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Part II
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microenvironment





CHAPTER 4

LACK OF DETECTABLE NEOANTIGEN DEPLETION IN TREATMENT-NAÏVE
CANCERS

Maarten Slagter, Lorenzo F. Fanchi, Marit M. van Buuren, Arno Velds, Gergana Bounova, Lodewyk
F.A. Wessels, and Ton N. Schumacher

bioRxiv: 10.1101/2023.06.21.544805

Abstract

While neoantigen depletion, a form of immunoediting due to Darwinian pressure exerted by the T
cell based immune system during tumor evolution, has been clearly described in murine models, its
prevalence in treatment-naive, developing human tumors remains controversial. We developed two
novel methodologies to test for depletion of predicted neoantigens in patient cohorts, which both
compare patients in terms of their expected number of neoantigens per mutational event. Appli-
cation of these strategies to TCGA patient cohorts showed that neither basic nor more extensive
versions of the methodologies, controlling for confounding factors such as genomic loss of the HLA
locus, provided statistically significant evidence for neoantigen depletion. In the subset of anal-
yses that did show a trend towards neoantigen depletion, statistical significance was not reached
and depletion was not consistently observed across HLA alleles. Our results challenge the notion
that neoantigen depletion is detectable in cohorts of unmatched patient samples using HLA binding
prediction-based methodology.
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Introduction

Immune evasion, the avoidance of immune detection and eradication, is a hallmark of cancer1,2 and
can occur through various mechanisms, including deletion of components of the antigen presen-
tation machinery, insensitivity to pro-apoptotic or growth-arresting molecules, such as granzymes
and IFN-γ3, or expression of T-cell checkpoint ligands such as PD-L1. In addition, the Darwinian
selective pressure exerted byT cells has been proposed to lead to outgrowth of tumor cells that lackT
cell-recognized (neo-)antigens. In line with this, loss of a neoantigen that was recognized by T cells
has been observed in a murine sarcoma model4. In addition, loss and reduced expression of mu-
tant genes encoding T-cell recognized neoantigens has been observed in two patient case studies5,
and the reduction in tumor mutational burden observed in clinical responders to PD-1 blockade has
been proposed to lower the number of T cell-recognized neoantigens6. While collectively these data
form relatively strong evidence that neoantigens can be lost upon (therapeutically enhanced) T-cell
pressure, it is less clear whether such genomic neoantigen depletion of neoantigens widely occurs in
treatment-naïve tumors, and – importantly - would be detectable at the genomic level. An argument
against the idea that neoantigen depletion could be readily detected at the genomic level is formed
by the observation that only a minor fraction of predicted neoantigens appears to naturally induce
T-cell responses in patients7-10. Importantly, only this small subset of predicted neoantigens can be
expected to be under Darwinian pressure, and this will affect the sensitivity of any methodology
that examines the occurrence of predicted neoantigens regardless of the fact whether or not T cell
reactivity was present against these predicted antigens.

Several prior studies have assessed neoantigen depletion in large sets of cancer genomes with un-
matched samples (i.e., with a single tumor sample per patient) provided by the Cancer Genome At-
las (TCGA). A first of these studies provided evidence for the selective loss of mutations predicted
to encode MHC-class I neoantigens for colorectal and clear cell kidney cancer11, but at the same
time observed a counter-intuitive neoantigen enrichment in EBV- stomach adenocarcinoma. Like-
wise, application of a model of peptide immunogenicity found recurrent mutations to appear more
readily in TCGA patients that are less capable of presenting the resulting new peptide sequences
by HLA12. In line with these results, an earlier TCGA pan-cancer analysis found recurrent onco-
genic mutations to be relatively poorly HLA-presentable by the patients that carried them13, a result
that has however since been shown to be fully driven by confounding factors14,15. The same group
also reported elevated neoantigen levels in tumors that harbor mutations in the antigen presenta-
tion pathway, but this result was not corrected for, potentially confounding, background mutation
rates16. Using a mathematical model of tumor evolution, Lakatos et al. predicted the variant allele
frequency (VAF)-spectrum of a tumor’s somatic mutations under various degrees of immune pres-
sure and found TCGA tumors to appear similar to simulations under immune pressure17. In con-
trast to the aforementioned studies, a comparison of the ratio of non-synonymous to synonymous
mutation count (‘dN/dS’) between areas of the human genome that do or do not encode predicted
HLA presented peptides found no evidence of negative selection when correcting for sequence con-
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tent between these two classes of genomic regions18. Notably, this sequence content was shown to
affect the ratio with which mutagenic processes yield either non-synonymous or synonymous mu-
tations and so confounded dN/dS estimates18. A more recent study using dN/dS methodology did
report depletion, especially of clonal mutations, in highly immune infiltrated tumor types and in pa-
tients that did not show other means of immune evasion, but did however not correct for sequence
content19. This latter study also showed substantial degrees of nonsensical neoantigen enrichment,
especially in lowly immune infiltrated tumor types.

Given the conflicting results in these prior analyses, there is a need for novel methodology to assess
neoantigen depletion in treatment-naïve tumors. Here, we present two new, interrelated, methods
for the detection of average neoantigen depletion in patient cohorts. Using these methods, we do
not observe substantial evidence for neoantigen depletion in TCGA tumors, despite incorporation
of many potential confounding co-variates into our modeling to increase sensitivity. We emphasize
that the lack of signal that we describe does not rule out the occurrence of neoantigen depletion
for a minority of studied patients and/or a minority of (T cell-recognized) neoantigens. However,
our observations do challenge the notion that neoantigen depletion signals based on HLA affinity
predictions are detectable in large-scale unmatched cancer sequencing data sets.

Results

Design and evaluation of an HLA-I antigen prediction pipeline

To study Darwinian selection against neoantigenic non-synonymous mutations, we first developed
an (neo-)epitope prediction pipeline and optimized it with respect to prediction precision and sensi-
tivity. The pipeline annotates candidate nonameric peptides with the output of four tools that jointly
model the major requirements for (neo-)antigen presentation: RNA expression of the mutant DNA
sequence, predicted proteasomal processing, predicted HLA-binding, and self-similarity of encoded
peptides (Figure S4.1A). To tune the parameterization of this pipeline, we first identified a set of pep-
tides within the 3,094 nonameric peptides present in the HIV genome for which T-cell recognition
in the context of the HLA-A*02:01 allele, the most common HLA class I allele in US and European
populations, had been demonstrated unambiguously. Specifically, by querying the HIV Molecular
Immunology Database20, we identified peptides that met the following criteria: (i) HLA subtyping
information had demonstrated restriction by the HLA-A*02:01 subtype; (ii) T-cell responses had
been observed in at least 3 patients; and (iii) such T-cell responses had been observed in material
from HIV-infected patients, rather than induced in vitro or in animal models. This resulted in a
set of 32 epitopes in the HIV genome for which presentation by HLA-A*02:01 and recognition by
the human T-cell repertoire had unambiguously been established (Table S2). Subsequently, we used
this epitope set to compare the sensitivity and precision of epitope prediction strategies that either
solely relied on predicted HLA binding affinity21, or that also integrated filters that predict protea-
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somal processing22 and similarity of a candidate epitope to self-peptides predicted from the human
proteome23, methods). As compared to epitope predictions solely based on predicted HLA affinity,
we found both incorporation of proteasomal processing and exclusion of peptides with similarity
to human sequences to improve prediction precision (Figure S4.1B), in line with other work24. Se-
lection of an affinity threshold of 255 nM yielded a good balance between precision and sensitivity
(Figure S4.1B-D) of this prediction pipeline. We note that experimental data on T-cell recognized
HLA-A*02:01 peptides in the HIV genome may still be incomplete, rendering these performance
estimates lower bounds on true prediction performance.

To complement the HIV-pipeline validation, we did a similar validation on peptides derived from
the IEDB for 10 viruses. The coverage of T-cell recognized peptides in the IEDB database was likely
substantially lower, as in this database we retrieved only 9 out of the 33 T-cell targeted HIV-peptides
that were identified in the Los Alamos database, and this probably underlies the observation that
much stricter pMHC affinity-filtering yielded optimal precision for the IEDB derived epitope set
(Figure S4.1E,F).

The two patient-groupmethodology

To next determine whether neoantigen depletion detectably shapes the mutational landscape of hu-
man cancer during tumorigenesis, wefirst compared thenumber of predictedHLA-A*02:01neoanti-
gens per mutational event (the neoantigen yield rate, r) for tumors of HLA-A*02:01positive patients
(test set) and tumors from patients that lack the HLA-A*02:01 allele and also other HLA class I alle-
les with similar peptide binding profiles (reference set, see below for the filtering of HLA alleles with
similar peptide binding profiles). As the latter patient group cannot present these predicted HLA-
A*02:01restricted neoantigens, this group provides a reference that can be used to calculate to what
extent T-cell pressure has shaped the repertoire of neoantigens as predicted on tumor mutation data
(Figure 4.1A). In addition, by focusing onneoantigen predictions for a single class IHLA-allele, rather
than the diverse set of alleles carried by any individual patient, an equal and, in case of HLA-A*02:01
high prediction accuracy is guaranteed across patients.

To be able to assign patients to either the test or reference groups, we first assessed the similarity
in peptide binding properties between HLA-A*02:01 and all other HLA class I alleles encountered
within our patient set, by computing for each observed HLA-allele the fraction of the 62,833 pre-
dicted HLA-A*02:01 neoantigens observed in this cohort that it was also predicted to present (cor-
roboration index, Figure S4.1A). HLA class I alleles that were predicted to present more than 20% of
the set of HLA-A*02:01peptides were classified as ‘HLA-A*02:01like’ (37 of 224 HLA class I alleles).
Subsequently, patient samples expressing at least one such allele were removed from the analysis,
resulting in an HLA-A*02:01positive test group of 2,345 patients and a reference group of 2,628 pa-
tients that lackedHLA-A*02:01 and also anyHLA class I allelewith substantially overlapping binding
properties. Residual binding repertoire overlap between the groups was small, with reference group
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patients being able to present 16.7% (median) of their predictedHLA*02:01 presented peptides using
any of the up to 6 HLA class I alleles that they expressed (Figure 4.11B), i.e., 6-fold lower than in the
HLA-A*02:01positive test group.

To test for preferential loss of mutations that yield predicted HLA-A*02:01presented neoantigens,
we compared r between test and reference patient groups per tumor type. This analysis revealed
a significantly lower r in the test set for ovarian carcinoma, while a higher r in the test set, i.e., a
presumed neoantigen enrichment, was observed for glioblastoma. However, neither of these re-
sults remained significant after multiple testing correction (Figure 4.1C, left), indicating a lack of
detectable neoantigen depletion above the noise levels in the data. Absence of significant depletion
was also observed when aggregating all mutations for each tumor type into one HLA-A*02:01
textsuperscript+ and one HLA-A*02:01negative ‘meta-patient’, an approach that is expected to in-
crease analysis robustness in case of low mutation numbers (Figure 4.1C, right).
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A Schematic overview of analysis strategy. Mutational events that yield HLA-A*02:01-restricted neoantigens
can undergo negative selective pressure in HLA-A*02:01-positive patients (the test group), but not in patients
that lack this allele as well as other HLA class I alleles with similar peptide binding profiles (“HLA-A*02:01-like
negative reference patients”). As a consequence, genomic loss of antigenic HLA-A*02:01 mutations would be
reflected in a lower HLA-A*02:01 neoantigen yield rate in HLA-A*02:01-positive patients as compared toHLA-
A*02:01-like negative patients (in the indicated example, 3 out of 7 vs. 1 out of 4 non-synonymous mutations
yield predicted HLA-A*02:01 neoantigens).
BDistribution of the fraction ofHLA-A*02:01 binding peptides presented by any of a patient’s HLA class I A and
B alleles, according to HLA-A*02:01-allele and HLA-A*02:01-like allele status. Patients in the HLA-A*02:01-
like negative reference group present 16.7% (median) of predicted HLA-A*02:01 binding peptides by any of
their HLA class I A and B alleles.
C Neoantigen yield rates of SNVs in HLA-A*02:01-positive and HLA-A*02:01-like negative tumor samples.
Left: distributions of patient specific neoantigen yield rates. Right: ‘meta-patient’ yield rates, in which muta-
tions, and hence neoantigens, are grouped per tumor type. Unadjusted p-values are shown for tumor types
where they are smaller than or equal to 0.05. None of the comparisons remained significant after correcting
for multiple testing.
D As in C., but excluding both subclonal mutations and mutations for which loss may potentially confer a cell
intrinsic fitness cost (driver mutations and mutations in essential genes that display LOH). Unadjusted p-values
are shown for tumor types where they are smaller than or equal to 0.05. None of these remained significant
after correcting for multiple testing.
E Power analysis of neoantigen depletion detection strategy. The effect of prediction precision on the fractional
loss of predicted neoantigenicmutations required to achieve statistical significance is depicted on a tumor type-
specific basis. Dashed vertical line depicts precision of the here employed epitope prediction pipeline, indicating
that genomic editing of a minimum of 9% and 18% of true HLA-A*02:01 neoantigens would have been detected
in melanoma and colon MSIH, respectively, assuming no multiple testing correction of p-values.

A potential limitation of this analysis strategy could be formed by the presentation of a fraction of
HLA-A*02:01presentable peptides by the aggregate of all the other HLA-alleles in the reference set
patients, such that a degree of ‘background’ immune pressure can be expected to occur against HLA-
A*02:01peptides. To test robustness with respect to the stringency used to create the non-HLA*A-
02:01-like reference patient set, we performed meta-patient tests using an increasingly strict HLA-
similarity threshold (i.e., allowing a progressively lower fraction of HLA-A*02:01presented peptides
to be presented by the non-HLA*A-02:01-like reference patient set). Using this approach, no system-
atic increase in statistical significance was observed (Figure S4.1B), suggesting that the (low-level)
overlap in peptide HLA-binding profiles was unlikely to confound this analysis.

As the probability of epitope presentation depends on the RNA expression level of the associated
gene25-28, an increase in RNA expression thresholds for neoantigen predictions may be expected to
increase precision (i.e., increase the fraction of truly presented peptides amongst predicted peptides),
and could thereby potentially reveal a weak neoantigen depletion signal. Similarly, loss of neoanti-
gens could be postulated to be more apparent among high affinity HLA ligands that are more likely
to yield strong T cell targets. To test both possibilities, we titrated both the RNA expression andHLA
affinity thresholds of the neoantigen prediction pipeline and re-evaluated HLA-A*02:01 r in the test
and reference patient sets. Small differences between these two sets were observed when perform-
ing pipeline stringency titrations and we did observe significantly lowered r for multiple analyses
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(i.e., rectum, breast LumB, melanoma, head and neck HPV-, Figure S4.3C). Importantly however,
a similar number of tumor types with a heightened r was once again observed (Figure S4.3C). We
conclude that absence of detectable neoantigen depletion is robust to different configurations of the
neoantigen prediction pipeline.

To screen for other factors that could have obscured a weak neoantigen depletion signal, we per-
formed additional analyses in which we excluded mutations for which negative selection could have
been counter-acted by positive selection. Specifically, T cell-mediated depletion of oncogenic muta-
tions in driver genes may be expected to be counteracted by the positive effect of these mutations on
cellular fitness29. Similarly, essential genes that encode neoantigens and of which the wild type copy
has been lost (so called essential passengers29) cannot be lost without loss of cell viability29,30. Fi-
nally, we performed analyses that excluded subclonal mutations, as these could be postulated to have
emerged too recently in order for the immune system to have affected their presence. When exclud-
ing the aforementioned mutation classes, we again discerned no statistically significant neoantigen
depletion, neither when analyzing patient-specific nor meta-patient neoantigen yield rates (Figure
4.1D, left and right, respectively, fewer tumor types due to lower availability of required data for
clonality calling, Methods).

In prior work, the HLA class I-restricted presentation of neoantigens has been reported to shape
the repertoire of oncogenic mutations, with individual driver mutations being reported to occur
more frequently in patients with HLA repertoires that are less likely to present the resulting mutant
peptides13. We attempted to validate this observation using our epitope prediction and analysis strat-
egy. Restricting our analysis to the recurrent driver single nucleotide variants (SNVs)13, we also did
not observe significant neoantigen depletion (Figure S4.3D). Finally, escape from immune pressure
can occur through a variety of genetic alterations, includingmutations in components of the antigen
presentation machinery, and the loss of T-cell-recognized neoantigens can reasonably be expected
to no longer provide a fitness advantage in tumors that harbor such alterations. To restrict our anal-
ysis to tumor samples for which no evidence of other known escape mechanisms was present, we
excluded all tumors with one or more non-silent mutations in any of 515 genes implicated in resis-
tance to T-cell killing through CRISPRi screening31. Application of this tumor sample filtering to all
of the analyses reported above resulted in larger differences for at least one tumor type per analysis.
However, this did not result in an increased number of tumor types for which significant neoantigen
depletion was observed after correcting for multiple testing (Figure S4.3D). Our recurrent finding
of absence of significant neoantigen depletion in treatment-naïve tumors contrasts with an earlier
assessment of neoantigen depletion on TCGA data11. Adapting this prior analysis strategy to our
HLA-A*02:01centered neoantigen predictions (Methods) again did not reveal any signs of genomic
epitope loss (Figure S4.3E), even when restricting this analysis to clonal mutations (Figure S4.3F), or
when exhaustively testing other possible variants of this analysis (Figure S4.3D).

Even when using optimized epitope prediction pipelines, neoantigen predictions still contain a size-
able fraction of false positive peptides. As only true positive peptides (i.e., predicted peptides that are
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true HLA ligands) can potentially be seen by T cells, and hence can be subject to Darwinian selec-
tion, prediction precision defines the lower limit for the degree of neoantigen depletion that would
be detectable. We determined what degree of neoantigen depletion would have been detectable us-
ing the two-group methodology, by computing the required effect size (i.e., fractional loss of true
epitopes in HLA-A*02:01positive tumors) to reach statistical significance given the observed noise
in the data. At our estimated neoantigen prediction precision of 0.45 (Figure S4.1B,C), unadjusted p-
values of 0.05 would have been reached upon loss of 8-18% of truly presented epitopes in melanoma,
lung and colon cancers (Figure 4.1E), indicating that the true neoantigen depletion signal must have
been smaller than that for it to have not been detected.
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A Overlap in predicted peptide presentabillity across all detected HLA class I alleles (A, B and C) across the
TCGA patient samples included in the analyses. Matrix reflects the fraction of peptides presented by alleles in
the rows (i.e., NetMHCpan 3.0 rank percentile <= 1.9), that are also presentable by the alleles in the columns
(same presentation criteria). Alleles in both rows and columns are alpha-numerically ordered. The five high-
lighted HLA-A and -B alleles were selected based on NetMHCpan3.0 prediction accuracy, HLA diversity and
to minimize overlap in predicted binding capacity within the group.
B Schematic of the continuous (as opposed to two patient-group) methodology to evaluate neoantigen deple-
tion. To account for overlap in (predicted) HLA binding, a continuous score was used that captures a sample’s
capability of HLA-presenting peptides that are associated with an HLA allele of interest (the ‘focus allele’). This
score is then regressed against the neoantigen yield rate for this focus allele. A negative slope in this regression
would indicate that fewer neoantigen-encoding mutations are detectable in samples that have a high capacity
to present these.
C Schematic of the HLA presentation score (h), reflecting the fraction of peptides presentable by the focus allele,
that is also presentable by at least one of the HLA alleles carried by a patient.
D Pan-cancer result with a basic parameterization of the analysis, as in Figure 1C.
E Forest plot of the observed � values and associated 80% confidence intervals.

A continuous version of the neoantigen depletion analysis

Given the overlap in binding profiles of different HLA class I alleles (Figure 4.2A), and the result-
ing continuous rather than bi-modal distribution of HLA-presentation overlap with HLA-A*02:01
across samples (or any other HLA-allele, hereafter called the focus allele), a statistically more power-
ful approach could be to test for a (negative) association between focus allele-presentation capability
and neoantigen yield rate (r) across samples. Modelling focus-allele presentation capability with a
quantitywe call theHLA presentation score (h, methods), a detectable signal of neoantigen depletion
(i.e., depletion of neoantigenic, non-synonymous mutations), should on average lead to a lower r in
samples with a high h. That is, a linear regression between h and r should yield a negative slope (Fig-
ure 4.2B, bottom). In contrast, a slope of zerowould indicate HLA presentability not to be associated
with depletion of mutations carrying predicted neoantigens (Figure 4.2B, top). We modeled h as the
fraction of unique, theoretically presentable focus allele peptides that are also presentable by one or
more of the patient’s class I alleles (Figure S4.2C). In this way, h will be 1 for patients that do carry
the focus allele while those that do not will have values ranging from 0 to 1.

To first evaluate whether h models peptide presentation capacity, we analyzed mass spectrometry
data of HLA-eluted peptides32. Specifically, having inferred the HLA class I repertoire of each pa-
tient in this data set, we computed h for each patient and potential focus allele combination. Next,
for all 9-mer peptides of the expressed human proteome we predicted whether mass spec detection
would have been expected solely based on peptide affinity predictions. In case h models peptide
presentation correctly, the proportion of predicted peptides for a given focus allele to be detected by
mass-spec should be correlated to h. Confirming our expectation, we observed positive correlations
between h and the number of detected over expected peptides for 23 of 27 analyzed samples (Fig-
ure S4.4). Having computed h across all five focus alleles and all samples, we observed a near-zero
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correlation between focus alleles (Figure S4.5A,B). This indicates that analyses using different focus
alleles form largely independent and complementary tests within a fixed set of tumor samples, and
can hence be seen as independent validations.

We next assessed the relationship betweenh and SNV r across all evaluated patients (i.e., pan-cancer)
using HLA-A*02:01 as the focus allele, observing a virtually flat, non-statistically significant, slope.
To put this slope into perspective, we defined∆ (delta) as the relative difference in r between patients
at h = 0 (no ability to present focus-allele peptides) and h = 1 (full ability to HLA-present focus-
allele peptides, Methods), and observed a ∆ of 0.006 (80% CI: [-0.006, 0.018], i.e., non-significant
enrichment rather than depletion of predicted neoantigenic mutations, Figure 4.2D). Testing of in-
dividual tumor types in this manner showed apparent neoantigen depletion in certain tumor types
(∆ < 0), but just as many other types showed a similarly strong apparent enrichment for neoanti-
gens (∆ > 0), likely reflecting noise in the data (Figure 4.2E).

Analogous to the two-group based neoantigen depletion methodology described above, we next
systematically varied all possible settings of the neoantigen prediction pipeline and the continuous
neoantigen depletion analysis strategy in order to test the robustness of these results. As the optimal
neoantigen prediction pipeline configuration remains uncertain, despite our efforts to determine it
(Figure S4.1B-F), we evaluated all outcomeswhile varying three settings of the neoantigen prediction
pipeline: i) theHLAaffinity rank percentile threshold that denotes the predictedHLAaffinity candidate
neoantigens had to reach for predicted HLA-presentation (4 levels, ranging from lenient to highly
stringent), ii) RNA expression, either evaluated at the gene level or at the variant level (the latter to
be sensitive to potential epigenetic silencing of neoantigenic mutations) and iii) the similarity-to-self
filter that aims to model thymic selection of T-cell reactivity.

We also varied 6 settings that determine how the neoantigen depletion test is performed, indepen-
dent from the neoantigen prediction pipeline configuration: i) Variant selection determines the set
of somatic variants based on which r was evaluated and included the following classes: all (SNV)
genomic variants; frameshifting indels as these may form richer sources of neoantigens that are typ-
ically less self-similar33,34 and could thereby be postulated to experience stronger negative selection;
only clonal SNVs mutations; SNVs with driver and essential passenger mutations removed29; only
highly-recurrent driver SNVs, as defined in a prior work13. ii) Focus-allele reflects the HLA-allele
for which both h and r was evaluated (the two main variables of the regression). The focus allele
was varied between five HLA class I-alleles that we picked to cover a broad range of HLA super-
types and that showed a relatively high prediction accuracy using NetMHCpan3.021. iii) LOH in
HLA determines whether allelic loss of HLA class I35 was reflected in the presentation score (h), i.e.,
whether HLA alleles that were reliably found to have been genomically deleted were or were not
excluded when computing h. We discerned between a high-confidence variant of this variable, in
which only patients for which all alleles could be reliably assessed were included in the final regres-
sion analysis (“strict LOH HLA”, Figure S4.6, Methods), and a more lenient version in which any
allele reliably found to be lost was excluded from the HLA presentation score alleles, independent
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of the assessment quality for other alleles in the same sample (Methods). iv) C-allele in presenta-
tion score reflects whether both HLA-A, -B, and -C alleles, or only the HLA-A and -B alleles, were
included when computing h. As most known neoantigens are HLA-A or HLA-B restricted36 and
HLA-C might be expressed at a lower level37, exclusion of HLA-C could lead to more accurate esti-
mates. v) T cell-resistance, entails the removal of patient samples from the analysis that carry one or
multiple mutations, other than genomic loss of HLA class I loci, in immune evasion genes as iden-
tified using CRISPRi-screening31, in order to exclude samples in which immune pressure may be
reduced by an independent genetic event. Here, patient samples were excluded using three levels
of stringency, reflecting false discovery rate thresholds for genes in the CRISPR-screen of 0.0001
(stringent on genes and hence lenient on sample inclusion), 0.1 (moderate on sample inclusion) and
0.01 (stringent on sample inclusion). vi) Cytolytic score determines whether sample inclusion is re-
stricted to samples with a high T cell infiltration, as neoantigen depletion might be more apparent
in immune infiltrated tumors17. here we restricted the tested samples to those high (>=75th quantile
within the tumor type) in cytolytic score11 (a transcriptomic proxy for T/NK-cell activity) and those
lower in cytolytic score (<75th quantile) to contrast the former results with.
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Figure 4.3: Extended search for neoantigen depletion using the continuous detectionmethodology
A Filtering of sub-analyses to enrich for sub-analyseswith acceptable inferential quality. Blocks denote filtering
steps, reported numbers are the number of remaining sub-analyses after filtering.
B Sub-analysis composition differs between tumor types because of technical (e.g., the number of patient sam-
ples, the quality of DNA/RNA-sequencing data) and biological (mutational load) reasons. Chart shows the frac-
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tion of times each factor level (horizontal axis) is observed among the filtered sub-analyses. Levels that lead to
strong reductions in predicted neoantigen counts or severely limit sample numbers are only feasible for high
mutational load/ more highly represented tumor types.
C Volcano-like plot of all filtered sub-analyses, each dot represents a single sub-analysis. Due to compositional
differences (see panel B), these plots cannot be used to directly compare tumor types to each other. In case of
presence of eccentric sub-analyses (q < 0.05 or q > 0.95), red lines highlight these thresholds and the fraction of
sub-analyses surpassing these are indicated in red.
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Figure 4.4: Extended analysis of continuous methodology to assess neoantigen depletion
A Enrichment scores for sub-analysis settings associated with neoantigen prediction methodology, after rank-
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ing the sub-analyses by q. Note that none of the settings is strongly associated with q. ID-variable levels ap-
pearing in less than 10 sub-analyses were excluded from analysis.
B As in A. but for settings associated with the manner in which neoantigen depletion analysis is performed. As
the choice for a focus allele is arbitrary, it is not expected to affect the resulting statistics in case of a detectable
and true signal, but it is shown here to be the dominant source of variation. Color scale as in B.
CHighlighted individual enrichment-analyses from B, selected for their relatively strong enrichment scores.
DRandomly selected groups of identically parameterized sub-analyses, differing only in focus allele, to directly
visualize the average effect of variation in focus allele. Glioblastoma and pan-cancer analyses are highlighted
to illustrate the relatively strong and weak enrichment scores, respectively, for these tumor types in panel C.
E As in D., but varying the subselection of potentially T-cell resistant samples on the horizontal axis. ‘Stringent’
denotes the most rigorous filtering of tumor samples based on the presence of potential immune evasion mech-
anisms, selecting tumor samples with minimal numbers of mutations that have been associated with immune
evasion.
F As in D., but varying the somatic variant set on which r is evaluated. Frameshift indels were excluded as they
could only be reliably assessed on the pan-cancer level (in which they weren’t associated with q or∆).

Evaluating all combinations of the settings listed above, we frequently encountered patient subsets
that became prohibitively small for regression analysis (i.e., uncertain or no regression coefficients)
and neoantigen yield rates that became prohibitively low (resulting in a majority of patients with 0
predictedneoantigens). Restricting ourselves to combinations (so called ‘sub-analyses’) forwhich i) at
least 25 samples hadh in the range [0, .25] and in the range [0.75, 1], ii) the baseline r, i.e., r for samples
withh = 0, could be reliably estimated by themodel (methods), and iii) at least 100 samples had non-
zero neoantigen loads, left 226,376 of 2,822,400 theoretically possible sub-analyses (8.0%, Figure
4.3A). As expected, tumor types with a large number of samples allowed more restrictive sample
filtering and those with high TMB allowed more stringent neoantigen filtering. As such, individual
levels of settings were present with variable frequency between tumor types, such that tumor types
could not directly be compared from the set of all filtered sub-analyses (Figure 4.3B). Assessing Δ
across the filtered sub-analyses, we did discern tumor types for which the distribution appeared
(strongly) skewed to the negative side (Figure 4.3C, consistent with neoantigen depletion). However,
this distribution simultaneously also appeared to be positively skewed for other tumor types. To
assess the statistical significance of these and other sub-analyses, we employed permutation tests.
Specifically, for each sub-analysis, we permuted h-scores across individual samples in the source data
250 times, evaluated∆ for each of these permutations, and assessed the fraction of permutation∆s
that was smaller than the original ∆, arriving at a quantity we call q (for quantile). As q virtually
never reached below .05 (n = 4, 0.002%) or above .95 (n = 11, 0.005%, Figure 4.3C, vertical axis), shifts
towards either negative or positive∆ (i.e., neoantigen depletion and neoantigen enrichment) did not
appear statistically significant.

To characterize these results and identifywhich individual settingsmost strongly enriched forneoanti-
gen depletion, we ordered all sub-analyses by q and used preranked gene set enrichment analysis38

to identify sub-analysis settings that were associated with extreme values in q in a univariate man-
ner. As all of the settings are categorical, we compared individual levels (e.g., HLA-A*02:01 for the
focus allele) against the combination of all other levels. In this, we recorded the normalized loca-

110



CHAPTER 4

tion (range: [-1, 1]) where the rank sum statistic deviated most strongly from that expected under
random ordering (i.e., the enrichment statistic38). Using this strategy, we did not find evidence that
more stringent (and precise) neoantigen prediction could reveal neoantigen depletion (Figure 4.4A).
Surprisingly, repeating this analysis but sorted by ∆ rather than q showed that stringent RNA ex-
pression filtering on the variant level on average led to a negative ∆ for a majority of tumor types
(Figure S4.7A). This was however likely caused by the combination of a heterogeneous distribution
of h combined with low r (Supplemental Note 1), and hence artefactual.

When evaluating all settings of the neoantigen depletion testing procedure, we observed that the
focus allele most strongly affected both q (Figure 4.4B-D) and ∆ (Figure S4.7D). Varying the choice
of the focus allele allows for semi-independent replication of a neoantigen depletion test, as there is
no expected link between the arbitrary choice of an HLA class I allele as the focus allele and the oc-
currence of neoantigen depletion or enrichment. Importantly, the large observed variation between
sub-analyses carried out in this manner and that are otherwise identically parameterized suggests
that most of the signal observed can be ascribed to measurement noise. By the same token, we found
rigorous exclusion of T cell-resistant tumors to shift q towards neoantigen depletion in a slight but
consistent manner (5/5 evaluable tumor types, Figure 4.4B,C,E), but for only 1 out of 5 tumor types
(Breast LumA, Figure S4.8A) this effect was somewhat consistent across the 5 evaluated focus alleles,
again suggesting this effect to be spurious. Finally, evaluating r strictly on a set of 1018 recurrent
oncogenic mutations that have previously been reported to occur preferentially in patients that ex-
press HLA class I alleles that are predicted to present these relatively poorly13, also might weakly
enrich for a signal of neoantigen depletion (7/9 evaluable tumor types, Figure S4.4B,C,F), but this
did not hold up at the pan-cancer level and - importantly - was highly inconsistent between focus
alleles for all these 9 tumor types (Figure S4.8B), again indicating spurious associations.

Discussion

Using two different methodologies to estimate neoantigen depletion, we observed little if any de-
tectable signal across unmatched tumor samples of treatment-naïve patients, also when controlling
for a number of potentially confounding factors. This finding contrasts with part of the existing
literature on the topic, in which evidence for neoantigen depletion in treatment naïve tumors was
reported. In cases in which we tried to adapt existing methodologies to ours, we also did not detect
neoantigen depletion or only observed minimal, non-statistically significant, trends.

It is important to emphasize that we do not see our data as evidence that neoantigen depletion
does not occur. Specifically, given the support for immunosurveillance of nascent tumors39 and
the strong evidence favoring a role for T cell recognition of mutation-induced neoantigens in tumor
control40,41, we deem positive selection of tumor cell clones that never acquired or that lost T cell-
recognizedneoantigens plausible a priori. If neoantigen depletiondoes indeed occur, howcan this be
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reconciled with the observation that neoantigen depletion is not observable in the genomic analyses
presented here? First, our data are consistent with the possibility that a small subset of neoantigens
in pre-treatment tumors is lost due to immune pressure, below the level that surpasses the large
prediction noise present in our analyses but also in the other approaches that have been explored.
Specifically, experimental data suggest that only a small minority of predicted neoantigens (approx-
imately 1%) induces detectable T cell responses8,42,43. If only this small minority of T cell-recognized
neoantigens is at risk of deletion, the maximal depletion signal that could be expected would be pro-
portionally smaller, and would be difficult to detect in the background of predicted epitopes that
never led to T cell pressure. On a related note, it is possible that neoantigen depletion does occur
at the genomic level, but only or predominantly in later disease stages, or post-(immuno)therapy.
Third, neoantigen depletion may be infrequent due to the presence of other, perhaps more potent or
more easily accessible, mechanisms of immune evasion35,44. Notably, across tumor types, the me-
dian fraction of patients harboring any form of genetic immune escape other than neoantigen loss
in their primary tumors was reported to be 0.20 (for metastatic tumors: 0.27) and as high as 0.74 for
kidney chromophobe cancer44.

To increase the sensitivity of future analyses of genetic information on compendia of tumor samples,
it will likely be critical to account for differences in immunogenicity between predicted neoantigens,
rather than merely filtering mutations for those expected to be neoantigenic and implicitly assum-
ing equal immunogenicity. At present, technologies to predict the development of T cell responses
against a collection of predicted HLA-presented neoantigens are still limited in reliability, despite
substantial efforts45. Furthermore, if part of this process is stochastic, for instance governed by the
occurrence of a specific TCR recombination, the development of accurate predictors of immuno-
genicity may be challenging. A more attractive approach may thus be to identify very large numbers
of T cell recognized neoantigens in prospective clinical studies and to use such epitopes as a wet
lab-validated starting point. High throughput T cell repertoire sequencing of T cells with tumor-
reactivity signature46, along with advances in experimental approaches to screen the reactivity of
many T cell clonotypes in parallel, is expected to enable this effort47-51.
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Methods

Datasets

HIV peptide data for pipeline prediction validation

We compiled a list of 81 HLA-A*02:01-restricted HIV T-cell epitopes by querying the Los Alamos
National Security HIV Database (https://hiv.lanl.gov, December 2010) and PubMed. The ob-
tained peptides were filtered according to the following criteria to create a list of ‘high confidence’
HLA-A*02:01-restricted and T-cell recognized epitopes: (1) epitope presentation was shown to be
restricted to the HLA-A*02:01 allele; (2) T-cell reactivity against the epitope was reported in at least
3 patients/studies, and (3) evidence of endogenous processing of the epitope had been obtained (i.e.,
T-cell responses observed in vaccination or peptide loading studies were excluded). These criteria
were met by 32 of 81 acquired peptides.

To assess all candidate HIV-1 epitopes, we acquired the assembled sequencing data of an HIV-1 iso-
late from the NCBI database (isolate 671-00T36; NCBI accession number AY4233871) and consid-
ered it a reference HIV-1 genome. Partitioning this reference genome in all nonameric peptides,
3,094 candidate peptides were generated. Out of the 32 ‘high confidence’ HIV epitopes discussed
above, 17 were not perfectly mappable to the reference genome (1-2 amino acid differences at most).
To correct for this and allow cross-matching, the reference genome was adjusted to exactly match
the mismatching peptide sequences (adjusted reference in Table S2). One out 17 epitopes remained
completely unmappable to the reference genome and was thus excluded from further analysis (Table
S2).

IEDB peptide data for pipeline validation

Peptides selected for T cell recognition proven usen any methodology were downloaded from the
Immune Epitope Database (http://www.iedb.org2, 2018-12-10) from the ‘Assays’ section. As-
says were filtered for: i) having four-digit HLA-typing (e.g., ‘HLA*B-27:05’), ii) having the targeted
peptide be available and 9 amino acids of length in the (Antigen Description field) iii) having an entry
for the Organism species name. Peptides were considered T-cell targetable if at least 2 tested sub-
jects responded, combined over all the assays investigating a particular peptide. If this field was not
available for any of the assays for a particular peptide, the peptide was considered T-cell targeted
if at least one assay gave a positive result (i.e., response labelled as Positive, Positive-High, Positive-
Intermediate or Positive-Low). Notice that these criteria are substantially less stringent than the
ones employed for the focused HIV-set. This analysis was restricted to HLA-A*02:01 peptides as this
allele was by far the best represented in the IEDB. Next, redundancy in the acquired T-cell targeted
peptide sets per pathogen was removed by iterative sequence alignments of all unordered peptides
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against all remaining peptides using the function pairwiseAlignment from the R Bioconductor pack-
age Biostrings (version 3.8). Matching scores above zero were interpreted as sequence similarity, re-
sulting in removal of the second peptide of the pair from the peptide set. Thisway, the T-cell targeted
peptides in the resulting list were all dissimilar from each other. Next, in order to predict protea-
somal processing efficiency of candidate peptides, the amino acid context of the peptides in their
source protein was required, but this information was not included for all peptides in the IEDB. To
obtain this information, peptides were mapped to the reference proteomes of the viruses they were
annotated to originate fromusing phmmer (version 3.2.1) with the --max and --domtblout flags, pri-
oritizing matching reference sequences by their alignment length (the number of matching amino
acids between query and target sequence, longer alignments preferred), the alignment discrepancy
(when available, the difference between the annotated C-terminus and the inferred one, smaller is
preferable), the source of the reference sequence (the manually curated SwissProt prioritized over
the more exhaustive TrEMBL), the alignment’s e -value and the query name, in that order. Query
peptides with more than 3 mismatches between the source and query sequences were excluded from
further analysis. The following viruses reference proteomes were used: Human gammaherpesvirus
4 (EBV, UP000007639), Human Immunodeficiency Virus 1 (HIV-1, AUP000002241), Alphapapillo-
mavirus 9 (AUP000009104), Vaccinia virus (AUP000000344), Influenza-A virus (AUP000131152),
Hepatitis-B virus (AUP000008591), Hepacivirus-C (AUP000000518), Human alpha-herpesvirus 1
(AUP000106517), Dengue virus (AUP000002500), Humanbetaherpesvirus-5 (AUP000000938). Tran-
scriptome references were downloaded from the UniProt database by querying for the virus name
and downloading all (possibly redundant) proteins (The UniProt, 2017). For non-perfectly mapping
peptides, the most highly rated reference sequence was then modified to reflect the query sequence
(i.e., peptide), such that the most representative processing score for the peptide could be computed.

TCGA data

The patient sample cohort, consisting of all tumor samples for which both DNA, RNA sequencing
data was available, spans 5,585 patients from 30 tumor types (Table S1). TCGA data acquisition
from the Broad Institute’s Firehose and integration and preprocessing of data sources listed below
was automated in R using functionality that is combined in the R package firehosedownload: http:
//www.github.com/slagtermaarten/firehosedownload.

TCGA somatic variant calls inMAF-format andRNA sequencing datawere downloaded and harmo-
nized from the 2015-08-21 release of the Broad TCGA genome data analysis center standard runs:
http://gdac.broadinstitute.org/runs/stddata. As mutation data for the ESCA (oesoph-
agus carcinoma) project is not part of this release, mutations for the ESCA project were obtained
from the repository ofmutations files curated byCyriac Kandoth: http://www.synapse.org/#!
Synapse:syn1695396.13. TCGA RNA sequencing data were downloaded from the Broad TCGA
genomedata analysis center 2015-11-01 release of the standard runs: http://gdac.broadinstitute.
org/runs/stddata.
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For projects where data from multiple sequencing platforms were available, Illumina HiSeq data
was preferentially used. Raw read counts in RNAseq data were subsequently transformed to the
transcripts per million (TPM) RNA abundance measure, using custom R functionality included in
firehosedownload and using Ensembl75 (release of February 2014) gene length information.

TCGAHLA typing data

HLA typing based on DNA sequencing using OptiType3 was downloaded from the TCIA resource
(www.tcia.at) provided by the Trajanoski laboratory.

Genome- and patient-level annotation

MMR status of tumor samples

The R package MSIseq4 was used to infer microsatellite instability status of all TCGA tumor sam-
ples in our cohort. Mutation annotation format files were obtained from TCGA as described above.
Sequencing target region sizes were calculated for each sample from target enrichment design files
used in the various TCGA projects (Supplementary Table S3). These data were subsequently used as
input for the MSIseq classifier.

Annotation of antigen presentation capability and T cell sensitivity of tumor sam-
ples

To identify tumor samples that may be resistant to T cell attack, we analyzed samples for occurrence
of non-synonymous mutations in any of the 515 non-HLA genes identified to potentially induce
resistance to CD8+ T cell mediated killing5, or for occurrence of non-synonymous mutations in any
HLA class I allele6.

PAM50 subtyping of breast cancer samples

Wedownloaded Level 3 RNA-seq data for the BRCA cohort from the TCGAData Portal on 2015-06-
25 and analyzed the expectation maximization normalized counts. Samples were PAM50-subtyped
independently7 using the implementation in the genefu R package8 with the robust scaling option
enabled.
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Allele-specific HLA loss

We adapted the tool LOHHLA9, which allows for allele-specific detection of genomic aberration of
HLA alleles, to make it more amenable to large scale application (code available on GitHub: http:
//github.com/slagtermaarten/LOHHLA). Most importantly, we included support for the ref-
erence genome GRCh38, made it compatible with single-end sequencing data and expanded it such
that it can handle input bam files that are restricted to the HLA region of interest, rather than whole
exome or whole genome bam files. The original version of LOHHLA compares whole-genome or
whole-exome coverage mapped reads (bam formatted) between a tumor and matched normal sam-
ple, comparing read coverage normalized to the total number of mapped reads between the two
samples for each HLA allele separately. To circumvent having to download the full bam files for
thousands of patients just to obtain the total number of mapped reads per bam file, we inferred the
total number of mapped reads from the file sizes of the complete bam files (accessible from the NIH
GDC API). For this an ordinary linear regression model was used, which was fitted on file sizes in
bytes and the number of mapped reads (as read out using samtools flagstat, 5th row of output) of
114 normal and tumor sample bam files for 60 randomly sampled patients (Table S5) for which we
did download the entire bam file using gdc-client, deriving the expression: total mapped reads =
88370554 + 7461 [reads/MB] * file size [MB] (Figure S4.6A). This allowed us to use the TCGA GDC
bam slicing API (https://api.gdc.cancer.gov/slicing/view/) to specifically download the
HLAregions of chromosome6 (29941260-29945884, 31353872-31357187 and31268749-31272092
in GRCh38 coordinates) and use those as input for LOHHLA. Note that the full TCGA bam files
that were obtained largely (~99.9%) consisted of mapped reads, obviating the need to correct for the
presence of unmapped reads. In order to ensure that read pairs for which one of the read mates
lied outside the annotated HLA genomic range were included in the analysis, the bam slicing down-
load window was extended by 107 bp on both the 3’ and 5’ sides to 28941260-32357187. We fed
the LOHHLA analyses purity and ploidy estimates obtained from ASCAT as described in the sec-
tion ‘Variant cellularity’ below. The minCoverage argument to LOHHLA determines the minimally
required amount of coverage in the normal sample in order for an SNP to be considered eligible to
contribute to the copy number estimate of the gene it’s positioned in. It was set to 0, after having
tested the stability of the copy number estimates by titrating the minCoverage filter between 0 and
a patient specific upper boundary computed as the median coverage of sites in the matched normal
sample. While titrating the minCoverage threshold, we recorded the inferred copy number for each
allele (i.e., HLA_type{1,2}copyNum_withBAF, which is computed as the median of the copy num-
ber estimates for individual loci pertaining to an allele, Figure S6B). Next, we computed the coeffi-
cient of variation (CoV, standard deviation/mean) over the copy number estimates to obtain donor,
gene, and allele-specific estimates of the effect of the minCoverage threshold on the copy number
estimates (Figure S6C). Alleles that showed a CoV < .25 were labelled as robustly estimable (90% of
alleles, Figure S6D), resulting in 63% of evaluated patients to have robust estimates for all of their
HLA-A, -B, and -C alleles (Figure S6E). Immunoediting analyses with the ‘strict LOHHLA’ attribute
included only these patients; analyses with the ’lenient LOHHLA’ attribute also included patients for
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which not all alleles were robustly estimable. An overview of allele-specific copy number estimates
for HLA-A, -B, and -C are displayed in Figure S6F. Alleles were deemed lost if the upper boundary
of the copy number estimate’s 95% confidence interval was below 0 and the estimate’s minCoverage
CoV was below .25.

Cytolytic score

Cytolytic score10, a transcriptomic proxy for T and NK-cell activity, was computed as the geometric
mean of TPM-normalized expression estimates of the PRF1 andGZMA genes.

Gene-level annotation

Gene essentiality

To infer the essentiality of genes to cell survival, we integrated work of the Sabatini and Brum-
melkamp laboratories. Wang et al. 11 screened the Jiyoye and Raji cell lines (Burkitt Lymphoma)
and the K562 and KBM7 (CML) cell lines using CRISPR technology, and the KBM7 cell line using
GeneTrap technology. Blomen et al. 12 screened the KBM7 cell line and its derivative, the HAP1 cell
line, using GeneTrap technology. Blomen et al. provided binary class labels indicating essentiality
for genes, whereas Wang et al. only provided raw read count data, presenting significance testing for
only a subset of performed experiments.

In the Wang et al. CRISPR KBM7 data analysis, essential genes were considered to have a CRISPR-
score (average log2 fold change in the abundance of sgRNAs targeting the gene) lower than -0.1 and
an adjusted p-value below 0.05. Neither general nor cell line-specific criteria were included for the
other three cell lines that Wang et
al. screened using CRISPR technology. We elected to apply the same criteria to the other three cell
lines screened with CRISPR technology by Wang et al. Similarly, no cut-off was proposed for the
Wang et al. GeneTrap data set, but rather a correlation between the GeneTrap and CRISPR data
was reported. Here, we used a minimum required amount of anti-sense inserts of 65 and set the
required GeneTrap score to be lower than .45, in order to maximize the similarity in set cardinalities
between the Sabatini-KBM7-GeneTrap and the Sabatini CRISPR/KBM7 derived gene set (1,875 and
1,878 genes, respectively). Having obtained seven partially overlapping lists of essential genes, any
gene appearing at least once in any of the seven experiments was deemed essential, 10.6% of selected
genes appeared in all lists. The list of genes is included in Table S4.
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Peptide-level annotation

Similarity to self-repertoire

To determine whether predicted neoantigens were likely to be dissimilar enough from self to be
recognized by the endogenous T-cell repertoire, we implemented a self-similarity classifier based
on previously identified determinants of T cell similarity13. We compare candidate epitopes aris-
ing from somatic mutations to peptides from the human proteome predicted to be presented by
the relevant HLA allele (e.g., HLA-A*02:01), restricting this comparison to the amino acids span-
ning positions 3 to 8 of nonameric peptides, as these are considered to be most important for T-cell
recognition of peptide-HLA complexes13-15. Epitopes were deemed ‘dissimilar-from-self’ when one
or more of the following criteria are met: (1) amino acid position 5 is mutated, (2) T-cell exposed
region contains 3 or more mutations, (3) two mutations are clustered to one side of position 5 (i.e., in
positions 2-3-4 or positions 6-7-8), and (4) a single amino acid substitution leads to large physic-
ochemical changes on position 2, 3, 4, 6 or 7. The latter substitutions were defined as amino acid
changes with an absolute covariance of < 0.05 in the PMBEC amino acid similarity matrix16. We
implemented this algorithm in Rcpp (C++) and distributed it as part of the quickMHC R package
(http://www.github.com/slagtermaarten/quickMHC).

Somatic variant annotation

Variant effect prediction

To determine the effects of the various classes of mutations found in tumor samples, we developed
a Perl tool named VarContext. Canonical cDNA transcripts were obtained for genes containing
mutations (single nucleotide variants and/or indels) by querying the Ensembl database (release 75,
GRCh37). We applied each mutation affecting a particular gene and annotated its effect (silent, mis-
sense, insertion, deletion, frameshift, stop loss, stop gained), yielding the tumor transcript sequence.
Transcripts which lost their stop codon as a consequence of the applied mutations were extended
until the next in-frame stop codon was encountered. In contrast, transcripts gaining a premature
termination codon (PTC) were analyzed for their potential of triggering nonsense-mediated decay
(NMD; detailed description in ‘Transcript-level annotation’). Finally, the canonical and modified
cDNA sequences were translated into amino acid sequence, resulting in the reference and tumor
transcripts.
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Variant oncogenicity and essentiality

The oncogenic potential of mutations was predicted using IntOGen mutations17 version ‘IntOGen
Mutations Analysis 2.4.1-maintenance’ (https://www.intogen.org/analysis), specifically for all af-
fected transcripts and stratified by sequencing project. TCGA maf files were converted to the re-
quired TSV-based input file format using a custom script and were analyzed in December 2015.
Variants were further annotated with a driver gene score indicating the likelihood of being a driver
gene based on the gene of their location18. To infer essentiality to cell survival of individual genes,
we integrated the work of two laboratories11,12 into an overall essentiality score, with which somatic
mutations were subsequently annotated (see ‘Gene essentiality’). Additionally, annotation of onco-
genicity was performed by comparing gene, amino acid change and amino acid change position (de-
termined using VarContext) of somatic mutations to the list of 1,018 recurrent oncogenic mutations
compiled by Marty et al.19. The latter list was used for the ‘Marty’ variant selection setting.

Variant cellularity

Clonal antigens that are presented by all tumor cells in a lesion can reasonably be expected to have a
larger contribution to tumor regression than subclonal antigens, and the observed inverse relation-
ship between tumor heterogeneity and immunotherapy outcome provides indirect support for the
superior value of clonal antigens as T-cell targets 20.

We estimated the cellularity of individual mutations from DNA sequencing read count information
for a subset of 3,660 tumors in 18 tumor types, selected based on availability of the required data
types. As a starting point for inferring the fraction of tumor cells that carry a mutation (the variant’s
cellularity), we use the variant’s observed allelic frequency (VAF), the fraction of reads overlapping
with the variant locus that carries the variant. The observed VAF of a somatic variant does not relate
to its cellularity in a straightforward way as it is a compound measure of several factors: the pro-
portion of contaminating normal cells, the number of allelic copies of the variant in each cell and its
cellularity, plus uncharacterized sources of technical noise21. We employed twomethods of inferring
variant cellularity. The first is based on published maximum likelihood-based approaches20,22, the
second is a Bayesian hierarchical clustering of variants21 for potentially more robust and accurate
cellularity estimates.

First, variants were annotated with the absolute copy number status of the genomic segments they
are located in. Absolute copy number status was derived from ASCAT analyses of Affymetrix SNP6
profiles23 andwereobtained from theCOSMICresourcehttps://cancer.sanger.ac.uk/cosmic/
download on 2016-04-24. Absence of coverage in the ASCAT file was assumed to imply absence of
local copy number aberrations as only small parts of the genome are covered in the SNP6 output.
Additionally, tumor purity estimates, representing the percentage of tumor cells in the sample, were
obtained from these ASCAT analyses. The intersection of patients eligible for neoantigen prediction
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(patients for which DNA and RNA sequencing data was available) and those for which read count
information and a COSMIC ASCAT analysis was available (required for cellularity estimates) con-
sisted of 3689 TCGA patients, distributed over 13 sequencing projects (see Supplemental Table 1 for
the exact list of included samples).

Maximum likelihood-approach for cellularity estimation Following Landau et al.22,
we note that the observed number of reads consistent with the called mutation, Na, is binomially
distributed: P (Na) ∼ Bin (N, AFe(c)), where N denotes the total number of reads covering
the genomic locus of the variant andAFe denotes the expected allele fraction of the variant under a
particular fraction of cells carrying themutation c (for cellularity), onwhichAFe depends as follows:

AFe = p
c m

(An(1− p) +At p)

In which p denotes the tumor purity of the sample, i.e., the fraction of cells that are cancer cells,
An andAt denote the average amount of alleles in the normal and tumor populations, respectively,
and m denotes the variant’s multiplicity, i.e., the number of tumor alleles that carry the variant - an
integral number smaller than or equal to At assumed to be equal across all tumor clones. The listed
expression for AFe can be understood as the fraction of the number of tumor cell alleles carrying
the mutant allele and the total number of alleles, from both tumor and normal cells, at the somatic
variant’s genomic locus.

Two of the quantities on whichAFe depends are not directly observed: c andm. Thus, neither c nor
m are unambiguously identifiable without knowledge or assumptions about the other. In the case
where the V AF equals the fraction of alleles derived from tumor cells (V AF = p ∗ At

p∗At+(1−p)An
,

only one scenario is plausible: c = 1 and loss-of-heterozygosity (LOH) must have occurred at the
variant loci in the cell giving rise to all sequenced cells (m = At). Ambiguity however arises for
mutations located in genomic regions of copy number aberrations and for which the V AF does
not unequivocally indicate m to equal CNt (i.e., V AF < 1). This ambiguity is caused by the fact
that a subclonal mutation (low cellularity) with high multiplicity could result in similar VAF-values
as a clonal variant (high cellularity) with low multiplicity. Following the examples of Landau et al.
and McGranahan et al. 24, implicit in the case of McGranahan et al., we assume the multiplicity of
the variant to be unity when estimating cellularity, thereby running the risk of overestimating the
c of somatic variants for which the multiplicity potentially exceeds one, i.e., variants located in an
amplified segment. For some variants, it is certain that the multiplicity must have been greater than
unity asm = 1 results in V AF )AFe for c = 1. For these, we iteratively increasem by 1 until V AF

falls in the range of expected allelic frequencies (AFe), stopping before m exceeds the major allele
count. Having set the multiplicity m to a minimal value consistent with the observed data, we can
proceed to compute the most likely cancer cell fraction c. Assuming a discrete uniform prior on c

in the range [0, 1], discretized in intervals of 1/1,000, we compute the likelihood of each c under the
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binomial model P (c) and subsequently normalize the likelihoods by dividing them by their sum -
the constant of proportionality ofP (c) - to obtain the posterior probabilitymass function ofP (c)22.
The mode of this distribution, i.e., the maximum likelihood estimate is taken as the somatic variant’s
cellularity, with the two boundaries centered on themode and encompassing 95% of the distribution
as the 95% credibility interval. Following McGranahan et al., we labelled mutations as clonal if their
inferred cwas greater than or equal to 0.95 and the upper boundary of the c 95% credibility interval
was greater than or equal to .99.

PyClone for cellularity estimation In addition to theML-based approach,we ranPyClone21

for all samples with read count information, ASCAT purity and absolute copy number estimates
available and a median total read count on called variants exceeding 100 reads (simulations suc-
ceeded for 780 tumors, see Supplemental Table 1 for the list of included patients). We ran the bino-
mial model for 105 Markov Chain Monte Carlo iterations, using a Markov Chain burn-in of a 1,000
iterations and Markov Chain thinning of 5.

Correspondence between the two methods We hypothesized that the largest structural
difference between the two methods lies in the inference of allelic frequency, which is only of rele-
vance formutations located in genomic regionswith copynumber aberrations. In support of this, the
two methods yield highly similar and correlated clonality estimates for those mutations that do not
require an inference of allele multiplicity (Figures S2A and S2B). As this class forms the large major-
ity of mutations (98.75% of somatic variants), further analyses were performed using the maximum
likelihood-based approach, because of its more clearly defined dependency on sequencing depth. To
provide a validation of the obtained cellularity estimates, we compared cellularity estimates between
the most highly recurrent mutations within a given tumor type and the aggregate of non-recurrent
mutations. Consistent with expectations, for the majority of tumor types (15 out of 16) the most
highly recurrent mutation was predicted to be significantly more clonal than the remainder of the
mutations observed in that tumor type (Figure S2C). As we deemed the correspondence between
the two methods satisfactory, further analyses were based on the ML-based method for its relative
simplicity, computational efficiency and relatively low requirements on read coverage.

Variant-specific expression

To estimate the expression of individual somatic variants, we required the RNASeq mapped reads
from the TCGA GDC which are mapped to GRCh38.d1.vd1. We used the bam slicing tool in order
to prevent having to download entire .bam files. We first converted the variant loci from the hg19
to GRCh38 coordinate system, using the rtracklayer and Granges functions out of the rtracklayer
(version 1.42.2) and GenomicRanges (version 1.34.0) R Bioconductor packages in combination with
a liftover file obtained from UCSC: ftp://hgdownload.cse.ucsc.edu/goldenPath/hg38/

126

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg38/liftOver/hg19ToHg38.over.chain.gz
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg38/liftOver/hg19ToHg38.over.chain.gz


CHAPTER 4

liftOver/hg19ToHg38.over.chain.gz. These transformed coordinateswere subsequently used
to query the TCGA GDC bam slicing tool, using a random UUID in case multiple UUIDs were listed
for RNASeq of tumor samples from the patient. Next, the number of reads consistent with the vari-
ant and reference alleles was tallied by running samtools mpileup (version 1.9) and custom R func-
tionality.

Neoantigen prediction

Tumor transcripts were reconstructed from SNVs and indels in order to obtain a set of candidate
tumor-specific neoantigens. Candidate peptideswhose genomic sequenceswere affected bymultiple
mutations were modified to reflect the consequences of all variants (1.75% of all candidate peptides).
SNVs and frameshifting insertion-deletions can introduce premature termination codons (PTCs),
rendering the encoded transcripts prone to degradation by the nonsense-mediated decay (NMD)
machinery. To account for this, we implemented an NMD-calling routine based on previously in-
ferred characteristics of NMD-targeted transcripts25. As expected, PTC-inducing variants that were
classified as invoking NMD had significantly lower variant allele fractions (VAF) in RNA sequencing
data than in DNA sequencing data, indicating degradation of PTC-bearing transcripts (Figure S1G).
Hence, NMD-predicted transcripts were removed from further analysis.

Reference and tumor transcripts were used as inputs for Neolution, the in-house neoantigen predic-
tion pipeline that annotates tumor-specific transcript derived peptideswith four scores representing
the various stages of antigen presentation, classifying those passing all four filters as MHC-binding
peptides likely to yield an immune response. We assess the following steps: (i) RNA expression, (ii)
proteasomal processing and transport into the endoplasmatic reticulum, (iii) MHC binding, and (iv)
dissimilarity from self-antigens. First, we determined whether genes encoding candidate neoanti-
gens are expressed, excluding – unless indicated otherwise – all peptides for which the associated
gene had an expression level surpassing a constant threshold (default: 0). Alternatively, we applied a
threshold to library size-normalized read counts at the variant level as described in ‘Variant expres-
sion’. Second, we used netChop26 to predict the likelihood of successful peptide processing by the
proteasome and TAP transport (NetChop score ≥ .5). Third, we used netMHCpan3.027 to predict
HLA class I binding affinity, by default employing a percentile rank threshold of 1.9 (which corre-
sponds to 255 nM for HLA-A*02:01). To ensure constant prediction precision across tumors, we
elected to use one allele at a time rather than adapting the predictions alleles to the HLA haplotype
of the patient. We selected HLA-A*02:01, -A*11:01, -B*07:02, -B*27:05 and -B*40:01, based on their
prior determined in accuracy in predicting nonamer binding affinity27 and for their functional diver-
sity. To expedite (repeated) usage of peptide affinity predictions, affinity predictions for all candidate
peptides and all HLA alleles encountered in the TCGA patient set were pre-cached in a PostgreSQL
database (version 9.5, querying code available in the R package quickMHC). Finally, we determined
whether T cell recognition is likely to be prevented by self tolerance. As themajority ofmutated anti-
gens derive from single nucleotide variants and, by consequence, are highly similar to their wildtype
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counterparts, it may be important to exclude candidate peptides that are too similar to the self-lig-
andome, as thymic negative selection eliminates T cell clonotypes reactive to antigens from these
peptides. To this end, we implemented a ‘self-similarity’ filter13,14 that compares each candidate epi-
tope to a reference list of self-epitopes predicted from the complete human proteome (obtained from
UniProt, 2016-10). Candidate peptides were retained when deemed sufficiently different from self,
according to the criteria outlined in ‘Similarity to self-repertoire’.

Antigen prediction pipeline validation

To evaluate the prediction performance of Neolution when performing predictions either (i) solely
based on predicted HLA affinity, or (ii) also incorporating proteasomal processing predictions, or
(iii) additionally excluding peptides with similarity to human sequences, a curated list of ‘high con-
fidence’ HIV epitopes (see ‘HIV peptide data for pipeline prediction validation’ and Supplemental
Table S2) and ‘lower confidence’ lists of peptides from the IEDB (see ‘IEDB peptide data for pipeline
validation’) was processed using it. From these sets of predictions, prediction precision (PPV), sen-
sitivity (TPR) and false positive rate (FPR) were computed using custom R code. To compute 80%
confidence intervals (Cis) around PPV-estimates, we employed stratified bootstrapping to ensure
constant prevalence of T-cell targeted peptides (and hence their presence) across bootstrapped sam-
ples. After quality metrics were computed for bootstrapped samples, the 10th and 90th percentiles of
these metrics were taken as the upper and lower boundaries of the reported 80% Cis.

Somatic variant and neoantigen load tallying

In order to compare the propensity of different classes c of a particular classification C (e.g., DNA
damage types) to yield HLA-A*02:01-antigens, we needed to tally the load ofmutations and neoanti-
gens for each class c in classificationC . The majority of mutations can be unambiguously annotated
as deriving from a single class c (e.g.,
‘missense mutation’ in the transcript effect classification). However, some somatic mutations over-
lapping with the genomic loci of multiple genomic features (i.e., transcripts and genes) have different
effects on these genomic features. To allow variants to belong to multiple classes c of a classification
C during the tallying of variants, each variant was partially assigned to a class c based on the frac-
tion of transcripts affected by the variant for which the effect of the mutation can be classified as
c. This way, each variant potentially distributes its contribution among multiple classes, but its to-
tal contribution never exceeds unity (1). The total variant load of class c in a genome g, Nv

g,c, then
becomes

Nv
g,c =

∑
v∈Vg

|{t ∈ Tv : S (tv) = c}|
|Tv|
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where Vg denotes the complete set of variants in genome g, Tv the set of (Ensembl reference) tran-
scripts affected by variant v, the S operator returns the variant effect classification of v on t and |Tv|
represents the number of transcripts affected by v (i.e., the cardinality of Tv).

A similar consideration of mixed class membership is made during the tallying of neoantigens that
can be contributed by multiple somatic variants of potentially different classes. When tallying the
neoantigen loads by different classes c of classification C , an epitope derived from a transcript t
was taken to result from c proportional to the fraction of total variants overlapping with t classified
as c with respect to t. This nuance is necessary as variants may have different effects on different
transcripts. Combined, the peptide load contributed by somatic variant class c in genome g, Np

g,c,
becomes

Np
g,c =

∑
p∈Pg

|{v ∈ Vp : S(v) = c}|
|Vp|

where Pg denotes the complete set of peptides passing all filtering steps for genome g, Vp the set
of variants contributing to peptide p, the S operator returns the class of its argument and and |Vp|
represents the number of variants contributing to peptide p.

The ‘two group’ strategy for testing neoantigen depletion across unpaired
samples

As immune pressure against mutations associated with HLA-A*02:01-peptides is not expected in
patients that lack the HLA-A*02:01-allele and also any other alleles with similar binding profiles,
we could compare the HLA-A*02:01-yield rates in HLA-A*02:01-positive patients (test set) with the
yield rates inHLA-A*02:01-like negative patients (reference set). Wedid this both in a patient specific
manner, comparing the distributions of patient specific yield rates against each other, and by aggre-
gating all mutations and neoantigens into a meta-patient before comparing these point estimates.
In the former case, distributions were compared using a two-sided Wilcoxon rank sum test imple-
mented in the R base package (wilcox.test). In the latter case, proportions of neoantigens over total
mutations were compared using a chi-squared test as implemented in R base package (prop.test).
Effect sizes shown by color in Figures S3C & S3D are log2 differences, computed by logging the
medians of the yield rates in the test and reference sets and subtracting them from each other. All
FDR-multiple testing corrections were done per analysis (i.e., columns in Figure S3D) with Ben-
jamini-Hochberg’s procedure28 using the p.adjust function in R.
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Detection power analysis

As mutational load and sample count both influenced the statistical power to detect a signal of epi-
tope loss in ourmeta-patient immune editing analyses, the limits of detectable immune editing varied
between sequencing projects. To determine these detection limits, we first normalized the observed
yield rate in the test set to that observed in the reference set, equalizing any potentially pre-existing
neoantigen yield rate imbalances between the test and reference sets. This way, we would measure
the required rather than additionally required epitope loss for statistical significance. Next, we set
out to determine the required immune pressure (IP ), defined as the fraction of binding peptides that
are lost compared to the reference (i.e., the relative yield rate decrease in test set patients) to reach
statistical significance. As only true positive predicted binding peptides are immunologically visible
and hence targetable, the prediction precision (PPV, fraction of true positive and all predicted pep-
tides) downscales the IP such that the product of the two determines the actually observed immune
strength, IP o: IP o = IP × PPV . As such, we continuously lowered the neoantigen yield rate
in the test set by a factor 1 − IP o, increasing IP o from 0 to 1 in increments of .01, while testing
for statistical significance using a chi-squared test for equal proportions (prop.test as implemented
in R). For each combination of a neoantigen prediction PPV type, the required immune strength to
reach this statistically significant effect size was recorded.

Using the silent mutational load to predict expected neoantigen load and
scan for immune editing

Rooney et al.10 compared the observed neoantigen load to an expected neoantigen load computed
from the silent mutational load, which can be assumed not to be penalized by T-cell pressure as syn-
onymous mutations, unlike non-synonymous mutations, do not form neoantigens. The silent mu-
tational load was subsequently used to estimate exposure to DNA damaging processes and thereby
infer the number of (neoantigenic) non-synonymous mutations expected in the case of no selection
pressure during tumor outgrowth. Assuming that the ratios between (1) synonymous mutations and
non-synonymous mutational loads, and (2) non-synonymous mutations and neoantigen counts are
on average equal between tumors, it is possible to compute the expected or predicted number of
neoantigens from the silent mutational load and two sequentially applied conversion factors. The
expected non-synonymous mutational load NSp is estimated from the observed silent mutational
load by multiplying it with the globally estimated conversion factor cS=⇒NS . Next, NSp is used
to compute the expected number of neoantigens Ep by multiplying it with the globally estimated
conversion factor cNS=⇒E . We finally end up with R, the ratio between observed and predicted
neoantigens for an individual sample

R =
Eo

Ep
=

Eo

S cS=⇒NS cNS=⇒E
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which relates individual samples to the remainder of the cohort which was used to compute the
conversion factors.

To model the variable prevalence of various mutational processes operative in the genomes under
analysis, Rooney et al. performed this analysis in a mutational spectrum specific fashion, i.e., by
taking into consideration the nucleotides directly on the 5’ and 3’ sides of the mutated basepair (e.g.,
AC>TG, a C>T mutation flanked by an A and G). Following Rooney et al., conversion factors are
here computed specifically for each of the 192 possible spectra. As such, R becomes the ratio of the
observed neoantigens and the sum of the spectrum specific expected neoantigen loads.

There are a number of differences between the neoantigen prediction strategy employed here and in
Rooney et al., precluding a direct copy of their methodology. First, the prediction pipeline employed
by Rooney et al. does not account for indels and for interactions between mutations, i.e., potential
interactions between mutations in the form of co-occurrence of mutations in a nonamer-spanning
genomic sequence. To eliminate this source of possible discrepancy, theNS andS input data for this
analysis are restricted to missense mutations. Analogously, peptides resulting from non-missense
mutations are excluded. This means that a neoantigen yielded by for instance a missense mutation
and an indel will not increase the missense mutation tally by one half but instead is excluded – it
would not have been included in the neoantigen predictions used by Rooney et al.. Second, Rooney
et al. performed neoantigen predictions for patient-matched HLA types whereas we elected to use
HLA-A*02:01-predictions for all analyzed donors because of the superior binding affinity predic-
tions as compared to many other alleles. To further harmonize our methodologies, we excluded all
variants (and associated neoantigens) located in driver genes, as these were also excluded by Rooney
et al. (driver genes identified using MutSig, Table S6A from Rooney et al.). We performed these anal-
yses on i) either only clonal mutations or all mutations, ii) in an either mutational context specific
fashion or not for more robust conversion factor estimates (through including more events per con-
version factor), and iii) using our 4-filtering neoantigen prediction pipeline or using predicted HLA
affinity only, the latter to be more consistent with Rooney et al.. Conversion factors were recom-
puted per analysis on all included samples (i.e., pan-cancer).

The‘continuous’ detection strategy -correlatingneoantigenyield rates toHLA
presentation scores across patients

Similar to the discrete-group approach to immunoediting testing, the fundamental idea here is to
compare neoantigen yield rates for a particular four-digit HLA class I allele (hereafter called focus
allele, e.g., HLA-A*02:01) between tumor samples containingHLA alleles that differ in their ability to
present peptides that can be presented by this focus allele, but now analyzed on a continuous scale. In
case depletion of neoantigenic non-synonymous mutations does occur, tumor samples that contain
HLA alleles that show a large degree of overlap in binding pattern with that of the focus allele (i.e.,
that have a high presentation score, h) should show less neoantigens per mutation (low neoantigen
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yield rate, r) on average, as compared to tumor samples that are poor at presenting these peptides
(low h). We assess this difference in r between tumor samples that are high and low in h using linear
regression.

HLA presentation corroboration

Overlap in HLA presentation (HLA corroboration score, Figure 2A) was assessed through overlap in
predicted binding affinity over all 10,072,577 candidate nonameric neo-peptides that we processed
for our patient cohort and for all 227 identifiedHLA class I alleles, in order to select a subset of all 209

potential nonamers that is representative of the human antigenome. The asymmetric HLA corrobo-
ration score for alleles I to allele jwas computed as the fraction of peptides binding to j that are also
predicted to bind I and thus falls in the range [0, 1]: |Pi∩Pj |

|Pj | , wherePi is defined as the set of peptides
presented by HLA allele i. Binding peptides were defined as having a NetMHCpan3.0 predicted per-
centile rank ≤ 1.9 (which corresponds to 255 nM binding affinity for HLA-A*02:01). Three other
thresholds for the definition of binding peptides (1, 3 and 4, corresponding to 100, 500 and 1,000
nM binding affinity for HLA-A*02:01) did not substantially alter our results (data not shown).

Computation of tumor sample and HLA allele-specific HLA presentation scores

For the combination of a the HLA class I repertoire of an individual tumor sample and a particular
focus allele for which immunoediting analysis was performed, the HLA presentation score (h) was
defined as the fraction of peptides that is presentable by the focus allele that is also presentable by one

or more of sample’s HLA alleles, i.e., h =
|{p :p ∈P f and p ∈P r}|

|Pf | , in which Pf is the set of peptides
presentable by the focus allele and Pr is the set of peptides presentable by the sample’s class I HLA
allele repertoire.

For analyses where allelic loss of HLA alleles (inferred using LOHHLA, see section ‘Annotation of
allele-specific HLA loss’) is integrated into hi, alleles identified to have been lost were excluded from
A before computation. Allele amplification was ignored. Where the ‘Presentation score’ setting was
set to ‘HLA A, B’ (rather than ‘HLA A, B, C’), C-alleles were excluded, regardless of other settings.

Mass spec validation of HLA presentation score

To evaluate the validity of the sample-specific HLA presentation scores, we reasoned that mass spec-
eluted HLA ligandomes should be enriched for peptides associated with HLA-alleles for which the
corresponding patient has a high presentation score. To test this, we obtained mass spectrometry
data ofHLA-elutedpeptides from26 samples29 through the SysteMHCatlas (project ID: SYSMHC00010).
We inferred the 4 HLA-A and -B alleles of each sample’s corresponding HLA repertoire by consid-
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ering the HLA alleles to which peptides had been assigned by the original investigators, assuming
homozygosity and two allelic copies when only one HLA-A or B-allele was reported in total. Next,
we compiled sample specific reference proteomes by aggregating all source proteins with which the
observed peptides were annotated by the original investigators, so as to work around the unavail-
ability ofmatchedRNAseq data for these samples. We then assessedwhich peptideswere expected to
be present in the HLA ligandome of each combination of a sample and a focus allele by extracting all
9-mers from these proteins, using the UniProt human reference proteome (UP000005640_9606) as
a reference, and annotating these peptides with a predicted affinity for the focus allele. The minority
(<.1%) of peptides containing either a U (selenocysteine) or X (unknown amino acid) where excluded
a priori. Having filtered these peptides, with passing peptides having an HLA affinity percentile rank
<= 1.9, we assessed which fraction of filter-passing peptides was observed in the experimental data
to arrive at a quantity we interpreted here as prediction precision. Such predictions precisions were
computed for all combinations of all 26 samples and 226 focus alleles (all HLA-A and -B alleles de-
tected in the TCGA patients we analyzed).

A continuous approach to testing for immunoediting

We modeled the mean rate at which mutations yield neoantigens for a particular tumor type r and
how that rate is modulated by the HLA presentation score (h) for the focus allele of the analysis. We
thus define:

Np
i ∼ β0 +Nv

i ri + ε

ri = (1 + βhhi)βr

where Np
i , Nv

i are the neoantigen and mutational load of the patient indexed by i, respectively,
and ri is the patient specific neoantigen yield rate, consisting of a global neoantigen yield rate βr ,
shared across patients, and a second term that describes the degree to which the HLA presentation
capability (presentation scorehi) shifts this global yield rate in a patient-specificmanner. This second
term consists of the patient-specific presentation score hi and βh, the fractional degree to which
ri is modulated by a unit incease in hi. Finally, β0 is an intercept term (the predicted number of
neoantigens whenNp = 0 and h = 0) and ε represents the model residuals (i.e., N̂p

i -Np
i ).

Integrating these two expressions and removing the coefficients, we get the following R model for-
mula to be used in a R (g)lm:

Np ∼ 1 +Nv + h: Nv
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Such that the first coefficient represents an intercept term, the second coefficient represents βr and
the third βh.

A subanalysis was deemed reliably estimable if the p-value associated with βr (i.e., the base r, the
expected neoantigen yield rate for patients with h = 0) was < 0.05. In cases of too few samples or
the absence of a (linear) pattern in the data, this did not happen.

We were ultimately interested in the mean fractional difference ∆ (delta) in neoantigen yield rate
between patients with full HLA-presentation capability for the focus allele in question (h = 1) and
those with no capability whatsoever (h = 0), which boils down to the following expression:

∆ =
(β0 + βrN

v + βpN
v) − (β0 + βrN

v )

β0 + βr Nv
=

βh

β0/Nv + βr

in which Nv is the median number of mutational events across patients. The uncertainty in ∆ was
estimated using Monte Carlo simulation. We generated 104 random samples from the multivariate
normal distribution of the regression coefficients (mean vectors from coef and covariance matrix
from vcov methods of the R fit objects) using the mvrnorm function in the R MASS package (version
7.3.54). We computed∆ for each of these simulations and report the 10th and 90th percentiles of the
resulting distribution (Figure 2D). BothNv andNp were transformed with f(x) = log10(x + 1)

prior to regression analysis.

Permutation testing∆ for significance

We employed permutation testing to assess the statistical significance of observed∆ values. Specif-
ically, the presentation score for each sub-analysis was permuted 250 times and the resulting Δ was
computed for each of those permutations. Any downward or upward bias resulting from distri-
butional imbalances and other potential violations of linear model assumptions will be accounted
for using this approach. We assessed the fraction of permutation ∆ values that was larger than the
observed ∆, a quantity we refer to as q for quantile. Small values of q (< 0.05) are indicative of a
substantial deviation from the permutation null distribution and would be consistent with immu-
noediting. Large values (0.95) would likewise be consistent with neoantigen enrichment.

Detecting parameterizations associated with editing

Aggregating all sub-analyses, each a unique combination of all the potential discrete settings tomake,
resulted in a table with ‘ID’ columns, one for each of the configuration categorical variables, and
columns for the resulting observed statistics, Δ and q. As we wanted to understand which settings
increase the likelihood of observing negative Δ values, we sorted this table for either one of these
statistics and univariately tested all ‘ID’ variables independently for enrichment. We repurposed fast
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preranked gene set enrichment analysis testing here, as implemented in the fgsea R package (package
version 1.18.0). For each level of a categorical variable (e.g., ‘A*02:01’ when considering the focus
allele) occurring in at least 100 sub-analyses, we ran fgsea::calcGseaStat with scoreType = ‘std’ on the
rankings of the sub-analyses and with all the positions of the level in question as the argument to
selectedStats. The calcGseaStat function computes a running-sum statistic and returns the location
where that statistic deviates most strongly from that expected under random shuffling of the level:
the enrichment score (ES). We report the mean-centered version of this statistic, for each setting
separately. Mean values were computed over all enrichment scores and deducted from the original
ES.

Data and software availability

TheTCGAdata download is encapsulated in theRpackagefirehosedownload (http://www.github.
com/slagtermaarten/firehosedownload). Neoantigen predictions are performed using our
customsoftware packagesVarContext (http://www.github.com/schumacherlab/varcontext,
projectingmutations on transcript RNA sequences to compute candidate neoantigenic peptides), ne-
olution-prep & neolution-live (http://www.github.com/schumacherlab/neolution-prep
and http://www.github.com/schumacherlab/neolution-live, for annotation and filter-
ing of candidate peptides), supported by the quickMHC package located at http://www.github.
com/slagtermaarten/quickMHC.
Neoantigen tallying is further wrapped in the fasanalysis (an acronym for foreign antigen space
analysis) package (http://www.github.com/slagtermaarten/fasanalysis). Immunoedit-
ing analysis code, running the analyses and generating the figures presented in this work, is available
at http://www.github.com/slagtermaarten/immunoediting. With the exception of Var-
Context, which is implemented in Perl, all functionality was implemented in R.
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Figure S4.1: Prediction performance for (neo-)antigens and NMD-filter
A Schematic overview of data flow in this work.
B Prediction precision as a function of the HLA-affinity filter threshold in the curated HIV epitope set for HLA-
A*02:01. Shaded areas denote 80% confidence intervals acquired using stratified bootstrapping.
C Parametric plot showing the trade-off between prediction precision (true binders amongst predicted binders)
and prediction sensitivity (predicted true binders of all true binders) as a function of the HLA-affinity filter
threshold in the curated HIV epitope set for HLA-A*02:01. Increasing the stringency of the affinity threshold
increases precision with a trade-off in sensitivity. Dashed red line indicates the 255 nM affinity threshold used
for further analyses.
D As in A, but plotting the trade-off between sensitivity and drop-out (FPR). Inset: zoom in on the horizontal
range of [0, 0.03] of the ROC curve.
E As in A, but for the aggregate of all 10 viral genomes in IEDB (Methods).
F As in B, but for the aggregate of all 10 viral genomes in IEDB.
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A Correlation of cellularity estimates obtained by PyClone and maximum likelihood method. Color indicates
whether amutation is located in an amplified region and thuswhethermultiplicity inference is required. 98.75%
of mutations do not strictly require multiplicity inference (blue dots).
B Pearson correlation between maximum likelihood and PyClone estimates of cellularity for each tumor type
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which multiplicity estimates are required (STAR methods). Dot size reflects the number of mutations on which
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for 12/13 evaluated tumor types. Mutations were grouped based on their effects at the amino acid level. p-
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values reflect one-sided Wilcoxon rank sum tests between non-recurrent and the most highly recurrent (across
included tumor samples) mutations. Esophagus cancer and DLBCL were left out of this comparison as the
most recurrent mutations were positioned in non-oncogenes for these tumor types (CEP170 and MUC6, re-
spectively).

142



CHAPTER 4

HLA−B*39:10

HLA−A*68:02

HLA−B*39:13
HLA−B*14:03 HLA−B*39:01

HLA−B*52:01
HLA−B*39:08

HLA−B*14:02
HLA−B*14:01

HLA−B*39:24

HLA−B*46:01 HLA−B*39:09

HLA−A*69:01 HLA−B*15:73

HLA−B*48:03 HLA−B*15:30

HLA−B*48:01

HLA−A*32:01

HLA−A*02:03

HLA−A*02:06

HLA−A*02:05

HLA−A*02:14

HLA−A*02:13

HLA−A*02:38

HLA−A*02:02

HLA−A*02:22

HLA−A*02:17
HLA−A*02:07

HLA−A*02:19

HLA−A*02:35HLA−A*02:20

HLA−A*02:16

HLA−A*02:11

HLA−A*02:29

HLA−A*02:01HLA−A*02:30 HLA−A*02:24

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Rank quantile

Fr
ac

tio
n 

of
 H

LA
−A

*0
2:

01
 p

ep
tid

es
 b

ou
nd

A

0.1

0.2

0.3

0.4

0.5

0.00 0.25 0.50 0.75 1.00

p − value (χ2 − test)

M
ax

 a
llo

w
ed

 H
LA

−A
*0

2:
01

 p
ep

tid
e 

ov
er

la
p 

w
ith

 a
ny

 o
f H

LA
-A

 a
nd

 B
-a

lle
le

s

Bladder (n = 367)
Breast LumA (n = 357)

Breast Normal − like (n = 28)
Head and neck HPV+ (n = 89)

Kidney clear cell (n = 399)
Lung squamous (n = 93)

Ovary (n = 242)

B

Stomach EBV−
Kidney papillaryCervix HPV+Stomach EBV− MSIH

Glioblastoma
Liver

Lung adeno
ThyroidHead and neck HPV+

Kidney chromophobe
Lung squamousColon MSIH
Breast Normallike

Prostate
Breast Basal
Breast Her2
Cervix HPV−Colon non−MSIH

Kidney clear cellStomach EBV+
Ovary

Bladder
Breast LumA

Head and neck HPV−Melanoma
Pancreas

Breast LumB
Rectum

Af
f=

10
0

Af
f=

25
5

Af
f=

50
0

Af
f=

10
00

Ex
p=

0 
Af

f=
10

0
Ex

p=
0 

Af
f=

25
5

Ex
p=

0 
Af

f=
50

0
Ex

p=
0 

Af
f=

10
00

Ex
p=

50
 A

ff=
10

0
Ex

p=
50

 A
ff=

25
5

Ex
p=

50
 A

ff=
50

0
Ex

p=
50

 A
ff=

10
00

Ex
p=

50
0 

Af
f=

10
0

Ex
p=

50
0 

Af
f=

25
5

Ex
p=

50
0 

Af
f=

50
0

Ex
p=

50
0 

Af
f=

10
00

Ex
p=

50
00

 A
ff=

10
0

Ex
p=

50
00

 A
ff=

25
5

Ex
p=

50
00

 A
ff=

50
0

Ex
p=

50
00

 A
ff=

10
00

−1.5

−1.0

−0.5

0.0

0.5

log2 ratio of yield rates
test vs. reference

patients

FDR adj. p−value
test vs. reference

patients

sig. lower

sig. higher

C

Glioblastoma
Thyroid

Melanoma
Breast Normallike

Kidney chromophobe
Lung adeno

Lung squamous
Prostate

Pancreas
Bladder

Breast Her2
Breast LumB
Breast Basal

Kidney clear cell
Kidney papillary

Head and neck HPV+
Liver

Cervix HPV+Colon non−MSIH
Colon MSIH

Rectum
Stomach EBV+Stomach EBV− MSIH

Cervix HPV−
Ovary

Breast LumA
Head and neck HPV−Stomach EBV−

M
ar

ty
M

ar
ty

 T
R

N
o 

Fi
t. 

Ad
v.

N
o 

Fi
t. 

Ad
v.

 T
R

R
oo

ne
y 

C
AA

R
oo

ne
y 

C
AA

 T
R

R
oo

ne
y 

C
AF

R
oo

ne
y 

C
AF

 T
R

R
oo

ne
y 

C
M

A
R

oo
ne

y 
C

M
A 

TR
R

oo
ne

y 
C

M
F

R
oo

ne
y 

C
M

F 
TR

R
oo

ne
y 

UA
A

R
oo

ne
y 

UA
A 

TR
R

oo
ne

y 
UA

F
R

oo
ne

y 
UA

F 
TR

R
oo

ne
y 

U
M

A
R

oo
ne

y 
U

M
A 

TR
R

oo
ne

y 
U

M
F

R
oo

ne
y 

U
M

F 
TR

SN
V

SN
V 

TR

−0.5

0.0

0.5

1.0

1.5

log2 ratio of yield rates
test vs. reference

patients

p−value
test vs. reference

patients

sig. lower

sig. higher

D

p = 3.57 × 10−2 
Thyroid (n = 316)

Glioblastoma (n = 126)
Breast Basal (n = 151)

Cervix HPV− (n = 8)
Kidney chromophobe (n = 55)

Kidney papillary (n = 138)
Cervix HPV+ (n = 151)

Prostate (n = 284)
Pancreas (n = 129)

Liver (n = 159)
Rectum (n = 48)

Stomach EBV− (n = 156)
Lung squamous (n = 163)

Bladder (n = 347)
Melanoma (n = 264)
Colon MSIH (n = 32)

Breast LumB (n = 252)
Colon non−MSIH (n = 160)

Breast Normallike (n = 22)
Head and neck HPV− (n = 351)

Lung adeno (n = 427)
Stomach EBV− MSIH (n = 45)

Ovary (n = 218)
Head and neck HPV+ (n = 81)

Breast Her2 (n = 81)
Kidney clear cell (n = 360)

Breast LumA (n = 325)
Stomach EBV+ (n = 21)

10 20 30 40
Observed neo−epitopes / expected neo−epitopes

HLA−A*02:01
germline presence

A*02:01 no A*02:01−like

E

Breast Normallike (n = 12)
Breast Basal (n = 144)
Breast LumA (n = 293)
Breast LumB (n = 239)

Melanoma (n = 244)
Lung squamous (n = 162)

Thyroid (n = 202)
Head and neck HPV− (n = 285)

Bladder (n = 180)
Lung adeno (n = 390)

Liver (n = 120)
Head and neck HPV+ (n = 65)

Breast Her2 (n = 76)

10 20 30 40
Observed neo−epitopes / expected neo−epitopes

F

143



Figure S4.3: Extended analysis of genomic neoantigen depletion
A Fraction of predicted HLA-A*02:01 neoantigens that is predicted to also be presented by any of the other de-
tectedHLA class I A andB alleles. Unless indicated otherwise (see B), HLA alleles predicted to presentmore than
20% of predicted HLA-A*02:01-neoantigens (as indicated by the red line) were labelled as ‘HLA-A*02:01-like’
in subsequent analyses, and samples expressing any of these alleles were excluded from the HLA-A*02:01-like
negative reference group.
B The relationship between ‘the HLA-A*02:01-similarity threshold for patient inclusion in the HLA-A*02:01-
like-negative reference set and the observed p-values in ameta-patient analysis of yield rate differences between
the test samples and reference set samples is depicted per tumor type. To avoid over-plotting, seven randomly
selected tumor types are shown. Note that an increase in stringency does not result in a systematic increase in
statistical significance when comparing test and reference groups.
CEffect of different neoantigen prediction pipeline parameterizations on the detection of neoantigen depletion.
Yield-rate differences in meta-patient analyses (see Figure 4.3A) are depicted. Triangles reflect comparisons for
which FDR-adjusted p-values from two-sided Wilcoxon rank-sum tests were below 0.05. Upward and down-
ward pointing triangles would point to genomic neoantigen depletion and to negative genomic neoantigen
depletion, respectively.
D Effect of different modifications of neoantigen depletion analysis strategies on the detection of neoantigen
depletion, while keeping neoantigen prediction parameters at the default settings. In the ‘Marty’-analyses, anal-
ysis is restricted to recurring oncogenic mutations as identified by Marty et al. (2017). Also shown are analyses
inwhichmutations that can confer a fitness advantage are excluded (‘No Fit Adv.’), as in Figure 4.3D. In addition,
8 versions of analyses inspired by Rooney et al. (2015) are included. In this analysis, all permutations of three
core settings were tested, denoted by three letters in the following format: ‘(C|U)(M|A)(F|H)’. Position 1 of the
analysis identifier denotes the exclusion of variants based on clonality: (U)naware (no exclusion of subclonal
mutations) vs. (C)lonal. Position 2 denotes the computation of conversion factors: (M)utational context specific
vs. (A)specific. Position 3 denotes the neoantigen prediction pipeline filtering parameter: (F)ull 4-filter pipeline
vs. HLA affinity filter (H) only. Finally, the SNV-restricted analysis also presented in Figure 4.3A is shown. Of
all analyses, a T cell-resistance (TR) version is additionally shown, in which tumor samples that have at least
one non-synonymous mutation in one of the 515 genes labelled as providing resistance to T-cell pressure31 are
excluded. Unadjusted p-values from two-sided Wilcoxon rank-sum tests are shown by triangles in case of sig-
nificance (p < 0.05). Upward and downward pointing triangles would point to genomic neoantigen depletion
and to negative genomic neoantigen depletion, respectively. Missing analyses due to missing input data are
indicated by a gray fill.
EEmploying amutation loss detection strategy inspired by Rooney et al. (2015), in which the expected neoanti-
gen load is computed based on the synonymous mutation load and contrasted against the observed (predicted)
neoantigen load.
F As in E, but also restricting the analysis to clonal mutations.
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Figure S4.4: Mass-spec based validation of the presentation score forHLA-presentation capability.
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Each panel represents a single sample from the Pearson et al. (2016) study32 that performs analyses of HLA-
associated peptides by mass spectrometry. Each dot represents a focus allele. Horizontal axis: presentation
score for this particular sample for a given focus allele, vertical axis: the fraction of expected peptides under
100% sensitive mass spec technology (i.e., with each peptide from every available protein detectable) that is
detected. In general, HLA alleles that show a higher overlap with the predicted binding capacity of the HLA
alleles that are expressed by a sample (i.e., a high presentation score) show higher fractions of detected peptides.
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Figure S4.5: Presentation scores are highly variable across focus alleles.
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A Heatmap of h across all included samples, computed across all 6 HLA class I alleles in a samples, not leaving
out HLA alleles that are genomically lost. Left panel: raw presentation scores. Right panel: binary matrix indi-
cating whether the focus allele is present in the set of a patient’s six HLA class I alleles.
B Pairwise correlationmatrices of presentation scores. Diagonal elements (histograms) reflect univariate distri-
butions. Sub-diagonal and supra-diagonal elements show a near-absence of correlation between focus alleles.
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Figure S4.6: Efficient running of LOHHLA for large sample numbers.
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A Relationship between the disk size of a TCGA BAM file and its read count content. The strong relationship
here allows one to estimate the read content of BAM files from their file size, which, unlike the read count
content, can be queried from the TCGA GDC API. Total read count is a required input variable for LOHHLA
to run.
B Illustration of the robustness ofHLA allele copy number estimateswith regards to the LOHHLAminCoverage
threshold that defines the minimal number of overlapping reads for a single genomic position to be considered
robust enough for use in HLA allele copy number estimates. Each line corresponds to a single copy number
estimate.
C Quantification of the robustness in B, using the coefficient of variation (CoV), visualized with violin plots.
Most alleles have near-zero estimates, indicating robustness.
DThe fraction of HLA allele copy number estimates (6 per patient) with CoV-estimates below the threshold
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Figure S4.7: Sub-analysis of settings associated with∆.
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AAs in Figure 4.4A, but after sorting of sub-analyses on Δ rather than q. Sub-analyseswith the RNA-expression
filter set to ‘VE=0’ (i.e., requiring > 0 / 106 total reads to overlap the variant in order to be called expressed) ap-
pear enriched among the sub-analyses with the most negative Δ (consistent with neoantigen depletion).
B As in Figure 4.4D, but varying the RNA expression filtering setting on the horizontal axis. Variant-level fil-
tering (VE=0) somewhat strongly affects the mean neoantigen yield rate (r) and also affects∆. However, it does
not affect q at all, indicating the effect on∆ is likely to be artefactual, see supplementary note 1.
C Evidence that stringent neoantigen filtering, resulting in low mean r across all patients, in combination with
inhomogeneous distribution of h, causes∆ to be biased. Please see Supplemental Note 1 for associated reason-
ing. P-values in the lower right corners reflect the linear regression slopes of the∆TMB vs. ∆r regression line.
D As in Figure 4.4B. but for settings associated with the manner in which the neoantigen depletion analysis is
performed. Color scale as in A.
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Figure S4.8: Trends of neoantigen depletion are not reproducible across focus alleles.
AAs in Figure4.4E, but split by focus allele and for all tumor types forwhich stringent filtering ofT cell-resistant
tumor samples was possible.
B As in Figure 4.4F, but split by focus allele and for all tumor types for which the recurrent oncogenic variant
selection was possible.

Supplemental Note

Testing for neoantigen depletion settings that were associated with ∆ (rather than q, as used in the
main text), we found that stringent RNA expression filtering on the variant level on average led to a
negative ∆ for a majority of tumor types (Figure S4.7A). Selecting and plotting groupings of iden-
tically parameterized sub-analyses, save for the RNA expression filtering setting, confirmed the ob-
servation of an effect on∆ and not q (Figure S4.7B).

Interpreting this result, we imagined that stringent neoantigen filtering might enrich for negative
∆ but not low q through lowering the mean neoantigen yield rate (r). As low-TMB patients will be
more likely to be predicted to have 0 neoantigens, appearing fully depleted of neoantigens, severe re-
duction of r could render the overall analysis sensitive to imbalances in the distribution of patients
over the presentation score (h). This is because any range of h that is relatively sparse in patients
will more likely appear to be fully depleted of neoantigens. When relatively few patients populate
the lower range of h (h ∈ [0,∼ .25]), ∆ could then be biased upwards (i.e., indicating nonsensi-
cal enrichment of neoantigens with enhanced neoantigen presentation). Similarly, ∆ will be biased
downwards with relative patient sparsity at the upper range of h (h ∈ [∼ .75, 1]).

To test this hypothesis, we first computed the mean relative difference in TMB between h = 1 and
h = 0 patients (∆TMB ), much like we did in our primary regression of h against r (∆), to directly
quantify the degreewithwhichh andTMBare correlated. This demonstrated that∆TMB is strongly
associated with∆ (Figure S4.7B), especially for sub-analyses for which the mean r is low, indicating
that imbalance in the distribution of h at least partially explains∆ (Figure S4.7C). As h-permutation
does not modify the overall h-distribution, permutation∆s will retain whatever degree of bias that
is already present in the original data, such that q is the more robust and informative of the two
statistics to assess.

We conclude that, through lowering r, in combination with inhomogeneous distribution of h, vari-
ant level expression filtering likely lowered∆ but not q in amanner that is independent frombiology.

Supplemental Tables

For the supplemental tables, please see here: 10.1101/2023.06.21.544805
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