in all matters one would
have expected them to (Chapter ). To conclude my thesis, I want to delve deeper into algorithmic
requirements to enable highly multiplexed transcriptome based stimulus inference, with the aim of
enabling the simultaneous study of many (T cell-secreted) cytokines in the tumor microenviron-

ment.

Cytokines mediate communication between cells of the immune system and other cell types and

vice versa, and thereby form key regulators of the immune response. Thus, our understanding of
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overall tumor biology and immunology would benefit from the ability to study the dissemination
of cytokines and other stimuli with high spatiotemporal resolution. While previous work has shed
light on the spatial effects of single or a small number of cytokines simultaneously, a lack of ex-
perimental tools for multiplexed investigation has impeded a comprehensive understanding of the
spatiotemporal spreading of the many cytokines that collectively mediate and orchestrate (tumor)

immunity.

As cytokines effectuate transcriptional changes in the cells that encounter them, a promising way to
study their functional dissemination (i.e., the reach of their gene regulatory capacity) is to infer it from
transcriptional read-outs. This leverages the reporting capability that nature has already granted us,
and frees us from having to engineer in reporters ourselves. Given the large diversity in response
kinetics among such endogenous reporter genes, we might not be limited to only inferring the na-
ture of the encountered stimuli. Possibly, we could also infer the duration and/or concentration
of exposure. Progress in the study of cell communication in general and cytokine dissemination in

particular will likely benefit from having available a toolkit for stimulus inference of such nuance.

Here, I will first delve deeper into considerations regarding application of transcription based stim-
ulus inference, that we did not fully explore in Chapter 5. Next, I'll discuss ideas for algorithms to
deal with the obstacles in this approach. By summarizing the understanding I have built up around

this topic, I hope to provide guidance to those interested in building upon our work.

I will start with an overview of the procedure of applying transcriptional/RNA-based stimulus in-
ference (Figure B.1). First, one would decide whether a specific cell type(s) will serve as reporter(s)
(Chapter B) or whether a mixture of cell types will be used!. The reporting cell type could be en-
grafted in a model system, typically a recipient mouse, but for certain questions an organoid cell
culture could also suffice. Alternatively, endogenous cells can also be used, obviating the need for
an engraftment step. Next, the experimental model would be exposed to a manipulation of interest
(e.g. activation of T cells or other immune cells). Then, the reporter cells would be harvested and
can potentially be separated from non-reporter cells using e.g., flow cytometry assisted cell sorting
(FACS), which can be facilitated by transducing the reporter cells with a fluorescent reporter before
engrafting them in the model system. Cells would then be extracted and sequenced using (single
cell) RNA-seq protocols, thereby yielding the query data set on which stimulus inference will subse-
quently be performed. In parallel, one would have to train models of gene expression in the reporting
cell type, and possibly also cell viability, in response to cytokines and other stimuli of interest. This
can be done using a compendium of reference RNA-seq samples to learn from, ideally of the exact
same cell type as that of the reporter cell type as different cell types can differ tremendously in their
transcriptional response to cytokines!. To increase power and reduce cost, this reference dataset
may be obtained using bulk RNA-seq and is composed of samples that were exposed to the vari-
ous stimuli of interest. Finally, the analyst would infer the stimulus exposure of the query (single
cell RNA-seq) expression data using the cytokine response models trained on the (bulk RNA-seq)

reference dataset.
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This approach has clear attraction and potential, but there are also a number of potential obstacles
to be mindful of in applying it. I will first detail these considerations and then discuss analytical

approaches to stimulus inference.

(i) overlap in reporter genes between studied and also ignored stimuli, complicating discrimi-

nation between stimuli.
(ii) (differing) sources of confounding variation in the query and reference data.

(i) modulation of the reporter cell pool’s size, by e.g. inducing differentiation into other cell

types, cell state transitions, reduced viability or cell death.

(i) Overlap in reporter genes between studied signals

A conceptually simple approach for stimulus inference from (single cell) transcriptome data, is to
identify so-called mono-responsive genes, which show convincing response to only one of the stud-
ied stimuli and minimal to no response to any other stimuli, and sum them for the query transcrip-
tomes. This gene set approach should work especially well if the studied cytokines show a high degree
of uniqueness, i.e., non-overlap, in terms of their reporter genes. However, the signal transduction
pathways that couple stimuli sensing receptors to gene regulatory mechanisms frequently typically
display a high degree of crosstalk, causing reporter genes to be shared between stimuli. This can limit
the applicability of this approach in two ways. First, the reporter genes may overlap with those of
other stimuli in the in vivo system of application, at risk of causing false positive inferences if this
is not properly accounted for in the experimental design. In Chapter J5, the unstimulated (control)
samples we collected in addition to the T cell-exposed (test) samples allowed us to establish the base-
line level of reporter gene expression signal in absence of the experimental manipulation. Second,
overlap between the stimuli of interest will limit our capability of differentiating between them. With
a growing number of cytokines or other stimuli, unique reporter genes for the cytokines of interest
will become increasingly rare. Supporting this notion, a high degree of overlap in transcriptional
response to various cytokines has been found using a large aggregate of publicly available transcrip-
tome datasets?. Similarly, related cytokines were shown to overlap in terms of activated genes in
single cell datal. For the murine system we studied in the last part of Chapter §, mono-responsive
genes were scarce to absent. Here, all genes that strongly respond to TGF-{3 turned out to negatively
respond to IFN-v. Clearly, analytical methodology to deal with this convolvement of factors is a first
requirement to studying large numbers of stimuli, especially when these stimuli display a large de-
gree of reporter overlap or when one aims to discriminate between different concentrations and/or
durations of the stimuli. In addition to the challenges reporter sharing presents, one clear advantage
is that absence of expression of such clusters allows for the inference of absence of not just one but

all overlapping stimuli.
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CHAPTER 6

(ii) Interference of the transcriptome by confounding sources of variation

A second complication is that the reporter genes, selected for their stimulus reporting behavior, can

be subject to modulation by confounding technical factors and/or other biological processes.

A first technical problem may stem from differences in measurement (platform) technology between
the (unlabelled) query data and the labelled reference data. Considering the large number of stimuli
experimentalists will want to screen to generate reference datasets, bulk RNA-seq is attractive be-
cause of its cost effectiveness. However, when using these bulk reference data in conjunction with
query single cell data, one will have to deal with the ensuing technical variation between the two
platforms. Bulk RNA-seq data typically features millions of reads and detects 10s of thousands of
genes per sample, typically showing a rather homogeneous distribution of read counts across genes.
In contrast, (droplet-based) single cell RNA-seq only detects a few thousand genes per single cell,
with count distributions that are strongly dominated by a relatively small set of genes. When not
properly accounted for, the many zeros in the single-cell data would result in low overall similarity

to the bulk RNA-seq data, limiting the utility of query-to-reference similarity metrics.

A second complication in relating single cell query to bulk reference data is the potential activity
of cellular processes that will be averaged in bulk reference data but clearly not so in the single cell
query data. An example of a such a cell-intrinsic process is the cell cycle, which affects thousands of
genes in a periodic fashion®. An obvious, experimental remedy for cell-intrinsic sources of variation
could, in theory, be to neutralize the interfering process with a drug. However, this risks affect-
ing the transcriptome as well, biasing downstream stimulus inference. A first analytical alternative
approach is to a priori regress out’ the confounding process. All popular single cell RNA-seq anal-
ysis software packages offer functionality for a simple, statistical correlation-based version of this.
However, as the stimuli of interest could also modulate the confounding process (e.g. IFN-vy inhibits
cell cycle progression), this could remove much of the informative value pertaining to the stimulus
of interest, throwing away the baby with the bath water. A more sensitive approach to offset cell-
intrinsic variation could be to apply a deconvolution step in which active processes are identified
in a more data-driven, unsupervised manner, allowing for more granular removal of confounding
processes. Recent mathematical advances by Karin et al. (2023) have allowed upfront deconvolu-
tion of biological processes in (single cell) expression data through spectral analysis of the associated
covariance matrix*2, Rather than relying on pre-identified marker genes of the confounding pro-
cess to deconvolve the single cell transcriptomes, the authors only assume a 'topology’ of variation in
gene expression caused by the confounding process®. The topology can roughly be understood as the
general shape of the path that cells travel in 'state space’ as they progress through the confounding
process. Mapping the cells to the topology allows for post-hoc identification of genes that align with
the topology and filtering of the transcriptome for gene expression that is aligned with the topol-
ogy. For the specific case of the cell cycle, a circular topology was chosen®. Future work could use
‘gold standard’ single cell datasets, that contain cells exposed to a well-controlled stimulus in vitro

as reference data, to test whether more complex topologies than the circular one can clean the data
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of additional confounding processes and improve accuracy on the downstream stimulus inference
task.

Third, stimuli or confounding signals that are restricted to either the reference or to the query set-
tings might (partially) overlap in terms of reporter genes with the stimuli of interest. Probably most
prone to this are in vivo settings (e.g. the query single cell data in our case), wherein it is likely that
many biological processes and cell types are active that are absent from the well-controlled in vitro
reference conditions of a purified cell type. The possibility of such confounding warrants the design
of experiments to include unexposed, control, conditions to any 'test’ condition. In Chapter f§ we
included in vivo controls without T cells to the in vivo test conditions (i.e., with T cells) for this rea-
son. As we'll see below, an analytical approach to remedy this would be a form of data integration

that selectively removes covariation that is unique to any of the to be integrated datasets.

For the sake of completeness, I lastly also mention that confounding variation may stem from "mun-
dane” factors like varying batches of chemicals, room temperatures, and different people executing
the work.

(iii) Modulation of the reporter cell pool’s size

Cytokines and other stimuli of interest may cause (reporter) cells to differentiate into other cell types
or to attain differing cell states. They may also directly affect the number of the reporter cells by in-
or decreasing proliferation and even have cytotoxic effects. Unless the reporter cell pool is defined in
awide (i.e., unspecific) enough fashion (and e.g. cell state transitions cannot cause reporter cells to go
‘out of scope’), such modulation would bias direct and unadjusted stimulus abundance estimates. The
solution will be to explicitly model the effect of such stimuli on the cell pool, allowing for post-hoc

adjustment of the direct abundance estimates.

A first example of a stimulus that can modulate the reporter cell pool size is the cytokine IL-2, which
specifically induces T cells (more specifically: cells with the IL-2 receptor) to proliferate?. One can
then immediately see that a direct read-out of the number T cells that appeared to have experienced
IL-2 cells would not directly reflect the number that have actually done so - the reporter T cells may
have simply inherited IL-2-reporting transcripts from their ancestors. Stimuli may also decrease
the cell pool size. Among the cytokines we studied in Chapter 5, we found IFN-v to cause reduced
proliferation and be cytotoxic to OVCARS5 cells in particular. Dying cells lose their cell membrane
integrity and thereby lose their compatibility with FACS-based protocols. As such, if FACS-based
enrichment of reporter cells is part of the experimental setup and cytotoxicity remains unaccounted

for, the number of cells exposed to cytotoxic stimuli will appear lower than it actually is.

However, increased proliferation or even cytotoxicity (if not complete), does not have to be a show-
stopping problem. To attain unbiased estimates of the number of stimulus-experienced cells, one

can correct for the expected change in cell numbers due to a given stimulus. For this, one could
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use a parametric model of cell growth or death (a so-called viability model), as frequently employed
in drug sensitivity screens?. If the analyst is additionally willing to assume that the stimulus level
remained constant up until the moment of measurement, correcting for cell pool size modulation
effects is trivial. First, the viability model would describe viability as a function of stimulus con-
centration and/or duration with a monotonic, smooth function. Here, viability values larger than
1 would indicate relative cell growth, whereas values smaller than 1 would indicate decline. Next,
the number of cells that have experienced the stimulus can be recovered from the direct (biased) es-
timates. For this, one would multiply the direct estimates by the inverse of the expected change in
viability under the stimulus. This concept can be extended to combinations of stimuli as well, given
sufficient laboratory resources to combinatorially screen their effects on viability. Alternatively, if
one is additionally willing to assume that the cytotoxic effects are not synergistic but rather additive,
the cytotoxicity of combinations of stimuli can be modelled by multiplying those of the individual

stimulli.

There may be instances in which reference profiles of multiple concentrations and/or exposure du-
rations per stimulus are available and the analyst aims to discriminate and interpolate between these
levels. Viability-correction can also be done for such "continuous’ rather than 'discrete’ stimulus ex-
posure. Let s be a vector with entries denoting the concentrations and exposure durations, along
with other relevant indicators, of the various stimuli under study. Analogous to the ‘discrete’ case
described above, the computation of summary statistics (e.g., the fraction of cells that have experi-
enced stimulus s for at least 12 hours) would be done in a weighted rather than unweighted fashion.
Here, we would use an integral of the form [, ¢(s)/v(s)ds, wherein D is the domain of interest
(e.g., the set of all s for which IFN-y-exposure > 12), ¢(s) is the fraction of cells directly inferred to
have experienced stimulus (or the combination of stimuli) s and v(s) is the estimated viability with
this stimulus. A caveat here is that estimation accuracy will decrease with increased cytotoxicity (or
extreme degrees of cell growth), and by extension is not feasible for (combinations of) stimuli that

fully wipe out the reporter cells.

Regression based stimulus inference

Mindful of the obstacles to transcriptome-based stimulus inference we just considered, how do we
choose a stimulus inference methodology? In Chapter 5, we actually applied two different ones.
The first ‘geneset’ approach is methodologically simple but sufficed for the human OVCAR5 model,
in which mono-reporters were readily available and the experimental design helped us to further
disambiguate cytokines. However, for the murine NMM cell line we studied in the same chapter,
mono-reporters were virtually absent, necessitating a more sensitive approach. Such an approach
should maximally leverage the differential magnitudes with which reporter genes are modulated
between stimuli, or different concentrations and durations of one stimulus. Regression analysis, in
which gene expression levels are quantitatively compared between query and reference transcrip-

tomes, could be the ideal foundation for this. In theory, it can leverage expressional nuance to dis-



criminate between related stimuli, or even between different exposure durations/concentrations of
the same stimulus. Here, a query transcriptome (e.g., a single cell or aggregate of multiple similar sin-
gle cells) is modelled as a weighted sum of expression profiles from the reference dataset. The weights
assigned to each of the reference profiles are then interpreted as proportional to the similarities of

these reference profiles to the query transcriptome.

In using regression analysis to relate query (single cell) trancriptomes to (bulk) references, the re-
sulting regression coeflicients are sensitive to the way the input data are batch-normalized and inte-
grated. In Chapter § we employed pseudo-bulkification (i.e., aggregating transcriptionally similar
cells to 'meta’-cells, Figure .2.2) to first make the single cell data more similar to the bulk reference
data. We next employed a computational trick to work around the requirement of (near-)perfect
comparability. Specifically, we noticed that the presence of a stimulus can not just be shown by high
regression coefficients to the associated reference sample, but can also be inferred from obtaining
an increased reconstruction error when omitting the corresponding reference sample from the anal-
ysis. Comparing the ’full model’ error, obtained using the full set of reference samples, by a "partial’
one, obtained using only a subset of the reference profiles (i.e., by assessing the relative error of these
two models), allowed us to assess the importance of the left out reference samples and the potentially
unique gene expression patterns they contained that were not recoverable from any of the remaining
samples. As this relative reconstruction error can be computed for individual query transcriptomes
(relating to single cells or single cell neighborhoods), the relevance of individual or groups of refer-
ence samples to individual query transcriptomes could be quantified. In the absolute sense, the re-
construction error using the full reference set was quite variable between neighborhoods, probably
due to a host of possible reasons (as discussed above). However, assessing the relative reconstruc-
tion error inherently corrects for this variability. Such a reconstruction error is more frequently
used in regression analysis, typically to assess feature importance. However, In the context of (bulk)

RNA-seq deconvolution and stimulus inference, this was to the best of my knowledge a novelty.

With all data being derived of one particular cell line and acquired in one single (our) laboratory, the
homogeneous nature of the data in Chapter § permitted us to omit stringent batch effect correction.
However, using the relative reconstruction error does not fully obviate the need for sensitive cor-
rection of confounding variation. A computational methodology that can appropriately deal with
data from heterogeneous sources benefits from being able to draw upon a much broader set of data
sets and sources. With this in place, one could compile a compendium of cytokine stimulated tran-
scriptomes from a range of studies?, maximally leveraging past efforts of the scientific community,
and arrive at a more diverse and powerful predictor of cytokine exposure. To leverage such het-
erogeneous data, one needs to deal with confounding variation "upfront’ and preprocess the data in
a manner that filters out (biological or technical) confounding variation. How do we arrive at this

point?

A first obstacle is the difference in count distributions between bulk and single cell RNA-seq data

(see above), that precludes direct use of preprocessing solutions developed specifically for single cell
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RINA-seq data. This is probably why I found that existing single cell RNA-seq integration method-
ologies, which essentially rely on library size normalization and Euclidean distance-based similar-
ity metrics to relate transcriptomes, did not perform well when applied to the OVCAR5 data from
Chapter j (data not shown). However, such algorithms did achieve sensible integrations for their
intended domain of application, i.e., data sets that were exclusively of single cell nature. If one has
access to both bulk and single cell RNA-seq data of the same cell lines and stimuli - like we did -
then one viable approach may be to somehow learn how to simulate single cell transcriptomes from
bulk RNA-seq samples, such that these simulated cells can then be related to the query single cells.
Specifically, one could use a modification of the variational auto-encoder (VAE) for this, which would
disentangle the various active transcriptional programs from each other. The VAE would consist of
two (deep) neural networks: one encoder network which reduces the dimensionality of bulk ref-
erence gene expression to a much smaller number of latent factors, and a second decoder network
which reconstructs single cell expression profiles from the latent factors. Each latent factor should
represent a (biological) source of variation and captures combinations of correlated non-linear pat-
terns in the data, akin to the principal components in a (linear) principal component analysis. Input
to the probabilistic VAE encoder would be the bulk expression data, along with stimulus exposure
and batch-related metadata, and the output of the VAE decoder would be the associated single cell
transcriptomes. To ensure biological relevance of the identified latent factors, sparsity constraints
could be imposed on the VAE’s component models, limiting the number of active latent factors per
sample. Another approach towards this goal would be to pre-train the VAE on single cell data exclu-
sively. This is less ambitious as it doesn’t require the encoder network to additionally learn which
processes tend to co-occur in single cells, like it would have to when its input is bulk data. Then,
especially the encoder network could be adapted to the task of using bulk data as its source (i.e., an
application of transfer learning), or an additional encoder network could be placed in front of the
encoder network. Having the VAE in place, one could next simulate tons of single cells for each of the
reference samples, including the ones for which no matching ground truth single cells are available.
To then finally do stimulus inference for the query in vivo data, the frequently used and robust mu-
tual nearest neighbor algorithm® could be used to integrate them with the labelled, simulated cells

in an unsupervised manner.

Another approach to leveraging data from different labs or lab technologies is to directly relate query
and reference transcriptomes in a manner that is robust to distributional differences and confound-
ing variation. In collaboration with Soufiane Mourragui, I developed an approach to integrate data
such that it is insensitive to differences in count distributions and that resulted in a good balance
between inferential sensitivity and robustness (Data Integratlon inSensitive To distributional iN-
balanCes, DISTINCt, Figure p.2. It involves relating bulk RNA-seq and single cell RNA-seq data
in a higher-order feature space induced by the Mallow’s kernel? combined with Mourragui’s domain
adaptation algorithm TRANSACTY. On our own in vitro data, it remained completely insensitive to
the distributional differences between the bulk and single cell RNA-seq data, while nearly perfectly

inferring IFN-v stimulus exposure duration (Figure f).
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Figure 6.2: The Mallow’s kernel can be seen as a mathematical function to compute sample similarities,
using gene ordering (i.e., all pairwise comparisons between genes) instead of absolute expression levels to relate
sample to each other. This makes it robust against the distributional differences between bulk and single cell
sequencing samples. From the pairwise sample similarities within any of the individual datasets, one can de-
rive a latent, lower dimensional representation using kernel principal component analysis, a generalization of
’standard’ PCA. Oversimplifying, the non-linear principal components from the kernel PCA (with the Mallow’s
kernel) group comparisons of genes that tend to co-occur. TRANSACT builds on kernel PCA by matching sets
of non-linear principal components of the two datasets with each other and interpolating between them to com-
pute so-called consensus features (C). The consensus features capture sources of variation (e.g., gene expression
programs) within each dataset that are shared between the two datasets, discarding variation that is unique to
any one of the two individual datasets. This makes it robust to, among other confounders, cell-intrinsic sources
of covariation (e.g. the cell cycle). It finishes by projecting the reference and query datasets onto the consensus
space, allowing direct comparison between the reference and query samples. Proximity in the consensus space
can be interpreted as an indication of similar cytokine exposure (D). To further increase inferential strength and
speed up computation, one can optionally also a priori aggregate single, transcriptionally similar cells into local
averages and thereby denoise RNA expression values, using cell graph based aggregation™ (B).
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Figure 6.3: Seamless integration of reference bulk and in vitro single cell query data sets with DISTINCt.
All panels show a UMAP-transformation of samples projected onto the consensus features resulting from
TRANSACT-integration in combination with the Mallow’s kernel. The top 2 panels show the bulk RNA-seq
reference dataset, once colored by IFN-y-concentration (top row, left) and once by TNF-a-concentration (top
row, right). The lines connect samples that were stimulated with the same stimuli and concentrations. Since
we controlled the stimulus exposure of these cells experimentally in vitro, we can use them for benchmarking
purposes, along with unstimulated controls. The bottom 4 panels show the in vitro IFN-vy-titration single cell
query dataset, with one figure panel per exposure duration. Each circle (pie-chart) in these panels represents
one ‘neighborhood’ of cells, i.e., a variably sized group of transcriptionally similar cells, that is color coded by
the exposure concentration of IFN-vy. This single cell dataset shown here consists of all 16 combinations of 4
concentration of IFN-v (0, 1, 10 and 100 ng/ml) and 4 exposure durations (2, 6, 12 and 24h). The reference
reference dataset (top panels) covers these same stimuli but additionally also contains 3 TNF-o concentrations,
as well as the combination of IFN-y and TNF-o. The integrated data permit clear inference of IFN-y exposure
time, but not concentration, for the bulk reference and single cell query data. This can be seen by the clear sep-
aration of exposure durations for both the reference and query data. For instance, the first panel (middle row,
left) shows the coordinates of cells that were stimulated for 2 hours. Here, unstimulated cells (orange) gravitate
towards the top left in UMAP space, where the unstimulated reference samples are also positioned. In contrast,
all IFN-y-stimulated cells are located on the top right, exactly where the bulk reference data of this duration
are also positioned. For the other exposure durations, the single cell query and bulk reference data are also
well aligned. This shows that the Mallow’s kernel represents the input data in an informative manner, capable
of discerning different exposure durations of IFN-vy to each other, whereas different concentrations of IFN-y
at any of the evaluated exposure durations are too similar in order to be reliably distinguished. However, this
latter unseparability was already present in the untransformed, original data (data not shown). This indicates
that gene expression just cannot discriminate between these IFN-y concentrations. Also, notice how the TNF-
a-stimulated cells in the reference are positioned very close to the unstimulated samples. Due to the absence of
TNF-o-stimulation in the single-cell query data, TRANSACT mostly discards TNF-o-related variation in the
bulk RNA-seq data ('variational collapse’).

Currently still open is the question on how to deal with "variational collapse’ in DISTINCt. DIS-
TINCt finds consensus features using shared variability, and variability that is unique to any one of
the datasets will hence - by design - be discarded. This has the consequence that samples that have
been stimulated in a manner that uniquely occurs in just one of the two datasets to be integrated will
appear to not or barely have sensed this stimulus in the integrated data representation. Variational
collapse is observable in Figure [, wherein the reference samples stimulated with both IFN-y and
TNF-a appear eerily close to the reference samples that were exposed to IFN-y alone. This is due
to the absence of TNF-a-stimulated samples in the query dataset, such that all gene comparisons
that are informative in that regard are discarded in the consensus space. One way to (automati-
cally) diagnose this problem would be to assess how accurately the consensus space representation
resembles the original input representation (i.e., the reconstruction error), but the mathematics to
support this operation have not been developed yet. To get a proxy for the reconstruction error, the
relative distance between samples in the original and consensus representations can be considered.
For instance, to quantify the reconstructability of sample j, one could consider its distance (i.e., the
[2-norm) to an unstimulated "anchor’ sample in the consensus representation, and divide that by
the same sample ratio in the original/untransformed representation. Samples for which this recon-

structability value lies near 2 could be deemed as equally well represented in both the original and the
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integrated representations. In contrast, values closer to 0 would indicate the imprint of a stimulus
or process that was not represented in the consensus space, presumably because it wasn't present in
the other dataset. To offset such variational collapse, the last query to reference mapping step of the
algorithm would weight reference samples based on their reconstruction error, prioritizing samples
with high reconstructability, or fully remove (reference) samples for which the reconstruction does

not meet some predefined criterion (Figure 6.2.D).

Additional inferential value from alternative splicing information

Isoform specific mRNA quantification, along with large numbers of samples as are typically screened
in single cell RNA-seq experiments, allow for estimation of so called RNA velocity’d. RNA velocity
is a time derivative of gene expression which can be used to order cells along temporal and cell
differential axes. It might also offer a rich layer of information regarding the timing of cytokine
exposure, complementing that of the 'snapshot’ RNA abundance-derived estimates that are discussed

above and in Chapter f.

In exploratory analyses with our bulk RNA-seq data, which was not acquired using unique molecular
identifiers (UMISs) as is typically done in single cell RNA-seq, we obtained noisy estimates of RNA
velocity that did not offer informative value in addition to the readily available splicing-agnostic gene
expression estimates. However, in the single cell RNA-seq data we acquired using the 10x protocol
and with each identified molecule tagged with a UMI, RNA velocity should be much more robustly
inferrable. Even though the per sample sequencing depth in single cell RNA-seq is much lower, the
large number of samples in conjunction with population based estimates' in these datasets offer an

opportunity towards increasing the signal-to-noise ratio.

To then properly incorporate RNA velocity in the frameworks that are discussed above, one could
set up areference compendium with single cell RNA-seq. Compiling a reference dataset of single cell
data would be more costly but would also give more insight in terms of cell-to-cell response hetero-
geneity and extrinsic sources of variation. An exciting newer technology to use is VASA-seq, which
unlike more traditional single cell-seq protocols is not biased towards the 3’ ends of RNA molecules
and allows for more accurate RNA velocity estimates™. VASA-seq is also applicable to bulk RNA-seq
sequencing (personal communication with Soufiane Mourragui). I expect RNA velocity features to
especially become useful when deconvoluting transcriptomes affected by many cytokines of over-
lapping transcriptional signatures. On a related note, multimodal, rather than unimodal, data, for
instance additionally employing CITE-Seq' with antibodies directed against cell surface proteins

relevant to the stimulus in question, could also allow for further increases in inferential accuracy.
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Outlook of transcriptome-based cytokine inference

The work my colleagues and I have presented in Chapter 5 forms a useful step in our understanding
of cytokine mediated communication between T cells and the tumor microenvironment. I foresee
that in the decades to come, the field will continue to generate research tools to study signaling with
increasingly high throughput. This increasing throughput is likely to be valuable, as the complex
underpinnings of the tumor microenvironment and other biological systems can only be fully elu-
cidated by assessing these dynamic entities in parallel. The increasingly widespread use of spatial
single RNA-seq, and its ability to study cells in their physiological context'®, will unlock another
crucial layer of information with regard to cytokine dissemination and amplification. In this, de-
convolution of the effects of the many cytokines that may be at play will be especially important. As
transcriptome based inference has high discriminatory potential and does not require upfront mod-
ification of the reporter cell, it’s bound to continue to be a potent avenue towards studying stimulus

dissemination and cellular crosstalk in biological systems.
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