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CHAPTER 1

SCOPE OF THIS THESIS

This thesis is about immune cells of the adaptive immune system called T cells, how they
interact with the microenvironment of tumors, which types of tumors are sufficiently vis-
ible to the T cell based immune system and how we can better boost T cell activity to treat
patients with cancer. Put differently, the results in this thesis explore the effects of antigen-
specific T cells on the tumor masses that they have homed to. Summarizing part of this
work: a T cell’s impact reaches beyond the directly adjacent antigen-expressing cell, but not

detectably so in all manners we expected it to.

But first, what exactly are these immune cells called T cells? In the evolution of life, mul-
ticellular organisms have had to develop immune systems in order to fight of pathogens
(such as bacteria and viruses) and to maintain homeostasis. The immune system of jawed
vertebrates, the phylum that contains humans and mice as well 99% of all other modern
vertebrates, consists of a plethora of different cell types, each with their own role to play
in supporting immunity. The classical way to organize the ontology of immune cells is to
group them into the innate and adaptive branches, but we now know of many cell types that
exhibit characteristics of both branches and so the reality is not quite as binary. Sketching
characteristics of the innate and adaptive banches in broad strokes one could say that the
innate immune system offers a first line of defense, with rapid responses to a broad group

of pathogens based on general molecular patterns. In contrast, the adaptive immune system



has the distinct potential for higher specificity (tailoring responses to individual pathogens),
and without a requirement for recurring molecular patterns, albeit at a slower pace than the
innate immune system. Importantly, the adaptive immune system has the capability to form
immunological memory, such that it can respond with higher agility when a pathogen is en-
countered again. The adaptive system is also where we find the protagonist of this thesis:

the T lymphocyte or T cell.

A distinguishing feature of T cells is that they can survey the entire proteome (including in-
ner proteins) of an organism’s own (i.e., host) cells, to try and discriminate between healthy
cells and those that may have been compromised by a pathogen. To do this, T cells carry
a protein complex called the T cell receptor (TCR) on their cell surface, which provides its
molecular specificity. The TCR is capable of interacting with short peptides, derived from
cellular proteins, that are presented on the cell surface by major histocompatibility complex
(MHC) molecules. Together, they form the so called peptide MHC complexes (pMHCs).
Essentially all host cells present pMHCs on their cell surface as a way of offering "identi-
fication’ to the T cell based immune system and can be instructed to further increase this
activity by different kinds of molecular ‘'messengers’ that put the immune system on alert.
As highly specific sentinels, T cells migrate through the body and use their TCR to scan the
pPMHC s they encounter. Upon encountering a fitting ‘match’, the pMHC-bound TCR acti-
vates an intracellular signal transduction pathway within the T cell, consisting of a series of
biochemical events mediated by associated co-receptors, adaptor molecules, and activated
transcription factors, that will trigger various processes to neutralize the cell presenting the
matching pMHC. Via this mechanism, T cells can track down virus (e.g. influenza, corona)
infected cells. More specifically, infection of a host cell by a virus typically leads to expres-
sion of viral proteins, which can result in MHC-presentation of "viral’ peptides and T cell

recognition of these infected cells.

However, the killing capacity of T cells reaches beyond virally infected cells. It has become
abundantly clear that T cells can also detect and kill cancer cells, with large therapeutic po-
tential for patients with cancer. Early evidence in favor of a potential role of T cells in the
control of cancer came from the observation that, for a large variety of cancers, the intratu-
moral infiltration of CD8-* T cells correlates with positive prognosis®2. Direct evidence for
the anti-tumor potential of T cells came from data demonstrating that the administration
of antibodies that target T cell inhibitory receptors, such as CTLA-4 and PD-1 (also known
as T cell checkpoint blockade), shows clinical benefit in many different forms of cancer®?.

By the same token, the infusion of ex vivo—expanded autologous tumor-infiltrating lym-



CHAPTER 1

phocytes (TILs) can induce clinically meaningful responses in melanoma patients”, even
when refractory to anti-PD-1 treatment®. Finally, early data on personalized (mRNA) vac-
cination, aiming to boost anti-tumor T cell reactivity and expand naturally occurring T cell
clonotypes, points towards a potential clinical benefit for patients with melanoma”* and

pancreatic ductal adenocarcinoma'”,

As most human cancers are not associated with pathogen infection, how does the T cell-
based immune system see cancer cells as foreign? Malignant transformation of cells depends
on accumulation of DNA damage, which is a double-edged sword to an individual cancer
cell. On the one hand, DNA damage may confer a fitness advantage over neighboring wild
type (unmutated) cells, by enabling the acquisition of cancer hallmarks (e.g., increased pro-
liferative capacity, resistance to cytostatic environmental cues). On the other hand, muta-
tionally altered proteins can lead to the presentation of non-self neoantigens, which allow the
T cell based immune system to identify the cancer cell as foreign™ !4, T cells can respond

1314 and this is

to the neoantigens that arise as a consequence of such genomic alterations
likely to, at least in part explain, the clinical activity of both T cell checkpoint blockade® and

adoptive TIL therapy'~.

Part I - The clinical utility of T cell therapies in cancer

The first part of this thesis is of a translational nature, with a relatively direct applicability

to clinical care for patients with cancer.

My long PhD period spanned a pivotal time in the field of T cell targeting immunotherapies
for cancer. Back in 2015 (the start of my PhD), highly encouraging data for the clinical util-
ity of T cell checkpoint blockade started to emerge in melanoma and non-small cell lung
cancer!®, tumor types that tend to carry a high mutational burden, and thereby neoanti-
gen burden. If mutation derived neoantigens are indeed critical for T cell recognition of
cancer, then one can wonder which other cancer types are sufficiently rich in this antigen
class. There was a strong desire to get an early idea of the clinical utility of immunothera-
pies such as T cell checkpoint blockade beyond the aforementioned highly mutated tumor
types. Leveraging large cancer sequencing projects like the Cancer Genome Atlas (TCGA)
and the International Consortium for Cancer Genomes (ICGC), that have provided a molec-
ular characterization of thousands of cancer samples, we addressed this need in Chapter
2. To learn what numbers of antigens may be sufficient for clinically relevant T cell activ-

ity, we first assessed the antigen load of 'benchmark’ viruses, of which the controllability by



the T cell-based immune system is well documented. We then applied a custom neoantigen
prediction pipeline, routinely used for the prioritization of neoantigens for experimental
screening, to assess the different forms of DNA damage for their neoantigen generating
potential and the cumulative predicted neoantigen load for each of the samples. Encourag-
ingly, we found ~50% of the assessed cancer samples to be richer in predicted (neo)antigens
than one of the benchmark viruses, suggesting potentially widespread applicability of T cell

engaging therapies for cancer.

In Chapter 2, one subgroup of breast cancer patients, those of the basal subtype, appeared
to have especially high predicted neoantigen loads. This basal subtype in the PAMS50 sub-
typing system is largely similar to the triple negative breast cancer (TNBC) subtype of the
molecular breast cancer subtyping system. TNBC typically affects younger women and is
highly aggressive'. Until recently, the median survival for patients with metastatic disease
was a meager 12-18 months™!8, Unlike other forms of breast cancer, TNBC is not driven
by the hormones progesterone and estrogen, nor by amplification of the oncogene HER2.
Instead, TNBC is typically defective in the apoptosis regulator P53, and less frequently in
the DNA damage repair proteins BRCA1/2, contributing to TNBC’s high mutational bur-
den relative to other breast cancer subtypes. Based on data obtained in e.g., melanoma and
non-small cell lung cancer, the high mutational burden and concomitant neoantigen load
could offer a window of opportunity for T cell recognition. In Chapter 3, we describe the
TONIC-study that evaluated the clinical utility of T cell checkpoint blockade, a treatment
form that hinges on the availability of tumor specific antigens that can be recognized by T
cells. In this phase II signal finding study, all 67 patients received nivolumab, a therapeutic
antibody that antagonizes a regulatory protein on the cell surface of T cells (programmed
death receptor 1, PD1). To try and elevate the intratumoral levels and/or activity of T cells
prior to nivolumab administration, different induction treatments were evaluated: radia-
tion therapy (3 times 8 Gray), oral cyclophosphamide, cisplatin, low-dose doxorubicin or a
waiting period of two weeks. Chapter J details an extensive molecular characterization of
longitudinally acquired biopsies, aimed at comparing the induction treatments and gaining
an understanding of their mechanism of action, as well as on identifying molecular markers

of clinical benefit.
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PartII - The effects of T cells on the tumor microenvironment

The second part of my thesis is of a more fundamental nature, primarily aimed at expanding

our understanding of T cell biology in the context of cancer.

In Chapter 5, we investigate the way T cells communicate with other cells in the tumor
microenvironment. Specifically, we report on the spreading behaviour of the T cell emit-
ted cytokines IFN-y and TNF-o. For this, we leverage the cytokine responsive behaviour
of numerous endogenous genes and single cell RNA-sequencing of antigen-negative cells,
which cannot directly be engaged by T cells. We found IFN-v to spread beyond the antigen-
presenting cell, consistent with earlier microscopy-based work>#Y, whereas TNF-a/s activ-
ity is - surprisingly - more confined. We also acquired evidence for the notion that TGF-[3-
sensing is lowered in IFN-y-experienced cells, potentially due to IFN-vy-instructed lower-

ing of TGF-fsecretion in neighboring immune cells.

In Chapter {4, we revisit the neoantigen predictions of Chapter 2 to study the ramifications
of the selective pressure exerted by the T cell based immune system on developing cancers.
It has long been hypothesized that, through their killing activity, T cells may exert evolu-

2l even before clinical manifestation and intervention.

tionary selective pressure on cancers
Such 'immune surveillance’ is supported by murine models of cancer. Immunodeficiencies
in mice increase tumor incidence and susceptibility to transplanted or chemical carcinogen-
induced tumors??. For humans, (direct) evidence of immunoediting is more elusive. Some
hints of its existence can be gleaned from the fact that immunosuppression, either due to
AIDS? or purposefully induced to facilitate organ transplantation®?, is associated with a
higher incidence of especially virus-induced cancers. However, these associations can also
be attributed to decreased immunity against these (oncogenic) viruses, rather than a de-

creased ability to clean up nascent tumors.

Nevertheless, an important component of cancer development may be the evasion of im-
munity®? and a multitude of mechanisms to this effect have been identified. For instance,
tumors may lose components of the IFN-v-signalling pathway2¢, thereby conferring ’se-
lective deafness’ to IFN-vy, a central cytokine emitted by activated T cells. Tumors can also
undergo genetic loss of the MHC locus®, prohibiting T cell recognition via the T cell recep-
tor. A third way to evade T cell immunity is to genetically lose DNA mutations associated
with neoantigens®® or transcriptionally silence expression of neoantigen coding genes**Y,
but the (bioinformatic) detectability of this type of immune editing in treatment-naive can-

cer is still controversial®!. In Chapter 4 we leveraged the great statistical power that the



large availability of patient samples should offer, to try and robustly detect neoantigen de-
pletion. We could not find a convincing signal of depletion, despite having corrected for a
large series of potentially confounding processes. This result is likely to be in large part due
to the high false positive rate that currently still plagues neoantigen prediction®?, a key tool
in these analyses. As such, the statistical power of these analyses is limited and they should

not be interpreted as fully ruling out some degree of sculpting of the neoantigen repertoire.

Finally, in Chapter [, I first discuss how to build upon the methodology we developed for
transcriptome-based cytokine exposure inference in Chapter 5. Due to the many cytokine-
responsive genes and unique patterns with which different cytokines may up- or downreg-
ulate gene expression, the potential for this approach reaches far beyond ’just’ the handful
of cytokines we studied in Chapter 5, while its applicability also continues to rise with the
developing revolution of spatial single cell sequencing. To enable the inference of exposure
to stimuli (e.g., cytokines) from RNA-seq in a highly multiplexed fashion, algorithmic inno-
vation will be of critical importance. In this chapter, I describe potential issues in applying
transcriptome-based cytokine inference and how these can be surmounted with improved

computational frameworks.
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CHAPTER 2
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Abstract

Mutational load varies widely between and within malignancies and has been used as a proxy for the
immunological foreignness of human cancers. However, without well-defined reference points it is
difficult to determine which human tumors can be considered sufficiently foreign to the T-cell-based
immune system. We established a neoantigen prediction pipeline that processes single nucleotide
variants, indels and structural variants and established its precision in identifying T-cell-recognized
antigens. We subsequently used this pipeline to benchmark the immunological foreignness of human
cancers against that of human pathogens for which T-cell control has been established. We demon-
strate that up to 50% of tumors, spanning 25 sites of origin, are more foreign than these pathogen
benchmarks, due to the presentation of foreign antigens they have accumulated. These data sug-
gest that enhancing the activity of the endogenous tumor-specific T-cell compartment through im-

munotherapeutic strategies may be of value for a large fraction of human cancers.

11
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Introduction

The ability of the T-cell-based immune system to specifically recognize and destroy human can-
cers has attracted strong attention. Antibodies against the T-cell checkpoint molecules CTLA-4,
PD-1, and its ligand PD-L1, can induce tumor regression in a range of human malignancies!™. In
addition, both infusion of autologous ex vivo-expanded tumor-infiltrating lymphocytes (TIL) and
TCR gene-modified peripheral blood lymphocytes have shown activity in melanoma® and HPV-
associated cancers?!!., The anti-tumor activity of these therapies is at least partially mediated by
CD8" T cells, as suggested by the predictive value of pre-treatment intratumoral CD8" infiltrates!!
and as shown by the clinical activity of purified CD8* TIL. Several lines of evidence indicate that
T-cell recognition of neoantigens that are formed as a consequence of somatic DNA damage are a
major driving force behind the activities of these therapies. First, T-cell responses against neoanti-
gens are observed in a large fraction of patients with highly mutated tumors®!¥ and can be boosted
by immunotherapy®™. Second, activity of both CTLA-4 and PD-1/PD-L1 blockade is preferen-
tially observed in tumors with above average mutational burden in a number of tumor types!=-18,
Third, and most directly, case reports that describe the infusion of T-cell products with high levels of
neoantigen reactivity showed evidence of clinical activity and associated selective pressure against

neoantigenic mutations™® 2!,

The availability of genomic information on different human cancers has inspired efforts to estimate
the immunological foreignness of these cancers through in silico predictions. In a landmark paper,
Allison and Vogelstein postulated that many human tumors should carry neoantigens®?. Subsequent
work has similarly used genomic data to predict the presumed neoantigen burden of different hu-

man cancers?¥2 132529

, in some cases in combination with clinical response to checkpoint inhibitors
While these efforts have been very valuable to describe the relative number of predicted neoantigens
in different human cancers, the data have not been well-suited to draw quantitative conclusions as a
grounded reference point informing on the number of epitopes sufficient to allow the formation of

protective T-cell responses has been lacking.

To advance our understanding of immunological foreignness of different human cancers, we first
developed an epitope prediction pipeline (Neolution) and assessed its performance using a set of ex-
perimentally identified T-cell recognized HIV epitopes. We subsequently used this pipeline to predict
neoantigens for a total of 7,290 tumors obtained from the Cancer Genome Atlas (TCGA), the Inter-
national Cancer Genomics Consortium (ICGC) and the Multiple Myeloma Foundation (CoMMpass)
repositories, taking into account the consequences of single nucleotide variants (SNVs), insertions-
deletions (indels) and structural variants, and — where applicable — included other potential sources
of immunologically foreign protein sequence encoded by non-germline DNA sequences, such as
proteins encoded by oncogenic viruses and the B-cell receptor idiotype. In this manner, we trans-
formed the entire pool of genomically novel sequences of individual tumors to the foreign antigen

space (FAS), allowing for their direct comparison to a grounded, viral context. To generate such

12
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context, we used the same prediction pipeline to analyze proteins from three pathogens for which
T-cell control has been shown to be clinically relevant: the E6 and E7 oncogenes from the human
papilloma virus (HPV)%, the LMP- I and LMP-2 oncogenes from the Epstein-Barr virus (EBV)%, and
the HIV-1 genome®2¢,

We demonstrate that a large fraction of human cancers has evolved to express a sufficient number of
foreign antigens to allow T-cell recognition. Tumors positive for a viral integration are shown to be
especially immunologically foreign. These data provide a strong incentive for the further develop-
ment of therapeutic strategies that aim to expand (neo-)antigen-specific T-cell reactivity in not only

highly, but also modestly mutated human tumor types, especially those of viral aetiology.

Results

Robust estimates of DNA damage- and virus-derived antigen loads

To generate a pan-cancer overview of the foreign antigen space of human tumors, we selected pre-
treatment samples from 7,268 patients across 25 tissues of origin, covering 42 tumor subtypes, based
on the availability of patient-matched DNA and RNA sequencing data (Figure 2.1, Table for list of
patient identifiers and annotations). We reconstructed tumor transcripts using SNVs, indels and, for
a subset of patients from whom these data were available, large-scale gene fusion events in order
to obtain a set of candidate tumor-specific neoantigens. For both SNVs and indels, candidate pep-
tides whose genomic sequences were affected by multiple mutations were modified to reflect the
consequences of all variants (154,731 of 8,818,152 candidate peptides, 1.75%). Conversely, struc-
tural variants were analyzed in isolation as these were found not to substantially overlap with fo-
cal DNA damage (i.e. missense mutations and indels; only 9 out of 20,140 fusion events affected,
Figure S2.1A). NMD-targetability of transcripts was predicted and targeted transcripts and their as-
sociated candidate peptides were excluded, where indicated. Finally, candidate neoantigens were
annotated with the output of our four-filter epitope prediction pipeline that models the major re-
quirements for (neo-)antigen presentation individually: expression of the mutant DNA sequence,
predicted proteasomal processing, predicted HLA-binding, and self-similarity (Figure S2.1A). RNA
expression was assessed using sample-matched gene expression levels from the matched tumor,
requiring at least one mapped read to be considered expressed, unless indicated otherwise. HLA-
binding was assessed with the frequently observed HLA-A*02:01 allele for which binding affinity
predictions are most accurate?!. Using a single HLA-allele rather than patient-matched HLA-alleles
allows for uniform prediction accuracy across patients. With any of four other HLA-alleles that
are also well-predicted, we did not get substantially different neoantigen loads (Figure S2.1B). From
959,792 non-synonymous DNA mutation events, we predicted 80,234 candidate peptides that passed

all four filters.
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Figure 2.1: Study setup and methodology.
Tumor genome sequencing data and viral genome sequences were used as input for the indicated neo-antigen
prediction pipeline, yielding tumoral and viral foreign antigen loads for direct comparison.

Focal DNA damage dominates the foreign antigen space of most tumors

Previous neoantigen identification efforts have mostly focused on SNVs rather than other classes of

DNA damage like indels and gene fusions!3£324

. Frameshifting indels and loss-of-stop mutations
can result in open reading frame extensions, where novel coding sequences ultimately become ac-
cessible to RNA translation, forming an additional source of neo-epitopes ##4. Similarly, while in-
frame gene fusion events yield immunologically novel DNA sequences that are restricted to the fu-
sion breakpoint, out-of-frame fusions additionally lead to the formation of downstream novel open
reading frames (ORFs) until an in-frame stop codon is encountered. As can be expected, peptides de-
rived from these novel ORFs were more likely to be dissimilar from the self-ligandome and thus have
a higher probability of being T-cell recognized: of all affinity-filter-passing candidate peptides 74.0%
(95% CI: [73.5%, 74.5%]) and 61.0% (95% CI: [60.8%, 61.2%]) derived from frameshifting indels and
missense mutations, respectively, were classified as dissimilar from self. Next, we determined the
propensity of each mutation class to generate neo-epitopes by assessing the ratio between the num-
ber of neoantigens contributed by the class and the prevalence of that class, resulting in a mutation-

class-specific neoantigen yield rate. As expected, we found DNA damage types to vary significantly
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in their neoantigen yield rates (Figure 2.2A) in a manner highly consistent across tumor types (Figure
S2.2A) and HLA alleles. Loss-of-stop mutations generated 4.99-fold more neoantigens per mutation
than missense mutations. The neoantigen yield rate of frameshifting indels only minimally exceeded
that of missense mutations when accounting for NMD (1.1-fold), but yielded 3.1-fold more neoanti-
gens when omitting the NMD-filter (Figure 2.2A). In spite of this observed variation in neoantigen
yield rate between DNA damage classes, the absolute contributions of different mutation classes to
the predicted antigenome is predominantly determined by their prevalence. Specifically, due to the
high abundance of missense mutations, this class dominates the predicted antigenome for all inves-
tigated tumor types, despite its relatively modest neoantigen yield rate. This holds true both when
NMD is not taken into account (Figure 2.2B, top) and when it is by removing predicted neoantigens

derived from transcripts identified as NMD-targeted (Figure 2.2B, bottom).

Many of the mutational processes underlying tumorigenesis (e.g. UV radiation, tobacco smoke and
loss of DNA repair mechanisms) are associated with unique patterns of SNVs, termed mutational
signatures®d. To assess possible differences in neoantigenicity between mutational processes, we
inferred the likelihood for SNVs to have been caused by any of the identified processes and associated
signatures for 6,504 tumor samples across 36 tumor types (methods, Table ). This calculation was
performed for each SNV individually taking into account the signature’s tendency to cause the SNV
and the total abundance of the signature. We observed small and statistically insignificant differences
in HLA-A*02:01 neoantigen yield rates between signatures within tumor types (lowest FDR-adjusted
p-value is 0.214 for lung squamous cell carcinoma, Figure S2.2B) indicating that mutational processes
do not differ in their ability to yield SNV-associated HLA-A*02:01 (or other alleles, data not shown)

neoantigens.
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Figure 2.2: Neo-antigen contribution and neo-antigen yield rates of different types of DNA damage
A Neo-antigen yield rates (the mean number of predicted neoantigens per mutation) for five different HLA
alleles and different classes of DNA damage. Weighted mean yield rates indicated by squares, surrounding lines
denote 95% Cls.

B Proportional contribution of different types of DNA damage to the DNA damage-associated foreign antigen
loads across human tumors, both without (top) and with (bottom) the NMD-filter applied. In the bottom panel,
gene fusion and stop loss variants were assumed not to be affected by NMD.

Viral benchmarks to compare DNA-damage derived antigen loads with

Prior analyses have demonstrated that the number of predicted neoantigens correlates well with the

2428 However, in absence of a benchmark for the FAS known to

number of genomic alterations®
suffice for T-cell recognition, it has been difficult to determine for which human tumors the foreign
antigen pool is sufficiently large to elicit T-cell reactivity. To provide such a benchmarked analy-
sis of the foreign antigen loads in human tumors, we selected three viral references that have been
shown to provide sufficient genomically foreign T-cell antigens to yield clinically meaningful re-

sponses. First, the E6 and E7 oncoproteins from human papilloma virus (HPV) which are expressed
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in cervical cancer, head and neck cancer, and ano-genital cancers, but also in premalignant neoplas-
tic lesions. Vaccination of patients with premalignant vulvar intraepithelial neoplasia with pools of
overlapping HPV16 E6 and E7 peptides has previously been demonstrated to lead to regression of
lesions in more than 80% of patients®’. Thus, clinically meaningful T-cell reactivity against epitopes
within the E6 and E7 oncoproteins can apparently be induced in a large fraction of patients. Second,
the EBV LMP-1 and LMP-2 oncogenes which are causally involved in EBV-induced transformation
of a number of tissue types and the expression of these genes continues after initial cellular trans-
formation. Evidence for clinically relevant immunogenicity of LMP-1/LMP-2 is provided by the
observation that T-cell products generated against these two proteins mediate regression of a large
fraction of EBV-positive relapsed or refractory Hodgkin and non-Hodgkin lymphomas (OR of 62%,
CR of 52%; (Bollard et al., 2014; Heslop et al., 2010). Third, as a non-cancer related viral reference,
numerous CTL responses have been identified in patients infected with HIVE4, Furthermore, reports
on both humans and non-human primates have shown a correlation between HIV-specific CD8* T
cells and control of viremia®?2¥, and evidence for CTL-mediated control of HIV-1 is also provided
by the association of slow disease progression with certain HLA alleles and presence of conserved
T-cell epitopes®3 4,

To use these viral gene sets as benchmarks, their predicted foreign antigen loads are required to scale
similarly to viral immunogenicity as those from human genes. As gene expression influences cell

surface antigen abundance®:-4

and as such likely T-cell recognition probability, structural differ-
ences between viral and human gene expression would complicate the intercomparison of foreign
antigen loads. We compared the expression levels of the benchmark viral oncogenes and human
protein-coding genes in tissue samples maximally similar to those in the studies we used to define
our benchmarks. To the best of our knowledge, RNA sequencing data of VIN lesions used for the
HPV E6/E7 benchmark is not available, so we analyzed HPV-positive high-grade cervical intraep-
ithelial neoplasia (CIN) lesions. Here we found the average expression of HPV E6/7 to be slightly
lower (0.77-fold difference in medians, p = 0.83; Figure 52.3A) than human genes, which is unlikely
to be of discernible effect on cell surface antigen abundance as RNA expression levels vary over 4
orders of magnitude (Fig S3A). In an analogous analysis of EBV* diffuse large B-cell lymphomas,
average expression of EBV LMP- I and LMP-2 was found to be ~7.7-fold lower (0.13-fold difference
in medians, p = 0.2; Figure $2.3B) than human genes. The trend towards somewhat lower expres-
sion of the viral oncogenes, renders these oncogenes a reasonable and possibly slightly conservative
benchmark for the foreign antigen load known to suffice for the induction of clinically relevant T

cell reactivity.

Benchmarking the foreign antigen space of human malignancies against hu-

man pathogens

To generate a comprehensive estimate of immunological foreignness across cancer types, we com-

bined the predicted HLA*A:02:01-neo-antigen loads resulting from somatic DNA damage, with those
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of non-germline sequences in the rearranged B-cell receptor in case of B-cell malignancies and of
expressed viral genes for virus-positive cancers. For the latter class of genes, viral contributions were
restricted to genes expressed within the top three quartiles of the human transcriptome. As we pre-
viously found neoantigen depletion to be incomplete at best (Chapter ), we analyzed HLA-A*02:01
neo-antigen predictions as a proxy for all class I neo-antigens for all patients, regardless of their HLA

repertoires.

Comparing the foreign antigen loads of human tumors to those of our viral benchmarks, we found
large overall consistency with observed clinical successes of cancer immunotherapy obtained so
far*!, while simultaneously also highlighting tumor types worthy of further exploration in terms
of immunotherapeutic targeting of foreign antigens. 16 out of the 42 evaluated tumor types had
a median foreign antigen load below the lowest of the 3 benchmarks, the HPV E6/E7 oncogenes,
which were enriched for hematological and neurological tumors (Figure 2.3A). Our current analysis
provides no evidence for the average foreign antigen repertoire of these tumors to be sufficiently
sized for clinical actionability. The upper side of the foreignness spectrum is composed of cancers
with foreign antigen score that are larger than the HPV E6/E7 benchmark, comprising 53% of all
assayed samples. Here, 4/26 tumor types and 9% of analyzed samples had higher median foreign
antigen loads than the EBV LMP-1/LMP-2 proteins. In view of the profound clinical activity of T
cell products directed against these antigens, these data provide strong evidence that the repertoire
of neo-antigens present in these tumors should commonly suffice to allow strong T cell reactiv-
ity. Notably, virus-positive tumors, including HPV*-tumors, all displayed median foreign antigen
loads higher than that of the EBV LMP-1/LMP-2 oncoprotein-benchmark. Foreignness benchmarks
were robust to variation of the MHC-affinity thresholds of the prediction pipeline, keeping the other

pipeline parameters constant (Figure 2.3B).
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Figure 2.3: Pan-cancer overview of immunological foreignness

A (Top) Pan-cancer foreign antigen loads contrasted to the foreign antigen load of three viral gene sets known to
allow the formation of protective T-cell responses. Tumoral foreign antigen loads are composed of neoantigens
generated through focal DNA damage, virus-derived antigens (virus-positive tumors only) and immunoglobu-
lin idiotype-derived antigens (B-cell malignancies only). Fusion gene contributions are omitted as these could
not be evaluated for all patients and their contribution was modest (see Figure 2.2). Dot size reflects the number
of samples on a coordinate, red lines indicate median foreign antigen load per tumor type. (Bottom) Distribu-
tions of tumoral foreignness relative to indicated viral benchmark gene sets.

B Robustness of the benchmarking of tumor foreignness to the peptide MHC-affinity threshold used in neo-
antigen predictions. Quantiles of the three viral benchmarks within the distributions of tumoral foreign antigen
loads are depicted.

C Distribution of microsatellite instable tumors across indicated tumor types. Only those TCGA-tumor types
in which at least one MSI"-case was detected (shown as red dots) are depicted.

D Foreign antigen loads and compositions of breast and ovarian cancers classified by presence or absence of
BRCA1-like signature characteristics in copy number profiles (Schouten et al., 2015).

E Foreign antigen contributions of focal DNA damage and immunoglobulin idiotype sequences in B-cell lym-
phomas. Black dots denote medians, black bars span the 25% and 75% percentiles. Percentage labels denote the
contribution of viral genes to the overall foreign antigen load.

F Foreign antigen contributions of focal DNA damage and either expressed HPV genes in HPV* head and neck
and cervical tumors, or expressed EBV genes in EBV" stomach adenocarcinomas. Black dots denote medians,
black bars span the 25% and 75% percentiles. Percentage labels denote the contribution of viral genes to the
overall foreign antigen load.

Mismatch repair deficiency enlarges tumor foreignness

Consistent with the high response rates to checkpoint blockade!3€

, mismatch-repair deficient col-
orectal and non-colorectal cancers are predicted to have very high neoantigen loads, deriving from
somatic mutations in repetitive regions of the genome, termed microsatellites (Figure 2.3C). We as-
sessed the microsatellite instability (MSI)-status of all TCGA samples in our cohort with a classifier
trained on mutation type frequencies®? and found MSI in 12/29 assayed tumor types (1.8% of as-
sayed samples) and that the foreign antigen loads of 91% of MSI"-tumors are higher than that of
our upper benchmark, the full HIV genome (Figure 2.3C). This indicates that MSI-tests can be used
to directly identify highly foreign tumors across tumor types. Although mismatch-repair proficient
colon cancers had lower neoantigen loads than their mismatch-repair deficient counterparts, virtu-
ally all tested exceeded our lower HPV E6/E7 benchmark. This suggests that the low response rate
to PD-1 blockade that has been observed in this tumor type!® cannot solely be explained by a lack of

immunological foreignness, suggesting an enrichment of immune evasion mechanisms there.

Defects in homology-mediated DNA repair augment foreignness

Defects in homology-mediated DNA repair (e.g. by loss of function of the BRCA 1/2 genes) have been

associated with large-scale genomic rearrangements such as inter- and intrachromosomal gene fu-

43-43

sion events in breast and ovarian cancers . These rearrangements can yield protein-coding tran-
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scripts with fusions either occurring in-frame, leading to novel junctional sequence at the boundary
of the two fused exons, or out-of-frame, generating complete stretches of novel coding sequences.
To assess whether defects in homologous recombination DNA repair are associated to the complete
foreign antigen load, we stratified patients of the TCGA breast and ovarian cancer cohorts accord-
ing to their ‘BRCA-like’ status, as assessed with a ‘BRCA1-like’ classifier trained to recognize DNA
copy number aberration profiles characteristic for BRCA I-mutants®®. BRCA1-like breast cancer
was significantly more foreign than non-BRCA1-like breast cancer (1.75-fold difference in medians,
p = 5x 10719, reaching median foreign antigen loads equal to our lower benchmark HPV E6/E7
(Figure 2.3D, top), partially due to a higher presence of gene fusions (Figure 2.3D, bottom). Sim-
ilarly, BRCA1-like patients were significantly more foreign than non-BRCA1-likes in the ovarian
carcinoma cohort (1.5-fold difference in medians, p = 6 x 107%), but neither group’s median reached
the lower HPV E6/7 benchmark. Consistent with our observations, an association has been found
between BRCA I/2-mutation status and elevated neo-antigen loads in high-grade serous ovarian

cancer™.

Composition of foreign antigens informs on novel potential therapeutic tar-
gets

As vaccination strategies in cancers with viral etiology have primarily focused on the targeting of
viral antigens, we wished to explore how the foreign antigen loads of viral oncogenes in these tu-
mors compares to that formed as a consequence of somatic mutations. Follicular B-cell lymphomas,
despite being very low in exonic non-synonymous mutations (median: 30, range: [9, 79]), get the
primary contribution to their foreignness from neoantigens originating from somatic mutations
(Figure 2.3E). Due to their low numbers, idiotype-derived antigens (median: 1, range: [0, 4]) are less
attractive therapeutic targets, compared to the more abundant DNA damage-derived neoantigens.
Similarly, the neoantigens generated by somatic mutations in the highly mutated diffuse large B-cell
lymphomas (DLBCL) easily surpass those of idiotypic sequences in these tumors, and it will be inter-
esting to establish whether long-term responses of DLBCL following CD19 CAR T-cell therapy™® are
in some cases accompanied by induction of neoantigen-specific T-cell reactivity. On the contrary,
for HPV® cervix and head & neck and EBV*-stomach cancers, the majority of the foreign antigen
repertoire is made up by antigens of viral origin (Figure 2.3F). even when restricting the viral con-
tribution to the LMP-1/LMP-2 oncogenes

Gene fusions have been suggested as another potentially important source of foreign antigens®29,

We detected 11426 gene fusion events in 3359 out of 6049 investigated tumor samples across 33 ma-
lignancies. Likely due to their low prevalence, the overall contribution of fusion genes to foreignness
was modest (6.8% of total foreignness; 95% CI: [6.3%, 7.2%]). This suggests low prioritization of im-
munotherapeutic solely and specifically targeting fusion gene antigens. Notable exceptions to this
include prostate, uterine and some breast cancers (Luminal B and Basal subtypes) for which fusion-

derived neoantigens increased the foreignness to surpass that of our lower HPV E6/E7 benchmark
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(Figure S2.4A).

As we found NMD to have a substantial impact on neoantigen load (Figure 2.2A), especially for anti-
gens derived from indels, a potential immunostimulatory measure would be to inhibit NMD to aug-
ment the targetable antigenome®!?2, By including epitopes from NMD-flagged transcripts in our
foreignness estimates, we find that an average of 10% (95% CI: [10%, 11%]) of HLA-A*02:01 neoanti-
gens could be gained (Figure S2.4B). As expected, the highest gains were in indel-rich, mismatch-
repair deficient tumor types (colon MSI': 32.2%, stomach MSI": 31.2%, Figure 52.4B). The evalu-
ated kidney cancers, through their elevated indel loads, additionally showed gains of 16% (95% CI:
[14%, 18%]) in foreignness when accounting for NMD-blockade, averaged over all three evaluated
subtypes. We found up to 14% of clear cell kidney tumors to have potentially clinically impactful
increases in foreignness, as they met or surpassed the HPV E6/E7 benchmark after NMD-blockade

(Figure S2.4B).

Accounting for intratumoral heterogeneity consistently lowers foreign anti-

gen space

Clonal antigens that are presented by all tumor cells in a lesion can reasonably be expected to have
a larger contribution to tumor regression than subclonal antigens, and the observed inverse rela-
tionship between tumor heterogeneity and immunotherapy outcome provides indirect support for
the superior value of clonal antigens as T-cell targets®. We aimed to address how our foreigness

estimates would be affected when accounting for intratumoral heterogeneity.

To account for tumor heterogeneity in our antigenome estimates, we devised two ways of incor-
porating cellularity-estimates in our predicted neoantigen loads. In a first, conservative approach,
we fully restricted predicted antigenomes to those peptides that are derived from clonal mutations
(i.e. with an inferred cellularity > .9583%4), In this, we assumed the contribution of viral genes to be
shared by all cells in HPV* and EBV* cancers due to their role in cellular transformation. We ob-
served an average 51.6% (95% CI: [50.5%, 52.7%]) decrease in these heterogeneity-aware foreign anti-
gen loads as compared to the heterogeneity-unaware foreign antigen loads presented earlier (Figure
2.4A), decreasing the number of tumor types with median foreign antigen loads equal or exceed-
ing our lower benchmark HPV E6/E7 from 12/18 to 8/18 (Figure 52.5A). The above analysis ignores
that subclonal mutations can be immunogenic and could contribute to tumor rejection, limited to the
subclones harboring them. Indeed, T-cell recognition of subclonal mutations has been reported®.
This inspires an approach in which neoantigens are weighted by the cellularity of their associated
somatic mutations. We found cellularity-weighted estimates of the foreign antigen loads to be 23.5%
lower (95% CI:[22.7%, 24.3%], when compared to heterogeneity-unaware foreign antigen loads (Fig-
ure 2.4A,B), more mildly decreasing the number of tumor types with median foreign antigen loads
equal or exceeding our lower benchmark HPV E6/E7 from 12/18 to 10/18. Interestingly, the de-

crease in foreign antigen load when accounting for I'TH is not constant across tumor types. Whereas
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the antigenic mutanomes of all breast cancer subtypes and melanoma were relatively rich in nearly
clonal mutations and hence experienced only mild decreases in foreign antigen loads (median de-
creases ranging between 8.2% and 13.6%), thyroid cancer on the other side of the spectrum under-
went a median decrease of 42.2% (Figure 2.1A). Read coverage depth in next-generation sequencing
is known to influence the sensitivity of variant callers to (subclonal) mutations®®. However, the vari-

ation in effect of cellularity weighting was not explained by differences in median read coverage of

variant loci (Figure S2.5B).

A B
#8 Clonal mutations only B3 Mutations cellularity weighted
) %, 3 o,
[ (n = ———__& &, o &, T
Breast Normal™® (n = 14) %’4/ @@G G(g;@so, %e s, @:Oso% 2
! — O, A0, O, o G, sl e,
~ i ., (; %
Breast Basal (n = 159) O M NN R AN C
Breast Her2 (n =91) s — X 1000
.
Breast LumA (n = 276) == L |
Melanoma (n - 282) R R LN T TRt e
. N R
Breast LumB (n = 253) — - .. J .
1P
o9
Lung squamous (n = 176) ey e £ 100 K o
O o . E .
20 .« 3 . «
Lung adeno (n = 457) e ey | = . 1.
&1 . 3 . .
== . T . . 1
Bladder (n = 209) —— — o5 HIV-1 e 3 (]
gs EBV LMP-1/LMP-2 C g
273 .
Head and neck HPV~ (n = 347) == - — =3 : . H o ‘ <
s . T e 1
g « *e* o3if-. 3
(n=71) ——— s oSS ol 33 .o . H
35 R 2
Liver (n = 152) x — <32 IR R B i
- e E [] i 1
..
Uterus (n = 54) - - — HPV EG/E7 P | i . ]
. I iy N R
Head and neck HPV* (n = 77) = | . H M H
: 1f:ei: i
B ° . .
Adrenal gland (n = 51) L s fo P A s
oc@odece ocel 8.0
DLBCL EBV™ (n = 20) L ——— m—
Lower grade glioma (n = 297) il . — <
o
- S
Thyroid (n = 198) L - o
i
0.00 025 050 075 1.00
Heterogeneity—aware foreign antigen load /
heterogeneity-unaware foreign antigen load W -vPvesEr avpveser M -esvimp-iump-z Bl Hv-1

Figure 2.4: Effect of tumor heterogeneity on foreign antigen loads

A. Distributions of the ratio between heterogeneity-aware and -unaware somatic mutation-derived foreign
antigen estimates. Colored lines reflect the average decrease in foreign antigen loads when either restricting the
computation of the foreign antigen loads to clonal mutations (52%, 95% CI: [50%, 53%, red), or when weighting
mutations according to their cellularity (23%, 95% CI: [23%, 24%], blue line).

B. Pan-cancer overview of foreign antigen loads in which neo-antigens contributed by focal DNA damage types
are weighted by their estimated cellularity and combined with viral and idiotype antigen contributions.

Discussion

We devised an unbiased method to estimate the immunological foreignness resulting from different

forms of DNA damage and oncogenic viral insertions in human cancers, and then benchmarked these
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results against the foreignness of human pathogens for which clinically relevant T-cell recognition
has convincingly been demonstrated. The main conclusion of this work is that a substantial fraction

of human cancers expresses a sufficient number of neo-antigens to allow T cell recognition.

By establishing the precision of our epitope prediction pipeline, and by using the same prediction
pipeline on foreign genomes known to contain T cell targets, we removed concerns around the un-
known false positive rates that have complicated the interpretation of earlier antigenome landscape
efforts. One striking outcome of this benchmarking is that a substantial set of human cancers for
which no forms of immunotherapy have been approved to date (e.g. MSS colon, bile duct, MSS en-
dometrial, pancreatic, adrenocortical, and uterine cancers) do contain a larger number of predicted
neo-antigens than the HPV E6 and E7 oncogenes that have successfully been used as therapeutic
targets in premalignant disease. One interpretation of these data is that defects at other stages in the

cancer immunity cycle/cancer immunogram?2428

are interfering with T cell-mediated tumor con-
trol in these tumor types. For tumor types, such as MSS colon cancer, that do commonly encode a
number of neo-antigens that lies above that of the HPV E6 and E7 oncogenes, it will be of interest to
determine whether inefficient T cell priming, or the immunosuppressive molecules such as TGF-/3,

may for instance explain the poor responsiveness to PD-1/ PD-L1 blockade.

In future efforts, the accuracy of the estimates of foreignness that we provide may be further im-
proved in several ways. First, the contribution of multi-basepair indels and gene fusion events is
potentially underestimated as sequencing and the employed variant calling methodologies to detect
these events were less robust than for SNVs242l, Effect size of such optimization would be expected
to be most significant for tumor types that are characterized by chromosomal instability and by rel-
atively low degrees of focal DNA damage, such as BRCA 1/2 deficient cancers. A second point of im-
provement will be to include the weakly compensatory interaction between MHC-binding affinity
and transcription levels in cell surface antigen abundance, as shown by mass-spectrometry of HLA-

38,40,62,63

eluted peptides . However, as gene expression levels between the viral HPV and EBV bench-
marks and the tumor-associated transcripts differ only minimally, we expect the effect of inclusion
of a weighted measure of RNA expression/MHC affinity to be small. Analysis of the contribution of
subclonal versus clonal antigens to the total pool of predicted neo-antigens revealed that for tumor
types such as breast and melanoma accounting for intratumoral heterogeneity only minimally alters
the size of this pool whereas for thyroid carcinoma more than half of patients completely lost their
foreign antigen repertoire. In particular for this tumor type it will be important to understand to
what extent subclonal T cell antigens can contribute to tumor control, for instance by development

of mouse models with a fixed level of clonal and increasing levels of subclonal neo-antigens.

Based on the data from the Melief and Bollard/Rooney groups it is apparent that induction of T cell
reactivity against HPV E6/ E7 and EBV LMP1/LMP2 frequently results in regression of premalig-
nant HPV* lesions and EBV* lymphomas, respectively2?2, An important and incompletely resolved
question is whether these therapy-induced T cell responses are by themselves sufficient, or whether

the observed clinical responses are at least partially due to epitope spreading. In case of the HPV anti-
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gens, such a dominant role of novel T cell responses as a consequence of epitope spreading appears
less likely, as the premalignant lesions that respond to vaccination®! are unlikely to have accumu-
lated substantial numbers of somatic mutations®®. Nevertheless, a better understanding of epitope

spreading in therapy-induced tumor control would be of value.

In earlier work by Turajlic and colleagues, the neo-antigen yield rate of frameshifting indels was
found to be 9-fold higher than that of non-synonymous SNVs?4, whereas in our analyses these DNA
mutation types differed only minimally in this respect. The discrepancy between these data likely
stems from the omission of a model for NMD and the use of a model for thymic negative selection
of neo-antigen-reactive T cells that is strict on SNV-derived peptides but not applied to peptides
originating from indels, whereas SNV and indel-derived epitopes in our work were both passed

through the similarity-to-self filter.

We have provided a pan-cancer overview of immunological foreignness that predicts a potential
value of cancer immunotherapies that goes substantially beyond the tumor types for which T cell
checkpoint currently forms an approved strategy, and that includes common cancers such as MSS
CRC. Analysis of the mechanisms that hold back T cell reactivity in these tumors and strategies to

circumvent these mechanisms will be of major interest.
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Methods

Datasets

HIV validation, TCGA mutation calls and RNA expression was acquired and processed as described
in Chapter {4.

ICGC data
CLLE-ES (chronic lymphocytic leukemia) and MALY-DE (malignant lymphoma) projects were down-

loaded from ICGC release 20. Somatic mutations were annotated with RNA expression levels from

sample-matched expression data, matched on Ensembl gene identifiers.

CGCI data

Diffuse large B-cell ymphoma (DLBCL) RNA sequencing data was obtained from the NHL-DLBCL

project, provided by the Cancer Genome Characterization Initiative.

CoMMpass data

Multiple myeloma DNA and RNA sequencing data was obtained from the CoMMpass website (ht tps :
//research.themmrf .org/), provided by the Multiple Myeloma Research Foundation, in Jan-
uary 2016. Somatic variants were annotated with sample-matched gene expression levels from the

provided gene expression matrix, matched on Ensembl gene identifiers.
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Genotype-Tissue Expression Project (GTEx) data

Healthy spleen and EBV-transformed lymphocyte datasets were obtained from the GTEx Portal (db-
GaP project phs000424) and used to quantify background and positive control EBV transcript ex-

pression levels. The raw data were processed as described under 'Viral gene expression’

B-cell lymphoma idiotype data

Idiotype sequences obtained from Diffuse Large B-cell lymphoma (DLBCL) and Follicular lymphoma
(FL) patients were provided by the Veelken lab at the Leiden University Medical Center, The Nether-
lands. In selected DLBCL cases where two heavy or light chains were identified, both chains were

included. The FL dataset was restricted to heavy chain sequencing data.

Gene fusion calls

Gene fusion calls for the majority of TCGA donors were provided by the Verhaak lab at The Uni-
versity of Texas MD Anderson Cancer Center, USAY, identified using the structural variant caller
PRADAZ. Of note, PRADA only detects sense-sense fusions, a limitation that to the best of our
knowledge applies to all fusion gene callers. To determine the amino acid sequence of gene fusions,
the canonical nucleotide sequences of both fusion partners were retrieved from Ensembl release
64 as this version of Ensembl was used for the fusion variants in the PRADA analysis. Genomic
breakpoint coordinates were converted to cDNA coordinates and mRNA features (e.g. UTRs) at the
breakpoint locations were annotated. Fusions that were deemed unlikely to result in a translatable
amino acid sequence (e.g. UTR-UTR fusions) were discarded. The nucleotide sequences of fusion
partners in the remaining fusion events were joined and translated into amino acid sequences. As
out-of-frame fusions result in the loss of the canonical stop codon, the nucleotide sequence after
the breakpoint was scanned until the first occurrence of an in-frame stop codon and the resulting
sequence was translated to protein. The resulting amino acid sequence was subsequently used in
the neo-antigen prediction pipeline described below. As the PRADA-analysis was performed on
RNASeq data, NMD-targeting of detected fusion transcripts can at best have been incomplete, but
we cannot exclude partial degradation of these fusion variant calls. For this reason, we did not apply
the NMD-filter to fusion variant calls.

Genome- and patient-level annotation

MMR status of tumor samples, antigen presentation capability and sensitivity to T-cell attack, PAM50

subtyping of breast cancer samples, gene essentiality were performed as described in Chapter (4.
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Peptide-level annotation

Similarity to self-repertoire of peptides was performed as described in Chapter {.

Somatic variant annotation

Variant effect prediction, variant oncogenicity and essentiality, variant cellularity, variant expres-
sion, neoantigen prediction, validation of the neoantigen prediction pipeline were performed as de-

scribed in Chapter {4.

Variant annotation with the likelihood of having been caused by any mutational

process

Methods to extract the mutational signature of mutational processes compute the total burden caused
by a mutational process and the mutational signatures of these processes for a large collection of
genomes. They do not compute probabilities for single mutations to have been originated by a par-
ticular process, as one would require to compare the neo-antigen yielding capabilities of different
mutational processes. We devised a methodology to do this, starting from mutational profiles and

patient specific signature loadings.

We want to compute the likelihood of the n-th signature to have caused a somatic variant v of the ¢th
type/letter in the alphabet of all 192 point mutations with the analyzed strand selected such that the
reference allele is a pyrimidine and flanked by all possible nucleotide combinations (e.g. ‘ApC), de-
noting a C to T mutation for which the 5’ and 3’ flanking variants are adenosine and guanine, respec-
tively, employing the notation in Alexandrov et al. (2013)23). This measure should factor in the rela-
tive contribution of signature n, f™, to the genome g in which the variant was observed. The absolute
amount of mutational signature explained mutations of type ¢ in genome g contributed by the the

H (3
n-th signature, [V, g’

i-th letter multiplied by the presence of the n-th signature in the genome g: Ny, , = p;, , ey where

equals the forward probability of the n-the signature to cause a variant of the

e, represents the total contribution of signature n to genome g. From this, the probability for mu-

i

. . . N,
tations of type ¢ to have been caused by the n-th signature in that same genome g must be ﬁ
,n// ’

n’,g

Somatic variants were assigned to the different mutational processes proportional to the likelihoo
of having been caused by these probabilities, after which somatic variant and neo-antigen loads could
be tallied cognizant of partial class membership as described in Chapter A ‘Somatic variant and neo-

epitope load tallying’
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Neoantigen load prediction

Computing the total foreign antigen load/foreignness

Foreign antigen load was computed as the sum of the neo-antigen load and viral antigen load (where
applicable) on a sample-specific basis. For DLBCL and FL, idiotype-derived antigen loads were
added to this by adding the medians of idiotype-derived foreign antigen loads found in non-matched

DLBCL and FL patients, respectively.

Viral contribution to foreign antigen load

We noticed substantial differences in the expression levels of EBV genes and human genes in EBV*
stomach cancer. In order not to overestimate the viral contribution to the foreign antigen load, we
filtered out genes that had lower expression values than the first quartile of the human distribution on
aper sample basis. Application of this rule had a relatively minor impact on the antigen contributions
of HPV genes in HPV* cervical and head and neck tumors, with all viral genes being expressed at a
higher level than the first quartile of the human protein-encoding transcriptome in the majority of
tumors (68% and 59%, respectively) were unaffected due to all viral genes being expressed to a higher
extent than the first quartile of human genes. Affected tumors lost an average of 42% (95% CI: [35%,
48%]) and 48% (95% CI: [36%, 61%)) of viral antigens due to low expression, respectively (Figure
S2.3B). In contrast, all EBV* stomach tumors were strongly affected, as 64% (95% CI: [58%, 70%]) of
viral antigens derive from genes that are expressed at a lower level than the first quartile of human

protein-encoding transcriptome (Figure S2.3C).

Computation of heterogeneity aware neo-antigen loads

We computed two kinds of heterogeneity aware foreign antigen loads. First, the ‘clonals only’ mea-
sure, in which only neo-antigens derived from clonal mutations are included. Second, the ‘cellularity-
weighted’ measure, in which neo-antigens are summed, weighted by the maximum likelihood cel-
lularity estimates of their corresponding mutations. For both of these measures, we assumed the
contribution of viral genes to be shared by all cells in HPV* and EBV™ cancers due to their role in

cellular transformation. In addition, idiotypic antigen contributions were weighted as one.

Statistical analysis

Antigen prediction quality assessment, somatic variant and neo-epitope load tallying was performed

in as described in Chapter 4.
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Neoantigen yield rate computation

To compare the neoantigen generating propensities of different somatic variant classes, we analyze
their yield rates, defined for a class ¢ as the number of neoantigens resulting from c divided by the
mutation load contributed by c. When comparing the yield rates of different mutation classes c,
they are computed for the aggregate of variants and neoantigens from multiple donors in a group of

genomes G

2 9ec Nge
7 EgEG N;,C

which can be interpreted as the probability for a mutation of class c to yield a neoantigen. Invoking

the binomial properties of the r for values of r in the range [0, 1], we compute the 95% confidence

interval of this estimate as 7. ¢ £ 1.96 \/N%TC,G (1—-req)
e

Data and software availability

Custom software was distributed over R and Perl packages as described in Chapter 4.
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Supplemental Items

Table 1 can be retrieved from https://doi.org/10.17632/mf39n7s2b9. 1.
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Figure S2.1: Technical considerations in assessing foreignness

A Distance in base pairs between fusion gene breakpoints and focal DNA damage (SNVs and indels of max. 200
base pairs long).

B The pairwise Spearman correlation in predicted neoantigen loads between different settings of the neoantigen
prediction pipeline across all included patients. Rows are identically ordered as columns. Gene expression
filtering settings, rather than the choice of the HLA allele to use in neoantigen prediction, determine most of
the variation. This indicates the choice of HLA allele is rather unimportant.
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Figure S2.2: Relationship between mutational processes and foreign antigen loads across cancers.
A HLA-A*02:01 neo-antigen yield rates of different mutational events are highly similar across tumor types.
Tumor-specific average yield rates are indicated by red lines.

B As in A, Comparing neo-antigen yield rates of the indicated mutational signatures within tumor types. No
signatures are observed to be recurrently deviant from the other mutational signatures with respect to neo-
antigen yield rates.
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A (Left) Distributions of RNA expression levels of human genes and HPV-associated E6 and E7 oncogenes in
cervical intraepithelial neoplasia. (Right) Same as left panel, but depicting expression of human genes and EBV-
derived oncogenes in diffuse large B-cell lymphoma. Blue boxes represent expression levels of viral oncogenes.
B (Top) Distributions of RNA expression levels of human genes and HPV genes in cervical cancers. (Bottom) As
in top panel, but for HPV* head and neck cancers. Blue boxes represent expression of all viral genes.

C RNA expression levels of human genes and EBV genes in EBV* stomach tumors. Dashed line indicates lower
quartile expression level of human genes. The blue box represents expression across all EBV genes.

D Relationship between foreign antigen loads of virus-positive tumors when either only taking viral oncogenes
(E6 and E7 for HPV, LMP-1 and LMP-2 for EBV) into account, or when taking all viral genes into account for
which expression greater than the first quartile of the human genes is observed in a sample-specific manner.
Dot size reflects the number of samples on a coordinate; color denotes tumor type.
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Figure S2.4: Effect of tumor heterogeneity on foreign antigen loads.

A Relationship between the foreign antigen loads excluding fusion genes (quantile within tumor type, horizon-
tal axis) and the fractional contribution of fusion-derived antigens to the neo-antigen load. Dot size reflects
the number of samples on a coordinate. Only tumor samples for which the presence of gene fusion events was
evaluated are incorporated. Samples are colored according to their foreignness compared to the three viral
benchmarks. Tumors moving up to a higher level of foreignness, as compared to the viral benchmarks, when
including fusion-derived antigens are denoted by triangles rather than circles. Legends indicate sample size
per color group, in which black parenthesized numbers reflect the fraction of samples in each color group per
tumor type. Mean fractional contributions and associated 95% confidence intervals of fusion genes to total for-
eignness are indicated by red lines and surrounding red transparent boxes, respectively. Rank quantiles shown
on the horizontal axis are computed over the foreign antigen load excluding fusion genes, assigning tied sam-
ples identical maximal rank quantiles. Fusions genes are shown to infrequently contribute a sizeable fraction
of foreign antigen load, especially for tumors that are relatively rich in focal mutation-derived foreign antigens.
B As in A, but showing the fractional contribution of NMD-targeted neo-antigens to the tumoral foreign anti-
gen loads.
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Figure S2.5: Effect of tumor heterogeneity on foreign antigen loads.

A Pan-cancer overview of foreignness in which neo-antigens contributed by focal DNA damage types are re-
stricted to clonal mutations and combined with viral and idiotype antigen contributions, with the latter two
antigen sources assumed to be clonal.

B Absence of relationship between sample DNA sequencing depth and the degree to which the foreign antigen
load is reduced in heterogeneity aware estimates. Dot size reflects the number of samples at a coordinate. The
black line represents a LOESS local smoothing regression.
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Abstract

The efficacy of programmed cell death protein 1 (PD-1) blockade in metastatic triple-negative breast
cancer (TNBC) is low 2, highlighting a need for strategies that render the tumor microenvironment

more sensitive to PD-1 blockade. Preclinical research has suggested immunomodulatory proper-

43


https://doi.org/10.1038/s41591-019-0432-4

ties for chemotherapy and irradiation®™3. In the first stage of this adaptive, non-comparative phase
2 trial, 67 patients with metastatic TNBC were randomized to nivolumab (1) without induction or
with 2-week low-dose induction, or with (2) irradiation (3 x 8 Gy), (3) cyclophosphamide, (4) cis-
platin or (5) doxorubicin, all followed by nivolumab. In the overall cohort, the objective response
rate (ORR; iRECIST!) was 20%. The majority of responses were observed in the cisplatin (ORR
23%) and doxorubicin (ORR 35%) cohorts. After doxorubicin and cisplatin induction, we detected
an upregulation of immune-related genes involved in PD-1-PD-L1 (programmed death ligand 1) and
T cell cytotoxicity pathways. This was further supported by enrichment among upregulated genes
related to inflammation, JAK-STAT and TNF-a signaling after doxorubicin. Together, the clinical
and translational data of this study indicate that short-term doxorubicin and cisplatin may induce a
more favorable tumor microenvironment and increase the likelihood of response to PD-1 blockade
in TNBC. These data warrant confirmation in TNBC and exploration of induction treatments prior

to PD-1 blockade in other cancer types.

Main text

Triple-negative breast cancer (TNBC), characterized by estrogen receptor, progesterone receptor
and HER2 negativity, comprises 10-20% of all breast cancers!®. In patients with metastatic dis-
ease, tumors rapidly become resistant to chemotherapy, resulting in a median overall survival of
only 8-13 months'®!. Although durable responses to PD-1 and programmed death-ligand 1 (PD-
1/PD-L1) blockade have been observed in TNBC, the fraction of patients with metastatic TNBC that
benefit from PD-1/PD-L1 blockade is low, with response rates around 5%". Response rates seem
to increase to 19-23% upon selection of patients with PD-L1-positive tumor microenvironments
(TMEs)228, However, the majority of patients with TNBC do not benefit from PD-1/ PD-L1 block-
ade, highlighting the need for strategies that can alter the immune-suppressive TME and increase
sensitivity to PD-1/ PD-L1 blockade.

Table 1: Baseline characteristics of the intention-to-treat population. Clinical baseline characteristics
of all allocated patients. PD-L1 immunohistochemistry was performed using the DAKO 22C3 clone.

Total population (n = 70)
Median age, years (range) ‘ 51(29-70)
WHO performance status, n (%)
0 | 41(59%)
1 29 (41%)
Germline BRCA1/2, n (%)
Mutation | 6 (9%)
Wildtype | 50 (71%)
Unknown | 14 (20%)

Location of metastasis, n (%)
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Lymph node only | 6 (9%)
Visceral metastasis | 50 (71%)
Other metastasis | 14 (20%)

Number of previous therapies for metastatic disease, n (%)

0 | 17 (24%)
1 | 34(49%)
2-3 | 19(27%)

Previous neoadjuvant or adjuvant therapy, n (%)
Yes | 59 (84%)

Previous chemotherapy exposure, n (%)

Taxane | 64 (91%)
Anthracycline | 60 (86%)
Platinum | 42 (60%)
Capecitabine | 34 (49%)

Disease Free Interval (DFI), n (%)

De novo metastatic disease | 9 (13%)
DFI < 12 months | 23 (33%)
DFI > 12 months | 38 (54%)

LDH level, n (%)

< ULN | 39(56%)
< 2xULN | 31 (44%)
PD-L1 expression on tumor cells, n (%)

Not available | 5 (7%)

> 1% on tumor cells | 44 (63%)

> 5% on tumor cells | 23 (33%)

PD-L1 expression on immune cells, n (%)

Not available | 5 (7%)

> 1% on immune cells | 60 (86%)

> 5% on immune cells | 47 (67%)

Preclinical and clinical studies have shown that low-dose chemotherapy or irradiation may be uti-
lized to stimulate anticancer immune responses. For example, irradiation has been shown to induce
type linterferons via the stimulator of interferon genes (STING) pathway and consequently enhance
T cell priming®/. Some studies have demonstrated that cyclophosphamide can deplete regulatory T
cells and could restore effector functions of T cells and natural killer cells?. In addition, cisplatin has
been shown to upregulate major histocompatibility complex class I expression and directly stimu-

late T cell function®1¢

. Finally, doxorubicin has been associated with myeloid-derived suppressor
cell (MDSC) depletion™, an increase in the level of type I interferons® and induction of immuno-

genic cell death®s,

Here, we present a phase 2 trial in which we dissect the immunomodulatory effects of hypofraction-

ated irradiation and low-dose cyclophosphamide, cisplatin and doxorubicin in patients with TNBC,
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with the hypothesis that these treatments may be utilized as priming strategies to improve the effi-
cacy of PD-1/PD-L1 blockade. This multi-cohort TONIC trial evaluates the efficacy of nivolumab
after short-term induction with low-dose chemotherapy, irradiation or no induction. A ‘pick-the-
winner’ strategy, taking into account clinical responses and translational findings, was used with a
Simon’s two-stage design™ to decide which cohorts would be expanded.
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Figure 3.1: Anti-tumor activity of nivolumab after immune induction in the per protocol popula-
tion.

a Design of the TONIC trial. Patients were randomized to 1 of 4 cohorts with induction treatments or no in-
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duction, all followed by nivolumab (3 mg per kg every 2 weeks). Biopsies and blood samples were taken at base-
line (biopsy one), on post-induction treatment (biopsy two) and on nivolumab (after three cycles of nivolumab;
biopsy three). i.v,, intravenous.

b Overall survival (OS) by response. Kaplan—Meier curves of overall survival by best overall response were
calculated. All 67 patients of the per protocol population were included, but 7 patients were deceased within 6
weeks after nivolumab initiation, and and their data are not displayed (that is, a landmark was used at 6 weeks).
The stable disease (SD) group includes a patient with stable disease, as defined by RECIST, for 26 weeks and a
patient with non-evaluable disease but clinical benefit for 26 weeks. PD, progressive disease.

¢ ORR per cohort as the percentage of total patients per cohort GRECIST, investigator determined). ORR com-
prises all PRs and CRs.

d Waterfall plot. Best radiological response of target lesions during nivolumab treatment compared to baseline.
Eleven patients with clinical evidence of disease progression did not have a follow-up CT scan after nivolumab
initiation, and nine patients had non-measurable disease. Depicted is the largest change in the sum of target
lesions, in comparison to baseline or the post-induction CT scan (changes compared to the post-induction scan
are indicated by asterisks; n = 7). Bar colors reflect the induction treatment shown in a. The y axis was cut-off
at 100% for illustration purposes. Dotted black lines indicate the response as described by RECIST1.1.

e Swimmers plot. Duration of response of patients with PR or CR according to iRECIST. Progressive disease
was assessed according to iRECIST; the first date of progressive disease is depicted in case of confirmation
on a subsequent CT scan. Only two patients had a PR after induction treatment, with one prolongation after
nivolumab treatment. One patient with a microsatellite instable tumor, pretreated with cisplatin, ended treat-
ment after 1 year and has had an ongoing remission for 102 weeks. One patient with a CR stopped treatment
after 17 nivolumab cycles due to a grade 2 pneumonitis and has had an ongoing CR for 86 weeks; another pa-
tient with a CR stopped treatment due to a grade 2 gastritis after 38 cycles of nivolumab and has had an ongoing
CR for 86 weeks. The vertical dotted line marks the 2-week induction period.

In the TONIC trial (NCT02499367), patients were randomized to one of four different induction
treatments, consisting of irradiation to a single lesion, low-dose cyclophosphamide, cisplatin or dox-
orubicin, or a 2-week waiting period (Figure B.1a). Biopsies from metastatic lesions were taken at
baseline (biopsy one), after induction (biopsy two) and after three cycles of nivolumab (biopsy three).
Seventy patients were randomized between September 2015 and October 2017. Accrual continued
until a minimum of ten patients who received at least one cycle of nivolumab and from whom we
could acquire high-quality paired biopsies were included for each cohort, resulting in a slightly un-
even number of patients across cohorts (Figure S3.2). At data cut-off, the median follow-up was 19.9
months. Characteristics were as expected for advanced TNBC (Table [1) and balanced between co-
horts, with a relatively high proportion of patients in the doxorubicin and control cohorts receiving
their first-line treatment in this trial (Supplementary Table ST). Sixty-six patients were available for
efficacy analysis (Supplementary Table S2). All patients had received previous chemo-therapy in the
(neo-adjuvant and/or the metastatic setting. Patients with de novo stage IV disease (n = 8 out of 66)

were pretreated with palliative chemotherapy before entering the TONIC trial.

Nivolumab after induction was not associated with any previously unreported toxicity. Induction
treatment-related adverse events (AEs) of any grade occurred in 19 patients (28%, with 3% grade 3)
and immune-related AEs of grades 3-5 occurred in 13 patients (19%; Supplementary Tables S3 and

S4). Two patients with evidence of progression died on study.
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Median progression-free survival (PES) for all patients was 1.9 months (Supplementary Table S5). We
observed an objective response rate (ORR) to nivolumab of 20% (13 out of 66 patients; iRECISTL),
with two complete responses (CRs; 3%) and 11 partial responses (PRs; 17%) (Supplementary Table
55). The median duration of response according to iRECIST was 9 months (95% CI: 4.7 not reached).
At data lock, four patients were still on study: one patient was still receiving nivolumab with an

ongoing response, and three patients were in remission after stopping nivolumab.
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Figure 3.2: Intratumoral and systemic baseline parameters associated with response.
a Baseline sTILs determined according to guidelines of the TIL working group on a H&E staining of tumor
biopsies. The median value is displayed for patients with or without clinical benefit; the median in the overall
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cohort was 5%. Boxplots represent the median and 25th and 75th percentiles, and the vertical bars span the 5th
to the 95th percentiles. Statistical significance was tested with a two-tailed Mann-Whitney U-test (unadjusted
P value).

b Baseline CD8 cell count per mm?2 in tumor biopsies. The median value is displayed for patients with or without
clinical benefit; the median in the overall cohort was 30 cells per mm2. Boxplots represent the median and 25th
and 75th percentiles, and the vertical bars span the 5th to the 95th percentiles. Statistical significance was tested
with a two-tailed Mann-Whitney U-test (unadjusted P value).

c Baseline serum levels of CA 15-3. CA 15-3 was measured according to local guidelines. The median value is
displayed for patients with or without clinical benefit; the median in the overall cohort was 35 kU -1 (which
is 1x ULN). Boxplots represent the median and 25th and 75th percentiles, and the vertical bars span the 5th to
the 95th percentiles. Statistical significance was tested with a two-tailed Mann-Whitney U-test (unadjusted P
value).

d Volcano plot of baseline gene expression signatures assessed with the NanoString IO 360 panel of 770 genes.
Displayed is the log, fold difference of the median gene expression signature score between non-responders
and responders (all patients with clinical benefit). Statistical significance is observed for signatures above the
red dashed line (two-sided Wilcoxon signed-rank test; unadjusted P value of 0.05). Every dot represents one
gene expression signature, as previously determined by Ayers et al.* and Danaher et al***¢. The gray dashed
line indicates no difference in gene expression. IFN-y, interferon-y; Ti 1, T helper 1; TIS, tumor inflammation
signature.

e Mutational load, germline (according to routine clinical diagnostics) and somatic BRCA variants, BRCA I-like
copy number (CN) profiles, copy number or mutation status of POLE, BRCA1, BRCA2 and B2M, and PAM50
subtype assessed by RNA sequencing and NanoString are depicted. Data were available for 50 patients, samples
were taken at baseline before study treatment. NA, not available; SNV, single-nucleotide variant; WT, wild type;
LumA, Luminal A; LumB, Luminal B.

We explored the potential predictive value of clinical characteristics and baseline aspects of the TME
and peripheral blood. Patients with a disease-free interval (DFI) of 1 year or shorter had lower re-
sponse rates (p = 0.02; Figure B.2a). The ORR for patients treated in the first line was 33%, while
the ORR was 16% in patients treated in the second or later lines (p = 0.15; Figure S3.2a). We ob-
served significantly higher levels of stromal tumor-infiltrating lymphocytes (sTILs) and higher levels
of CD8 and PD-L1 on immune cells in responders than in non-responders (Figure 3.2a,b) and Fig-
ure S3.2a,b and B.3). Furthermore, we observed significantly lower cancer antigen 15-3 (CA 15-3)
and carcinoembryonic antigen (CEA) levels in responders (Figure 3.2c and Figure $3.2a,d). CA 15-3
showed a moderate correlation with the number of metastatic sites (Figure S3.2e). In a multivariate
analysis, CA 15-3 remained associated with response after adjustment for sTILs and lines of treat-
ment (odds ratio: 0.69; p = 0.05) but not after adjustment for number of metastatic sites (odds ratio:
0.72; p = 0.08). No significant correlation with response was observed for lactate dehydrogenase
(LDH), C-reactive protein, neutrophils, lymphocytes, neutrophil-to-lymphocyte ratio, eosinophils
or serum levels of 12 CD8 T cell and natural-killer-cell-related cytokines (Figure S3.2f-k and S3.4).
In addition, we observed higher gene signature scores for T helper 1 cells, B cells and neutrophils in
responders than in non-responders (Figure B.2d), using the NanoString IO 360 Panel. Higher T cell
receptor (TCR) clonality, more T cells and a larger TCR repertoire diversity (the number of unique
intratumoral T cell clones) were observed in responders than in non-responders, both intratumoral
and in the blood (Figure S3.21-q), however these associations were not statistically significant. We

found no association between mutational load or predicted neo-epitopes and response (Figure 3.2e
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and Figure 53.2r,s). Two patients with exceptionally high mutational loads had somatic mutations in
POLE. One of those cases was also identified as microsatellite instable and had a durable response2,
No mutations in B2M were observed at baseline. We found no associations between response and
BRCA 1/2 mutations (Figure B.2e), but we did observe BRCA I-like genomic copy number profiles to
be negatively associated with response (Figure 3.2e and Figure S3.2a). Molecular subtypes according

to PAM50%! were not associated with response.

Most clinical responses occurred during nivolumab, with two patients having the onset of response
during the induction period (Figure S3.5a,b). Most responses were observed in the doxorubicin co-
hort (ORR: 35%; 95% CI: 14.2-61.7%), followed by cisplatin (ORR: 23%; 95% CI: 5-53.8%; Figure
3.1c,d). In the no induction treatment cohort, two patients experienced a PR (ORR: 17%; 95% CI:
2.1-48.4%); in the irradiation and cyclophosphamide cohorts, only one patient had a PR (ORR: 8%;
95% CI: 0.2-38.5%). When restricting analysis to non-first-line patients, the doxorubicin, cisplatin
and no inductions cohorts still showed numerically higher ORRs than the irradiation and cyclophos-
phamide cohorts (Figure S3.5¢c). According to the Simon'’s two-stage design®2, discontinuation of a
cohort was required if fewer than three out of ten patients had no progressive disease after 12 weeks
(Figure 53.5e—g). According to iRECIST (Figure S3.5¢,f), only the doxorubicin cohort was allowed

to continue.
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Figure 3.3: Characteristics of tumors during an active ongoing anticancer response on nivolumab
and changes observed after induction treatments

a Intratumoral TCR clonality on nivolumab treatment. On nivolumab treatment, TCR sequencing data were
available for 29 patients. Boxplots represent the median, 25th and 75th percentiles and the vertical bars span
the 5th to the 95th percentiles. Statistical significance was tested with a two-tailed Mann-Whitney U-test (un-
adjusted P value).

b Fold change (FC) in TCR clonality after induction treatment versus baseline (biopsy two versus biopsy one).
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The clonality of TCRs indicates the specific expansion of a subset of T cell clones. The boxes in the boxplots
represent the median and interquartile ranges, and the whiskers represent the full range. Statistical significance
was tested with a Kruskal-Wallis test for all groups. Patients with clinical benefit are highlighted with a red dot.
The dotted black line indicates no change.

¢ FC in TCR clonality on nivolumab (nivo) treatment versus baseline (biopsy three versus biopsy one). The
boxes in the boxplots represent the median and interquartile ranges, and the whiskers represent the full range.
Statistical significance was tested with a Kruskal-Wallis test for all groups. Patients with clinical benefit are
highlighted with a red dot. The dotted black line indicates no change.

d Percentage of tumor-infiltrating T cells (TCR sequencing) on nivolumab treatment. The percentage of T cells
of total nucleated cells, as assessed by TCR sequencing is depicted. Boxplots represent the median, 25th and
75th percentiles and the vertical bars span the 5th to the 95th percentiles. Statistical significance was tested
with a two-tailed Mann-Whitney U-test (unadjusted P value).

e FC in the percentage of tumor-infiltrating T cells (TCR sequencing) after induction treatment versus baseline
(biopsy two versus biopsy one). The percentage of T cells over nucleated cells is depicted. The boxes in the
boxplots represent the median and interquartile ranges and the whiskers represent the full range. Statistical
significance was tested with a Kruskal-Wallis test for all groups. Patients with clinical benefit are highlighted
with a red dot. The dotted black line indicates no change.

f FC in the percentage of tumor-infiltrating T cells (TCR sequencing) on nivolumab treatment versus baseline
(biopsy three versus biopsy one). The percentage of T cells over nucleated cells is depicted. The boxes in the
boxplots represent the median and interquartile ranges and the whiskers represent the full range. Statistical
significance was tested with a Kruskal-Wallis test for all groups. Patients with clinical benefit are highlighted
with a red dot. The dotted black line indicates no change.

g Volcano plot of previously established gene expression signatures , assessed with the NanoString 10
360 panel of 770 genes. The log, fold difference of the median gene expression per signature between non-
responders and patients with clinical benefit in biopsies taken after three cycles of nivolumab (biopsy three)
is displayed. Statistical significance is observed for signatures above the red dashed line (two-sided Wilcoxon
signed-rank test; unadjusted P value of 0.05). Each dot represents one of the previously established gene expres-
sion signatures by NanoString®®*#4, The gray dashed line indicates no difference in gene expression. MMR,
DNA mismatch repair.

h Heatmap of post-induction FCs in gene expression signatures (NanoString; significantly upregulated during
an active ongoing response on nivolumab, determined in g) in post-induction samples (biopsy two) compared
to baseline (biopsy one). Depicted is the log, FC in median gene expression of paired biopsies. Statistical sig-
nificance (two-sided Wilcoxon signed-rank test) is highlighted with a black dot.

i Heatmap of on-nivolumab FCs in gene expression signatures (NanoString; significantly upregulated during
an active ongoing response on nivolumab, determined in g) in samples taken on nivolumab (biopsy three) com-
pared to baseline (biopsy one). Depicted is the log, FC in median gene expression of paired biopsies. Statistical
significance (two-sided Wilcoxon signed-rank test) is highlighted with a black dot.

j Gene set enrichment analysis of 50 hallmark gene sets>*, performed on whole-transcriptome RNA sequenc-
ing of pre-induction and post-induction samples (biopsy 2 compared to biopsy 1). Cells are colored according
to normalized enrichment scores, and Benjamini—- Hochberg (FDR) corrected P values equaling or below 0.25
are highlighted with black dots. Immune-related gene sets are highlighted in bold font. DN, downregulated;
IL-6, interleukin-6; JAK, Janus kinase; mTOR, mechanistic target of rapamycin; mMTORC1, mTOR complex 1;
NF-xB, nuclear factor-xB; PI3K, phosphatidylinositol-3-OH kinase; STAT?3, signal transducer and activator of
transcription 3; TGF-f, transforming growth factor-p; TNF-g, tumor necrosis factor-e; UP, upregulated.

2323Lq

The main objective of the TONIC trial was to explore whether induction treatment can induce a
more inflamed TME. To determine the desired state of inflammation, we first studied the ongoing
anti-cancer immune response in biopsy three of responders compared to biopsy three from non-re-

sponders. On nivolumab, we observed higher TCR clonality (p = 0.009) and increased T cell infiltra-
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tion (p = 0.004; Figure 3.3a,d). Although T cell repertoire clonality appeared more strongly increased
in the cisplatin and doxorubicin cohorts after nivolumab treatment (biopsy three versus biopsy one)
than in the control cohort (Figure B.3c), such inter-cohort differences were not observed directly
after induction (biopsy two versus biopsy one; Figure B.3b). In addition, we observed a trend in in-
creased T cell infiltration after induction with cisplatin and doxorubicin (biopsy two versus biopsy
one; Figure B.3e), which became more pronounced after nivolumab treatment (biopsy three versus
biopsy one; Figure B.3f). Finally, increases in the number of unique intratumoral T cell clones (TCR
diversity) were significantly higher on nivolumab in the doxorubicin cohort than in the control co-
hort (Figure S3.6). We observed higher TIL (H&E) and CD8 counts (immunohistochemistry) in on-
nivolumab biopsies of responders than in non-responders (Figure $3.7a,b). Comparing post-induc-
tion and baseline, we observed a trend towards increased TIL and CD8 counts in all cohorts except
for the irradiation cohort (Figure S3.7c,d) and non-significant increases in TIL and CD8 counts after
nivolumab treatment in the doxorubicin cohort. We observed no changes in stromal CD4 or FOXP3
expression after induction. A non-significant increase in CD4 expression in the doxorubicin cohort

was observed (Figure S3.7e,f).

Next, we evaluated treatment-induced changes in the expression of immune-related genes (NanoS-
tring IO 360 Panel)2223, On nivolumab (biopsy three), several gene signatures associated with inflam-
mation were significantly higher for responders than for non-responders (Figure B.3g). Following
cisplatin and doxorubicin treatments, most of these inflammation-related signatures (Figure 3.3g)
showed a trend towards upregulation, but after irradiation or a 2-week waiting period these signa-
tures tended to get downregulated (biopsy two versus biopsy one; Figure 3.3h). Upregulation of in-
flammation-related signatures in the cisplatin and doxorubicin cohorts was even more pronounced
after nivolumab treatment (biopsy three versus biopsy one; Figure 3.3i). Using a Bayesian model, we
estimated the effect sizes of the four induction treatments on immune-related gene signatures (Fig-
ure 3.3g). We observed that the effect sizes of cisplatin and doxorubicin equaled or exceeded changes
in the no induction cohort with 98.0% and 85.2% probability, respectively (Figure S3.8b). After cor-
rection for baseline gene expression, clinical response to nivolumab, lines of palliative treatment and
lymph node only metastasis, probabilities of 92.1% and 80.7% (Figure S3.8g,h), respectively, were ob-
tained. Subsequently, a gene set enrichment analysis (GSEA) on 50 hall-mark gene sets®? on RNA
sequencing data demonstrated an enrichment of eight immune-related gene sets among upregu-
lated genes (biopsy two versus biopsy one) after doxorubicin treatment (six out of eight gene sets
passed multiple testing correction) and after cisplatin treatment (zero out of eight passed multiple
testing correction). After irradiation and cyclophosphamide treatments, the majority of these gene
sets showed a non-significant enrichment among down-regulated genes. By contrast, only 7 out of
42 non-immune-related hallmark gene sets were enriched among upregulated genes after doxoru-

2
2323524 and

bicin. In addition, we tested previously established gene signatures related to myeloid cells
CD4 T cells?!. Three (out of four) myeloid-related signatures showed upregulation after induction
and/or on nivolumab treatment (Figure 53.9a,b). Furthermore, we evaluated two MDSC-related

signatures® and two CD4 T cell signatures® in a separate GSEA and observed all to be enriched
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among upregulated genes after doxorubicin and cisplatin (false discovery rate < 0.25; Figure §3.9¢).

To our knowledge, TONIC is the first trial to evaluate the concept of TME modulation using chemother-
apy or irradiation prior to PD-1/PD-L1 blockade. Our data provide substantial evidence that in-
duction with cisplatin or doxorubicin can prime tumors for response to anti-PD-1, based on high
response rates to anti-PD-1 and upregulation of immune-related gene sets. Finally, we observed
trends towards increased T cell infiltration and TCR diversity in the doxorubicin cohort. On the
basis of the Simon’s two-stage design, the doxorubicin cohort is currently expanded in stage II of
the trial (Figure S3.5h). We note that this trial was not designed nor powered for direct comparison
of response rates between arms and, as such, the data cannot be used as conclusive evidence for the

inferiority of other induction treatments.

The majority of clinical trials that evaluate immune checkpoint blockade (ICB) in combination with
chemotherapy simply combine PD-1/PD-L1 blockade with standard

chemotherapy®2¥, which was shown to lead to increased survival for patients with PD-L1-positive
TNBCH. By contrast, the sequential administration of chemotherapy or irradiation in the TONIC
trial allowed us to test whether conventional treatments can turn ‘cold’ into 'hot’ tumors. To the
best of our knowledge, strong preclinical or clinical data that assess whether the sequential use
of chemotherapy or irradiation is better than concomitant use are still lacking. Arguments in fa-
vor of the latter are the relatively long time to response to PD-1/PD-L1 blockade during which
chemotherapy can provide early tumor control and the potential synergy between PD-1/PD-L1
blockade and chemo-therapy. Conversely, the short-term use of chemotherapy reduces toxicity
substantially while potentially still effectuating the immunomodulation associated with cytostatic
agents. Interestingly, the first results of the GeparNuevo trial, evaluating anti-PD-L1 added to
chemotherapy in primary TNBC, suggested that induction with anti-PD-L1 increased responses in
primary TNBCE., Of note, our analyses of sequential on-treatment biopsies revealed that the im-
munomodulatory effects induced by three cycles of anti-PD-1 were substantially larger than the
changes observed after 2 weeks of induction, arguing for an earlier start of ICB. Recent work has
demonstrated that high response rates are observed upon ICB in the neoadjuvant setting in melanoma

2981 supporting the notion that primary tumors may be more sen-

and non-small-cell lung cancer
sitive to immune control than metastases. Given this, it would be interesting to apply the design of

TONIC to the neoadjuvant setting.

We found that nivolumab in patients with metastatic TNBC resulted in an ORR of 20%. This ORR
is higher than in other studies in this patient population that show an ORR of only 5-10%24. This
may be due to the priming strategy that was used in our trial, but patient selection may also have
contributed, for example, as, in contrast to some previous studies®d, we excluded patients with high
serum levels of LDH. Importantly, we confirm that patients with a short DFI (<1 year) had a low
likelihood (<5%) of response to ICB even when the LDH level is <2x upper limit normal (ULN), as
previously reported'®. In contrast to data for melanoma and non-small-cell lung cancer®%3, the tu-

mor mutational burden did not correlate with response in our series, in line with previous work?¥23,
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Although this lack of correlation may simply be explained by small sample sizes, it is interesting to
consider that the tumor mutational burden might not be a determinant of response in relatively ‘cold’
tumors, such as breast cancer, in which copy number aberrations are more prevalent. This is sup-
ported by the significant association that we observed between BRCA I-like copy number profiles
and non-response to anti-PD-1 and in line with previous studies in melanoma suggesting that copy
number aberration burden is negatively associated with anti-PD-1 response®%24,

We observed a significant correlation between PD-L1 on immune cells and nivolumab benefit (Figure
3.2a,b and B.3e,f), in line with several studies in TNBC#®. Of note, the prevalence of PD-L1-positive

tumors is somewhat higher in our study than in other studies®®

, with 86% of patients expressing
PD-L1 on immune cells (assessed using the 22C3 clone). Using the SP142 clone and by scoring of
immune cells, Schmid et al.? reported 41% PD-L1-positive tumors in the first-line setting, whereas
Emens et al.® reported 81% PD-L1 positivity in heavily pretreated patients. Studies in non-small-
cell lung cancer®® and bladder cancer®® have shown that the 22C3 clone yields higher proportions

of PD-L1 positivity than the SP142 assay.

Although the TONIC trial design allowed relatively quick prioritization of treatments, there are sev-
eral limitations to address. First, the TONIC trial was designed as a non-comparative trial with rel-
atively small numbers. Although we only included patients with TNBC, this population is still quite
heterogeneous in terms of previous treatments and metastatic patterns. Second, no stratification
was applied in the first stage of the trial. Consequently, the cohorts were not perfectly balanced
for several characteristics, such as the location of metastases and the number of previous palliative
treatments. Third, we required a short period of preferential recruitment to the doxorubicin arm (n
= 17) to obtain at least ten good-quality paired biopsies. As such, we cannot exclude that low-dose
doxorubicin might also have a direct anti-tumor effect. Finally, according to the very stringent de-
cision rules (requiring a success rate of at least 30%) that we set before the start of the trial (2014)
without knowing that the ORR to PD-1/PD-L1 blockade would be only 5-10%"£, doxorubicin was
picked as a winner only when the iRECIST criteria (ORR 35%) were applied, but not according to
RECIST1.1%¢ (Figure 53.5e-g).

In summary, induction treatment with short-term chemotherapy or irradiation followed by nivolumab
is feasible and leads to clinical benefit in a substantial subset of patients, with higher than expected
response rates and durable responses. Priming with doxorubicin or cisplatin seems to induce a more
favorable TME and was associated with a higher likelihood of response to nivolumab in this study.
Next to the ongoing validation in stage II of this TONIC trial, which incorporates a nivolumab
monotherapy cohort and a doxorubicin followed by nivolumab cohort (Figure S3.5h), independent
validation of our findings is required. In addition, the design of this study may serve as a template

for other signal-finding combination immunotherapy studies in breast cancer and beyond.
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Methods

Study design

The TONIC trial (full title: adaptive phase 2 randomized non- comparative trial of nivolumab after
induction treatment in triple-negative breast cancer patients; NCT02499367) is a single center, non-
blinded, randomized, non-comparative phase II study designed to evaluate the feasibility and efficacy
of nivolumab after a 2-week induction treatment with chemotherapy or irradiation in patients with

metastatic TNBC. The first stage of the trial consisted of five cohorts (four with induction treatment
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before nivolumab, one with a 2-week waiting period), all with a Simon’s two-stage design™. For the
second stage, the number of arms is reduced based on the results obtained in the first stage, according
to the ‘pick-the-winner’ principle, considering clinical as well as translational end points. The trial
was conducted in accordance with the protocol, Good Clinical Practice standards and the Declara-
tion of Helsinki. The full protocol, including two amendments, and the informed consent form were
approved by the institution’s medical-ethical committee. All patients provided written informed
consent before enrollment. This investigator-initiated trial was designed by the Netherlands Cancer
Institute (NKI). Funding was provided by Bristol-Myers-Squibb (BMS) through the International
Immuno-Oncology Network (II-ON) and by the Dutch Cancer Society (NKI2015-7710) with the
NKI being the sponsor. Translational research was funded by Pink Ribbon (NKI2016-8214), the
Breast Cancer Research Foundation (BCRF-17-188) and BMS/II-ON. The study protocol was writ-
ten during the ECCO-AACR-ESMO-EORTC course ‘Methods in Clinical Cancer Research’ Flims,
2014.

Patients

Key inclusion criteria included: 18 years of age or older; metastatic or incurable locally advanced
TNBC with confirmation of estrogen receptor and HER2 negativity (ER < 10% and HER2 0, 1 or 2
in the absence of amplification as determined by in situ hybridization) on a biopsy of a metastatic
lesion or recurrence in the breast; a WHO (World Health Organization) performance status of 0 or 1;
measurable or evaluable disease according to RECIST1.1%%; and a maximum of three previous lines
of palliative systemic treatment. Key exclusion criteria included: a LDH level above 500 U 1-1 (>2x
ULN); symptomatic brain metastasis (treated and stable brain metastasis were allowed); previous
therapy with ICB; and active autoimmune disease or chronic infections. Patients were not selected
based on PD-L1 expression and had to have an accessible lesion for sequential biopsies and a different
lesion accessible for irradiation. Full eligibility criteria are listed in the Supplementary Note. At the
start of the trial, PD-L1 was assessed using immunohistochemistry and was used for stratification of
the first 17 patients. For logistical reasons and an unacceptable waiting time for patients due to this

PD-L1 analysis, this stratification procedure was stopped.

Procedures

Before the start of the induction treatment (biopsy one), before the start of nivolumab (biopsy two)
and after 6 weeks of nivolumab (biopsy three), a biopsy was taken from a metastatic lesion, preferably
the same lesion throughout the study. In the case of irradiation as induction treatment, a biopsy
was taken from a non-irradiated lesion. When a good-quality baseline biopsy (at least 100 invasive
tumor cells) of a metastatic lesion or recurrence in the breast was obtained, subjects were randomly
allocated to 1 of 4 induction treatments. Induction treatments consisted of irradiation of 1 metastatic

lesion (3 fractions of 8 Gy within 10 weekdays after randomization), cyclophosphamide (50 mg orally
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daily for 2 weeks), cisplatin (40 mg per m2 intravenously weekly for 2 weeks) or doxorubicin (15
mg intravenously weekly for 2 weeks). A fifth control cohort was subjected to a 2-week waiting
period. The irradiation was delivered to an accessible lesion, which was defined as a metastatic,
preferably visceral, otherwise lymph node or bone, lesion at a distant location from the biopsy site.
The radiation technique depended on the metastasis site (Supplementary Table S6). In general, the
lesion was expanded with a 5-mm margin to acquire a planning target volume. Tumor coverage
was assessed by the volume of the planning target volume receiving 95% of the prescribed dose.
All patients underwent a second biopsy, after which nivolumab (3 mg per kg intravenously every 2
weeks) was given until disease progression according to iRECIST! or until unacceptable toxicity.
Accrual to a cohort was continued until ten patients were included who received at least one cycle
of nivolumab, and for whom we were able to obtain a good-quality biopsy at baseline and after
induction treatment. Twelve patients were allocated to the control or no induction cohort, 12 to the

irradiation cohort, 13 to the cyclophosphamide cohort, 13 to

the cisplatin cohortand 17 to the doxorubicin cohort. Clinically stable patients with radiographic ev-
idence of progressive disease according to RECIST1.1 were permitted to continue nivolumab treat-
ment until radiographic confirmation of progressive disease on a second CT scan. When patients
had an ongoing response after 12 months of treatment, nivolumab was allowed to be discontinued
and reintroduced when progressive disease occurred. Dose modification for nivolumab was not per-
mitted, but dose interruptions were allowed in case of (or suspicion of) toxicity. Safety was assessed
every 2 weeks and included monitoring of AEs by clinical laboratory assessments and physical ex-
aminations. AEs were classified and graded per National Cancer Institute’s Common Terminology
Criteria for Adverse Events (NCI-CTCAE), v4.03. Serious AEs were collected up to 30 d after the
last nivolumab administration. Imaging was performed after the 2-week induction treatment period
and thereafter every 6 weeks until 6 months, after which imaging was performed every 8 weeks. Best
overall response, duration of response and the date of progression were assessed according to RE-
CIST1.1 and iRECIST, investigator assessed. An independent radiologist with extensive experience

with response assessment in patients treated with ICB reviewed the scans of the responding cases.

End points

The primary end point of the study was PFS, assessed from randomization (PFS1) to tumor pro-
gression or death from any cause as defined by RECIST1.1. Secondary end points of the study were
ORR, defined as the percentage of patients with a best overall response of CR or PR according to RE-
CIST1.1 and iRECIST; clinical benefit rate, defined as the percentage of patients with a best overall
response of CR, PR and stable disease for 24 weeks, according to RECIST1.1 and iRECIST; PFS1 as
defined by iRECIST; PFS, assessed from nivolumab treatment initiation (PFS2) to tumor progression
or death from any cause as defined by RECIST1.1 and iRECIST; overall survival, defined as the time
from nivolumab initiation to death from any cause; and the percentage of patients with toxicity ac-

cording to NCI-CTCAE v4.03 and immune-related toxicity. Translational objectives included: the
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effects of the induction treatments on the anticancer immune response evaluated using immune-
related gene expression signatures; T cell influx determined using H&E and immunohistochemistry

and TCR sequencing; and the exploration of putative predictive biomarkers.

Statistical analysis

For patients with metastatic TNBC, no first-line ‘standard’ therapies have been defined. Frequently
used anticancer agents are capecitabine or taxanes. The median PFS with these therapies typically
lies between 4-6 months. No ‘standard’ second-line therapy exists for patients with TNBC, but car-
boplatin (+gemcitabine), vinorelbine, capecitabine and taxanes are often used. On the basis of four
phase 2 trials in TNBC allowing one or two previous lines of chemotherapy, a median PFS between
2 and 4 months was anticipated®’ ™, Thus, the investigators considered a proportion of >30% of the
patients having a PFS of at least 12 weeks as potentially interesting. The null hypothesis that the true
PFS rate as a binary end point at 12 weeks is 30% was tested against an alternative of 50%. A Simon
two-stage minimax design with a one-sided alpha of 15% and 85% power was also optimal with re-
spect to the expected sample size. A sample size of ten evaluable patients in the first stage required
early discontinuation of a particular treatment cohort if less than three out of ten patients were free
of progression and alive at 12 weeks. Because the number of patients in each cohort is larger than ten
(due to the collection of ten paired biopsies), the decision about discontinuation of a cohort was based
on the first ten patients. A patient was considered evaluable when at least one cycle of nivolumab
was administered and both the baseline biopsy (biopsy one) and the post-induction biopsy (biopsy
two) were available for immunohistochemistry. PFS and OS were assessed in all patients who re-
ceived at least one dose of nivolumab (per protocol population). The safety population consisted of
all patients who started their allocated treatment. PFS, OS, duration of response and median follow-
up were calculated from the date of randomization and estimated using the Kaplan-Meier method.
The duration of response was calculated from the first date of response to the date of progression.
Median time to response was calculated as the time between randomization and the first measured
objective response in responding cases. The DFI was defined as the time between the diagnosis of the
primary tumor or locoregional recurrence and the date of diagnosis of metastatic disease. Patients
with de novo metastatic disease at diagnosis were excluded from the exploratory analysis testing the
association between DFI and ORR. A binary logistic regression analysis was performed to assess the
effect of CA 15-3 (per 10 units) on response after correction for possible confounding factors (one
model corrected for the number of metastatic sites and another model corrected for TIL and previ-
ous lines of treatment). As the number of metastatic sites and CA 15-3 were correlated (Spearman’s
p: 0.46; P = 0.0001), we tested for multicollinearity and found a variance inflation factor of 1.02,
indicating no multicollinearity. The number of metastatic sites (1-2 versus 3 or more sites) and the
number of previous lines of treatment (0 versus 1-3 lines) were included as categorical variables with
the lowest category as a reference. Two-sided non- parametric tests were used for all analyses of the

translational data: that is, the Mann—-Whitney U-test was used for independent observations and the
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Wilcoxon’s signed-rank test was used for paired observations. The data cut-off date for all analyses
was 1 December 2018. Microsoft Excel v16.13.1, GraphPad Prism v7.0, IBM SPSS Statistics 23, SAS
v9.4 and R v3.3.2% were used for statistical analyses. Reported P values are unadjusted, unless stated

otherwise.

Peripheral blood parameters

Baseline neutrophil, lymphocyte and eosinophil counts and LDH and C-reactive protein levels were
measured according to local guidelines as part of routine diagnostics. The neutrophil-to-lymphocyte
ratio was calculated as the ratio of neutrophils over lymphocytes. Baseline cytokine levels were as-
sessed in the serum by BioLegend’s LEGENDplex bead-based cytokine assay (human CD8/natural

killer cell panel; lot no. 740267) according to the manufacturer’s instructions.

TILs and immunohistochemistry

Formalin-fixed paraffin-embedded tissue sections were used for H&E stainings, and for CD8 (C8/
144B, DAKO), PD-L1 (22C3, DAKO), CD4 (SP35, CellMarque) and FOXP3 (236A/E7, Abcam) im-
munohistochemistry. Immunohistochemistry of samples was performed on a BenchMark Ultra
autostainer (Ventana Medical Systems). Paraffin sections of 3 pm were deparaffinized in the in-
strument with EZ prep solution (Ventana Medical Systems). Heat-induced antigen retrieval was
carried out using Cell Conditioning 1 (Ventana Medical Systems) for 48 min at 95 °C. Slides were
counterstained with Hematoxylin and Bluing Reagent (Ventana Medical Systems). CD4 (red) and
FOXP3 (DAB) were double stained. FOXP3 was detected in the first sequence (1:200 dilution, 2 h
at room temperature). Bound antibody was detected using the OptiView DAB Detection Kit (Ven-
tana Medical Systems). In the second sequence of the double-staining procedure, CD4 was detected
(1:200 dilution, 1 h at room temperature) with an additional amplification step (Ventana Medical Sys-
tems). CD4 was visualized using the UltraView Universal Alkaline Phosphatase Red Detection Kit
(Ventana Medical Systems). Slides were scanned at Aperio ScanScope and uploaded on Slide Score
(http://www.slidescore.com/]). Two pathologists independently evaluated the stainings digi-
tally. The absolute CD8 count was scored manually by one pathologist. The percentage of tumor cells
and sTILs was assessed by pathologists trained for TIL assessment on H&E-stained slides according
to an accepted international standard from the International Immuno-Oncology Biomarker Work-
ing Group (see http://www.tilsinbreastcancer.org/ for all guidelines on TIL assessment in
solid tumors). CD8 staining was assessed on all intratumoral and stromal immune cells, whereas
PD-L1 staining was assessed on both tumor cells and infiltrating immune cells separately. CD4 and

FOXP3 were assessed as the percentage of the total stromal area by two pathologists.
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DNA and RNA sequencing

DNA and RNA was isolated from freshly frozen sections of tissue biopsies containing at least 30%
tumor cells, using the Qiagen AllPrep DNA/RNA/miRNA Universal Kit. Genomic DNA from pe-
ripheral blood cells was isolated using the QIAsymphony DSP circulating DNA kit. For exome se-
quencing, DNA was fragmented to 200-300-bp fragments by Covaris shearing, after which library
preparation was performed using the KAPA HTP DNA Library Kit, according to the manufacturer’s
instructions. Exome enrichment was performed using the IDT Human Exome V1.0 Kit according to
the manufacturer’s instructions. Resultant libraries were sequenced with 100- bp paired-end reads
on a HiSeq2500 in high-output mode using V2 chemistry (Illumina), and median sequencing depths
of 146 (range: 122-217) for tumor samples and 64.7 (range: 44.6-83.2) for germline DNA samples
were obtained. Raw reads were aligned to GRCh38 using the Burrows—Wheeler Aligner (bwa), fol-
lowed by marking of duplicate reads by Picard MarkDuplicates. Subsequently, base quality scores
were recalibrated using GATK BaseRecalibrator, and single- nucleotide variants and indels (inser-
tions or deletions) were called using GATK MuTect®€. Variants were filtered using MuTect TLOD
and NLOD with thresholds of 40 and 10, respectively, and were required to have passed all other
MuTect tests (FILTER field equals ‘PASS’). Variants were subsequently annotated using SnpEff 4.3t
(build 2017-110-24 10:18) and variants were classified according to their most severe effect in the
case of effects on multiple transcripts. Non-synonymous, exonic mutational load in coding genes
was determined by summation of coding single-nucleotide variants and indels, specifically variants
annotated as one of the following classes: conservative in-frame deletion, disruptive in-frame dele-
tion, disruptive in-frame insertion, frameshift variant, missense variant, protein—protein contact,
start lost, stop gained, stop lost, stop-retained variant and structural interaction variant. Copy num-
ber aberrations, discretized to integer allele-specific copy number estimates, along with purity and
ploidy estimates, were obtained using the R package Sequenza (version 2.1.2)* with default settings.
Genomic segments were identified as having undergone loss of heterozygosity if any allele (that is,
the minor allele) had a copy number estimate of 0. Candidate tumor-specific neo-epitopes were de-
termined and annotated using an in-house epitope prediction pipeline, which uses a random forest

model to score the probability of surface expression of candidate neo-epitopes based

on the major prerequisities for (neo-)antigen presentation: RNA expression level (Salmon version

0.9.1)#, proteasomal processing (NetChop version 3.1)#

and human leukocyte antigen binding
(netMHCpan version 4)2!, Candidate neo-epitopes that have a model prediction score lower than
0.02 are filtered out. The input variants used for the neo-epitope prediction pipeline were filtered
using the default MuTect TLOD and NLOD thresholds and were required to have passed all other
MuTect tests (FILTER field equals ‘PASS’). Whole exome sequencing of tumor and germline DNA

isolated from peripheral blood was available for 50 patients at baseline.

To obtain RNA sequencing data, strand-specific libraries were generated using the TruSeq Stranded
mRNA sample preparation kit (Illumina) according to the manufacturer’s instructions. The 3’ end-

adenylated and adapter-ligated RNA was amplified by 12 cycles of PCR. The libraries were analyzed
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on a 2100 Bioanalyzer using a 7500 chip (Agilent), diluted and pooled equimolar into a multiplex
sequencing pool and stored at —20 °C. Resultant libraries were sequenced with 65-bp single-end
reads on a HiSeq2500 in high-output mode using V4 chemistry (Illumina). Gene-specific read counts
for the Ensembl version 86 build of the human transcriptome on reference genome GRCh38 were
obtained by running Salmon (version 0.11.0)*¥ directly on the FASTQ files using default settings,
after which transcript specific read counts were collapsed to gene expression read counts using the
R Bioconductor package tximport, version 1.4.0. Read counts were subsequently trimmed mean
of M values (TMM)-normalized using the edgeR Bioconductor package, version 3.18.18283, RNA

sequencing data were obtained for 53 patients at baseline and 44 patients post-induction.

NanoString gene expression analysis

mRNA expression was measured with the nCounter technology, provided by NanoString Technolo-
gies. nCounter uses probes with barcodes attached to DNA oligonucleotides that directly bind to
RNA. Preparation and analyses were performed according to the manufacturer’s protocol using The
PanCancer IO 360 gene expression panel that includes 770 genes (for research use only and not for
use in diagnostic procedures). Signatures were defined as described previously?#23£8, Normaliza-
tion was performed by correcting for the expression of technical controls and 30 housekeeping genes
included in the panel. A PAM50 spike-in panel of 30 genes was used to determine PAM50 subtypes.
nCounter gene expression data were obtained for 51 patients at baseline, 45 patients post-induction

and 30 patients on nivolumab.

TCR sequencing

The ImmunoSEQ Assay (Adaptive Biotechnologies) covering the CDR3 region of the human TCR
p- chain was performed on DNA isolated from baseline, post-induction and on-nivolumab tumor
samples. For a subset of patients, DNA was isolated from peripheral blood mononuclear cells with
the Qiagen DNeasy Blood & Tissue Kit. Extracted genomic DNA was amplified in a bias-controlled
multiplex PCR, followed by high-throughput sequencing. Sequences were collapsed and filtered to
identify and quantitate the absolute abundance of unique TCR-p CDR3 region for further analy-
sis. TCR sequencing data of tumor-infiltrating T cells were obtained for 48 patients at baseline, 43
patients post-induction and 29 patients on nivolumab. TCR sequencing data of peripheral blood T
cells were obtained for 20 patients at baseline, post-induction and on nivolumab. The following T
cell repertoire summary statistics were extracted from the Adaptive ImmunoSeq Analyzer: clonal-
ity, number of unique clones (repertoire diversity), as estimated by the Efron-Thisted estimator®?,

and T cell infiltration, as measured by the fraction of T cells over nucleated cells.
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Gene Set Enrichment Analysis on RNA sequencing data

To analyze which cellular processes were most strongly affected by the four induction treatments,
a GSEA®Y was performed on the 50 hallmark gene sets® and separately on 4 MDSC- associated®
and CD4 T cell-associated®” gene sets using the flexgsea-r R package (https://github. com/NKI-
CCB/flexgsea-1)) on the TMM-normalized read counts as detailed above. Having defined a cus-
tom gene-ranking function, genes were ranked according to the P values of a pairwise Wilcoxon
rank-sum test, as implemented by the wilcox.test() function in R. Specifically, the following gene-
ranking value was used: r(g) = sign(FCg)(1-Pg), in which the sign function returns either 1 or -1
depending on the sign of its operand, FCg reflects the median fold change (FC) between the two
compared time points and Pg represents the P value of the Wilcoxon rank-sum test. During permu-
tation steps (n = 1,000), samples from both time points were assigned randomly to time point and

patient combinations.

PAM50 subtyping on RNA sequencing data

PAMS50 subtyping was done on TMM-normalized RNA sequencing data using the genefu package

in R, version 2.11.2%9,

Bayesian hierarchical modelling of gene expression FCs

We noticed differences between the induction treatments in the FCs between the baseline and post-
induction or on nivolumab timepoints of the 12 NanoString gene set scores, related to inflammation
and T-cell activation. Thus, we wanted to quantify to what degree induction cohorts were enriched
for high or low FCs. As the gene expression scores for these gene sets were highly correlated, we first
summarized them by taking the median (which we refer to as the ‘inflammation score’) per patient
and time point. We then modelled the FCs in inflammation scores over time between the baseline
(biopsy one) and post-induction (biopsy two) time points using a hierarchical Bayesian regression
model. This model regularizes the effects ascribed to the induction treatments by partially pool-
ing effects across induction arms, which increases inferential robustness. Specifically, the means of
observed FCs for each induction treatment, fi4,m,,, Were assumed to originate from a normal distri-
bution, N (i, 0qrm ), for which both the mean (1) and the standard deviation (04, ) parameters
were estimated using scaled Student’s t-distributions (¢(df, m, s)) as their priors, where df denotes
the Student-t’s degrees of freedom, m represents the location of the mode and s represents the scal-
ing to be applied to the data beforehand. We employed df = 3, m = 0 and s = 10, throughout,
to get weakly informative priors centered at 0. Next, the observed FCs were modelled as generated
by induction arm-specific normal distributions with mean (4, and standard deviation o p¢, the
latter of which is shared between induction arms (variation in observed FCs within arms appeared

equal). Combined, this gives the following set of expressions (as graphically represented in Figure
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S3.8a):

e~ t(3,0,10)
Carm ~ t(3,0,10)
Harm ~ N (i, 0arm)
HFC = Harm
orc ~ t(3,0,10)
FC ~ N(urc,orc)

In which g g, the expected FC for an individual observation, equals (44,1, in this basic version of the
model, but will shortly be augmented with additional co-variates. After fitting the model, we normal-
ized the fiq,, -estimates of the induction treatments to that of the no induction cohort by computing
and reporting the pairwise fold differences in ti4y, as compared to fiqym, of the no induction cohort
(Figure S3.8b). Obtained results were robust to varying df for both 04, and o p¢ between 1 and 6

(data not shown).

As we noticed the inflammation score at baseline (Sp1) to negatively associate with the observed
inflammation score FCs (Figure S3.8c), we also investigated an extension of this model in which Spr,

influences the observed FC in a global, arm-unspecific manner by augmenting pr¢ :

b~ (3,0,10)
HFC = Harm + bSBL

where all statistical definitions of the previous model, except for the superseded prc, still apply.
Second, we tested whether describing the effect of having a clinical response to nivolumab would
abrogate the intercohort differences, as we did observe higher FCs in responding patients when com-
paring on-nivolumab (biopsy three) and baseline (biopsy one) time points, which is not surprising
considering the way these gene sets were selected (Figure B.3g). Similarly to the previous expansion
of ppc with b Spr, we thus augmented e with r R, in which r describes the effect attributed to
having a clinical response

(modeled as cr ~ (3, 0, 10)) and R is an indicator variable for clinical response to nivolumab
(Figure S3.8d). Third, we were interested in testing whether having previous treatment for metastatic
disease before enrollment in the TONIC trial affected the observed upregulation. This was motivated
by the fact that we observed a trend towards a higher clinical response rate in patients with no pre-

vious lines of treatment than in patients with one or more lines of previous treatment (Figure S3.5¢).
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Thus, we further expanded the expression for ppc with IL, in which [ describes the effect attributed
to having multiple treatment lines (prioritized as | ~ #(3,0,10)) and L is an indicator variable rep-
resenting whether palliative treatment was administered (Figure S3.8e). Finally, we also tested the
relationship between having metastases restricted to the lymph nodes as opposed to other organs
(Figure S3.8f), expanding the expression for ;powith nlN, in which n describes the effect attributed
to having metastases restricted to lymph nodes (prioritized as n ~ #(3,0,10)) and N is an indicator

variable for having lymph node-restricted metastases.

Testing various combinations of the four extra covariates described in the previous paragraph re-
vealed that the inclusion of extra covariates minimally influenced the coefficients assigned to other
covariates (Figure S3.8h). The exception to this is r, which was reduced by about fourfold with the
inclusion of other covariates. The full model, including all of the extra covariates, shows that the
baseline inflammation score (SBL) and lymph node-restricted metastases were most strongly asso-
ciated with FCs in the inflammation score, besides the differential FCs apparently induced by the

tested induction treatments.

These models were evaluated using the probabilistic programming language Stan®/, interfaced in R
using the R package rstan (version 2.17.3). Ten chains of no-U-turn-sampler Markov chain Monte
Carlo (MCMC) simulations were run for 100,000 iterations, of which 25,000 served as warm-up
iterations. Sampling convergence was sufficient for all models as Rhat values were all 1. Inter-arm
comparisons between fig,m and fiqqm Were performed by extracting parameter values from non-
warm-up MCMC iterations (using rstan::extract) for both arms and computing the proportion of

iterations for which fi4,m,equaled or exceeded figrm.-

The stan program is available on request.

BRCA1-like classification based on copy number profiles

A BRCAL1 classifier originally had been trained using the nearest shrunken centroids algorithm on
bacterial artificial chromosome (BAC) array comparative genomic hybridization data®®. Data from
platforms of higher resolution can be used to obtain reliable BRCA1-like classification®. In this
study, GC-content-corrected allele imbalance log ratios, to be used for downstream copy number
estimates, were obtained from whole-exome sequencing data using the Sequenza R package®. To
apply the BRCA1-like classifier, these estimates had to be preprocessed to comply with the format of
the original training set. LiftOver was used to map the genomic locations from GRCh38 to hg19, the
reference genome on which the BRCA1-like classifier was validated. Average log ratios for each of
the original 3,277 BAC-array segments were computed by averaging the binned log ratios within 500
kb upstream and downstream of the central genomic position of the BAC clone. Missing values due
to alack of coverage were subsequently replaced using linear interpolation between adjacent features
on the same chromosome. On average, 487 probes were estimated per sample, of which on average

372 had directly surrounding probes available for interpolation. The mean and maximum genomic
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distances between estimated and nearest measured segments were 2 Mb (2 segments) and 7 Mb (7
segments), respectively. The distribution of resulting whole-exome sequencing (WES)-derived seg-
ment log ratios differed in the mean from that of previously obtained BAC-derived segment log ra-
tios of patients with TNBC®Y, To correct the WES segments, we first fitted a linear model (iteratively
reweighted least squares) between the sorted segment-wise averages of the WES and BAC segments.
The WES data were then corrected using the following expression f. = o + ff,, in which f, and
fc represent the original and corrected segments, respectively, and o (0.16) and { (0.97) represent
the fitted parameters. This yielded highly similar distributions between the newly obtained WES-
derived and original BAC-derived log ratio estimates (Pearson’s r2 = 0.96), but the former remained
slightly right skewed. Finally, the WES data were classified with the established nearest shrunken
centroid classifier, using a previously established value of at least 0.63 to be classified as BRCA1-like

(as used in earlier work®; http://ccb.nki.nl/software/nkibrca/).

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary
linked to this article.

Data availability

DNA and RNA sequencing data have been deposited in the European Genome-phenome Archive
(EGA) under accession number EGAS0001003535 and will be made available from the correspond-
ing author on reasonable request. Data requests will be reviewed by the institutional review board
of the NKI and applying researchers will need to sign a data access agreement with the NKI after
approval. The TCR sequencing data are available from Adaptive Biotechnologies, but restrictions
apply to their availability. However, data are available from the corresponding author on reasonable

request and with permission of Adaptive Biotechnologies.
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Supplemental Figures
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Safety analysis population
Irradiation Cyclo- Cisplatin Doxorubicin
phosphamide
13 patients 13 patients 13 patients 17 patients
I 1 patient ER positive tumor upon revision (irradiation)
67 patients available for survival analysis
Per protocol population
Irradiation Cyclo- Cisplatin Doxorubicin
phosphamide
12 patients 13 patients 13 patients 17 patients
| 1 patient had non-evaluable disease according to
| RECIST1.1 (cyclophosphamide)
66 patients available for efficacy analysis
Efficacy analysis population
Irradiation Cyclo- Cisplatin Doxorubicin
phosphamide
12 patients 12 patients 13 patients 17 patients

Figure S3.1: CONSORT diagram. Flowchart for the allocation of subjects enrolled in the trial.
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Figure $3.2: Clinical and other baseline parameters associated with response. Boxplots represent the
median, 25th and 75th percentiles and the vertical bars span the 5th and 95th percentiles. Statistical significance
was tested with a two-tailed Mann-Whitney U-test (unadjusted P values).

a ORR per subgroup. Depicted is the ORR (CR + PR of n = 66) per subgroup. Cut-offs are set at the median
for carcinoembryonic antigen (CEA), CA 15-3, sTIL and CD8. Statistical significance was determined by a two-
sided Fisher’s exact test. *P < 0.05. WHO, WHO performance status. IPatients with de novo metastatic disease
at diagnosis were excluded (n = 8).

b PD-L1 expression on immune cells.

¢ PD-L1 expression on tumor cells.

d Serum levels of CEA.

e Correlation of CA 15-3 and CEA with tumor burden and the number of metastatic sites. Spearman correlation
coefficients are depicted. Tumor burden was measured as the sum of all target lesions in millimeters; *P < 0.05;
**¥P <0.001.

f LDH levels.

g C-reactive protein (CRP) levels.

h Neutrophil counts.

i Lymphocyte counts.

j Neutrophil-to-lymphocyte ratio (NLR).

k Eosinophil counts. The dashed line indicates the detection limit.

1 Intratumoral TCR clonality.

m Percentage of intratumoral T cells by TCR sequencing.

n Intratumoral TCR repertoire diversity.

o TCR clonality in the peripheral blood.

p Percentage of T cells by TCR sequencing in the peripheral blood.

q TCR repertoire diversity in the peripheral blood.

r Non-synonymous tumor mutational burden (TMB).

s Predicted neo-epitopes.
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Figure S3.3: Extended Data Figure 3. Baseline PD-L1 expression.
a PFS and PD-L1 expression on tumor cells. The Kaplan-Meier curve displays the proportion of patients free
of progression, stratified by PD-L1 expression on tumor cells. A cut-off of 1% is used. The table lists the number

of patients at risk.
b Overall survival and PD-L1 expression on tumor cells. The Kaplan-Meier curve displays overall survival,
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stratified by PD-L1 expression on tumor cells. A cut-off of 1% is used.

¢ PFS and PD-L1 expression on tumor-infiltrating immune cells. The Kaplan-Meier curve displays the pro-
portion of patients free of progression, stratified by PD-L1 expression on tumor-infiltrating immune cells. A
cut-off of 1% is used.

d Overall survival and PD-L1 expression on tumor-infiltrating immune cells. The Kaplan-Meier curve displays
overall survival, stratified by PD-L1 expression on tumor-infiltrating immune cells. A cut-off of 1% is used.

e PFS and PD-L1 expression on tumor-infiltrating immune cells. The Kaplan-Meier curve displays the pro-
portion of patients free of progression, stratified by PD-L1 expression on tumor-infiltrating immune cells. A
cut-off of 5% is used.

f Overall survival and PD-L1 expression on tumor-infiltrating immune cells. The Kaplan-Meier curve displays
overall survival, stratified by PD-L1 expression on tumor-infiltrating immune cells. A cut-off of 5% is used.

g PD-L1 expression on tumor-infiltrating immune cells and site of metastasis. PD-L1 expression per biopsy
site at baseline is shown. Dots reflect the medians and whiskers reflect the interquartile ranges. IC, tumor-
infiltrating immune cells; TC, tumor cells.
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Figure S3.4: Extended Data Figure 4. Baseline serum cytokine levels. Cytokine levels were deter-
mined by a validated bead-based assay. Dots and whiskers represent medians and interquartile ranges, respec-
tively. The dashed lines indicate the detection limit.

allL-2levels. IL-2 levels were detectable in five patients with clinical benefit and seven patients with progressive
disease.

b IL-4 levels. IL-4 levels were detectable in 5 patients with clinical benefit and 11 patients with progressive
disease.

c IL-6 levels. IL-6 levels were detectable in 13 patients with clinical benefit and 49 patients with progressive
disease.

d IL-10 levels. IL-10 levels were detectable in 11 patients with clinical benefit and 41 patients with progressive
disease.

eIL-17A levels. IL-17A levels were detectable in 12 patients with clinical benefit and 46 patients with progres-
sive disease.

f IFN-y levels. IFN-y levels were detectable in 13 patients with clinical benefit and 47 patients with progressive
disease.

g TNF-a levels. TNF-a levels were detectable in 11 patients with clinical benefit and 45 patients with progres-
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sive disease.

h Soluble Fas (sFas) levels. sFas levels were detectable in all tested patients.

i Granzyme A levels. Granzyme A levels were detectable in all tested patients.

j Granzyme B levels. Granzyme B levels were detectable in 5 patients with clinical benefit and 17 patients with
progressive disease.

k Perforin levels. Perforin levels were detectable in all tested patients.

1 Granulysin levels. Granulysin levels were detectable in all tested patients.
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Figure S3.5: Extended Data Figure 5. Anti-tumor activity of nivolumab

a Changes in target lesions over time, reflecting the depth and duration of response. Every line represents one
patient, and every dot is one time point. The colors reflect induction treatment. The y axis was cut-off at 100%
for illustration purposes. Dotted black lines indicate the response as described by RECIST1.1.

b Waterfall plot depicting the change in target lesions from baseline to post-induction. Every bar represents
one patient and the colors correspond to induction treatment. The y axis was cut-off at 100% for illustration
purposes. Dotted black lines indicate the response as described by RECIST1.1.

¢ ORR per cohort and according to lines of palliative treatment. The bars with no pattern depict the overall
response rate in all patients, the bars with a dotted pattern depict the overall response rate in first-line-treated
patients and the bars with a lined pattern depict the overall response rate in the second-to-fourth-line-treated
patients. The numbers above the bars reflect the number of responding patients (CR + PR) over the total number
of patients in that subgroup.

d Proportion of patients free of progression at 24 weeks. Measured from randomization according to RE-
CIST1.1 (primary end point).

e Proportion of patients free of progression at 12 weeks. Measured from nivolumab initiation (including re-
sponse evaluation performed at 14 weeks from randomization) according to RECIST1.1.

f Proportion of patients free of progression at 12 weeks. Measured from nivolumab initiation (including re-
sponse evaluation performed at 14 weeks from randomization) according to iRECIST.

g Number of patients free of progression at 12 weeks in the first 10 included patients. Measured from nivolumab
initiation (including response evaluation performed at 14 weeks from randomization) according to iRECIST.
h Trial design of TONIC stage 2. Patients are randomized between (1) induction treatment of 2 weeks with
doxorubicin followed by anti-PD-1 or (2) start with anti-PD-1 without induction treatment.
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Figure $3.6: TCR repertoire diversity during an ongoing anticancer response on nivolumab and
changes observed after induction treatments

a TCR repertoire diversity on nivolumab treatment (biopsy three). TCR repertoire size was estimated using
the Efron-Thisted method> and represents the number of unique intratumoral clones. The boxes in boxplots
represent the median and interquartile ranges and the whiskers represent the 5% and 95th percentiles.

b Fold change (FC) in the number of unique intratumoral TCR clones (TCR repertoire diversity) after induction
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treatment versus baseline (biopsy two versus biopsy one). Every dot represents one patient. Patients with clin-
ical benefit are highlighted with a red dot. The dotted black line indicates no change. TCR repertoire size was
estimated using the Efron-Thisted method®. The boxes in the boxplots represent the median and interquartile
ranges and the whiskers represent the full range. Statistical significance was tested with a Kruskal-Wallis test
for all groups.

¢ FC in the number of unique intratumoral TCR clones (TCR repertoire diversity) after nivolumab treatment
versus baseline (biopsy three versus biopsy one). Every dot represents one patient. Patients with clinical benefit
are highlighted with a red dot. The dotted black line indicates no change. TCR repertoire size was computed
using the Efron—Thisted method®. The boxes in the boxplots represent the median and interquartile ranges and
the whiskers represent the full range. Statistical significance was tested with a Kruskal-Wallis test for all groups
followed by Dunn’s tests between the induction treatment groups and the control group (P values are adjusted).
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Figure $3.7: Histological characteristics of tumors during an ongoing anticancer response on
nivolumab and changes observed after induction treatments

a sTILs in on-nivolumab biopsies (biopsy three), as determined according to guidelines of the TIL working
group on a H&E staining. The boxes in the boxplots represent the median and interquartile ranges, and the
whiskers represent the 5th and 95th percentiles. Statistical significance was tested with a two-tailed Mann-
Whitney U-test (unadjusted P value).

b CD8 cell count per mm2 in on-nivolumab biopsies (biopsy three). The boxes in the boxplots represent me-
dians with interquartile ranges, and the whiskers span the 5th to 95th percentiles. Statistical significance was
tested with a two-tailed Mann-Whitney U-test (unadjusted P value).

csTILs per cohort. The boxes in the boxplots represent medians with interquartile ranges, and the whiskers span
the 5th to 95th percentiles. Statistical significance was tested on paired biopsies with the Wilcoxon signed-rank
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test (two-tailed and unadjusted P value).

d CD8 cell count per mm?2 per cohort. The boxes in the boxplots represent medians with interquartile ranges,
and the whiskers span the 5th to 95th percentiles. Statistical significance was tested on paired biopsies with the
Wilcoxon signed-rank test (two-tailed and unadjusted P value).

e Stromal CD4 per cohort. The percentage of CD4 of the total stromal area was assessed. The boxes in the box-
plots represent medians with interquartile ranges, and the whiskers span the 5th to 95th percentiles. Statistical
significance was tested on paired biopsies with the Wilcoxon signed-rank test (two- tailed and unadjusted P
value).

f Stromal FOXP3 per cohort. The percentage of FOXP3 of the total stromal area was assessed. The boxes in the
boxplots represent medians with interquartile ranges, and the whiskers span the 5th to 95th percentiles. Statis-
tical significance was tested on paired biopsies with the Wilcoxon signed-rank test (two-tailed and unadjusted
P value).
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Figure S3.8: Bayesian hierarchical regression analysis of inflammation-related gene set FCs to in-
vestigate differences in upregulation between induction arms.
a Plate model representation of the hierarchical model describing the FCs between baseline and post-induction.

81



White-colored variables are inferred from the data using the model, and blue-colored variables are incorporated
in extensions of the basic model. The boxes reflect repetition of the variables, Norms = 5 and Nopatients Varies be-
tween arms. Data were available for 38 patients.

b Distributions of posterior parameter estimates for the basic hierarchical regression model. The percentages
in the vertical labels represent probabilities of exceeding the control arm (the proportion of the distribution
above zero).

c Effect of the baseline inflammation score on the observed FC in the inflammation score. Shown in red is the
conditional mean (linear regression) with the 95% confidence interval shaded gray. The intercept of this line is
not explicitly included in the model as it is already implicitly modelled by the .

d Association between clinical response and the observed FC in the inflammation score. Red dots indicate the
means. The boxes in the boxplots represent medians and interquartile ranges, and the whiskers span 1.5 times
the interquartile range.

e Association between previous lines of palliative treatment and the observed FC in the inflammation score.
Boxplots are as in d. f, Association between lymph node-only metastasis and the observed FC in the inflam-
mation score. Boxplots are as in d. g, Distributions of posterior parameter estimates for the full hierarchical
regression model including all considered covariates. Format as in b. The points indicate the medians, the red
lines indicate the 10-90% percentiles and the black lines indicate the 2.5-97.5% percentiles.

h Robustness of coeflicients with inclusion of extra covariates. Shown are the medians of the posterior param-
eter distributions with the 10th and 90th percentiles for 7 different models, including and excluding combina-
tions of the non-induction arm covariates.
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Figure S3.9: Extended Data Figure 9. Treatment-induced changes in myeloid cell-related and CD4
cell-related gene signatures.

a Heatmap of post-induction FCs in gene expression signaturesE’ (NanoString gene expression data) in post-
induction samples (biopsy two) compared to baseline (biopsy one). Depicted is the log, FC in the median gene
expression of paired biopsies. Statistical significance (two-sided Wilcoxon signed-rank test; unadjusted P value)
is highlighted with a black dot.

b Heatmap of on-nivolumab FCs in gene expression signatures®% (NanoString gene expression data) in sam-
ples taken on nivolumab (biopsy three) compared to baseline (biopsy one). Depicted is the log; FC in the median
gene expression of paired biopsies. Statistical significance (two-sided Wilcoxon signed-rank test; unadjusted P
value) is highlighted with a black dot.

¢ GSEA of selected gene sets related to myeloid cells and CD4 T cells®*#, performed on whole-transcriptome
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RNA sequencing of pre-induction and post-induction samples (biopsy two compared to biopsy one). Cells are
colored according to normalized enrichment scores, and Benjamini-Hochberg (false discovery rate (FDR))-
corrected P values equaling or below 0.25 are highlighted with black dots. CD4FH, follicular helper CD4 T
cells; CDA4TIL, tumor-infiltrating CD4 T cells; MO MDSC, monocytic MDSC; PMN MDSC, polymorphonu-
clear MDSC.

Supplementary Note
Eligibility criteria:

+ Metastatic or incurable locally advanced triple negative breast cancer with confirmation of
ER and HER?2 negativity (ER <10% and HER2 0,1 or 2 in the absence of amplification as de-

termined by in situ hybridization) on a histological biopsy of a metastatic lesion

+ Metastatic lesion accessible for histological biopsy (Mandatory biopsies: pre-induction treat-
ment, post-induction treatment, 6-weeks. Optional biopsies: 12-weeks, at progression, of
irradiated site). The pre-induction treatment biopsy has to contain sufficient tumor content
(=100 tumor cells); subjects with samples that have insufficient tumor content will require
re-biopsy prior to induction treatment. Interval between last systemic treatment and pre-

induction biopsy has to be at least 14 days
« 18 years or older

« Maximum of three lines of chemotherapy for metastatic disease and with evidence of pro-

gression of disease
« Measurable or evaluable disease according to RECIST 1.1
« Metastatic lesion accessible for radiation with 1x20Gy or 3x8Gy

« Nouncontrolled intercurrent illness including, but not limited to, ongoing or active infection,

symptomatic congestive heart failure, unstable angina pectoris

« Subjects with brain metastases are eligible if these are not symptomatic. Subjects who re-
ceived prior treatment for brain metastases should be free of progression on magnetic reso-
nance imaging (MRI) for at least 4 weeks after treatment is completed and prior to first dose
of study drug administration. There must also be no requirement for immunosuppressive
doses of systemic corticosteroids (> 10 mg/day prednisone equivalents) for at least 2 weeks

prior to study drug administration
« No known history of leptomeningeal disease localization

+ No history of having received other anticancer therapies within 2 weeks of start of the study

drug
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+ No history of immunodeficiency, autoimmune disease, conditions requiring immunosup-
pression (>10 mgl daily prednisone equivalents) or chronic infections. Subjects with vitiligo,
diabetes mellitus type I, psoriasis not requiring systemic treatment or resolved childhood
asthma/atopy would be an exception to this rule. Subjects that require intermittent use of
bronchodilators, inhaled steroids, or local steroid injections would not be excluded from the
study. Subjects with hypothyroidism stable on hormone replacement, Sjogren’s syndrome or
conditions not expected to recur in the absence of an external trigger will not be excluded
from the study. Adrenal replacement doses >10 mg daily prednisone equivalents are permit-

ted in the absence of active autoimmune disease
+ No prior treatment with an anti-PD-1, anti-PD-L1, anti-PD-L2, or anti-CTLA-4 antibody
+ No live vaccine within 30 days of planned start of study therapy.
« No active other cancer.

« No positive test for hepatitis B surface virus surface antigen (HBV sAg) or hepatitis C virus

ribonucleic acid (HCV antibody) indicating acute or chronic infection
« WHO performance status of 0 or 1 (Appendix B)
« No history of uncontrolled serious medical or psychiatric illness

+ Absence of any psychological, familial, sociological or geographical condition potentially ham-

pering compliance with the study protocol and follow-up schedule

« No current pregnancy or breastfeeding. Women of childbearing potential (WOCBP*) must
use adequate contraceptive protection. WOCBP should use an adequate method to avoid
pregnancy for 23 weeks (30 days plus the time required for nivolumab to undergo five half-
lives) after the last dose of investigational drug. WOCBP must have a negative serum or urine

pregnancy test
« WBC >2.0x10¢/L, ANC 2 1.5 x 104/L, platelets 100 x 10%/L, Hemoglobin > 5.0

« Bilirubin < 1.5 x upper limit of the normal range (ULN), except subjects with Gilbert Syn-
drome; alkaline phosphatase < 2.5 x ULN (< 5 x ULN in case of liver metastases, and < 7 x
ULN in case of bone metastases); transaminases (ASAT/ALAT) < 3 x ULN (and < 5 x ULN in
case of liver metastases), LDH < 2xULN

« Calculated (Cockcroft-Gault) or measured creatinine clearance > 40 mL/min

« Signed written informed consent

*) Women of childbearing potential” is defined as any female who has experienced menarche and
who has not undergone surgical sterilization (hysterectomy or bilateral oophorectomy) or who is
not postmenopausal. Menopause is defined clinically as 12 months of amenorrhea in a woman over

45 in the absence of other biological or physiological causes.
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Table S1: Baseline characteristics of the intention-to-treat population per cohort. Clinical baseline
characteristics of all allocated patients separated by induction treatment cohort (n = 70).

Median age, years
(range)
Female, n (%)
WHO performance
status, n (%)
0
1
gBRCA1/2, n (%)
Mutation
Wildtype
Unknown
Location of metas-
tasis, n (%)
Lymph node only
Visceral metasta-
sis
Other metastasis
No. of prior ther-
apies for metastatic
disease, n (%)
0
1
2-3
Previous neoadju-
vant or adjuvant
therapy, n (%)
Previous
chemotherapy
exposure, n (%)
Taxane
Anthracycline
Platinum
Capecitabine
Disease free inter-
val, n (%)

Cohort 1,
Control/no
induction
n=12)
53(33-69)

12 (100)

7 (58)
5(42)

3(25)
7 (58)
2(17)

1(8)
7 (58)

4(33)

4(33)
6 (50)
2(17)
11(92)

11(92)
11(92)
12 (100)
6 (50)

Cohort

Irradiation

(n=14)

47 (33-68)

14 (100)

6 (43)
8(57)

0(0)
12 (86)
2(14)

1(7)
12 (86)

1(7)

4(29)
7 (50)
3(21)
13(93)

13(92)
14 (100)
7 (50)
6(43)
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Cohort 3,
Cyclophos-
phamide (n
=13)
51(35-68)

13 (100)

6 (46)
7 (54)

0(0)
11(85)
2(15)

0(0)
11(85)

2(15)

2(15)
6 (46)
5(38)
11(85)

12 (93)
11(85)
5(38)
8(62)

Cohort 4,
Cisplatin (n
=14)

53 (41-70)

14 (100)

8(57)
6(43)

1(7)
8(57)
5(36)

0(0)
10(71)

4(29)

1(7)

7 (50)
6(43)
10(71)

12 (86)
10(71)
8(57)
8(57)

Cohort 5,
Doxoru-
bicin (n =
17)

46 (29-68)

17 (100)

14 (82)
3(18)

2(12)
12(71)
3(18)

4(24)
10(59)

3(18)

6(35)
8(47)
3(18)
14(82)

16 (94)
14(82)
10 (59)
6 (35)



De novo 1(8) 1(7) 2(15) 3(21) 2(12)

metastatic disease

Disease free 4(33) 8(57) 5(38) 2(14) 4(24)
interval < 12 months

Disease free 7 (58) 5(36) 6 (46) 9(64) 11 (65)
interval > 12 months
LDH level, n (%)

< ULN 7 (58) 7 (50) 8(62) 6(43) 11 (65)

< 2x ULN 5(42) 7 (50) 5(38) 8(57) 6(35)
Stromal tumor

infiltrating  lym-
phocytes, n (%)

Not available 0(0) 2(14) 0(0) 1(7) 2(12)
<5% 4(33) 7 (50) 4(31) 4(29) 6 (35)
> 5% 8(67) 5(36) 9 (69) 9(64) 9(53)

PD-L1 expression

on tumor cells, n

(%)

Not available 0(0) 2(14) 1(8) 1(7) 1(6)

> 1% on tumor 8(67) 10(71) 9(69) 8(57) 9(53)
cells

> 5% on tumor 3 (25) 7 (50) 5(38) 4(29) 4(24)
cells

PD-L1 expression

on immune cells, n

(%)

Not available 0(0) 2(14) 1(8) 1(7) 1(6)

> 1% on immune  11(92) 10 (71) 12 (92) 12 (86) 15 (88)
cells

> 5% on immune 9 (75) 8(57) 8(62) 11 (79) 11 (65)
cells
No. of nivolumab 5 (2-20) 2 (0-24) 5(1-16) 6 (0-42) 6(1-37)
cycles, median
(range)

Table S2: Baseline characteristics of the efficacy analysis population. Clinical baseline characteristics
of the patients included in the efficacy analysis (n = 66)

Efficacy analysis population (n = 66)
Median age, years (range) 51(29-70)
n %
WHO performance status
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0 39 59%

1 27 41%
gBRCA1/2

Mutation 6 9%

Wildtype 47 71%

Unknown 13 20%
Location of metastasis

Lymph node only 6 9%

Visceral metastasis 47 71%

Other metastasis 13 20%
No. of prior therapies for metastatic disease

0 15 23%

1 33 50%

2-3 18 27%
Previous neoadjuvant or adjuvant therapy 56 85%

Previous chemotherapy exposure

Taxane 60 91%

Anthracycline 56 85%

Platinum 38 58%

Capecitabine 33 50%
Disease Free Interval

De novo metastatic disease 8 12%

Disease Free Interval < 12 months 21 32%

Disease Free Interval > 12 months 37 56%
LDH level

< ULN 38 58%

< 2x ULN 28 42%
PD-L1 expression on tumor cells

Not available 2 3%

> 1% on tumor cells 41 62%

> 5% on tumor cells 23 35%
PD-L1 expression on immune cells

Not available 2 3%

> 1% on immune cells 59 89%

> 5% on immune cells 46 70%

“Two patients with clear evidence of progression died on study. One patient died from bacterial peritonitis
probably due to progressive intestinal metastasis. One patient with progressive pleural fluid and lymphangitic

carcinomatosis died from acute respiratory insufficiency not otherwise specified while being hospitalized.

Table S3: Maximum grade of nivolumab or induction treatment-related adverse events. Maximum
grade of treatment-related adverse event, separated by induction treatment cohort. Denoted are the maximum
grade adverse events during nivolumab treatment and during induction treatment.
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Any grade Grade 3 Grade 4 Grade 5

Induction related (n = 68) 19 (28) 2(3) 0 0
Control/no induction (n = 12) 1(8) 0 0 0
Irradiation (n = 13) 3(23) 0 0 0
Cyclophosphamide (n = 13) 3(23) 1(8) 0 0
Cisplatin (n = 13) 8(62) 1(8) 0 0
Doxorubicin (n =17) 4(24) 0 0 0
Nivolumab related (n = 68) 55(81) 9(13) 2(3) 2(3)"
Control/no induction (n = 12) 9(75) 2(17) 0 1(8)
Irradiation (n = 13) 10(77) 3(23) 0 1(8)
Cyclophosphamide (n = 13) 13 (100) 2 (15) 2(15) 0
Cisplatin (n = 13) 11 (85) 2(15) 0 0
Doxorubicin (n = 17) 12(71) 0 0 0

Table S4: Nivolumab related adverse events. Nivolumab related adverse events of any grade, occurring in
at least 5% of patients, and all grade 3-5 adverse events, all immune-related adverse events and immune-related
events of special interest.

n=:68 Any Grade3,n Grade4,n Grade5,n
grade, n (%) (%) (%)
(%)
Fatigue 16 (24) 0 0 0
Alanine aminotransferase increased 13(19) 0 0 0
Aspartate aminotransferase increased 13(19) 1(1) 0 0
Hypothyroidism 12(18) 0 0 0
Diarrhea 9(13) 0 0 0
Dyspnea’ 8(12) 2(3) 00
Gamma-glutamyltransferase increased 8(12) 2(3) 1(1) 0
Alkaline phosphatase increased 7 (10) 1(1) 0 0
Infusion related reaction 7 (10) 0 0 0
Fever 6(9) 0 0 0
Flu like symptoms 5(7) 0 0 0
Pain 5(7) 0 0 0
Serum amylase increased 4(6) 0 1(1) 0
Hyperthyroidism 4(6) 0 0 0
Sarcoidosis 4(6) 1(1) 0 0
Lipase increased 3(4) 1(1) 0 0
Anemia 2(3) 1(1) 0 0
Abdominal infection 1(1) 0 0 1(1)
Anorexia 1(1) 1(1) 0 0
Febrile neutropenia 1(1) 1(1) 0 0
Hypertension 1(1) 1(1) 0 0
Hyponatremia 1(1) 1(1) 0 0
Respiratory insufficiency 1(1) 0 0 1(1)
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Syncope 1(1) 1(1) 0 0
Immune-related colitis 1(1) 0 0 0
Immune-related gastritis 1(1) 0 0 0
Immune-related pneumonitis 1(1) 0 0 0

Table S5: Efficacy of nivolumab in the efficacy analysis population. Efficacy analysis was performed
using the efficacy analysis population (n = 66) as determined by iRECIST. Complete and partial responses had to
be confirmed on at least one subsequent CT scan. 1 patient was non-evaluable according to RECIST1.1, but had
clinical benefit for more than 24 weeks. Progression-free survival was calculated in the per protocol population
(n = 67) from randomization to date of progression according to RECIST1.1 or iRECIST. Eleven patients had
unequivocal clinical progression before the first response evaluation. Duration of response was assessed using
Kaplan Meier curves, with censoring of ongoing responses, and calculated from time of first PR or CR until
progression according to iRECIST.

Objective response rate iRECIST, n, % (95% CI) 13 20%
(11-31)
Clinical benefit rate iRECIST, n, % (95% CI) 14 21%
(12-33)
Best overall response iRECIST, n (%)
Complete response 2 3%
Partial response 11 17%
Stable disease > 24 weeks 1 2%
Non-evaluable, n (%) 1 2%
Median progression-free survival RECIST1.1, months (95% 1.9 (1.8-2.0)
CI)
Median progression-free survival iRECIST, months (95% CI) 1.9(1.8-3.2)
Duration of response, months (95% CI) 9.0 (4.7 - NR)

Table S6: Characteristics of irradiation cohort. The irradiated lesions per patient, volume and dose of
the irradiation, radiation technique and response of both the irradiated lesions and the other lesions (abscopal
effect) after irradiation and the best response on nivolumab are depicted. In the rightmost column, the absolute
change in stromal tumor-infiltrating lymphocytes (TIL) after irradiation is depicted for a biopsy from a non-
irradiated lesion. Gy: Grey; CTV: clinical target volume; PTV: planning target volume; VMAT: volumetric
modulated arc therapy; 3D-CRT: conventional radiotherapy with anterior-posterior fields or tangential fields;
3D-IMRT: intensity modulated radiotherapy.
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LACK OF DETECTABLE NEOANTIGEN DEPLETION IN TREATMENT-NAIVE
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Abstract

While neoantigen depletion, a form of immunoediting due to Darwinian pressure exerted by the T
cell based immune system during tumor evolution, has been clearly described in murine models, its
prevalence in treatment-naive, developing human tumors remains controversial. We developed two
novel methodologies to test for depletion of predicted neoantigens in patient cohorts, which both
compare patients in terms of their expected number of neoantigens per mutational event. Appli-
cation of these strategies to TCGA patient cohorts showed that neither basic nor more extensive
versions of the methodologies, controlling for confounding factors such as genomic loss of the HLA
locus, provided statistically significant evidence for neoantigen depletion. In the subset of anal-
yses that did show a trend towards neoantigen depletion, statistical significance was not reached
and depletion was not consistently observed across HLA alleles. Our results challenge the notion
that neoantigen depletion is detectable in cohorts of unmatched patient samples using HLA binding

prediction-based methodology.
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Introduction

Immune evasion, the avoidance of immune detection and eradication, is a hallmark of cancer® and
can occur through various mechanisms, including deletion of components of the antigen presen-
tation machinery, insensitivity to pro-apoptotic or growth-arresting molecules, such as granzymes
and IFN-vH, or expression of T-cell checkpoint ligands such as PD-L1. In addition, the Darwinian
selective pressure exerted by T cells has been proposed to lead to outgrowth of tumor cells that lack T
cell-recognized (neo-)antigens. In line with this, loss of a neoantigen that was recognized by T cells
has been observed in a murine sarcoma model®. In addition, loss and reduced expression of mu-
tant genes encoding T-cell recognized neoantigens has been observed in two patient case studies?,
and the reduction in tumor mutational burden observed in clinical responders to PD-1 blockade has
been proposed to lower the number of T cell-recognized neoantigens®. While collectively these data
form relatively strong evidence that neoantigens can be lost upon (therapeutically enhanced) T-cell
pressure, it is less clear whether such genomic neoantigen depletion of neoantigens widely occurs in
treatment-naive tumors, and — importantly - would be detectable at the genomic level. An argument
against the idea that neoantigen depletion could be readily detected at the genomic level is formed
by the observation that only a minor fraction of predicted neoantigens appears to naturally induce
T-cell responses in patients? 1Y, Importantly, only this small subset of predicted neoantigens can be
expected to be under Darwinian pressure, and this will affect the sensitivity of any methodology
that examines the occurrence of predicted neoantigens regardless of the fact whether or not T cell

reactivity was present against these predicted antigens.

Several prior studies have assessed neoantigen depletion in large sets of cancer genomes with un-
matched samples (i.e., with a single tumor sample per patient) provided by the Cancer Genome At-
las (TCGA). A first of these studies provided evidence for the selective loss of mutations predicted
to encode MHC-class I neoantigens for colorectal and clear cell kidney cancer), but at the same
time observed a counter-intuitive neoantigen enrichment in EBV" stomach adenocarcinoma. Like-
wise, application of a model of peptide immunogenicity found recurrent mutations to appear more
readily in TCGA patients that are less capable of presenting the resulting new peptide sequences
by HLAL, In line with these results, an earlier TCGA pan-cancer analysis found recurrent onco-
genic mutations to be relatively poorly HLA-presentable by the patients that carried them!<, a result
that has however since been shown to be fully driven by confounding factors'®!3, The same group
also reported elevated neoantigen levels in tumors that harbor mutations in the antigen presenta-
tion pathway, but this result was not corrected for, potentially confounding, background mutation
rates'®, Using a mathematical model of tumor evolution, Lakatos et al. predicted the variant allele
frequency (VAF)-spectrum of a tumor’s somatic mutations under various degrees of immune pres-
sure and found TCGA tumors to appear similar to simulations under immune pressure!’. In con-
trast to the aforementioned studies, a comparison of the ratio of non-synonymous to synonymous
mutation count (‘dN/dS’) between areas of the human genome that do or do not encode predicted

HLA presented peptides found no evidence of negative selection when correcting for sequence con-
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tent between these two classes of genomic regions™®. Notably, this sequence content was shown to
affect the ratio with which mutagenic processes yield either non-synonymous or synonymous mu-
tations and so confounded dN/dS estimates'®. A more recent study using dN/dS methodology did
report depletion, especially of clonal mutations, in highly immune infiltrated tumor types and in pa-
tients that did not show other means of immune evasion, but did however not correct for sequence
content™. This latter study also showed substantial degrees of nonsensical neoantigen enrichment,

especially in lowly immune infiltrated tumor types.

Given the conflicting results in these prior analyses, there is a need for novel methodology to assess
neoantigen depletion in treatment-naive tumors. Here, we present two new, interrelated, methods
for the detection of average neoantigen depletion in patient cohorts. Using these methods, we do
not observe substantial evidence for neoantigen depletion in TCGA tumors, despite incorporation
of many potential confounding co-variates into our modeling to increase sensitivity. We emphasize
that the lack of signal that we describe does not rule out the occurrence of neoantigen depletion
for a minority of studied patients and/or a minority of (T cell-recognized) neoantigens. However,
our observations do challenge the notion that neoantigen depletion signals based on HLA affinity

predictions are detectable in large-scale unmatched cancer sequencing data sets.

Results

Design and evaluation of an HLA-I antigen prediction pipeline

To study Darwinian selection against neoantigenic non-synonymous mutations, we first developed
an (neo-)epitope prediction pipeline and optimized it with respect to prediction precision and sensi-
tivity. The pipeline annotates candidate nonameric peptides with the output of four tools that jointly
model the major requirements for (neo-)antigen presentation: RNA expression of the mutant DNA
sequence, predicted proteasomal processing, predicted HLA-binding, and self-similarity of encoded
peptides (Figure S4.1A). To tune the parameterization of this pipeline, we first identified a set of pep-
tides within the 3,094 nonameric peptides present in the HIV genome for which T-cell recognition
in the context of the HLA-A*02:01 allele, the most common HLA class I allele in US and European
populations, had been demonstrated unambiguously. Specifically, by querying the HIV Molecular
Immunology Database?!, we identified peptides that met the following criteria: (i) HLA subtyping
information had demonstrated restriction by the HLA-A*02:01 subtype; (ii) T-cell responses had
been observed in at least 3 patients; and (iii) such T-cell responses had been observed in material
from HIV-infected patients, rather than induced in vitro or in animal models. This resulted in a
set of 32 epitopes in the HIV genome for which presentation by HLA-A*02:01 and recognition by
the human T-cell repertoire had unambiguously been established (Table S2). Subsequently, we used
this epitope set to compare the sensitivity and precision of epitope prediction strategies that either

solely relied on predicted HLA binding affinity?!, or that also integrated filters that predict protea-
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somal processing®? and similarity of a candidate epitope to self-peptides predicted from the human
proteome®, methods). As compared to epitope predictions solely based on predicted HLA affinity,
we found both incorporation of proteasomal processing and exclusion of peptides with similarity
to human sequences to improve prediction precision (Figure 54.1B), in line with other work®3. Se-
lection of an affinity threshold of 255 nM yielded a good balance between precision and sensitivity
(Figure S4.1B-D) of this prediction pipeline. We note that experimental data on T-cell recognized
HLA-A*02:01 peptides in the HIV genome may still be incomplete, rendering these performance

estimates lower bounds on true prediction performance.

To complement the HIV-pipeline validation, we did a similar validation on peptides derived from
the IEDB for 10 viruses. The coverage of T-cell recognized peptides in the IEDB database was likely
substantially lower, as in this database we retrieved only 9 out of the 33 T-cell targeted HIV-peptides
that were identified in the Los Alamos database, and this probably underlies the observation that
much stricter pMHC affinity-filtering yielded optimal precision for the IEDB derived epitope set
(Figure S4.1E,F).

The two patient-group methodology

To next determine whether neoantigen depletion detectably shapes the mutational landscape of hu-
man cancer during tumorigenesis, we first compared the number of predicted HLA-A*02:01 neoanti-
gens per mutational event (the neoantigen yield rate, r) for tumors of HLA-A*02:01positive patients
(test set) and tumors from patients that lack the HLA-A*02:01 allele and also other HLA class I alle-
les with similar peptide binding profiles (reference set, see below for the filtering of HLA alleles with
similar peptide binding profiles). As the latter patient group cannot present these predicted HLA-
A*02:01restricted neoantigens, this group provides a reference that can be used to calculate to what
extent T-cell pressure has shaped the repertoire of neoantigens as predicted on tumor mutation data
(Figure #.1A). In addition, by focusing on neoantigen predictions for a single class | HLA-allele, rather
than the diverse set of alleles carried by any individual patient, an equal and, in case of HLA-A*02:01

high prediction accuracy is guaranteed across patients.

To be able to assign patients to either the test or reference groups, we first assessed the similarity
in peptide binding properties between HLA-A*02:01 and all other HLA class I alleles encountered
within our patient set, by computing for each observed HLA-allele the fraction of the 62,833 pre-
dicted HLA-A*02:01 neoantigens observed in this cohort that it was also predicted to present (cor-
roboration index, Figure S4.1A). HLA class I alleles that were predicted to present more than 20% of
the set of HLA-A*02:01peptides were classified as ‘HLA-A*02:01like’ (37 of 224 HLA class I alleles).
Subsequently, patient samples expressing at least one such allele were removed from the analysis,
resulting in an HLA-A*02:01positive test group of 2,345 patients and a reference group of 2,628 pa-
tients that lacked HLA-A*02:01 and also any HLA class I allele with substantially overlapping binding

properties. Residual binding repertoire overlap between the groups was small, with reference group
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patients being able to present 16.7% (median) of their predicted HLA*02:01 presented peptides using
any of the up to 6 HLA class I alleles that they expressed (Figure #.11B), i.e., 6-fold lower than in the
HLA-A*02:01positive test group.

To test for preferential loss of mutations that yield predicted HLA-A*02:01presented neoantigens,
we compared 7 between test and reference patient groups per tumor type. This analysis revealed
a significantly lower 7 in the test set for ovarian carcinoma, while a higher r in the test set, i.e., a
presumed neoantigen enrichment, was observed for glioblastoma. However, neither of these re-
sults remained significant after multiple testing correction (Figure B.1C, left), indicating a lack of
detectable neoantigen depletion above the noise levels in the data. Absence of significant depletion
was also observed when aggregating all mutations for each tumor type into one HLA-A*02:01

textsuperscript+ and one HLA-A*02:01negative ‘meta-patient, an approach that is expected to in-

crease analysis robustness in case of low mutation numbers (Figure 4.1C, right).
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Figure 4.1: No detectable genomic loss of predicted HLA-A*02:01 neoantigens using a discrete two-
group detection strategy.
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A Schematic overview of analysis strategy. Mutational events that yield HLA-A*02:01-restricted neoantigens
can undergo negative selective pressure in HLA-A*02:01-positive patients (the test group), but not in patients
that lack this allele as well as other HLA class I alleles with similar peptide binding profiles (‘HLA-A*02:01-like
negative reference patients”). As a consequence, genomic loss of antigenic HLA-A*02:01 mutations would be
reflected in a lower HLA-A*02:01 neoantigen yield rate in HLA-A*02:01-positive patients as compared to HLA-
A*02:01-like negative patients (in the indicated example, 3 out of 7 vs. 1 out of 4 non-synonymous mutations
yield predicted HLA-A*02:01 neoantigens).

B Distribution of the fraction of HLA-A*02:01 binding peptides presented by any of a patient’s HLA class I A and
B alleles, according to HLA-A*02:01-allele and HLA-A*02:01-like allele status. Patients in the HLA-A*02:01-
like negative reference group present 16.7% (median) of predicted HLA-A*02:01 binding peptides by any of
their HLA class I A and B alleles.

C Neoantigen yield rates of SNVs in HLA-A*02:01-positive and HLA-A*02:01-like negative tumor samples.
Left: distributions of patient specific neoantigen yield rates. Right: ‘meta-patient’ yield rates, in which muta-
tions, and hence neoantigens, are grouped per tumor type. Unadjusted p-values are shown for tumor types
where they are smaller than or equal to 0.05. None of the comparisons remained significant after correcting
for multiple testing.

D As in C,, but excluding both subclonal mutations and mutations for which loss may potentially confer a cell
intrinsic fitness cost (driver mutations and mutations in essential genes that display LOH). Unadjusted p-values
are shown for tumor types where they are smaller than or equal to 0.05. None of these remained significant
after correcting for multiple testing.

E Power analysis of neoantigen depletion detection strategy. The effect of prediction precision on the fractional
loss of predicted neoantigenic mutations required to achieve statistical significance is depicted on a tumor type-
specific basis. Dashed vertical line depicts precision of the here employed epitope prediction pipeline, indicating
that genomic editing of a minimum of 9% and 18% of true HLA-A*02:01 neoantigens would have been detected
in melanoma and colon MSIY, respectively, assuming no multiple testing correction of p-values.

A potential limitation of this analysis strategy could be formed by the presentation of a fraction of
HLA-A*02:01presentable peptides by the aggregate of all the other HLA-alleles in the reference set
patients, such that a degree of ‘background’ immune pressure can be expected to occur against HLA-
A*02:01peptides. To test robustness with respect to the stringency used to create the non-HLA*A-
02:01-like reference patient set, we performed meta-patient tests using an increasingly strict HLA-
similarity threshold (i.e., allowing a progressively lower fraction of HLA-A*02:01presented peptides
to be presented by the non-HLA*A-02:01-like reference patient set). Using this approach, no system-
atic increase in statistical significance was observed (Figure S4.1B), suggesting that the (low-level)

overlap in peptide HLA-binding profiles was unlikely to confound this analysis.

As the probability of epitope presentation depends on the RNA expression level of the associated
gene?d 28 an increase in RNA expression thresholds for neoantigen predictions may be expected to
increase precision (i.e., increase the fraction of truly presented peptides amongst predicted peptides),
and could thereby potentially reveal a weak neoantigen depletion signal. Similarly, loss of neoanti-
gens could be postulated to be more apparent among high affinity HLA ligands that are more likely
to yield strong T cell targets. To test both possibilities, we titrated both the RNA expression and HLA
affinity thresholds of the neoantigen prediction pipeline and re-evaluated HLA-A*02:01 7 in the test
and reference patient sets. Small differences between these two sets were observed when perform-

ing pipeline stringency titrations and we did observe significantly lowered r for multiple analyses



(i.e., rectum, breast LumB, melanoma, head and neck HPV", Figure S4.3C). Importantly however,
a similar number of tumor types with a heightened  was once again observed (Figure S4.3C). We
conclude that absence of detectable neoantigen depletion is robust to different configurations of the

neoantigen prediction pipeline.

To screen for other factors that could have obscured a weak neoantigen depletion signal, we per-
formed additional analyses in which we excluded mutations for which negative selection could have
been counter-acted by positive selection. Specifically, T cell-mediated depletion of oncogenic muta-
tions in driver genes may be expected to be counteracted by the positive effect of these mutations on
cellular fitness®?. Similarly, essential genes that encode neoantigens and of which the wild type copy
has been lost (so called essential passengers®) cannot be lost without loss of cell viability?£9, Fi-
nally, we performed analyses that excluded subclonal mutations, as these could be postulated to have
emerged too recently in order for the immune system to have affected their presence. When exclud-
ing the aforementioned mutation classes, we again discerned no statistically significant neoantigen
depletion, neither when analyzing patient-specific nor meta-patient neoantigen yield rates (Figure
4.1D, left and right, respectively, fewer tumor types due to lower availability of required data for

clonality calling, Methods).

In prior work, the HLA class I-restricted presentation of neoantigens has been reported to shape
the repertoire of oncogenic mutations, with individual driver mutations being reported to occur
more frequently in patients with HLA repertoires that are less likely to present the resulting mutant
peptides’. We attempted to validate this observation using our epitope prediction and analysis strat-
egy. Restricting our analysis to the recurrent driver single nucleotide variants (SNVs)!4, we also did
not observe significant neoantigen depletion (Figure S4.3D). Finally, escape from immune pressure
can occur through a variety of genetic alterations, including mutations in components of the antigen
presentation machinery, and the loss of T-cell-recognized neoantigens can reasonably be expected
to no longer provide a fitness advantage in tumors that harbor such alterations. To restrict our anal-
ysis to tumor samples for which no evidence of other known escape mechanisms was present, we
excluded all tumors with one or more non-silent mutations in any of 515 genes implicated in resis-
tance to T-cell killing through CRISPRi screening®!. Application of this tumor sample filtering to all
of the analyses reported above resulted in larger differences for at least one tumor type per analysis.
However, this did not result in an increased number of tumor types for which significant neoantigen
depletion was observed after correcting for multiple testing (Figure S4.3D). Our recurrent finding
of absence of significant neoantigen depletion in treatment-naive tumors contrasts with an earlier
assessment of neoantigen depletion on TCGA data. Adapting this prior analysis strategy to our
HLA-A*02:01centered neoantigen predictions (Methods) again did not reveal any signs of genomic
epitope loss (Figure S4.3E), even when restricting this analysis to clonal mutations (Figure S4.3F), or

when exhaustively testing other possible variants of this analysis (Figure S4.3D).

Even when using optimized epitope prediction pipelines, neoantigen predictions still contain a size-

able fraction of false positive peptides. As only true positive peptides (i.e., predicted peptides that are
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true HLA ligands) can potentially be seen by T cells, and hence can be subject to Darwinian selec-
tion, prediction precision defines the lower limit for the degree of neoantigen depletion that would
be detectable. We determined what degree of neoantigen depletion would have been detectable us-
ing the two-group methodology, by computing the required effect size (i.e., fractional loss of true
epitopes in HLA-A*02:01positive tumors) to reach statistical significance given the observed noise
in the data. At our estimated neoantigen prediction precision of 0.45 (Figure S4.1B,C), unadjusted p-
values of 0.05 would have been reached upon loss of 8-18% of truly presented epitopes in melanoma,
lung and colon cancers (Figure B.1E), indicating that the true neoantigen depletion signal must have

been smaller than that for it to have not been detected.
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A Opverlap in predicted peptide presentabillity across all detected HLA class I alleles (A, B and C) across the
TCGA patient samples included in the analyses. Matrix reflects the fraction of peptides presented by alleles in
the rows (i.e., NetMHCpan 3.0 rank percentile <= 1.9), that are also presentable by the alleles in the columns
(same presentation criteria). Alleles in both rows and columns are alpha-numerically ordered. The five high-
lighted HLA-A and -B alleles were selected based on NetMHCpan3.0 prediction accuracy, HLA diversity and
to minimize overlap in predicted binding capacity within the group.

B Schematic of the continuous (as opposed to two patient-group) methodology to evaluate neoantigen deple-
tion. To account for overlap in (predicted) HLA binding, a continuous score was used that captures a sample’s
capability of HLA-presenting peptides that are associated with an HLA allele of interest (the ‘focus allele’). This
score is then regressed against the neoantigen yield rate for this focus allele. A negative slope in this regression
would indicate that fewer neoantigen-encoding mutations are detectable in samples that have a high capacity
to present these.

C Schematic of the HLA presentation score (h), reflecting the fraction of peptides presentable by the focus allele,
that is also presentable by at least one of the HLA alleles carried by a patient.

D Pan-cancer result with a basic parameterization of the analysis, as in Figure 1C.

E Forest plot of the observed o0 values and associated 80% confidence intervals.

A continuous version of the neoantigen depletion analysis

Given the overlap in binding profiles of different HLA class I alleles (Figure §.2A), and the result-
ing continuous rather than bi-modal distribution of HLA-presentation overlap with HLA-A*02:01
across samples (or any other HLA-allele, hereafter called the focus allele), a statistically more power-
ful approach could be to test for a (negative) association between focus allele-presentation capability
and neoantigen yield rate (1) across samples. Modelling focus-allele presentation capability with a
quantity we call the HLA presentation score (h, methods), a detectable signal of neoantigen depletion
(i.e., depletion of neoantigenic, non-synonymous mutations), should on average lead to a lower r in
samples with a high h. That is, a linear regression between h and r should yield a negative slope (Fig-
ure 4.2B, bottom). In contrast, a slope of zero would indicate HLA presentability not to be associated
with depletion of mutations carrying predicted neoantigens (Figure #.2B, top). We modeled & as the
fraction of unique, theoretically presentable focus allele peptides that are also presentable by one or
more of the patient’s class I alleles (Figure S4.2C). In this way, h will be 1 for patients that do carry

the focus allele while those that do not will have values ranging from 0 to 1.

To first evaluate whether & models peptide presentation capacity, we analyzed mass spectrometry
data of HLA-eluted peptides®®. Specifically, having inferred the HLA class I repertoire of each pa-
tient in this data set, we computed h for each patient and potential focus allele combination. Next,
for all 9-mer peptides of the expressed human proteome we predicted whether mass spec detection
would have been expected solely based on peptide affinity predictions. In case i models peptide
presentation correctly, the proportion of predicted peptides for a given focus allele to be detected by
mass-spec should be correlated to h. Confirming our expectation, we observed positive correlations
between h and the number of detected over expected peptides for 23 of 27 analyzed samples (Fig-

ure S4.4). Having computed h across all five focus alleles and all samples, we observed a near-zero
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correlation between focus alleles (Figure S4.5A,B). This indicates that analyses using different focus
alleles form largely independent and complementary tests within a fixed set of tumor samples, and

can hence be seen as independent validations.

We next assessed the relationship between h and SNV r across all evaluated patients (i.e., pan-cancer)
using HLA-A*02:01 as the focus allele, observing a virtually flat, non-statistically significant, slope.
To put this slope into perspective, we defined A (delta) as the relative difference in r between patients
at h = 0 (no ability to present focus-allele peptides) and h = 1 (full ability to HLA-present focus-
allele peptides, Methods), and observed a A of 0.006 (80% CI: [-0.006, 0.018], i.e., non-significant
enrichment rather than depletion of predicted neoantigenic mutations, Figure #.2D). Testing of in-
dividual tumor types in this manner showed apparent neoantigen depletion in certain tumor types
(A < 0), but just as many other types showed a similarly strong apparent enrichment for neoanti-
gens (A > 0), likely reflecting noise in the data (Figure 4.2E).

Analogous to the two-group based neoantigen depletion methodology described above, we next
systematically varied all possible settings of the neoantigen prediction pipeline and the continuous
neoantigen depletion analysis strategy in order to test the robustness of these results. As the optimal
neoantigen prediction pipeline configuration remains uncertain, despite our efforts to determine it
(Figure S4.1B-F), we evaluated all outcomes while varying three settings of the neoantigen prediction
pipeline: i) the HLA affinity rank percentile threshold that denotes the predicted HLA affinity candidate
neoantigens had to reach for predicted HLA-presentation (4 levels, ranging from lenient to highly
stringent), ii) RNA expression, either evaluated at the gene level or at the variant level (the latter to
be sensitive to potential epigenetic silencing of neoantigenic mutations) and iii) the similarity-to-self

filter that aims to model thymic selection of T-cell reactivity.

We also varied 6 settings that determine how the neoantigen depletion test is performed, indepen-
dent from the neoantigen prediction pipeline configuration: i) Variant selection determines the set
of somatic variants based on which r was evaluated and included the following classes: all (SNV)
genomic variants; frameshifting indels as these may form richer sources of neoantigens that are typ-

ically less self-similar®353

and could thereby be postulated to experience stronger negative selection;
only clonal SNVs mutations; SNVs with driver and essential passenger mutations removed®?; only
highly-recurrent driver SNVs, as defined in a prior work™. ii) Focus-allele reflects the HLA-allele
for which both h and r was evaluated (the two main variables of the regression). The focus allele
was varied between five HLA class I-alleles that we picked to cover a broad range of HLA super-
types and that showed a relatively high prediction accuracy using NetMHCpan3.02). iii) LOH in
HLA determines whether allelic loss of HLA class I°? was reflected in the presentation score (h), i.e.,
whether HLA alleles that were reliably found to have been genomically deleted were or were not
excluded when computing h. We discerned between a high-confidence variant of this variable, in
which only patients for which all alleles could be reliably assessed were included in the final regres-
sion analysis (“strict LOH HLA”, Figure S4.6, Methods), and a more lenient version in which any

allele reliably found to be lost was excluded from the HLA presentation score alleles, independent
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of the assessment quality for other alleles in the same sample (Methods). iv) C-allele in presenta-
tion score reflects whether both HLA-A, -B, and -C alleles, or only the HLA-A and -B alleles, were
included when computing h. As most known neoantigens are HLA-A or HLA-B restricted®® and
HLA-C might be expressed at a lower level®, exclusion of HLA-C could lead to more accurate esti-
mates. v) T cell-resistance, entails the removal of patient samples from the analysis that carry one or
multiple mutations, other than genomic loss of HLA class I loci, in immune evasion genes as iden-
tified using CRISPRi-screening®!, in order to exclude samples in which immune pressure may be
reduced by an independent genetic event. Here, patient samples were excluded using three levels
of stringency, reflecting false discovery rate thresholds for genes in the CRISPR-screen of 0.0001
(stringent on genes and hence lenient on sample inclusion), 0.1 (moderate on sample inclusion) and
0.01 (stringent on sample inclusion). vi) Cytolytic score determines whether sample inclusion is re-
stricted to samples with a high T cell infiltration, as neoantigen depletion might be more apparent
in immune infiltrated tumors'”. here we restricted the tested samples to those high (>=75" quantile
within the tumor type) in cytolytic scorel! (a transcriptomic proxy for T/NK-cell activity) and those

lower in cytolytic score (<75 quantile) to contrast the former results with.
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Figure 4.3: Extended search for neoantigen depletion using the continuous detection methodology
A Filtering of sub-analyses to enrich for sub-analyses with acceptable inferential quality. Blocks denote filtering
steps, reported numbers are the number of remaining sub-analyses after filtering.

B Sub-analysis composition differs between tumor types because of technical (e.g., the number of patient sam-
ples, the quality of DNA/RNA-sequencing data) and biological (mutational load) reasons. Chart shows the frac-
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tion of times each factor level (horizontal axis) is observed among the filtered sub-analyses. Levels that lead to
strong reductions in predicted neoantigen counts or severely limit sample numbers are only feasible for high
mutational load/ more highly represented tumor types.

C Volcano-like plot of all filtered sub-analyses, each dot represents a single sub-analysis. Due to compositional
differences (see panel B), these plots cannot be used to directly compare tumor types to each other. In case of
presence of eccentric sub-analyses (g < 0.05 or ¢ > 0.95), red lines highlight these thresholds and the fraction of
sub-analyses surpassing these are indicated in red.
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A Enrichment scores for sub-analysis settings associated with neoantigen prediction methodology, after rank-
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ing the sub-analyses by ¢q. Note that none of the settings is strongly associated with g. ID-variable levels ap-
pearing in less than 10 sub-analyses were excluded from analysis.

B As in A. but for settings associated with the manner in which neoantigen depletion analysis is performed. As
the choice for a focus allele is arbitrary, it is not expected to affect the resulting statistics in case of a detectable
and true signal, but it is shown here to be the dominant source of variation. Color scale as in B.

C Highlighted individual enrichment-analyses from B, selected for their relatively strong enrichment scores.
D Randomly selected groups of identically parameterized sub-analyses, differing only in focus allele, to directly
visualize the average effect of variation in focus allele. Glioblastoma and pan-cancer analyses are highlighted
to illustrate the relatively strong and weak enrichment scores, respectively, for these tumor types in panel C.

E As in D., but varying the subselection of potentially T-cell resistant samples on the horizontal axis. ‘Stringent’
denotes the most rigorous filtering of tumor samples based on the presence of potential immune evasion mech-
anisms, selecting tumor samples with minimal numbers of mutations that have been associated with immune
evasion.

F As in D., but varying the somatic variant set on which r is evaluated. Frameshift indels were excluded as they
could only be reliably assessed on the pan-cancer level (in which they weren’t associated with g or A).

Evaluating all combinations of the settings listed above, we frequently encountered patient subsets
that became prohibitively small for regression analysis (i.e., uncertain or no regression coefficients)
and neoantigen yield rates that became prohibitively low (resulting in a majority of patients with 0
predicted neoantigens). Restricting ourselves to combinations (so called ‘sub-analyses’) for which i) at
least 25 samples had h in the range [0, .25] and in the range [0.75, 1], ii) the baseline r, i.e., 7 for samples
with A = 0, could be reliably estimated by the model (methods), and iii) at least 100 samples had non-
zero neoantigen loads, left 226,376 of 2,822,400 theoretically possible sub-analyses (8.0%, Figure
4.3A). As expected, tumor types with a large number of samples allowed more restrictive sample
filtering and those with high TMB allowed more stringent neoantigen filtering. As such, individual
levels of settings were present with variable frequency between tumor types, such that tumor types
could not directly be compared from the set of all filtered sub-analyses (Figure 4.3B). Assessing A
across the filtered sub-analyses, we did discern tumor types for which the distribution appeared
(strongly) skewed to the negative side (Figure 4.3C, consistent with neoantigen depletion). However,
this distribution simultaneously also appeared to be positively skewed for other tumor types. To
assess the statistical significance of these and other sub-analyses, we employed permutation tests.
Specifically, for each sub-analysis, we permuted h-scores across individual samples in the source data
250 times, evaluated A for each of these permutations, and assessed the fraction of permutation As
that was smaller than the original A, arriving at a quantity we call ¢ (for quantile). As ¢ virtually
never reached below .05 (n = 4, 0.002%) or above .95 (n = 11, 0.005%, Figure B.3C, vertical axis), shifts
towards either negative or positive A (i.e., neoantigen depletion and neoantigen enrichment) did not

appear statistically significant.

To characterize these results and identify which individual settings most strongly enriched for neoanti-
gen depletion, we ordered all sub-analyses by g and used preranked gene set enrichment analysis®®
to identify sub-analysis settings that were associated with extreme values in ¢ in a univariate man-
ner. As all of the settings are categorical, we compared individual levels (e.g., HLA-A*02:01 for the

focus allele) against the combination of all other levels. In this, we recorded the normalized loca-
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tion (range: [-1, 1]) where the rank sum statistic deviated most strongly from that expected under
random ordering (i.e., the enrichment statistic®¥). Using this strategy, we did not find evidence that
more stringent (and precise) neoantigen prediction could reveal neoantigen depletion (Figure 4.4A).
Surprisingly, repeating this analysis but sorted by A rather than g showed that stringent RNA ex-
pression filtering on the variant level on average led to a negative A for a majority of tumor types
(Figure S4.7A). This was however likely caused by the combination of a heterogeneous distribution

of h combined with low r (Supplemental Note 1), and hence artefactual.

When evaluating all settings of the neoantigen depletion testing procedure, we observed that the
focus allele most strongly affected both g (Figure §.4B-D) and A (Figure S4.7D). Varying the choice
of the focus allele allows for semi-independent replication of a neoantigen depletion test, as there is
no expected link between the arbitrary choice of an HLA class I allele as the focus allele and the oc-
currence of neoantigen depletion or enrichment. Importantly, the large observed variation between
sub-analyses carried out in this manner and that are otherwise identically parameterized suggests
that most of the signal observed can be ascribed to measurement noise. By the same token, we found
rigorous exclusion of T cell-resistant tumors to shift ¢ towards neoantigen depletion in a slight but
consistent manner (5/5 evaluable tumor types, Figure #.4B,C,E), but for only 1 out of 5 tumor types
(Breast LumA, Figure S4.8A) this effect was somewhat consistent across the 5 evaluated focus alleles,
again suggesting this effect to be spurious. Finally, evaluating r strictly on a set of 1018 recurrent
oncogenic mutations that have previously been reported to occur preferentially in patients that ex-
press HLA class I alleles that are predicted to present these relatively poorly’d, also might weakly
enrich for a signal of neoantigen depletion (7/9 evaluable tumor types, Figure S4.4B,C,F), but this
did not hold up at the pan-cancer level and - importantly - was highly inconsistent between focus

alleles for all these 9 tumor types (Figure S4.8B), again indicating spurious associations.

Discussion

Using two different methodologies to estimate neoantigen depletion, we observed little if any de-
tectable signal across unmatched tumor samples of treatment-naive patients, also when controlling
for a number of potentially confounding factors. This finding contrasts with part of the existing
literature on the topic, in which evidence for neoantigen depletion in treatment naive tumors was
reported. In cases in which we tried to adapt existing methodologies to ours, we also did not detect

neoantigen depletion or only observed minimal, non-statistically significant, trends.

It is important to emphasize that we do not see our data as evidence that neoantigen depletion
does not occur. Specifically, given the support for immunosurveillance of nascent tumors® and
the strong evidence favoring a role for T cell recognition of mutation-induced neoantigens in tumor
control® we deem positive selection of tumor cell clones that never acquired or that lost T cell-

recognized neoantigens plausible a priori. If neoantigen depletion does indeed occur, how can this be
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reconciled with the observation that neoantigen depletion is not observable in the genomic analyses
presented here? First, our data are consistent with the possibility that a small subset of neoantigens
in pre-treatment tumors is lost due to immune pressure, below the level that surpasses the large
prediction noise present in our analyses but also in the other approaches that have been explored.
Specifically, experimental data suggest that only a small minority of predicted neoantigens (approx-
imately 1%) induces detectable T cell responses®*##, If only this small minority of T cell-recognized
neoantigens is at risk of deletion, the maximal depletion signal that could be expected would be pro-
portionally smaller, and would be difficult to detect in the background of predicted epitopes that
never led to T cell pressure. On a related note, it is possible that neoantigen depletion does occur
at the genomic level, but only or predominantly in later disease stages, or post-(immuno)therapy.
Third, neoantigen depletion may be infrequent due to the presence of other, perhaps more potent or

more easily accessible, mechanisms of immune evasion®>#

. Notably, across tumor types, the me-
dian fraction of patients harboring any form of genetic immune escape other than neoantigen loss
in their primary tumors was reported to be 0.20 (for metastatic tumors: 0.27) and as high as 0.74 for

kidney chromophobe cancer™.

To increase the sensitivity of future analyses of genetic information on compendia of tumor samples,
it will likely be critical to account for differences in immunogenicity between predicted neoantigens,
rather than merely filtering mutations for those expected to be neoantigenic and implicitly assum-
ing equal immunogenicity. At present, technologies to predict the development of T cell responses
against a collection of predicted HLA-presented neoantigens are still limited in reliability, despite
substantial efforts™. Furthermore, if part of this process is stochastic, for instance governed by the
occurrence of a specific TCR recombination, the development of accurate predictors of immuno-
genicity may be challenging. A more attractive approach may thus be to identify very large numbers
of T cell recognized neoantigens in prospective clinical studies and to use such epitopes as a wet
lab-validated starting point. High throughput T cell repertoire sequencing of T cells with tumor-
reactivity signature®®, along with advances in experimental approaches to screen the reactivity of

many T cell clonotypes in parallel, is expected to enable this effort?4 2!,
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Methods

Datasets

HIV peptide data for pipeline prediction validation

We compiled a list of 81 HLA-A*02:01-restricted HIV T-cell epitopes by querying the Los Alamos
National Security HIV Database (https://hiv.lanl.gov, December 2010) and PubMed. The ob-
tained peptides were filtered according to the following criteria to create a list of ‘high confidence’
HLA-A*02:01-restricted and T-cell recognized epitopes: (1) epitope presentation was shown to be
restricted to the HLA-A*02:01 allele; (2) T-cell reactivity against the epitope was reported in at least
3 patients/studies, and (3) evidence of endogenous processing of the epitope had been obtained (i.e.,
T-cell responses observed in vaccination or peptide loading studies were excluded). These criteria

were met by 32 of 81 acquired peptides.

To assess all candidate HIV-1 epitopes, we acquired the assembled sequencing data of an HIV-1 iso-
late from the NCBI database (isolate 671-00T36; NCBI accession number AY423387") and consid-
ered it a reference HIV-1 genome. Partitioning this reference genome in all nonameric peptides,
3,094 candidate peptides were generated. Out of the 32 ‘high confidence’ HIV epitopes discussed
above, 17 were not perfectly mappable to the reference genome (1-2 amino acid differences at most).
To correct for this and allow cross-matching, the reference genome was adjusted to exactly match
the mismatching peptide sequences (adjusted reference in Table S2). One out 17 epitopes remained
completely unmappable to the reference genome and was thus excluded from further analysis (Table
S2).

IEDB peptide data for pipeline validation

Peptides selected for T cell recognition proven usen any methodology were downloaded from the
Immune Epitope Database (http://www.iedb.org? 2018-12-10) from the ‘Assays’ section. As-
says were filtered for: i) having four-digit HLA-typing (e.g., HLA*B-27:05’), ii) having the targeted
peptide be available and 9 amino acids of length in the (Antigen Description field) iii) having an entry
for the Organism species name. Peptides were considered T-cell targetable if at least 2 tested sub-
jects responded, combined over all the assays investigating a particular peptide. If this field was not
available for any of the assays for a particular peptide, the peptide was considered T-cell targeted
if at least one assay gave a positive result (i.e., response labelled as Positive, Positive-High, Positive-
Intermediate or Positive-Low). Notice that these criteria are substantially less stringent than the
ones employed for the focused HIV-set. This analysis was restricted to HLA-A*02:01 peptides as this
allele was by far the best represented in the IEDB. Next, redundancy in the acquired T-cell targeted

peptide sets per pathogen was removed by iterative sequence alignments of all unordered peptides
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against all remaining peptides using the function pairwiseAlignment from the R Bioconductor pack-
age Biostrings (version 3.8). Matching scores above zero were interpreted as sequence similarity, re-
sulting in removal of the second peptide of the pair from the peptide set. This way, the T-cell targeted
peptides in the resulting list were all dissimilar from each other. Next, in order to predict protea-
somal processing efficiency of candidate peptides, the amino acid context of the peptides in their
source protein was required, but this information was not included for all peptides in the IEDB. To
obtain this information, peptides were mapped to the reference proteomes of the viruses they were
annotated to originate from using phmmer (version 3.2.1) with the --max and --domtblout flags, pri-
oritizing matching reference sequences by their alignment length (the number of matching amino
acids between query and target sequence, longer alignments preferred), the alignment discrepancy
(when available, the difference between the annotated C-terminus and the inferred one, smaller is
preferable), the source of the reference sequence (the manually curated SwissProt prioritized over
the more exhaustive TrEMBL), the alignment’s e -value and the query name, in that order. Query
peptides with more than 3 mismatches between the source and query sequences were excluded from
further analysis. The following viruses reference proteomes were used: Human gammaherpesvirus
4 (EBV, UP000007639), Human Immunodeficiency Virus 1 (HIV-1, AUP000002241), Alphapapillo-
mavirus 9 (AUP000009104), Vaccinia virus (AUP000000344), Influenza-A virus (AUP000131152),
Hepatitis-B virus (AUP000008591), Hepacivirus-C (AUP000000518), Human alpha-herpesvirus 1
(AUP000106517), Dengue virus (AUP000002500), Human betaherpesvirus-5 (AUP000000938). Tran-
scriptome references were downloaded from the UniProt database by querying for the virus name
and downloading all (possibly redundant) proteins (The UniProt, 2017). For non-perfectly mapping
peptides, the most highly rated reference sequence was then modified to reflect the query sequence

(i.e., peptide), such that the most representative processing score for the peptide could be computed.

TCGA data

The patient sample cohort, consisting of all tumor samples for which both DNA, RNA sequencing
data was available, spans 5,585 patients from 30 tumor types (Table S1). TCGA data acquisition
from the Broad Institute’s Firehose and integration and preprocessing of data sources listed below
was automated in R using functionality that is combined in the R package firehosedownload: http:

//www.github.com/slagtermaarten/firehosedownload.

TCGA somatic variant calls in MAF-format and RNA sequencing data were downloaded and harmo-
nized from the 2015-08-21 release of the Broad TCGA genome data analysis center standard runs:
http://gdac.broadinstitute.org/runs/stddata. As mutation data for the ESCA (oesoph-
agus carcinoma) project is not part of this release, mutations for the ESCA project were obtained
from the repository of mutations files curated by Cyriac Kandoth: http://www.synapse.org/#!
Synapse:syn1695396.13. TCGA RNA sequencing data were downloaded from the Broad TCGA
genome data analysis center 2015-11-01 release of the standard runs: http://gdac.broadinstitute.
org/runs/stddata.
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For projects where data from multiple sequencing platforms were available, [llumina HiSeq data
was preferentially used. Raw read counts in RNAseq data were subsequently transformed to the
transcripts per million (TPM) RNA abundance measure, using custom R functionality included in

firehosedownload and using Ensembl75 (release of February 2014) gene length information.

TCGA HLA typing data

HLA typing based on DNA sequencing using OptiType? was downloaded from the TCIA resource

(www.tcia.at) provided by the Trajanoski laboratory.

Genome- and patient-level annotation

MMR status of tumor samples

The R package MSlIseq? was used to infer microsatellite instability status of all TCGA tumor sam-
ples in our cohort. Mutation annotation format files were obtained from TCGA as described above.
Sequencing target region sizes were calculated for each sample from target enrichment design files
used in the various TCGA projects (Supplementary Table S3). These data were subsequently used as
input for the MSIseq classifier.

Annotation of antigen presentation capability and T cell sensitivity of tumor sam-

ples

To identify tumor samples that may be resistant to T cell attack, we analyzed samples for occurrence
of non-synonymous mutations in any of the 515 non-HLA genes identified to potentially induce
resistance to CD8* T cell mediated killing?, or for occurrence of non-synonymous mutations in any
HLA class I allelef.

PAMS50 subtyping of breast cancer samples

We downloaded Level 3 RNA-seq data for the BRCA cohort from the TCGA Data Portal on 2015-06-
25 and analyzed the expectation maximization normalized counts. Samples were PAM50-subtyped

independently” using the implementation in the genefu R package® with the robust scaling option
enabled.
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Allele-specific HLA loss

We adapted the tool LOHHLAF, which allows for allele-specific detection of genomic aberration of
HLA alleles, to make it more amenable to large scale application (code available on GitHub: http:
//github.com/slagtermaarten/LOHHLA). Most importantly, we included support for the ref-
erence genome GRCh38, made it compatible with single-end sequencing data and expanded it such
that it can handle input bam files that are restricted to the HLA region of interest, rather than whole
exome or whole genome bam files. The original version of LOHHLA compares whole-genome or
whole-exome coverage mapped reads (bam formatted) between a tumor and matched normal sam-
ple, comparing read coverage normalized to the total number of mapped reads between the two
samples for each HLA allele separately. To circumvent having to download the full bam files for
thousands of patients just to obtain the total number of mapped reads per bam file, we inferred the
total number of mapped reads from the file sizes of the complete bam files (accessible from the NIH
GDC API). For this an ordinary linear regression model was used, which was fitted on file sizes in
bytes and the number of mapped reads (as read out using samtools flagstat, 5 row of output) of
114 normal and tumor sample bam files for 60 randomly sampled patients (Table S5) for which we
did download the entire bam file using gdc-client, deriving the expression: total mapped reads =
88370554 + 7461 [reads/MB] * file size [MB] (Figure S4.6A). This allowed us to use the TCGA GDC
bam slicing API (https://api.gdc.cancer.gov/slicing/view/) to specifically download the
HLA regions of chromosome 6 (29941260-29945884,31353872-31357187 and 31268749-31272092
in GRCh38 coordinates) and use those as input for LOHHLA. Note that the full TCGA bam files
that were obtained largely (~99.9%) consisted of mapped reads, obviating the need to correct for the
presence of unmapped reads. In order to ensure that read pairs for which one of the read mates
lied outside the annotated HLA genomic range were included in the analysis, the bam slicing down-
load window was extended by 10 bp on both the 3’ and 5’ sides to 28941260-32357187. We fed
the LOHHLA analyses purity and ploidy estimates obtained from ASCAT as described in the sec-
tion ‘Variant cellularity’ below. The minCoverage argument to LOHHLA determines the minimally
required amount of coverage in the normal sample in order for an SNP to be considered eligible to
contribute to the copy number estimate of the gene it’s positioned in. It was set to 0, after having
tested the stability of the copy number estimates by titrating the minCoverage filter between 0 and
a patient specific upper boundary computed as the median coverage of sites in the matched normal
sample. While titrating the minCoverage threshold, we recorded the inferred copy number for each
allele (i.e., HLA_type{l,2icopyNum_withBAF, which is computed as the median of the copy num-
ber estimates for individual loci pertaining to an allele, Figure S6B). Next, we computed the coeffi-
cient of variation (CoV, standard deviation/mean) over the copy number estimates to obtain donor,
gene, and allele-specific estimates of the effect of the minCoverage threshold on the copy number
estimates (Figure S6C). Alleles that showed a CoV < .25 were labelled as robustly estimable (90% of
alleles, Figure S6D), resulting in 63% of evaluated patients to have robust estimates for all of their
HLA-A, -B, and -C alleles (Figure S6E). Immunoediting analyses with the ‘strict LOHHLA’ attribute
included only these patients; analyses with the lenient LOHHLA’ attribute also included patients for
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which not all alleles were robustly estimable. An overview of allele-specific copy number estimates
for HLA-A, -B, and -C are displayed in Figure S6F. Alleles were deemed lost if the upper boundary
of the copy number estimate’s 95% confidence interval was below 0 and the estimate’s minCoverage
CoV was below .25.

Cytolytic score

Cytolytic scorel, a transcriptomic proxy for T and NK-cell activity, was computed as the geometric

mean of TPM-normalized expression estimates of the PRFI and GZMA genes.

Gene-level annotation

Gene essentiality

To infer the essentiality of genes to cell survival, we integrated work of the Sabatini and Brum-
melkamp laboratories. Wang et al. I screened the Jiyoye and Raji cell lines (Burkitt Lymphoma)
and the K562 and KBM7 (CML) cell lines using CRISPR technology, and the KBM7 cell line using
GeneTrap technology. Blomen et al. 12 screened the KBM?7 cell line and its derivative, the HAP1 cell
line, using GeneTrap technology. Blomen et al. provided binary class labels indicating essentiality
for genes, whereas Wang et al. only provided raw read count data, presenting significance testing for

only a subset of performed experiments.

In the Wang et al. CRISPR KBM?7 data analysis, essential genes were considered to have a CRISPR-
score (average log, fold change in the abundance of sgRNAs targeting the gene) lower than -0.1 and
an adjusted p-value below 0.05. Neither general nor cell line-specific criteria were included for the
other three cell lines that Wang et

al. screened using CRISPR technology. We elected to apply the same criteria to the other three cell
lines screened with CRISPR technology by Wang et al. Similarly, no cut-off was proposed for the
Wang et al. GeneTrap data set, but rather a correlation between the GeneTrap and CRISPR data
was reported. Here, we used a minimum required amount of anti-sense inserts of 65 and set the
required GeneTrap score to be lower than .45, in order to maximize the similarity in set cardinalities
between the Sabatini-KBM7-GeneTrap and the Sabatini CRISPR/KBM?7 derived gene set (1,875 and
1,878 genes, respectively). Having obtained seven partially overlapping lists of essential genes, any
gene appearing at least once in any of the seven experiments was deemed essential, 10.6% of selected

genes appeared in all lists. The list of genes is included in Table S4.
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Peptide-level annotation

Similarity to self-repertoire

To determine whether predicted neoantigens were likely to be dissimilar enough from self to be
recognized by the endogenous T-cell repertoire, we implemented a self-similarity classifier based
on previously identified determinants of T cell similarity’d, We compare candidate epitopes aris-
ing from somatic mutations to peptides from the human proteome predicted to be presented by
the relevant HLA allele (e.g, HLA-A*02:01), restricting this comparison to the amino acids span-
ning positions 3 to 8 of nonameric peptides, as these are considered to be most important for T-cell

13-13

recognition of peptide-HLA complexes®*™=. Epitopes were deemed ‘dissimilar-from-self’ when one
or more of the following criteria are met: (1) amino acid position 5 is mutated, (2) T-cell exposed
region contains 3 or more mutations, (3) two mutations are clustered to one side of position 5 (i.e., in
positions 2-3-4 or positions 6-7-8), and (4) a single amino acid substitution leads to large physic-
ochemical changes on position 2, 3, 4, 6 or 7. The latter substitutions were defined as amino acid
changes with an absolute covariance of < 0.05 in the PMBEC amino acid similarity matrix'é. We
implemented this algorithm in Repp (C++) and distributed it as part of the quickMHC R package

(http://www.github.com/slagtermaarten/quickMHO).

Somatic variant annotation

Variant effect prediction

To determine the effects of the various classes of mutations found in tumor samples, we developed
a Perl tool named VarContext. Canonical cDNA transcripts were obtained for genes containing
mutations (single nucleotide variants and/or indels) by querying the Ensembl database (release 75,
GRCh37). We applied each mutation affecting a particular gene and annotated its effect (silent, mis-
sense, insertion, deletion, frameshift, stop loss, stop gained), yielding the tumor transcript sequence.
Transcripts which lost their stop codon as a consequence of the applied mutations were extended
until the next in-frame stop codon was encountered. In contrast, transcripts gaining a premature
termination codon (PTC) were analyzed for their potential of triggering nonsense-mediated decay
(NMD; detailed description in “Transcript-level annotation’). Finally, the canonical and modified
cDNA sequences were translated into amino acid sequence, resulting in the reference and tumor

transcripts.
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Variant oncogenicity and essentiality

The oncogenic potential of mutations was predicted using IntOGen mutations™ version IntOGen
Mutations Analysis 2.4.1-maintenance’ (https://www.intogen.org/analysis), specifically for all af-
fected transcripts and stratified by sequencing project. TCGA maf files were converted to the re-
quired TSV-based input file format using a custom script and were analyzed in December 2015.
Variants were further annotated with a driver gene score indicating the likelihood of being a driver
gene based on the gene of their location™¥. To infer essentiality to cell survival of individual genes,

we integrated the work of two laboratories' L2

into an overall essentiality score, with which somatic
mutations were subsequently annotated (see ‘Gene essentiality’). Additionally, annotation of onco-
genicity was performed by comparing gene, amino acid change and amino acid change position (de-
termined using VarContext) of somatic mutations to the list of 1,018 recurrent oncogenic mutations

1.19

compiled by Marty et al.*4. The latter list was used for the ‘Marty’ variant selection setting.

Variant cellularity

Clonal antigens that are presented by all tumor cells in a lesion can reasonably be expected to have a
larger contribution to tumor regression than subclonal antigens, and the observed inverse relation-
ship between tumor heterogeneity and immunotherapy outcome provides indirect support for the

superior value of clonal antigens as T-cell targets 2.

We estimated the cellularity of individual mutations from DNA sequencing read count information
for a subset of 3,660 tumors in 18 tumor types, selected based on availability of the required data
types. As a starting point for inferring the fraction of tumor cells that carry a mutation (the variant’s
cellularity), we use the variant’s observed allelic frequency (VAF), the fraction of reads overlapping
with the variant locus that carries the variant. The observed VAF of a somatic variant does not relate
to its cellularity in a straightforward way as it is a compound measure of several factors: the pro-
portion of contaminating normal cells, the number of allelic copies of the variant in each cell and its
cellularity, plus uncharacterized sources of technical noise?!. We employed two methods of inferring
variant cellularity. The first is based on published maximum likelihood-based approaches?23, the
second is a Bayesian hierarchical clustering of variants®! for potentially more robust and accurate

cellularity estimates.

First, variants were annotated with the absolute copy number status of the genomic segments they
are located in. Absolute copy number status was derived from ASCAT analyses of Affymetrix SNP6
profiles®? and were obtained from the COSMIC resource https: //cancer.sanger.ac.uk/cosmic/
download on 2016-04-24. Absence of coverage in the ASCAT file was assumed to imply absence of
local copy number aberrations as only small parts of the genome are covered in the SNP6 output.
Additionally, tumor purity estimates, representing the percentage of tumor cells in the sample, were

obtained from these ASCAT analyses. The intersection of patients eligible for neoantigen prediction
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(patients for which DNA and RNA sequencing data was available) and those for which read count
information and a COSMIC ASCAT analysis was available (required for cellularity estimates) con-
sisted of 3689 TCGA patients, distributed over 13 sequencing projects (see Supplemental Table 1 for

the exact list of included samples).

Maximum likelihood-approach for cellularity estimation Following Landau et al.?%,
we note that the observed number of reads consistent with the called mutation, N, is binomially
distributed: P (N,) ~ Bin (N, AF.(c)), where N denotes the total number of reads covering
the genomic locus of the variant and AF, denotes the expected allele fraction of the variant under a

particular fraction of cells carrying the mutation ¢ (for cellularity), on which AF, depends as follows:

cm

AF, =
Pa,0=p +4p)

In which p denotes the tumor purity of the sample, i.e., the fraction of cells that are cancer cells,
A, and A; denote the average amount of alleles in the normal and tumor populations, respectively,
and m denotes the variant’s multiplicity, i.e., the number of tumor alleles that carry the variant - an
integral number smaller than or equal to A; assumed to be equal across all tumor clones. The listed
expression for AF, can be understood as the fraction of the number of tumor cell alleles carrying
the mutant allele and the total number of alleles, from both tumor and normal cells, at the somatic

variant’s genomic locus.

Two of the quantities on which AF, depends are not directly observed: ¢ and m. Thus, neither ¢ nor
m are unambiguously identifiable without knowledge or assumptions about the other. In the case
where the V AF equals the fraction of alleles derived from tumor cells (V AF = p m,
only one scenario is plausible: ¢ = 1 and loss-of-heterozygosity (LOH) must have occurred at the
variant loci in the cell giving rise to all sequenced cells (m = A;). Ambiguity however arises for
mutations located in genomic regions of copy number aberrations and for which the VAF does
not unequivocally indicate m to equal C' Ny (i.e, VAF < 1). This ambiguity is caused by the fact
that a subclonal mutation (low cellularity) with high multiplicity could result in similar VAF-values
as a clonal variant (high cellularity) with low multiplicity. Following the examples of Landau et al.
and McGranahan et al. &4, implicit in the case of McGranahan et al., we assume the multiplicity of
the variant to be unity when estimating cellularity, thereby running the risk of overestimating the
c of somatic variants for which the multiplicity potentially exceeds one, i.e., variants located in an
amplified segment. For some variants, it is certain that the multiplicity must have been greater than
unity asm = 1resultsin VAF)AF, for ¢ = 1. For these, we iteratively increase m by 1 until VAF
falls in the range of expected allelic frequencies (AF%), stopping before m exceeds the major allele
count. Having set the multiplicity m to a minimal value consistent with the observed data, we can
proceed to compute the most likely cancer cell fraction c. Assuming a discrete uniform prior on ¢

in the range [0, 1], discretized in intervals of 1/1,000, we compute the likelihood of each ¢ under the
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binomial model P(c) and subsequently normalize the likelihoods by dividing them by their sum -
the constant of proportionality of P(c) - to obtain the posterior probability mass function of P(c)%4.
The mode of this distribution, i.e., the maximum likelihood estimate is taken as the somatic variant’s
cellularity, with the two boundaries centered on the mode and encompassing 95% of the distribution
as the 95% credibility interval. Following McGranahan et al., we labelled mutations as clonal if their
inferred c was greater than or equal to 0.95 and the upper boundary of the ¢ 95% credibility interval

was greater than or equal to .99.

PyClone for cellularity estimation Inaddition to the ML-based approach, we ran PyClone®!
for all samples with read count information, ASCAT purity and absolute copy number estimates
available and a median total read count on called variants exceeding 100 reads (simulations suc-
ceeded for 780 tumors, see Supplemental Table 1 for the list of included patients). We ran the bino-
mial model for 10° Markov Chain Monte Carlo iterations, using a Markov Chain burn-in of a 1,000

iterations and Markov Chain thinning of 5.

Correspondence between the two methods We hypothesized that the largest structural
difference between the two methods lies in the inference of allelic frequency, which is only of rele-
vance for mutations located in genomic regions with copy number aberrations. In support of this, the
two methods yield highly similar and correlated clonality estimates for those mutations that do not
require an inference of allele multiplicity (Figures S2A and S2B). As this class forms the large major-
ity of mutations (98.75% of somatic variants), further analyses were performed using the maximum
likelihood-based approach, because of its more clearly defined dependency on sequencing depth. To
provide a validation of the obtained cellularity estimates, we compared cellularity estimates between
the most highly recurrent mutations within a given tumor type and the aggregate of non-recurrent
mutations. Consistent with expectations, for the majority of tumor types (15 out of 16) the most
highly recurrent mutation was predicted to be significantly more clonal than the remainder of the
mutations observed in that tumor type (Figure S2C). As we deemed the correspondence between
the two methods satisfactory, further analyses were based on the ML-based method for its relative

simplicity, computational efficiency and relatively low requirements on read coverage.

Variant-specific expression

To estimate the expression of individual somatic variants, we required the RNASeq mapped reads
from the TCGA GDC which are mapped to GRCh38.d1.vd1. We used the bam slicing tool in order
to prevent having to download entire .bam files. We first converted the variant loci from the hg19
to GRCh38 coordinate system, using the rtracklayer and Granges functions out of the rtracklayer
(version 1.42.2) and GenomicRanges (version 1.34.0) R Bioconductor packages in combination with
a liftover file obtained from UCSC: ftp://hgdownload.cse.ucsc.edu/goldenPath/hg38/
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1iftOver/hgl9ToHg38. over.chain.gz. These transformed coordinates were subsequently used
to query the TCGA GDC bam slicing tool, using a random UUID in case multiple UUIDs were listed
for RNASeq of tumor samples from the patient. Next, the number of reads consistent with the vari-
ant and reference alleles was tallied by running samtools mpileup (version 1.9) and custom R func-

tionality.

Neoantigen prediction

Tumor transcripts were reconstructed from SNVs and indels in order to obtain a set of candidate
tumor-specific neoantigens. Candidate peptides whose genomic sequences were affected by multiple
mutations were modified to reflect the consequences of all variants (1.75% of all candidate peptides).
SNVs and frameshifting insertion-deletions can introduce premature termination codons (PTCs),
rendering the encoded transcripts prone to degradation by the nonsense-mediated decay (NMD)
machinery. To account for this, we implemented an NMD-calling routine based on previously in-
ferred characteristics of NMD-targeted transcripts®. As expected, PTC-inducing variants that were
classified as invoking NMD had significantly lower variant allele fractions (VAF) in RNA sequencing
data than in DNA sequencing data, indicating degradation of PTC-bearing transcripts (Figure S1G).

Hence, NMD-predicted transcripts were removed from further analysis.

Reference and tumor transcripts were used as inputs for Neolution, the in-house neoantigen predic-
tion pipeline that annotates tumor-specific transcript derived peptides with four scores representing
the various stages of antigen presentation, classifying those passing all four filters as MHC-binding
peptides likely to yield an immune response. We assess the following steps: (i) RNA expression, (ii)
proteasomal processing and transport into the endoplasmatic reticulum, (iii) MHC binding, and (iv)
dissimilarity from self-antigens. First, we determined whether genes encoding candidate neoanti-
gens are expressed, excluding — unless indicated otherwise — all peptides for which the associated
gene had an expression level surpassing a constant threshold (default: 0). Alternatively, we applied a
threshold to library size-normalized read counts at the variant level as described in ‘Variant expres-
sion’ Second, we used netChop?8 to predict the likelihood of successful peptide processing by the
proteasome and TAP transport (NetChop score > .5). Third, we used netMHCpan3.0%/ to predict
HLA class I binding affinity, by default employing a percentile rank threshold of 1.9 (which corre-
sponds to 255 nM for HLA-A*02:01). To ensure constant prediction precision across tumors, we
elected to use one allele at a time rather than adapting the predictions alleles to the HLA haplotype
of the patient. We selected HLA-A*02:01, -A*11:01, -B*07:02, -B*27:05 and -B*40:01, based on their
prior determined in accuracy in predicting nonamer binding affinity*” and for their functional diver-
sity. To expedite (repeated) usage of peptide affinity predictions, affinity predictions for all candidate
peptides and all HLA alleles encountered in the TCGA patient set were pre-cached in a PostgreSQL
database (version 9.5, querying code available in the R package quickMHC). Finally, we determined
whether T cell recognition is likely to be prevented by self tolerance. As the majority of mutated anti-

gens derive from single nucleotide variants and, by consequence, are highly similar to their wildtype
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counterparts, it may be important to exclude candidate peptides that are too similar to the self-lig-
andome, as thymic negative selection eliminates T cell clonotypes reactive to antigens from these

1204 that compares each candidate epi-

peptides. To this end, we implemented a ‘self-similarity’ filter
tope to a reference list of self-epitopes predicted from the complete human proteome (obtained from
UniProt, 2016-10). Candidate peptides were retained when deemed sufficiently different from self,

according to the criteria outlined in ‘Similarity to self-repertoire’

Antigen prediction pipeline validation

To evaluate the prediction performance of Neolution when performing predictions either (i) solely
based on predicted HLA affinity, or (ii) also incorporating proteasomal processing predictions, or
(iil) additionally excluding peptides with similarity to human sequences, a curated list of ‘high con-
fidence’ HIV epitopes (see ‘HIV peptide data for pipeline prediction validation’ and Supplemental
Table S2) and ‘lower confidence’ lists of peptides from the IEDB (see TEDB peptide data for pipeline
validation’) was processed using it. From these sets of predictions, prediction precision (PPV), sen-
sitivity (TPR) and false positive rate (FPR) were computed using custom R code. To compute 80%
confidence intervals (Cis) around PPV-estimates, we employed stratified bootstrapping to ensure
constant prevalence of T-cell targeted peptides (and hence their presence) across bootstrapped sam-
ples. After quality metrics were computed for bootstrapped samples, the 10" and 90'" percentiles of

these metrics were taken as the upper and lower boundaries of the reported 80% Cis.

Somatic variant and neoantigen load tallying

In order to compare the propensity of different classes ¢ of a particular classification C' (e.g, DNA
damage types) to yield HLA-A*02:01-antigens, we needed to tally the load of mutations and neoanti-
gens for each class cin classification C'. The majority of mutations can be unambiguously annotated
as deriving from a single class c (e.g.,

‘missense mutation’ in the transcript effect classification). However, some somatic mutations over-
lapping with the genomic loci of multiple genomic features (i.e., transcripts and genes) have different
effects on these genomic features. To allow variants to belong to multiple classes c of a classification
C during the tallying of variants, each variant was partially assigned to a class ¢ based on the frac-
tion of transcripts affected by the variant for which the effect of the mutation can be classified as
c. This way, each variant potentially distributes its contribution among multiple classes, but its to-
tal contribution never exceeds unity (1). The total variant load of class ¢ in a genome g, N? , then

g,c’

becomes

v {teT,:S(t") =}
Nge= Z

veVy |T‘v‘
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where V,; denotes the complete set of variants in genome g, T}, the set of (Ensembl reference) tran-
scripts affected by variant v, the S operator returns the variant effect classification of v on t and | T, |

represents the number of transcripts affected by v (i.e., the cardinality of T,).

A similar consideration of mixed class membership is made during the tallying of neoantigens that
can be contributed by multiple somatic variants of potentially different classes. When tallying the
neoantigen loads by different classes ¢ of classification C, an epitope derived from a transcript ¢
was taken to result from ¢ proportional to the fraction of total variants overlapping with ¢ classified
as ¢ with respect to ¢. This nuance is necessary as variants may have different effects on different
transcripts. Combined, the peptide load contributed by somatic variant class ¢ in genome g, N7,

becomes

HveV,:Sw)=c}
NP = ?

he= 2 2

pEP,

where P, denotes the complete set of peptides passing all filtering steps for genome g, V), the set
of variants contributing to peptide p, the S operator returns the class of its argument and and |V,

represents the number of variants contributing to peptide p.

The ‘two group’ strategy for testing neoantigen depletion across unpaired
samples

As immune pressure against mutations associated with HLA-A*02:01-peptides is not expected in
patients that lack the HLA-A*02:01-allele and also any other alleles with similar binding profiles,
we could compare the HLA-A*02:01-yield rates in HLA-A*02:01-positive patients (test set) with the
yield rates in HLA-A*02:01-like negative patients (reference set). We did this both in a patient specific
manner, comparing the distributions of patient specific yield rates against each other, and by aggre-
gating all mutations and neoantigens into a meta-patient before comparing these point estimates.
In the former case, distributions were compared using a two-sided Wilcoxon rank sum test imple-
mented in the R base package (wilcox.test). In the latter case, proportions of neoantigens over total
mutations were compared using a chi-squared test as implemented in R base package (prop.test).
Effect sizes shown by color in Figures S3C & S3D are log, differences, computed by logging the
medians of the yield rates in the test and reference sets and subtracting them from each other. All
FDR-multiple testing corrections were done per analysis (i.e., columns in Figure S3D) with Ben-

jamini-Hochberg’s procedure® using the p.adjust function in R.
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Detection power analysis

As mutational load and sample count both influenced the statistical power to detect a signal of epi-
tope loss in our meta-patient immune editing analyses, the limits of detectable immune editing varied
between sequencing projects. To determine these detection limits, we first normalized the observed
yield rate in the test set to that observed in the reference set, equalizing any potentially pre-existing
neoantigen yield rate imbalances between the test and reference sets. This way, we would measure
the required rather than additionally required epitope loss for statistical significance. Next, we set
out to determine the required immune pressure (/ P), defined as the fraction of binding peptides that
are lost compared to the reference (i.e., the relative yield rate decrease in test set patients) to reach
statistical significance. As only true positive predicted binding peptides are immunologically visible
and hence targetable, the prediction precision (PPV, fraction of true positive and all predicted pep-
tides) downscales the I P such that the product of the two determines the actually observed immune
strength, I P,: IP, = IP x PPV. Assuch, we continuously lowered the neoantigen yield rate
in the test set by a factor 1 — I P, increasing I P, from O to 1 in increments of .01, while testing
for statistical significance using a chi-squared test for equal proportions (prop.test as implemented
in R). For each combination of a neoantigen prediction PPV type, the required immune strength to

reach this statistically significant effect size was recorded.

Using the silent mutational load to predict expected neoantigen load and

scan for immune editing

Rooney et al.'Y compared the observed neoantigen load to an expected neoantigen load computed
from the silent mutational load, which can be assumed not to be penalized by T-cell pressure as syn-
onymous mutations, unlike non-synonymous mutations, do not form neoantigens. The silent mu-
tational load was subsequently used to estimate exposure to DNA damaging processes and thereby
infer the number of (neoantigenic) non-synonymous mutations expected in the case of no selection
pressure during tumor outgrowth. Assuming that the ratios between (1) synonymous mutations and
non-synonymous mutational loads, and (2) non-synonymous mutations and neoantigen counts are
on average equal between tumors, it is possible to compute the expected or predicted number of
neoantigens from the silent mutational load and two sequentially applied conversion factors. The
expected non-synonymous mutational load /V.S,, is estimated from the observed silent mutational
load by multiplying it with the globally estimated conversion factor cg—s yg. Next, N.S), is used
to compute the expected number of neoantigens £, by multiplying it with the globally estimated
conversion factor cyg— . We finally end up with R, the ratio between observed and predicted

neoantigens for an individual sample

E, E,
R=—=
E, Scs—nNscNs=E
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which relates individual samples to the remainder of the cohort which was used to compute the

conversion factors.

To model the variable prevalence of various mutational processes operative in the genomes under
analysis, Rooney et al. performed this analysis in a mutational spectrum specific fashion, i.e., by
taking into consideration the nucleotides directly on the 5’ and 3’ sides of the mutated basepair (e.g.,
AC>TG, a C>T mutation flanked by an A and G). Following Rooney et al.,, conversion factors are
here computed specifically for each of the 192 possible spectra. As such, R becomes the ratio of the

observed neoantigens and the sum of the spectrum specific expected neoantigen loads.

There are a number of differences between the neoantigen prediction strategy employed here and in
Rooney et al,, precluding a direct copy of their methodology. First, the prediction pipeline employed
by Rooney et al. does not account for indels and for interactions between mutations, i.e., potential
interactions between mutations in the form of co-occurrence of mutations in a nonamer-spanning
genomic sequence. To eliminate this source of possible discrepancy, the V.S and S input data for this
analysis are restricted to missense mutations. Analogously, peptides resulting from non-missense
mutations are excluded. This means that a neoantigen yielded by for instance a missense mutation
and an indel will not increase the missense mutation tally by one half but instead is excluded - it
would not have been included in the neoantigen predictions used by Rooney et al.. Second, Rooney
et al. performed neoantigen predictions for patient-matched HLA types whereas we elected to use
HLA-A*02:01-predictions for all analyzed donors because of the superior binding affinity predic-
tions as compared to many other alleles. To further harmonize our methodologies, we excluded all
variants (and associated neoantigens) located in driver genes, as these were also excluded by Rooney
etal. (driver genes identified using MutSig, Table S6A from Rooney et al.). We performed these anal-
yses on i) either only clonal mutations or all mutations, ii) in an either mutational context specific
fashion or not for more robust conversion factor estimates (through including more events per con-
version factor), and iii) using our 4-filtering neoantigen prediction pipeline or using predicted HLA
affinity only, the latter to be more consistent with Rooney et al.. Conversion factors were recom-

puted per analysis on all included samples (i.e., pan-cancer).

The ‘continuous’ detection strategy -correlating neoantigen yield rates to HLA

presentation scores across patients

Similar to the discrete-group approach to immunoediting testing, the fundamental idea here is to
compare neoantigen yield rates for a particular four-digit HLA class I allele (hereafter called focus
allele, e.g.,, HLA-A*02:01) between tumor samples containing HLA alleles that differ in their ability to
present peptides that can be presented by this focus allele, but now analyzed on a continuous scale. In
case depletion of neoantigenic non-synonymous mutations does occur, tumor samples that contain
HLA alleles that show a large degree of overlap in binding pattern with that of the focus allele (i.e.,

that have a high presentation score, h) should show less neoantigens per mutation (low neoantigen



yield rate, ) on average, as compared to tumor samples that are poor at presenting these peptides
(low h). We assess this difference in 7 between tumor samples that are high and low in & using linear

regression.

HLA presentation corroboration

Overlap in HLA presentation (HLA corroboration score, Figure 2A) was assessed through overlap in
predicted binding affinity over all 10,072,577 candidate nonameric neo-peptides that we processed
for our patient cohort and for all 227 identified HLA class I alleles, in order to select a subset of all 20°
potential nonamers that is representative of the human antigenome. The asymmetric HLA corrobo-
ration score for alleles I to allele j was computed as the fraction of peptides binding to j that are also
predicted to bind I and thus falls in the range [0, 1]: ‘P‘i Qj Tj |
presented by HLA allele i. Binding peptides were defined as having a NetMHCpan3.0 predicted per-
centile rank < 1.9 (which corresponds to 255 nM binding affinity for HLA-A*02:01). Three other
thresholds for the definition of binding peptides (1, 3 and 4, corresponding to 100, 500 and 1,000

nM binding affinity for HLA-A*02:01) did not substantially alter our results (data not shown).

, where P; is defined as the set of peptides

Computation of tumor sample and HLA allele-specific HLA presentation scores

For the combination of a the HLA class I repertoire of an individual tumor sample and a particular
focus allele for which immunoediting analysis was performed, the HLA presentation score (h) was

defined as the fraction of peptides that is presentable by the focus allele that is also presentable by one

|{p ip €EP; and p €P7‘}|
|Prl

presentable by the focus allele and P, is the set of peptides presentable by the sample’s class I HLA

or more of sample’s HLA alleles, i.e, h = , in which P is the set of peptides

allele repertoire.

For analyses where allelic loss of HLA alleles (inferred using LOHHLA, see section ‘Annotation of
allele-specific HLA loss’) is integrated into /;, alleles identified to have been lost were excluded from
A before computation. Allele amplification was ignored. Where the ‘Presentation score’ setting was
set to ‘HLA A, B’ (rather than ‘HLA A, B, C’), C-alleles were excluded, regardless of other settings.

Mass spec validation of HLA presentation score

To evaluate the validity of the sample-specific HLA presentation scores, we reasoned that mass spec-
eluted HLA ligandomes should be enriched for peptides associated with HLA-alleles for which the
corresponding patient has a high presentation score. To test this, we obtained mass spectrometry
data of HLA-eluted peptides from 26 samples® through the SysteMHC atlas (project ID: SYSMHC00010).
We inferred the 4 HLA-A and -B alleles of each sample’s corresponding HLA repertoire by consid-
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ering the HLA alleles to which peptides had been assigned by the original investigators, assuming
homozygosity and two allelic copies when only one HLA-A or B-allele was reported in total. Next,
we compiled sample specific reference proteomes by aggregating all source proteins with which the
observed peptides were annotated by the original investigators, so as to work around the unavail-
ability of matched RINAseq data for these samples. We then assessed which peptides were expected to
be present in the HLA ligandome of each combination of a sample and a focus allele by extracting all
9-mers from these proteins, using the UniProt human reference proteome (UP000005640_9606) as
areference, and annotating these peptides with a predicted affinity for the focus allele. The minority
(<.1%) of peptides containing either a U (selenocysteine) or X (unknown amino acid) where excluded
a priori. Having filtered these peptides, with passing peptides having an HLA affinity percentile rank
<= 1.9, we assessed which fraction of filter-passing peptides was observed in the experimental data
to arrive at a quantity we interpreted here as prediction precision. Such predictions precisions were
computed for all combinations of all 26 samples and 226 focus alleles (all HLA-A and -B alleles de-
tected in the TCGA patients we analyzed).

A continuous approach to testing for immunoediting

We modeled the mean rate at which mutations yield neoantigens for a particular tumor type r and
how that rate is modulated by the HLA presentation score (h) for the focus allele of the analysis. We
thus define:

NP ~ Byg+ Niri+e¢

Ty = (1 + ﬂhhz’) Br

where N, NV are the neoantigen and mutational load of the patient indexed by i, respectively,
and r; is the patient specific neoantigen yield rate, consisting of a global neoantigen yield rate (3,,
shared across patients, and a second term that describes the degree to which the HLA presentation
capability (presentation score h;) shifts this global yield rate in a patient-specific manner. This second
term consists of the patient-specific presentation score h; and [, the fractional degree to which
r; is modulated by a unit incease in h;. Finally, 3 is an intercept term (the predicted number of

neoantigens when NP = 0 and h = 0) and ¢ represents the model residuals (i.e., ](7? -N. f ).

Integrating these two expressions and removing the coefficients, we get the following R model for-
mula to be used in a R (g)lm:

NP ~ 14 N° +h: NV
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Such that the first coefficient represents an intercept term, the second coefficient represents (3, and

the third [3y,.

A subanalysis was deemed reliably estimable if the p-value associated with 3, (i.e., the base r, the
expected neoantigen yield rate for patients with h = 0) was < 0.05. In cases of too few samples or

the absence of a (linear) pattern in the data, this did not happen.

We were ultimately interested in the mean fractional difference A (delta) in neoantigen yield rate
between patients with full HLA-presentation capability for the focus allele in question (h = 1) and

those with no capability whatsoever (h = 0), which boils down to the following expression:

A = BotBN"+ BpNY) — (Bo+ BrN") _ Bn
ﬂ0+[37~N” ﬂO/Nv+6T

in which NV is the median number of mutational events across patients. The uncertainty in A was
estimated using Monte Carlo simulation. We generated 109 random samples from the multivariate
normal distribution of the regression coefficients (mean vectors from coef and covariance matrix
from vcov methods of the R fit objects) using the mvrnorm function in the R MASS package (version
7.3.54). We computed A for each of these simulations and report the 10™" and 90" percentiles of the
resulting distribution (Figure 2D). Both N¥ and N? were transformed with f(x) = logl0(z + 1)

prior to regression analysis.

Permutation testing A for significance

We employed permutation testing to assess the statistical significance of observed A values. Specif-
ically, the presentation score for each sub-analysis was permuted 250 times and the resulting A was
computed for each of those permutations. Any downward or upward bias resulting from distri-
butional imbalances and other potential violations of linear model assumptions will be accounted
for using this approach. We assessed the fraction of permutation A values that was larger than the
observed A, a quantity we refer to as q for quantile. Small values of g (< 0.05) are indicative of a
substantial deviation from the permutation null distribution and would be consistent with immu-

noediting. Large values (0.95) would likewise be consistent with neoantigen enrichment.

Detecting parameterizations associated with editing

Aggregating all sub-analyses, each a unique combination of all the potential discrete settings to make,
resulted in a table with ID’ columns, one for each of the configuration categorical variables, and
columns for the resulting observed statistics, A and q. As we wanted to understand which settings
increase the likelihood of observing negative A values, we sorted this table for either one of these

statistics and univariately tested all ID’ variables independently for enrichment. We repurposed fast
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preranked gene set enrichment analysis testing here, as implemented in the fgsea R package (package
version 1.18.0). For each level of a categorical variable (e.g., ‘A*02:01” when considering the focus
allele) occurring in at least 100 sub-analyses, we ran fgsea::calcGseaStat with scoreType = ‘std’ on the
rankings of the sub-analyses and with all the positions of the level in question as the argument to
selectedStats. The calcGseaStat function computes a running-sum statistic and returns the location
where that statistic deviates most strongly from that expected under random shuffling of the level:
the enrichment score (ES). We report the mean-centered version of this statistic, for each setting
separately. Mean values were computed over all enrichment scores and deducted from the original

ES.

Data and software availability

The TCGA data download is encapsulated in the R package firehosedownload (http: //www.github.
com/slagtermaarten/firehosedownload). Neoantigen predictions are performed using our
custom software packages VarContext (http://www.github. com/schumacherlab/varcontext,
projecting mutations on transcript RNA sequences to compute candidate neoantigenic peptides), ne-
olution-prep & neolution-live (http://www.github.com/schumacherlab/neolution-prep
and http://www.github.com/schumacherlab/neolution-1live, for annotation and filter-
ing of candidate peptides), supported by the quickMHC package located at http://www.github.
com/slagtermaarten/quickMHC.

Neoantigen tallying is further wrapped in the fasanalysis (an acronym for foreign antigen space
analysis) package (http://www.github.com/slagtermaarten/fasanalysis). Immunoedit-
ing analysis code, running the analyses and generating the figures presented in this work, is available
at http://www.github.com/slagtermaarten/immunoediting. With the exception of Var-

Context, which is implemented in Per], all functionality was implemented in R.
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CHAPTER 4

Figure S4.1: Prediction performance for (neo-)antigens and NMD-filter

A Schematic overview of data flow in this work.

B Prediction precision as a function of the HLA-affinity filter threshold in the curated HIV epitope set for HLA-
A*02:01. Shaded areas denote 80% confidence intervals acquired using stratified bootstrapping.

C Parametric plot showing the trade-off between prediction precision (true binders amongst predicted binders)
and prediction sensitivity (predicted true binders of all true binders) as a function of the HLA-affinity filter
threshold in the curated HIV epitope set for HLA-A*02:01. Increasing the stringency of the affinity threshold
increases precision with a trade-off in sensitivity. Dashed red line indicates the 255 nM affinity threshold used
for further analyses.

D As in A, but plotting the trade-off between sensitivity and drop-out (FPR). Inset: zoom in on the horizontal
range of [0, 0.03] of the ROC curve.

E As in A, but for the aggregate of all 10 viral genomes in IEDB (Methods).

F As in B, but for the aggregate of all 10 viral genomes in IEDB.
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Figure S4.2: Validation of mutation clonality estimates.

A Correlation of cellularity estimates obtained by PyClone and maximum likelihood method. Color indicates
whether a mutation is located in an amplified region and thus whether multiplicity inference is required. 98.75%
of mutations do not strictly require multiplicity inference (blue dots).

B Pearson correlation between maximum likelihood and PyClone estimates of cellularity for each tumor type
individually. Correlations are high for mutations where the multiplicity is certain but less for mutations for
which multiplicity estimates are required (STAR methods). Dot size reflects the number of mutations on which
the correlation coefficient is based.

C The mostly highly recurrent somatic mutations per cancer types, suggestive of a role in oncogenesis, are sig-
nificantly more clonal than the aggregate of all non-recurrent mutations (indicated by a hyphen, grey boxplots)
for 12/13 evaluated tumor types. Mutations were grouped based on their effects at the amino acid level. p-
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values reflect one-sided Wilcoxon rank sum tests between non-recurrent and the most highly recurrent (across
included tumor samples) mutations. Esophagus cancer and DLBCL were left out of this comparison as the

most recurrent mutations were positioned in non-oncogenes for these tumor types (CEP170 and MUCG, re-
spectively).
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Figure S4.3: Extended analysis of genomic neoantigen depletion

A Fraction of predicted HLA-A*02:01 neoantigens that is predicted to also be presented by any of the other de-
tected HLA class I A and B alleles. Unless indicated otherwise (see B), HLA alleles predicted to present more than
20% of predicted HLA-A*02:01-neoantigens (as indicated by the red line) were labelled as ‘HLA-A*02:01-like’
in subsequent analyses, and samples expressing any of these alleles were excluded from the HLA-A*02:01-like
negative reference group.

B The relationship between ‘the HLA-A*02:01-similarity threshold for patient inclusion in the HLA-A*02:01-
like-negative reference set and the observed p-values in a meta-patient analysis of yield rate differences between
the test samples and reference set samples is depicted per tumor type. To avoid over-plotting, seven randomly
selected tumor types are shown. Note that an increase in stringency does not result in a systematic increase in
statistical significance when comparing test and reference groups.

C Effect of different neoantigen prediction pipeline parameterizations on the detection of neoantigen depletion.
Yield-rate differences in meta-patient analyses (see Figure #.3A) are depicted. Triangles reflect comparisons for
which FDR-adjusted p-values from two-sided Wilcoxon rank-sum tests were below 0.05. Upward and down-
ward pointing triangles would point to genomic neoantigen depletion and to negative genomic neoantigen
depletion, respectively.

D Effect of different modifications of neoantigen depletion analysis strategies on the detection of neoantigen
depletion, while keeping neoantigen prediction parameters at the default settings. In the ‘Marty’-analyses, anal-
ysis is restricted to recurring oncogenic mutations as identified by Marty et al. (2017). Also shown are analyses
in which mutations that can confer a fitness advantage are excluded (‘No Fit Adv.), as in Figure #.3D. In addition,
8 versions of analyses inspired by Rooney et al. (2015) are included. In this analysis, all permutations of three
core settings were tested, denoted by three letters in the following format: (C|U)(M|A)(F|H). Position 1 of the
analysis identifier denotes the exclusion of variants based on clonality: (U)naware (no exclusion of subclonal
mutations) vs. (C)lonal. Position 2 denotes the computation of conversion factors: (M)utational context specific
vs. (A)specific. Position 3 denotes the neoantigen prediction pipeline filtering parameter: (F)ull 4-filter pipeline
vs. HLA affinity filter (H) only. Finally, the SNV-restricted analysis also presented in Figure #.3A is shown. Of
all analyses, a T cell-resistance (TR) version is additionally shown, in which tumor samples that have at least
one non-synonymous mutation in one of the 515 genes labelled as providing resistance to T-cell pressure®! are
excluded. Unadjusted p-values from two-sided Wilcoxon rank-sum tests are shown by triangles in case of sig-
nificance (p < 0.05). Upward and downward pointing triangles would point to genomic neoantigen depletion
and to negative genomic neoantigen depletion, respectively. Missing analyses due to missing input data are
indicated by a gray fill.

E Employing a mutation loss detection strategy inspired by Rooney et al. (2015), in which the expected neoanti-
gen load is computed based on the synonymous mutation load and contrasted against the observed (predicted)
neoantigen load.

F As in E, but also restricting the analysis to clonal mutations.
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Figure S4.4: Mass-specbased validation of the presentation score for HLA-presentation capability.
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Each panel represents a single sample from the Pearson et al. (2016) study> that performs analyses of HLA-
associated peptides by mass spectrometry. Each dot represents a focus allele. Horizontal axis: presentation
score for this particular sample for a given focus allele, vertical axis: the fraction of expected peptides under
100% sensitive mass spec technology (i.e., with each peptide from every available protein detectable) that is
detected. In general, HLA alleles that show a higher overlap with the predicted binding capacity of the HLA
alleles that are expressed by a sample (i.e., a high presentation score) show higher fractions of detected peptides.
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Figure S4.5: Presentation scores are highly variable across focus alleles.
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A Heatmap of h across all included samples, computed across all 6 HLA class I alleles in a samples, not leaving
out HLA alleles that are genomically lost. Left panel: raw presentation scores. Right panel: binary matrix indi-
cating whether the focus allele is present in the set of a patient’s six HLA class I alleles.

B Pairwise correlation matrices of presentation scores. Diagonal elements (histograms) reflect univariate distri-
butions. Sub-diagonal and supra-diagonal elements show a near-absence of correlation between focus alleles.

148



CHAPTER 4

A C
6 3 ° Allele 1 Aliele 2
g =8.84><60 +7.46x10°MB )
6e+081  Péhrson r = 0.231 ° =
@ Spearman r = 0.946 S g
3 8=
= 0
[} T © 20-
> 4e+084 >
° —Z
2 =0 | | |
oy .. % < o- |
< . [opm] |
= 2e+08 oL
55
[
Q I 20+
O«
T T T T o T T T T T T
20000 40000 60000 80000 A B c A B c
File size [MB] HLA gene
B
HLA-A HLA-B HLA-C
8 201 =
2@ 151 e >
€T 10 g
£ ] g
<7
oo 0 =
= % 20
5Q 157 z
c= 104 @
8L 5 — o
5 ~
8T .. ,
= T T T T IS T T T ) T T T T
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
minCoverage threshold
D E g
Lo
% 1,00 -g £
8 oo == Z 2 o8
D 0 075- 1 es | -
SE , ge 0.6
g% 050- 1 2% 04
29 I 8E 0.2
= i | @ 02
80 i = 53 0 10 20 30
£ 0 10 20 30 F2 001 T T T T :
g 0.00- . S . . 8% 0o 0.1 02 03 0.4 05
= 0.0 0.1 0.2 0.3 0.4 0.5 s Coefficient of variation threshold
Coefficient of variation threshold
F
HLA-A HLA-B
600
€
€ 400+
Q
o
200
0 i L 1

8 910 3-2-101 2234567891 3-2-10122345¢6 78910
HLA-allele copy number

N
IS

|
o
[N
2
~
o
o
~

[ | Bladder (n=184) [l Cutaneous melanoma (n=257) [l Kidney renal clear (n=231) [l Ovari 152) [0 tomach adeno (n = 210)
] Breast invasive carcinoma (n -664) [l Glioblastoma (n = 114) [l Liver hepato (n-130) [l Pancreatic adeno (n=53) [ Thyroid (n - 166)
B Cervical squamous and adeno (n=131) il Head and neck squamous (n~363) [l Lung adeno (n=410) [l 130) Uteri ial (n =8)
] Colonadeno (n=190) [l y R T (n-163) W Rectum adeno (n - 48)

Figure S$4.6: Efficient running of LOHHLA for large sample numbers.

149



A Relationship between the disk size of a TCGA BAM file and its read count content. The strong relationship
here allows one to estimate the read content of BAM files from their file size, which, unlike the read count
content, can be queried from the TCGA GDC API. Total read count is a required input variable for LOHHLA
to run.

B Illustration of the robustness of HLA allele copy number estimates with regards to the LOHHLA minCoverage
threshold that defines the minimal number of overlapping reads for a single genomic position to be considered
robust enough for use in HLA allele copy number estimates. Each line corresponds to a single copy number
estimate.

C Quantification of the robustness in B, using the coefficient of variation (CoV), visualized with violin plots.
Most alleles have near-zero estimates, indicating robustness.

D The fraction of HLA allele copy number estimates (6 per patient) with CoV-estimates below the threshold
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A Asin Figure §.4A, but after sorting of sub-analyses on A rather than q. Sub-analyses with the RNA-expression
filter set to ‘VE=0’ (i.e., requiring > 0 / 10° total reads to overlap the variant in order to be called expressed) ap-
pear enriched among the sub-analyses with the most negative A (consistent with neoantigen depletion).

B As in Figure #.4D, but varying the RNA expression filtering setting on the horizontal axis. Variant-level fil-
tering (VE=0) somewhat strongly affects the mean neoantigen yield rate (r) and also affects A. However, it does
not affect ¢ at all, indicating the effect on A is likely to be artefactual, see supplementary note 1.

C Evidence that stringent neoantigen filtering, resulting in low mean r across all patients, in combination with
inhomogeneous distribution of h, causes A to be biased. Please see Supplemental Note 1 for associated reason-
ing. P-values in the lower right corners reflect the linear regression slopes of the A7 g vs. A, regression line.
D As in Figure #.4B. but for settings associated with the manner in which the neoantigen depletion analysis is
performed. Color scale as in A.
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Figure S4.8: Trends of neoantigen depletion are not reproducible across focus alleles.

A Asin Figure 4.4E, but split by focus allele and for all tumor types for which stringent filtering of T cell-resistant
tumor samples was possible.

B As in Figure #.4F, but split by focus allele and for all tumor types for which the recurrent oncogenic variant
selection was possible.

Supplemental Note

Testing for neoantigen depletion settings that were associated with A (rather than g, as used in the
main text), we found that stringent RNA expression filtering on the variant level on average led to a
negative A for a majority of tumor types (Figure S4.7A). Selecting and plotting groupings of iden-
tically parameterized sub-analyses, save for the RNA expression filtering setting, confirmed the ob-

servation of an effect on A and not ¢ (Figure S4.7B).

Interpreting this result, we imagined that stringent neoantigen filtering might enrich for negative
A but not low q through lowering the mean neoantigen yield rate (r). As low-TMB patients will be
more likely to be predicted to have 0 neoantigens, appearing fully depleted of neoantigens, severe re-
duction of r could render the overall analysis sensitive to imbalances in the distribution of patients
over the presentation score (h). This is because any range of h that is relatively sparse in patients
will more likely appear to be fully depleted of neoantigens. When relatively few patients populate
the lower range of h (h € [0,~ .25]), A could then be biased upwards (i.e., indicating nonsensi-
cal enrichment of neoantigens with enhanced neoantigen presentation). Similarly, A will be biased

downwards with relative patient sparsity at the upper range of h (h € [~ .75, 1)).

To test this hypothesis, we first computed the mean relative difference in TMB between h = 1 and
h = 0 patients (A ), much like we did in our primary regression of h against 7 (A), to directly
quantify the degree with which h and TMB are correlated. This demonstrated that Ay g is strongly
associated with A (Figure S4.7B), especially for sub-analyses for which the mean r is low, indicating
that imbalance in the distribution of h at least partially explains A (Figure §4.7C). As h-permutation
does not modify the overall h-distribution, permutation As will retain whatever degree of bias that
is already present in the original data, such that g is the more robust and informative of the two

statistics to assess.

We conclude that, through lowering 7, in combination with inhomogeneous distribution of h, vari-

ant level expression filtering likely lowered A but not g in a manner that is independent from biology.

Supplemental Tables

For the supplemental tables, please see here: [10.1101/2023.06.21.544805
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CHAPTER 5

DISTINCT SPATIOTEMPORAL DYNAMICS OF CD8* T CELL DERIVED

CYTOKINES IN THE TUMOR MICROENVIRONMENT

Mirjam E. Hoekstra®, Maarten Slagter®, Jos Urbanus, Mireille Toebes, Nadine Slingerland, Iris de
Rink, Roelof J. C. Kluin, Marja Nieuwland, Ron Kerkhoven, Lodewyk F. A. Wessels and Ton N. Schu-

macher
* These authors contributed equally.

Cancer Cell, 2024. DOI: [10.1016/j.ccell.2023.12.010

Abstract

Cells in the tumor microenvironment (TME) influence each other through the secretion and sensing
of soluble mediators, such as cytokines and chemokines. While signaling of interferon y (IFN-y) and
tumor necrosis factor o (TNF-o) is integral to anti-tumor immune responses, our understanding of
the spatiotemporal behavior of these cytokines is limited. Here, we describe a single cell transcrip-
tome-based approach to infer which single or combined signals an individual cell has received. We
demonstrate that, contrary to expectations, CD8* T cell-derived IFN-vyis the dominant modifier of
the TME relative to TNF-o. Furthermore, we demonstrate that cell pools that show abundant IFN-
ysensing are characterized by decreased expression of TGF-3-induced genes, consistent with IFN-
v-mediated TME remodeling. Collectively, these data provide evidence that CD8" T cell-secreted
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cytokines should be categorized into local and global tissue modifiers, and describe a broadly appli-

cable approach to dissect cytokine and chemokine modulation of the tumor microenvironment.

Introduction

Tumors are composed of a diversity of interacting cell types, including tumor cells, fibroblasts, en-
dothelial cells, and a variety of immune cell types. A first type of interactions between the cell pop-
ulations that jointly form the TME is formed by direct cell-cell contacts, and to describe the effects
of such cellular interactions, technologies such as PIC-seq, which allows RNA-sequencing (RNA-
seq) of physically interacting cell pairs, have been developed!. Importantly, next to such direct cell
— cell interactions, cells also use soluble factors, such as cytokines, chemokines, and growth factors,

to influence the state of surrounding tissue cells®.

One of the major cytokine-producing cell compartments in tumor tissue is formed by the CD8 cy-
totoxic T cell pool, and CD8* T cells have been demonstrated to play a central role in both immune
checkpoint blockade? and adoptive T cell therapies®®. Upon encounter of antigen-expressing tar-
get cells, CD8" T cells release lytic granules containing cytotoxic molecules such as perforin and
granzymes in the synapse that is formed between the interacting cells. In addition, T-cell receptor
(TCR) signaling leads to the secretion of the cytokines interferon y (IFN-v), tumor necrosis factor o
(TNF-a) and Interleukin 2 (IL-2), which can, on their own or jointly, induce large-scale alterations in
the transcriptome of cells that sense these factors. For example, IFN-vy receptor (IFN-yR) signaling
has been demonstrated to result in increased expression of components of the antigen presenta-
tion pathway, enhances expression of immune checkpoint molecules, and can promote recruitment
of other immune cells through production of chemokines such as CXCL9, 10 and 11%£, In addi-
tion, IFN-y and TNF-o have been demonstrated to regulate the activation and maturation state of,
amongst others, macrophages and dendritic cells® . Furthermore, both IFN-yR and TNF-a recep-
tor (TNF-aR) signaling can, in a context-dependent fashion, contribute to tumor cell senescencel?,
apoptosis®™ and ferroptosis'?. Finally, besides their direct effects on tumor cells, both IFN-y and
TNF-o can also be critical for tumor control through their effects on stromal cells in the tumor

vasculaturel€2C,

In spite of the central role of T cell-produced cytokines in the modulation of cell behavior in the
TME, our understanding of the spatiotemporal behavior of CD8" T cell derived cytokines is lim-
ited. Specifically, it has not been established whether these signaling molecules differ in their ca-
pacity to not only influence target cells in the immediate vicinity of sites of antigen recognition, but
also modulate the behavior of cells in the tumor tissue in a more global manner. Earlier work has
demonstrated that cytokines may either be secreted in a multidirectional fashion, or can selectively
be released in the immune synapse, analogous to the focused release of lytic granules®. Specifically,

following TCR triggering, membrane-bound TNF-u has been shown to be distributed equally over
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the cell membrane, as demonstrated by live imaging of TNF-a on activated murine CD4* T cells?).
In contrast, in clusters of T cells and antigen-presenting cells, IFN-v, IL-2, IL-4, and IL-5 were all
shown to be localized at the microtubule organizing center (MTOC), consistent with directional
releaseZlyperlinkes2323 Based on this postulated difference in mode of secretion, a more profound ef-
fect of TNF-a relative to, for instance, [IFN-vy or IL-2 on cells that are distant from the site of antigen
recognition could be expected. However, as the size of the cell field in which productive cytokine
sensing can occur is also influenced by other parameters, such as cytokine half-life, receptor-medi-
ated clearance, and binding to extracellular components, it has been difficult to predict the extent of

long range sensing of different cytokines in the TME#.

Evidence that cytokines can reach (remote) bystander cells that cannot be recognized by T cells di-
rectly has been obtained in a number of studies in both viral infection and tumor models®3 ¢, Specif-
ically, T cell-secreted IFN-vy in skin and lymph nodes was shown to induce expression of IFN-vy-re-
sponsive genes in large regions outside the parasite or virus infected areas?®?”3!, Likewise, secretion
of IFN-y and TNF-a by CD4* T cells in tumors has been demonstrated to induce senescence in tu-
mor cells that cannot be directly recognized by T cells™. In case of CD8* T cells, long-range sensing
of IFN-vy has been observed by, amongst other, intravital imaging of fluorescent IFN-yR-signaling
reporters in mosaic tumors that contain both antigen-positive and antigen-negative tumor areas.
Using such fluorescent reporter systems, it was demonstrated that a large fraction of bystander cells
senses IFN-y upon intratumoral T-cell activation, and that [IFN-y sensing can occur in tumor cells
at distances over hundreds of micrometers from the site of T cell activation®#?¥, Collectively, these
data on individual cytokines provide an incentive to develop technology to measure and deconvo-
lute the joint effects of multiple cytokines on the TME. In the present study, we set out to generate
a strategy that allows the analysis of the effects of a broad set of cytokines simultaneously, and also
provides information on the timing of such cytokine exposure. The data obtained demonstrate that,
contrary to what would be predicted based on their mode of secretion, IFN-v is the dominant T
cell-secreted modifier of the TME.

Results

In order to measure cytokine sensing in the TME in a manner that is independent of genetic reporter
systems, we explored whether gene expression signatures can reliably inform on the type and du-
ration of cytokine exposure. Towards this goal, we exposed human ovarian carcinoma (OVCAR5)
cells to different cytokines or cytokine combinations for 2-24 hours and analyzed transcriptomes by
bulk RNA-seq (RNA-seq). In line with expectations, this revealed large groups of genes that were se-
lectively induced by IFN-v (such as HLA-DRA and IRF 1), or TNF-o (such as CCL20 and MMP9). In
addition, a gene set was identified that was either preferentially or exclusively induced by the combi-
nation of these cytokines (e.g., UBD and CXCL9Y) (Figure 5.1a). Furthermore, the relative expression

of individual genes in these gene sets provided rich information on cytokine exposure time, distin-
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guishing genes with a ‘burst-like’ expression pattern (e.g., CCL20 after TNF-o exposure), and genes
for which expression showed an exponential increase over time (e.g., MMP9 after TNF-a exposure)
(Figure b.1a). While gene expression data were rich in terms of the nature and duration of cytokine
exposure (Figure .1a-b), no substantial differences in gene expression were observed as a function
of cytokine concentration beyond a limited concentration range (~10-fold range). Importantly, cell
culture medium derived from T cell-tumor cell co-cultures contained high levels of IFN-y (>100
ng/ml) and TNF-o (+ 1 ng/ml) and induced a gene expression profile that was highly similar to that
observed upon dual IFN-vy plus TNF-o exposure (Figure S5.1)).
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Figure 5.1: Gene expression reports on cytokine exposure
a mRNA expression profiles of selected genes in OVCARS cells exposed to indicated concentrations of IFN-v,

TNF-a or their combination, for the indicated duration. Top, middle, and bottom panels depict genes that are
primarily responsive to TNF-a, IFN-v, or TNF-a plus IFN-v, respectively.

b Heatmap of bulk gene expression values inferred from OVCARS5 cells exposed to indicated concentrations
of TNF-o, IFN-y or TNF-a plus IFN-v, for indicated durations. Unsupervised hierarchical clustering of data
(shown are the 612 genes from the ‘cytokine-responsive class, see Figure S5.2b), groups samples by exposure
type and then by exposure duration. ¢ Heatmap of bulk gene-expression values for mono-responsive genes and
synergy genes inferred from in vitro stimulated OVCARS cells, as in a and b. Unsupervised hierarchical clus-
tering of gene expression data shows a nearly full agreement with assigned gene classes (cluster purity of 0.86).
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d UMAP of single cell RNA-seq data of OVCARS cells stimulated with indicated recombinant cytokines for
24h.

e Gene set scores for single cell RNA-seq data of in vitro cytokine stimulated cells as in a. Left panels: dots
represent gene set scores of individual cells; violins represent densities of score distributions. Area under the
receiver operator curve (AUROC) values, quantifying how well experimental conditions can be distinguished
from the control condition, are depicted. Right panels: Heatmaps showing pairwise distinguishability of indi-
cated experimental conditions (axes) using gene set scores, as quantified using AUROC values. Comparisons
for which indicated gene sets are designed to show separation are encircled.

f IFN-vy plateau versus IFN-y late gene set scores (see Methods) for OVCARS5 cells stimulated with IFN-y
(100ng/ml) for the indicated times. Black lines are LOESS-smoothed curves representing local averages, one
per stimulus duration. The ratio of each of the two gene set scores informs on duration of cytokine exposure.
g IFN-vy plateau versus IFN-vy late gene set scores and TNF-o early versus TNF-o late gene set scores for OV-
CARS cells stimulated with culture medium obtained from T cell -tumor cell co-cultures (as in Figure S5.1)) for
the indicated times as in F.

To be able to assign duration and type of cytokine exposure to individual cells, we compiled a set of
cytokine informative genes through a combination of model training and manual curation. In brief,
to efficiently expand a seed set of ~80 informative genes identified by manual selection, all genes were
annotated with descriptive features (see methods), developed to discern cytokine-responsive from
unresponsive genes (Figure S5.2a). We next iteratively expanded from this initial seed set by training
a machine learning model with the objective of predicting gene classes (e.g., ‘cytokine-responsive’
and ‘cytokine-unresponsive’) for all yet unclassified genes (Figure S5.2b-c). After 10 iterations of
model training, gene class prediction, and correction of predicted classes, a set of 612 cytokine-re-
sponsive genes was obtained. (Figure S5.2d). 90 of these could be classified as mono-responsive to
either IFN-v (n=40) or TNF-a (n=50), i.e., with only a single cytokine eliciting a response and IFN-vy
plus TNF-o eliciting a response that did not substantially deviate from the response to the main exci-
tatory cytokine. This property renders these genes especially useful when simultaneously assessing
the spreading behavior of both cytokines (Figure §5.2e and Figure b.1lc) and allows for the summing
of expression values for component genes to infer cytokine stimulus (see below). Importantly, com-
parison of these gene sets to the TNF-a and IFN-y Hallmark gene sets®? that are frequently used to
evaluate signaling revealed only modest overlap (Figure S5.3a). Whereas the newly developed gene
sets consisted solely of genes that responded strongly and specifically to the cytokine they were as-
signed to in OVCARS5 cells, the Hallmark gene sets showed considerable overlap. Furthermore, a
sizeable number of TNF-o hallmark genes was shown to respond to IFN-y and vice versa, creat-
ing the potential for incorrect signal inference (Figure S5.3b-d). Next to the set of mono-responsive
genes, a set of synergy genes, which are selectively expressed in the presence of both IFN-y and
TNF-o, was identified, providing an independent means to measure co-occurrence of IFN-yR and
TNF-oR signaling (Figure 5.1c). Finally, analysis of gene expression dynamics demonstrated that

this approach can inform on cytokine exposure duration (Figure S5.3e).

Having established a number of cytokine-and time-informative gene sets, we tested whether gene
expression upon cytokine exposure is informative in single cell (sc) transcriptome data. In an unsu-

pervised analysis, cells exposed to activating concentrations of either IFN-y, TNF-q, or their com-
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bination formed separated clusters, both from control cells and each other, (100% rejection rate on
kBET-test®? with stimuli as batches; median silhouette width: 0.17) (Figure 5.1d). To quantify signal
strength for each exposure-specific gene set, we subsequently calculated cell expression scores for
all genes that were included in either gene set. Using this strategy on single cell RNA-seq data from
cells exposed to activating concentrations of IFN-y or IFNa revealed a near perfect separation of
IFN-vy and TNF-a exposed cells from control cells, as well as a clear separation between cells ex-
posed to the two different stimuli (Figure 5.1e). In addition, exposure to the combination of IFN-y
plus TNF-o could be identified with high precision, both by analysis of the separate IFN-yand TNF-
o gene set scores, and by use of the IFN-y plus TNF-ao synergy gene set (Figure b.1le). Furthermore,
ability to correctly assign cytokine stimuli was not affected by the experimental strategy (protease
digestion, flow cytometric sorting) required to obtain single cell information from tumor material
(Figure S5.3f). Finally, use of time-informative gene sets on in vitro cultured cells exposed to re-
combinant cytokines or culture medium from T cell-tumor cell co-cultures at different time points
demonstrated the ability of this technique to also infer stimulus duration from single cell data (Figure
5.1f-g and Table S5.6).

Having established methodology for TNF-o and IFN-vy exposure inference in single cells, we subse-
quently set out to measure the degree of T cell-secreted cytokine sensing by tumor cells in the TME
in vivo. To this purpose, OVCARS5 tumors that were composed of a large fraction of antigen nega-
tive (‘bystander’) tumor cells that could serve as cytokine sensing reporter cells, plus a small fraction
of tumor cells that form targets for neoantigen-specific T cells® were established in NSG-@Zm‘/ -
mice (Figure 5.2a). Following treatment of mice bearing such mosaic tumors with TCR-transduced
CDK4g,|, neoantigen-specific CD8* T cells, infiltration of CD8* T cells into tumor tissue is observed
and upon target cell recognition, cytokine production is initiated in tumor regions composed of anti-
gen-positive tumor cells®9. Note that in this setup, all subsequent analyses of cytokine-specific gene
set scores by single cell RNA-seq were restricted to antigen negative bystander cells that cannot be
recognized by T cells, and hence weren’t influenced by direct cell-to-cell killing of antigen-positive

tumor cells.
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Figure 5.2: Frequent IFN-vy but not TNF-o sensing by bystander tumor cells.

a NSGﬁZm‘/ " mice injected subcutaneously with a mixture of 10% CDK4g,;, antigen expressing and 90% by-
stander OVCARS5 tumor cells were treated with either PBS (control) or CDK4g,1.-specific CD8* T cells after
tumor establishment. Tumors were harvested 44h after treatment, and bystander tumor cells were analyzed by
single cell RNA-seq.

b UMAP of single cells based on gene expression in the “cytokine-responsive” gene class, as described in Figure

55.2pb.

¢ TNF-a, IFN-v, and synergy gene set scores of single cells derived from OVCAR5 tumors. Dots represent gene
set scores of individual cells, violins represent densities of score distributions. Numeric values reflect AUROC
values that quantify separability between experimental conditions. Note that IFN-v, but not TNF-q, gene set
scores are increased in the T cell-exposed condition as compared to the control condition.

Having established that T cell infiltration and activity are first detected around 16 hours and increase
up to 44 hours after T cell transfer (Figure $5.4a), we analyzed bystander tumor cells by single cell
RNA-seq at 16-44 hours after T cell transfer. Unsupervised clustering of bystander cells derived
from 44h T cell-exposed tumors and control tumors demonstrated a separation of a large fraction
of bystander cells obtained from T cell-exposed tumors (Figure 5.2b). Thus, the presence of a tu-
mor-reactive CD8" T cell compartment substantially modifies the transcriptome of a considerable
part of bystander tumor cells in the TME. Importantly, assignment of cells to different cytokine ex-
posure conditions revealed that a large fraction (70.4%) of bystander tumor cells in T cell-treated
mice showed a pronounced IFN-vy gene set score, whereas such IFN-y sensing was largely absent
in tumor cells from control mice (5.3% of cells) (Figure 5.2c and Figure S5.4b). In contrast, presence
of a tumor-reactive T cell compartment did not measurably increase the fraction of TNF-ua sensing
cells, with 5.3% of tumor cells classified as TNF-o sensing in both control and T cell-exposed tumors
(Figure 5.2c and Figure S5.4b). In addition, tumor cells displaying high IFN-y gene set scores did
not show elevated TNF-a gene set scores (Fig S4b). As a second test of in vivo TNF-a exposure, we

calculated synergy gene set scores, which independently inform on the sensing of the combination
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of IFN-v plus TNF-o (Figures 5.2c and S5.4b). Also by this metric, the presence of a tumor-reactive
T-cell compartment did not result in TNF-o sensing by an appreciable fraction of bystander tumor
cells. As a majority of TNF-o genes displays a burst-like, early, expression pattern, we next assessed
cytokine sensing at the 16h timepoint, at which measurable T cell infiltration is just visible (Figure
5.3a). Already at this time point, a subset of bystander tumor cells derived from T cell-exposed tu-
mors separated from bystander tumor cells in control tumors (Figure 5.3b). However, neither the use
of the entire TNF-o mono reporter gene set (Figure 5.3c, left), nor the use of the TNF-ao early time-
informative gene set, showed an appreciable TNF-u sensing signal (Figure 5.3d, right). Note that T
cells derived from such tumors did retain the capacity to produce TNF-o, indicating that the lack
of an appreciable tumor cell population that showed TNF-a sensing was not explained by impaired
cytokine production (Figure S5.4c). As a side note, application of the time reporting IFN-y-respon-
sive gene sets demonstrated that tumor cells isolated 44 hours after T-cell infusion that show a given
expression of the IFN-vy “plateau gene set score” on average showed a slightly increased expression
of the IFN-y “late gene set score”, as compared to tumor cells analyzed 16 hours after T-cell infu-
sion (Figure 5.3d, left). To test whether bystander tumor cells did retain the capacity to respond to
TNF-o in vivo when this cytokine is present, we intratumorally injected tumors with recombinant
cytokines. Importantly, an evident TNF-a signal was observed upon injection of either TNF-o (with
53.4% of cells surpassing 95 percentile of control) or TNF-a plus IEN-y (51.8%) (Figure 5.3e and
Figure S5.4d), Furthermore, a pronounced synergy signal was selectively observed upon intratu-
moral injection of TNF-o plus IFN-vy (49.4% of cells), likewise indicating a high sensitivity to detect
TNF-oR signaling in vivo.
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Figure 5.3: Appreciable IFN-v but not TNF-u sensing by bystander tumor cells early after T-cell
activation.

a NSG—BZm’/ " mice injected subcutaneously with a mixture of 10% CDK4g,1, antigen expressing and 90% by-
stander OVCARS5 tumor cells were treated with PBS (control) or with CDK4g.1.-specific CD8* T cells after
tumor establishment. Tumors were harvested 16h or 44h after treatment, and bystander tumor cells were sub-
jected to single cell RNA-seq.

b UMAP of single cell sequencing data from bystander cells of control and T cell-exposed OVCAR5 tumors
harvested 16 or 44h after treatment, based on genes in the “cytokine-responsive” class (Figure S5.2b).

¢ Violin plots of TNF-o, IFN-v, and synergy gene set scores of cells derived from OVCARS5 tumors, as described
in a. Dots represent gene set scores of individual cells, violins represent densities of score distributions. Nu-
meric values reflect AUROC values that quantify separability between experimental conditions.

d Scatter plots of time-informative gene sets for in vivo single cell data described in a. To remove gene expression
effects due to exposure duration independent from T-cell exposure, depicted gene set scores were normalized
to control (PBS treated) counterparts in a duration-matched fashion (Methods).

e TNF-o, IFN-v, and synergy gene set scores of OVCAR5 tumor cells derived from tumors injected with indi-
cated recombinant cytokines. Cytokine exposure times were chosen based on maximal change in expression
of cytokine specific responsive genes after in vitro cytokine exposure (Figure b.1b). Numeric values reflect AU-
ROC values that quantify separability between experimental conditions, as in Figure b.Je.
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To test whether the observed difference in long-range IFN-y and TNF-a sensing also occurs in syn-
geneic tumor models, in which not only tumor cells but also infiltrating immune cells can respond

to T cell-secreted cytokines®#22

, we compiled responsive gene sets from cytokine-stimulated mouse
NRAS mutant melanoma (NMM) cells (Figure S5.5a). Application of these gene sets to bystander
cells derived from mosaic NMM tumors demonstrated that a large fraction of bystander tumor cells
(38.0%) responded to IFN-y in T cell-treated mice, as compared to bystander tumor cells in mice
that did not receive antigen-specific T cells (5.1%), or in mice in which antigen was lacking (5.7%). In
contrast, presence of a tumor-reactive CD8* T-cell compartment did not induce sensing of TNF-a
by bystander tumor cells (4.5% responding cells vs 5.1% and 5.7% in the two controls, respectively)
(Figure 5.4a-b, Figure S5.5b). For NMM tumors, but not for OVCARS5 tumors, it is possible that
cytokine-induced cell death results in a slight underestimate of the fraction of cells encountering
the combination of IFN-y and TNF-a signals. However, for both models, the observed bias towards
IFN-v sensing was not predominantly explained by TNF-o induced cell death (Figure S5.5¢). Collec-
tively, these data demonstrate in two different mouse models, and using gene sets that either report
on the sensing of individual cytokines or on the combination of IFN-vy plus TNF-a, that widespread

sensing is restricted to T cell-derived IFN-y.

The ability to identify bystander tumor cells that have sensed IFN-v in vivo makes it possible to
test whether such sensing is associated with additional changes in cell state. To explore this, we
used Milo®® to identify transcriptionally similar cells (so-called neighborhoods) in the mouse NMM
melanoma data. 64 out of 128 neighborhoods were enriched for bystander tumor cells derived from
T cell-exposed tumors (hereafter referred to as ‘T cell-exposed neighborhoods’) relative to bystander
cells from the PBS control condition (figure 5.4c) jointly comprising 74.3% of bystander tumor cells
from T cell-exposed tumors. As a control, none of these neighborhoods were enriched or depleted
for bystander tumor cells derived from T cell treated tumors in which antigen was lacking (Fig 4d,
top). As expected, T cell-exposed neighborhoods showed a prominent IFN-y-sensing profile but
were also characterized by reduced expression of a second gene set that showed considerable over-
lap with genes induced by in vitro TGF-{ stimulation of NMM melanoma cells (Figure 5.4d). Anal-
ysis of selected TGF-f3 responsive genes from bulk MNN RNAseq data (Figure S5.5a bottom panel)
showed that a majority of these (47 out of 70) were negatively correlated with T-cell pressure (Figure
5.4e). However, a large fraction of TGF-f3 induced genes also appeared to show reduced expression
upon IFN-y exposure (Figure S5.5a), making it difficult to unambiguously ascribe this transcrip-
tional response to lowered TGF-{ sensing in T cell neighborhoods using solely gene signatures. To
disentangle the transcriptional effects of co-occurring cytokines that regulate partly overlapping
gene sets, we employed transcriptional deconvolution of cell neighborhoods, aiming to reconstruct
their transcriptomes by algorithmically identifying optimal mixing weights of whole-transcriptome
bulk RNAseq profiles (Methods), akin to the CIBERSORT approach??. A high similarity was ob-
served between control neighborhoods and profiles of TGF-$-stimulated and unstimulated cells. In
contrast, T cell-exposed neighborhoods more strongly resembled IFN-y expression profiles (Figure

5.4f). Notably, omission of TGF-3-exposed reference profiles from this analysis increased recon-
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struction error and predominantly did so for control neighborhoods (Figure 5.4g, left). In contrast,
exclusion of IFN-y-profiles specifically increased reconstruction error of T cell-exposed neighbor-
hoods (Figure 5.4g, right). Collectively, these data demonstrate that T-cell pressure modulates by-
stander tumor cells towards transcriptional activity that is consistent with IFN-y-sensing and with
reduced TGF-{3-sensing.
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Figure 5.4: Figure 4. Frequent IFN-v sensing in a syngeneic tumor model and relationship with

reduced TGF-{3 sensing.

a RagZ'/ " mice were injected subcutaneously with a mixture of 10% OVA antigen expressing and 90% Ag™ by-
stander NMM tumor cells, or with Ag" NMM tumor cells only, and, following tumor establishment, were
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treated with either PBS (control) or OT-1 CD8" T cells, as indicated. Ag” bystander tumor cells were harvested
for single cell RNA-seq analysis 44h after treatment.

b TNF-a and IFN-y gene set scores, determined using the genes shown in a, for the T cell-exposed condition
(green) and the two control conditions (T cell-exposed -Ag” bystander NMM tumor cells only tumors, and PBS
treated tumors, shades of gray). Formatting as in Figure 5.1e.

¢ Left panel: UMAP of NMM melanoma single cell data, as described in panels a & b. Middle and right panels:
a Milo model® was fitted to the data to test for enrichment or depletion for any of the experimental conditions
in neighborhoods of transcriptionally similar cells. Non-significantly imbalanced neighborhoods (Spatial FDR
> 0.05), as well as homogeneous neighborhoods, are colored white.

d Left panel: heatmap of top 250 genes (rows) most strongly correlated (Spearman correlation) with enrich-
ment for the T cell-exposed condition in cell state neighborhoods (columns) of transcriptionally similar cells.
Depicted values are neighborhood averages. Neighborhoods are ordered according to compositional enrich-
ment of cells from the T cell-exposed condition. Top panels show log fold change in differential abundance
(logFC DA) for the indicated experimental condition relative to control condition. Right panel: heatmap show-
ing bulk RNAseq gene expression profiles of NMM cells exposed to indicated cytokines for the same genes as
in the heatmap in the left panel, ordered identically.

e As in d, but for TGF-f3 responsive genes selected on bulk RNAseq data.

f Deconvolution mixing weights of neighborhoods in an independent bulk RNAseq experiment (Figure S5.5a,
right). Neighborhoods ordered as in d. Only the 6 out of 28 most highly selected reference profiles are shown,
jointly comprising 94% of all assigned similarity.

g (Left) Increase in reconstruction error when the 17 reference profiles with TGF-{3 are omitted as compared to
when all 28 profiles are included. Permutation testing was employed to test whether increase in reconstruction
error could be explained by a lower number of reference profiles (Methods). (Right) As left, but omitting the 17
reference profiles with IFN-vy.

h Model visualizing secondary effects of long range IFN-v sensing. In parallel to the mechanism in which long
range IFN-y sensing leads to generation of, for instance, CXCL9/10/11 chemokine fields and subsequent in-
creased immune cell infiltration, long range IFN-y sensing may result in secondary changes in the TME by
decreasing TGF-{3 sensing.

Discussion

Next to signaling events induced by direct cell-cell contact, tumor cell behavior is modulated through
the sensing of soluble mediators, such as chemokines and cytokines, offering possibilities for long
range communication. Here, we describe and validate a single cell sequencing-based approach to
identify such long-range communication, and also the secondary changes that are associated with it.
Key components of this approach are the generation of bespoke gene sets that report on cell expo-
sure to a given cytokine or cytokine combination, and also the employment of multivariate modeling
in case signal-specific reporter genes are unavailable. We demonstrate in both humanized and syn-
geneic tumor models that CD8" T cells predominantly modulate the behavior of the tumor mass
through IFN-v release, while no substantial evidence for widespread TNF-o sensing is obtained.
This lack of TNF-a sensing is observed in spite of ongoing IFN-vy sensing by a large fraction of the
tumor mass, and hence continuous T-cell activity (note that a single intratumoral application of [FN-
vy results in just a transient burst of IFN-v sensing, Figure 55.4d and S5.5a). In addition, we note that

bystander tumor cells do retain the capacity to respond to TNF-a in vivo when this signal is artifi-
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cially provided (Figure 5.3¢). In theory, the methodology that we describe is subject to inferential
bias in case the studied signals influence cell survival. In our case, such cell survival effects do not
form a significant confounder (Figure S5.5¢), but it is important to be aware of this possibility when
examining other cell models. The cumulative CD8* T cell-derived IFN-y and TNF-a levels will vary
across tumors, depending on e.g., the fraction of tumor cells presenting relevant antigen and T cell
density. Importantly though, we consider it likely that, unless local TME signals would differentially
influence production of either cytokine, the ratio between T cell produced TNF-o and IFN-vy will be
constant due to their shared dependence on TCR-triggering. Hence, our observation of a differential

reach of CD8* T cell-derived IFN-y and TNF-u is expected to generalize to unseen settings.

Prior work has demonstrated that exposure to IFN-y and TNF-a can influence tumor control by,

for instance, inhibiting growth of antigen loss variants!®182%30

and modifying behavior of tumor
stromal cells'®¥, Here we demonstrate that, whereas T cell-derived IFN-y modulates the behavior
of alarge fraction of antigen-negative cells in the TME, such global effects are not observed for TNF-
a. These observations lead us to propose a distinction between cytokines that act as local versus
global modifiers of the TME. Importantly, modification of tumor growth through the global TME
modifier IFN-y may be expected to already occur in settings in which T cell activity is heterogeneous
and restricted to smaller areas of the tumor cell mass. In contrast, the effect of local TME modifiers
such as TNF-a may be most apparent in case of a stronger and more homogeneous intratumoral T
cell response. Notably, should other cell types show a drastically different ratio of IFN-y and TNF-a

production, it would be of interest to evaluate differential sensing in these settings.

Finally, the ability to detect sensing of individual cytokines and chemokines makes it possible to de-
termine whether such sensing is associated with additional alterations in cell state. In the current
work, we demonstrate that cell states induced by T-cell activity are not only consistent with abun-
dant IFN-vy sensing but also with decreased TGF-$3-induced gene expression. Conceivably, intratu-
moral IFN-v sensing could result in reduced availability of bioactive TGF-J3, for instance through
induction of a more pro-inflammatory macrophage state®®#, In addition, we provide evidence for
mutual negative regulation between the two cytokines (Figure 5.4h). These data add to an emerging
view on the role of tumor-reactive CD8" T cells, in which TCR signaling induced cytokine secretion,

and in particular IFN-v secretion, results in a global alteration of the tumor micromilieu.

Methods

Tumor cell culture and viral transductions

Human ovarian carcinoma OVCARS5 cells (F. Scheeren, The Netherlands Cancer Institute, The Nether-
lands) and murine NRAS?®'R mutant melanoma cells (NMM) (Norman Sharpless, University of
North Carolina, USA,2) were cultured at 37°C/ 5% CO, in IMDM (Gibco) supplemented with 10%
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FCS (Sigma), 100 U/ml penicillin (Roche), 100 pg/ml streptomycin (Roche), and GlutaMax (Gibco,
1x). Identity of OVCARS cells was validated by short tandem repeat analysis, STR data were not
available for the NMM cell line. The following vectors were utilized: the CDK4g, -GFP-pMX,
CMV-pMX, and IGS-PCDH vectors as described in , the OVA-mPlumb-pLenti vector as described
in#4, and the CDK4g, specific TCR (clone 17, NKI12)-pMP71 vector, as described in %3, For retrovi-
ral transduction of human cells and mouse cells, FLYRD18 packaging cells (ECACC no. 95091902),
and Phoenix-ECO packaging cells (ATCC, CRL-3214), were plated into 6 well plate dishes at 0.5x10E
cells per well, respectively. After 24h, cells were transfected with 3 pg of one of the indicated retro-
viral vectors using X-tremeGENE (Roche), according to the manufacturer’s protocol. After 48h,
virus supernatant was harvested, filtered through a 0.45-um filter and added to tumor cells in the
presence of 8 pg/ml polybrene (Sigma) in a 1:1 dilution in medium. For lentiviral transductions,
HEK293T cells (ATCC, CRL-3216) were plated at 3x10¢ cells per 10 cm dish. After 24h, cells were
transfected with 8 pg of one of the above indicated lentiviral plasmids, plus the lentiviral packaging
and envelope plasmids psPAX (Addgene #12260) and pMD2.G (Addgene #12259) (3 pg each) using
X-tremeGENE (Roche), according to the manufacturer’s protocol. 2-3 days after transfection, su-
pernatant of transfected cells was harvested, filtered through 0.45-pm filters, and added to OVCAR5
or NMM cells in a 1:1 dilution in medium. Antigen-positive GFP* OVCARS5 cells were generated
by retroviral transduction with the pMX-CDK4g,1 -GFP vector. Antigen-positive mPlumb* NMM
cells were generated by lentiviral transduction with the pLenti-OVA-mPlumb vector. Antigen-neg-
ative CFP* bystander OVCAR5 and NMM cells were generated by retroviral transduction with the
pMX-CFP vector. After transduction, indicated cell populations were sorted on a FACSaria Fusion

(BD biosciences) to >90% purity. Ag”CFP*IGS reporter cells were generated as described Y.

Generation and culture of TCR-modified T cells

Retroviral transduction and culture of human T cells was performed as described previously 2. To
obtain murine GFP* OT-1 CD8" T cells, spleens from C57BL/6;UBC-GFP;OT-I mice were passed
through 70 pm strainers (Falcon) to obtain single cell suspensions. Splenocytes were then nega-
tively enriched with the Mouse CD8 T Lymphocyte Enrichment Set (BD Biosciences) and activated
at 1x108 cells per 24 well for 48h with 2pg/ml Concanavalin A (Merck) in RPMI 1640 supplemented
with 8% FCS, penicillin/streptomycin, 50uM p-mercapto-ethanol (Gibco), 10 ng/ml IL-2 (Immuno-
tools), 0.5 ng/ml IL-7 (Immunotools) and 1 ng/ml IL-15 (Immunotools). After 48h, cells were spun
down and taken up in fresh medium at a concentration 1x102 cells/ml. Cells were kept at a concen-

tration of 1x10%/ml, with refreshment of media every 24h, for 2-5 days before adoptive transfer.

In vitro cytokine stimulation

Ag~CFP* tumor cells were plated at 200,000 cells per well in 6-well plates for 24h and were then
treated with either human IFN-vy (Invitrogen), human TNF-o (Peprotech), murine IFN-vy (Thermo
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Fisher), murine TNF-o (Peprotech) or murine TGF-3 (ebioscience) the indicated combination, or
were treated with culture medium from T cell -tumor cell co-cultures (see below), at the indicated
concentrations or dilutions. At the indicated times, cells were harvested and used for bulk RNA-
seq or single cell RNA-seq, as indicated. For bulk RNA-seq, cells were lysed in RLT lysis buffer
(Qiagen) and stored at -80°C before sequencing. The bulk mRNA data sets obtained from these in
vitro cytokine-stimulated cells at different time points are referred to as the “OVCARS5 bulk RNA-
seq reference data set” and “NMM bulk RNA-seq reference data set” throughout the manuscript.
For single cell RNA-seq, cells were stained with TotalSeq Hashtag antibodies (TotalSeq-B, Biolegend)
and pooled, using an equal number of cells from each sample, to form one pool of cells for single cell
RNA-seq analysis. Cell death and total cell counts were analyzed at 16h or 44h after treatment by
IR-Dye staining and subsequent flow cytometry using AccuCountBlank 15.2-pm beads (Spherotech).
To obtain culture medium from T cell -tumor cell co-cultures, Ag" GFP* OVCARS5 tumor cells were
plated at 2x108 per 10cm culture dish. After 1 day, 4x108 CDK4g, -specific CD8" T cells were added,
and culture medium was harvested after 24h, filtered through a 0.45 um filter (GE) and stored at
-80°C.

Mice

NOD-scid Il2ry™! B2m™! (NSG-B2m™"), C57BL/6;RAG2 KO, C57BL/6;UBC-GFP, and C57BL/
6;0T-I mice were obtained from Jackson Laboratories. UBC-GFP and OT-I mice were crossed to
obtain GFP-OT-I donor mice for adoptive cell transfer experiments. All animal experiments were
approved by the Animal Welfare Committee of The Netherlands Cancer Institute (NKI), in accor-
dance with national guidelines. All animals were maintained in the animal department of NKI,
housed in individually ventilated cage (IVC) systems under specific pathogen-free conditions and

received food and water ad libitum. Mice were used at 8 to 26 weeks of age.

In vivo tumor models

8x109 OVCARS cells or 2x108 NMM cells were injected subcutaneously into the flank of NSG-
ﬁZm'/' mice or C57BL/6;RAG2”~ mice, respectively, in 50 z PBS (Gibco) and 50 il matrigel (Corn-
ing), using the indicated mixtures of tumor cell variants. At day 7-8 after tumor inoculation, tumor-
bearing mice received an intravenous injection of either 10041 PBS or 5 x 10® CDK4g,;, TCR-trans-
duced CD8* T cells or GFP* OT-1 CD8"* T cells in 100 pl PBS, as indicated. On days O, 1 and 2
after T cell transfer, NSG-BZm’/ " mice received injections of 7.2 x 10° IU IL-2 dissolved in 200 pl
PBS, twice daily, with an interval of 6-12 h between injections, to support T-cell engraftment. At
the indicated times after T-cell transfer, mice were sacrificed and tumors were harvested. Harvested
tumors were manually minced and enzymatically digested in RPMI medium (Gibco) supplemented
with 5 Wiinsch units/ml TH Liberase/ml (Roche) 25 ug/ml DNase I (Roche) for 20 min at 37 °C un-

der continuous shaking. Subsequently, cell digests were filtered through a 70-um strainer (Falcon)
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and single-cell suspensions were stained with IR-Dye (Invitrogen) and TotalSeq Hastag antibodies
(TotalSeq-A or B, Biolegend). Cells from each sample were combined at equal numbers, and CFP*
(i.e., bystander) tumor cells were sorted from this cell pool on a FACSaria Fusion (BD biosciences)
and analyzed by single cell RNA-seq (see below). To measure cytokine production of intratumoral T
cells ex-vivo, tumor cells from digested tumors were subsequently cultured in vitro in the presence of
Ag™ CFP* tumor cells (for digests from control tumors) or CDK4g,| Ag* tumor cells (for digests from
Ag*/Ag” mixed tumors) for 3 hours in the presence of Golgi-plug (BD biosciences) to block cytokine
secretion. Cells were subsequently stained for intracellular [IFN-y and TNF-a and analyzed by flow

cytometry.

Intratumoral cytokine injections

Where indicated, tumors of >150 mm® size were intratumorally injected with 15ul PBS containing
the indicated cytokines (100 ng IFN-vy, 10 ng TNF-o or 100 ng IFN-vy plus 10 ng TNF-o per ml of tu-
mor mass), using a Veo™ insulin syringe with a BD Ultra-Fine™ 6mm x 31G needle (BD biosciences).
At the indicated times after injection, tumors were harvested, digested, sorted, and bystander tumor

cells were analyzed by single cell RNA-seq as described below.

Flow cytometry

For analysis of immune infiltrates in NSG—SZm'/ “mice, cells were stained with fluorochrome-labeled
anti-human CD3 antibody (clone OKT3; BD biosciences) in FACS buffer (PBS supplemented with
0.5% w/v bovine serum albumin (Sigma) and EDTA (2 mM, Life Technologies)) for 20-30 min at
4 °C, while protected from light. For analysis of cytokine secretion of intratumoral T cells, cells
were stained for anti-human CD3 (clone OKT3; BD biosciences), anti-mouse TCRp constant domain
(clone H57-597; BD Biosciences), anti-human IFN-vy (clone 4S.B3; BD Biosciences) and anti-human
TNF-a (clone MAb11, eBioscience). After incubation, cells were washed twice with FACS buffer
before resuspension in FACS buffer for analysis. IR-Dye (Invitrogen) was used to allow for live cell

selection.

Bulk RNA-seq

Total RNA was isolated using the RNeasy Mini Kit (74106, Qiagen), including an on-column DNase
digestion (79254, Qiagen), according to the manufacturer’s instructions. RNA quality and quan-
tity was assessed on the 2100 Bioanalyzer instrument, following the manufacturer’s instructions
“Agilent RNA 6000 Nano” (G2938-90034, Agilent Technologies). Total RNA samples having RIN
values>8 were subjected to TruSeq stranded mRNA library preparation, according to the manufac-

turer's instructions (Document # 1000000040498, Illumina). Stranded mRNA libraries were ana-
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lyzed on a 2100 Bioanalyzer instrument, following the manufacturer’s protocol “Agilent DNA 7500
kit” (G2938-90024, Agilent Technologies), diluted to 10nM and pooled equimolar into multiplex
sequencing pools for sequencing on HiSeq 2500 and NovaSeq 6000 instruments (Illumina). HiSeq
2500 single-end sequencing was performed using 65 cycles for Read 1, and 10 cycles for Read i7,
using HiSeq SR Cluster Kit v4 cBot (GD-401-4001, Illumina) and HiSeq SBS Kit V4 50 cycle kit (FC-
401-4002, Illumina). NovaSeq 6000 paired-end sequencing was performed using 54 cycles for Read
1, 19 cycles for Read i7, 10 cycles for Read i5, and 54 cycles for Read 2, using the NovaSeq 6000 SP
Reagent Kit v1.5 (100 cycles) (20028401, [llumina).

Single cell gene expression library generation and sequencing

Single cell suspensions were diluted to a final concentration of 1,000 cells/ul in 1xPBS containing
0.04% weight/volume BSA. The Chromium Controller platform of 10X Genomics was used for sin-
gle cell partitioning and barcoding. Per single cell suspension, each cell’s transcriptome was bar-
coded during reverse transcription, pooled cDNA was amplified and Single Cell 3’ Gene Expres-
sion libraries and Cell Hashing libraries via Feature barcode technology were prepared, according
to the manufacturer’s protocol (CG000183, CG000206 and CG000317, 10X Genomics). All libraries
were quantified on a 2100 Bioanalyzer Instrument following the Agilent Technologies Protocol (Ag-
ilent DNA 7500 kit, G2938-90024). Sequence library pools were composed and quantified by qPCR,
according to the KAPA Library Quantification Kit Illumina® Platforms protocol (KR0405, KAPA
Biosystems). HiSeq 2500, NextSeq 550 or NovaSeq 6000 Illumina sequencing systems were used
for paired-end sequencing of the Single Cell 3’ Gene Expression libraries and Cell Hashing libraries,
respectively, at a sequencing depth of between 20,000-60,000 reads /cell and approximately 3,500
reads/cell. HiSeq 2500 paired-end sequencing was performed using 100 cycles for Read 1, 8 cycles
for Read i7, and 100 cycles for Read 2, using HiSeq PE Cluster Kit V4 (PE-401-4001, Illumina) and
multiple HiSeq SBS Kit V4 50 cycle kits (FC-401-4002, [llumina). NextSeq 550 paired-end sequenc-
ing was performed using 28 cycles for Read 1, 10 cycles for Read i7, and 54 cycles for Read 2, using
the NextSeq 500/550 High Output Kit v2.5 (75 Cycles) (20024906, [llumina) and NextSeq 500/550
Mid Output Kit v2.5 (150 Cycles) (20024904, Illumina). Novaseq 6000 paired-end sequencing was
performed using 28 cycles for Read 1, 10 cycles for each Read i7 and 15, and 90 cycles for Read 2, using
the NovaSeq 6000 S2 Reagent Kit v1.5 (100 cycles) (20028316, Illumina). Gene expression and anti-
body sequencing reads were mapped to the GRCh38 human reference genome (refdata-cellranger-
GRCh38-3.0.0) and antibody reference sequences, respectively, using CellRanger Version 5.0.1 in
multi mode (10x Genomics) with default parameters. The genomic sequence of the Katushka fluo-

rescent protein (named as ENSG00000555555) was added to the human reference prior to mapping,.
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Bulk RNA-seq data preprocessing

Bulk raw read counts of human OVCARS5 samples were mapped to CellRanger’s reference tran-
scriptome refdata-cellranger-GRCh38-3.0.0 using version 0.9 of the Nextflow core kallisto pipeline
(https://github.com/cbcrg/kallisto-nf) withkallisto 0.46.2. Read count distributions were
aprioriassessed using an awk script (as adapted fromhttps://www.biostars. org/p/243552/).
Transcript counts were collapsed to genes using the R package txImport (version 1.20.0) and Ensembl
gene identifiers (IDs) were converted to HUGO gene names using a home-made lookup table gener-
ated from the CellRanger gtf file. Gene read counts were loaded into the R Seurat package (version
4.1.0), then TMM-library size normalized using edgeR (version 3.36.0) and finally additionally cor-
rected using Seurat’s regularized negative binomial model regression, in the same manner as the
single cell data (SCT normalization®). The last step had the effect of setting lowly expressed genes
(fewer than 1 unit of TMM-normalized gene expression) to zero and also reduced the contrast in ex-
pression between highly and lowly expressed genes. Bulk sequencing data of murine NMM samples
were aligned paired-end, strand and transcriptome aware, with hisat2?d against GRCm38. Counts
per gene were made using itreecount (https://github.com/NKI-GCF/itreecount) and annotated us-

ing ensembl gtf version 87.

Selection of cytokine-responsive genes

To identify cytokine-responsive genes for the OVCARS5 cell line using machine learning, we first
devised a set of gene-characterizing features. A limma voom model® of the form y ~ X, + Xy,
where y reflects per gene expression levels, X's are design matrices, c reflect stimulus nature and
concentration (one term for each combination of a tested stimulus and concentration), and d reflects
stimulus exposure duration, was fitted to the ‘OVCAR5 bulk RNA-seq reference data set’ described in
the section ‘in vitro cytokine stimulation’ and Figure 5.1 Duration coefficients were included to absorb
confounding duration gene expression dynamics that were independent of the nature of stimulus.
Interaction terms between stimuli and durations were not included as the design matrices would not
be full-rank, as we had exactly one replicate per experimental condition. We collected the following

statistics:
1. Maximum ¢-statistics and effect sizes for the X . terms were extracted from the fitted limma object.

2. A cytokine specificity score, capturing the relative response to either TNF-o or IFN-v, which
was computed as [Brnp-ol/(BrnE-ol+BiEn-y ), where indicated coefficients reflect those of the highest
tested concentrations of indicated cytokines (10 ng/ml for TNF-o and 100 ng/ml for IFN-y). We
have not noticed any genes responding more strongly to lower concentrations of a given stimulus,

justifying this approach.

3. A set of genes responded more strongly to the combination of IFN-y and TNF-a than expected

based on their response to these stimuli in isolation. To describe this synergistic behavior, a com-
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bined TNF-oplus IFN-v synergy gene set score was computed as

BieN-y+TNE-o./ (BTNE-o + Bien-y) — 1

where indicated coeflicients again reflect the highest tested concentrations.

4. As some genes responded very strongly to stimuli but only at specific timepoints and such effects
would get diluted in the aforementioned limma model (which can be interpreted as an estimated av-
erage effect of concentration across the different tested exposure durations), single time point statis-
tics were additionally extracted. For each stimulus and time point, the log2 fold difference with the
duration-matched unstimulated control sample was computed, resulting in 3 additional statistics

(IFN-vy, TNF-a and IFN-v plus TNF-a), as well as the maximum of these three statistics.

5. Genes for which one stimulus was consistently higher across the four tested timepoints appeared
more informative than genes for which this was more variable. To describe this, the maximum num-
ber of exposure durations for which any given cytokine and concentration yielded the highest or

lowest response was evaluated, yielding another two integral statistics ranging between 1 and 4.

6. With the same goal in mind, the Pearson correlation between all three pairs of consecutive time-
points (2 & 6, 6 & 12, 12 & 24) across the different stimuli was recorded and summarized by the
median across the three different sets. High-scoring genes on this metric will have high similarity
in the ordering of stimuli in terms of effectuated gene expression across exposure durations. Line

plots (as in Figure S5.2c) of such genes will appear ordered, i.e., with a low degree of line crossing.

7. The maximum (log2-transformed) gene expression for each gene in the TMM-normalized ex-
pression data across samples was extracted, as well as the difference between the maximum and

minimum gene expression values across samples.

The above features were computed for all 33,514 detected genes. As simple thresholding using these
statistics gave suboptimal results (data not shown), the set of gene classifications was augmented from
an original manually-classified set of genes (n = 80) in an iterative process of i) random forest model
fitting on already classified genes, with gene class as the response variable and the aforementioned
features as explanatory variables ii) class prediction for previously unclassified genes and iii) manual
curation of these model predictions (Figure S5.2a). For step i), classification random forests were
trained using the ranger engine (ranger package version 0.13.1) in R the tidymodels library (version
0.1.4) with importance set to ‘impurity’, using the aforementioned gene descriptive statistics. The
mtry parameter was optimized using 3-fold cross validation on a random, unique sample of 75%
of the already classified genes, leaving 25% of the genes for validation purposes. A final model was
trained on all the training data using optimal hyperparameters. The model was trained to discern
between the following gene classes: ‘cytokine-unresponsive’ (a gene for which none of the evaluated
exposures leads to clearly elevated gene expression as judged by inspection of line-plot as in Figure

S5.2c) and ‘cytokine-responsive’ (responsive to at least one cytokine stimulus). The latter class was
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then subdivided into the following classes: ‘mono-responsive (a cytokine-responsive gene respond-
ing strongly to one of the two tested cytokines but not to the other, and for which the combination
of TNF-a plus IFN-y does not behave differently from the dominant cytokine), ‘synergistically-re-
sponsive’ (a cytokine-responsive gene responding solely to the combination of TNF-o plus IFN-vy and
not to the individual cytokines), ‘other synergy’ (a cytokine-responsive gene that shows a moderate
degree of stimulus synergy but for which individual cytokines also effectuate noticeable gene ex-
pression), ‘anti-synergy’ (a cytokine-responsive gene whose response to the combination of stimuli
is weaker than to the sum of the individual stimuli), lowly expressed’ (possibly too lowly expressed
to be reliably detectable in single cell data) and ‘cytokine-responsive, other’ (responsive to cytokine
exposure, but not fitting to any of the aforementioned class descriptions). Step ii) the final model
was used to predict classes for all previously unclassified genes. Step iii) all ‘cytokine-responsive’
genes (and some ‘cytokine-unresponsive’ genes as well, to ensure the absence of false negative pre-
dictions) were inspected and predictions were adjusted where needed. After 10 iterations of model
training and prediction curation, 612 cytokine-responsive genes were acquired (Figure S5.2d), at
which point the yield of informative additional genes per additional cycle had slowed down to just
a handful, suggesting nearly full extraction of all cytokine-responsive genes. For the purposes of
this study, in which the ‘other synergy’, ‘anti-synergy’ and lowly expressed’ classes are superfluous,
genes belonging to these classes were next reclassified as ‘cytokine-responsive, other’ (Figure S5.2b).
In addition, the ‘mono-responsive’ class was partitioned into TFN-y mono-responsive’ (genes with
cytokine specificity score <= .5) and “TNF-amono-responsive’ (genes with cytokine specificity score
>.5). Additionally, the following ‘time-informative’ gene sets were compiled by manual sub-selection
from all 612 cytokine-responsive genes: IFN-vy late and TNF-a late (cytokine-responsive genes with
a most pronounced response at 12-24h of stimulation), [IFN-y plateau (IFN-y-responsive genes ris-
ing in expression until 6 hours, after which they remain constant) and TNF-a early (genes responding
most pronounced at 2 hours of stimulation). TNF-a plateau, as well as IFN-y early, mono-respon-

sive genes could not be identified.

For the selection of genes for the IFN-y and TNF-o gene sets for the murine NMM cell line, genes
were prioritized using a simplification of the analysis done on the human OVCARS5 data. An identi-
cal limma model was fitted to the MNN bulk RNA-seq reference data set, a candidate gene list was
generated based on the resulting moderated ¢-statistics and candidate genes were then manually fil-
tered for cytokine-unresponsive genes by inspecting their ‘line’ plots (as in Figure b.1a), resulting in a
total of 134 mono-responsive genes. TGF-[3-responsive genes in the Milo analysis (Figure 5.4e) were
identified by filtering based on limma moderated ¢-statistics, with a limma model as described above
applied (Figure S5.5a), resulting in one ¢-statistic for each of the evaluated single stimuli per gene.
Genes were included if they were found mono-responsive to TGF-B, i.e,, a) a t-statistic surpassing
4.2 for TGF-{ and b) below 1 for all other evaluated single stimuli. Genes were then filtered for bio-
logical, as opposed to purely technical, expression variation using the modelGeneVar function in the
R package scran (package version 1.20.1), which was called with log2(cpm + 1) transformed data and

with exposure duration meta information as the function’s argument to ‘block’. Genes were required
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to have bio > 0 and FDR <= 10"-7, resulting in a total of 73 TGF-3 mono-responsive genes.

Human OVCARS5 single cell sequencing data preprocessing

CellRanger UMI count data was loaded into R Seurat objects (version 4.1.0), and cells with less than
1,000 detected RNA features were filtered out. Across single cell sequencing experiments, either a
single or two hashtag bar codes per sample (i.e., experimental condition) were employed, the latter to
allow inclusion of a larger number of samples than the number of available hashtagging antibodies.
Sample assignment for experiments employing single hashtagging was done using Seurat’s (pack-
age version 4.1.0) HTODemux functionality on the CLR-normalized barcode hashtag data using de-
fault settings. Sample assignment for experiments employing double hashtagging was done using a
custom functionality. First, HTOs were CLR normalized using Seurat’s NormalizeData. Next, the
product of normalized hashtag counts was computed for each theoretically possible combination
of two different hashtag antibodies. Cells were assigned to the sample corresponding to the high-
est product of CLR-normalized hashtag counts. Low-confidence assignments were then filtered out
based on the fold difference between the dominant and second to dominant hashtag combination. A
threshold value of 2 for this statistic was picked by comparing cells for which the dominant combi-
nation of hashtags was expected (i.e., a combination included in the experimental design) and those
for which it was not. Cells were additionally filtered for a maximum mitochondrial content of 30%.
SCT total UMI count normalization was performed on the remaining set of cells*. We next identi-
fied the most variable features in the experiment (Seurat’s FindVariableFeatures with default settings)
and performed principal component analysis with 10 principal components (sufficient, as indicated
by scree plots, obtained using Seurat’s RunPCA, default settings) and a UMAP (Seurat’s RunUMAP,
default settings) over the principal component scores. Next, outlying clusters in the UMAP were au-
tomatically identified using density-based clustering on the UMAP cell coordinates with DBSCAN
(fpc package, version 2.2.9) using parameters: eps = .6 and MinPts = 6. Small DBSCAN clusters (less
than 1/(5¢) cells, where c is the number of detected DBSCAN clusters) were then marked as out-
lying clusters and removed from downstream analyses. Using differential gene expression (DGE)
analysis (Seurat’s FindMarkers) and GSEA with (R ‘fgsea’ package, version 1.18.0) with REACTOME
pathways® on the logFC-ranked list of differentially expressed genes (filtered first FDR-adjusted p-
value <= .1) between the outlying cluster and the main body of cells (i.e., the composite of non-out-
lying clusters), we identified these outlying clusters (0% -2.7% of cells across experiments) to likely
consist of keratinocytes and/or fibroblasts, characterized by high KRT81, SI00A9 and LDHB counts.
SCT normalization was redone on the remaining cells. Using the intersection of cytokine-respon-
sive genes and detectable genes for each experiment, PCA was recomputed with 10 PCs and UMAPs

were recomputed based on the PC scores.
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Murine NMM single cell sequencing data preprocessing

The murine NMM data were preprocessed identically to the human OVCARS single cell data. In-
specting the initial UMAP, we noticed two clusters of cells. Characterizing the smaller cluster (DB-
SCAN cluster 2, 21.5% of cells), we noticed a 7.2-fold difference in mean UMIs between clusters
(47,753 versus 6,654 mean UMI), suggestive of the presence of dying cells and/or cell fragments in
the second cluster. Cells in this cluster were then removed, and SCT normalization, PCA and UMAP

computation was repeated on the remaining cells.

Heatmap visualization of bulk RNA-seq data

TMM and SCT normalized data were log2-transformed and subsequently Z-scaled across genes/
features. Unless indicated otherwise, rows (genes) and columns (samples) were subsequently clus-
tered using complete linkage hierarchical clustering (hclust function in R), using Spearman correla-
tion distance (computed as 1 — ¢, where c is the correlation between two samples) for genes (rows)

and Euclidean distance for samples (columns).

Gene set scores for single cell data

For both OVCAR5 and NMM cell lines, gene set scores were computed by summing SCT-normal-
ized expression values of a gene set’s member genes. Where indicated, gene set scores were normal-
ized to the distribution of gene set scores of a relevant, duration-matched control condition with the
following transformation: f(z) = = — m(x.)/IQR(x.), where m represents the median, x, is a
vector of scores for the same gene set for a reference condition and IQR(x,) is the interquartile range

in that reference population.

Quantification of separability of experimental conditions using gene set scores

AUROC values in main text and figures represent the area under the receiver operator curve from
a binary classifier aiming to separate the two indicated experimental conditions with the indicated
gene set score as the sole explanatory variable. These scores were computed using the roc_auc_vec
function in the R yardstick package (version 0.0.9). AUROC values range between 0.5 (signifying no
separation between experimental conditions) and 1 (signifying complete separation between experi-
mental conditions). To distinguish more than two classes at a time, as in Figure 5.2b, we trained SVM
models using the Gaussian kernel on 75% of the data, leaving the remaining 25% as validation data,
with the R tidymodels framework (package version 0.1.4). Hyperparameters cost and rbf_sigma
were optimized in a 10-fold cross validation within the training data. Optimal parameters were

then used to train a final model on the full set of training data, of which the performance was sub-

178



CHAPTER 5

sequently evaluated on the validation data. Included confusion matrices show the correspondence
between actual and predicted class labels in the validation data, using a model trained on indepen-
dent data, ignoring the fact that single cell transcriptomes in the training and validation sets were

jointly preprocessed.

Milo neighborhood analysis of single cell data

A PCA of the murine single cell data was computed using the 2,000 most variable genes (as identified
using Seurat’s FindVariableGenes with default settings) and 20 principal components. A KNN graph
of the data was constructed on the principal component scores with Milo’s (package version 1.0.0)
buildGraph function using k = 10 and d = 20. Neighborhoods were defined using makeNNhoods, with
refined= TRUE, prop = 0.1 and identical settings for k and d as aforementioned. Neighborhoods
were tested for differential abundance of the three experimental conditions using the testNhoods
function, with a design matrix that was obtained from a metadata table with the following R model
formula: ~1 + experimental condition, resulting in an intercept term and a regression coefficient
for the second and third experimental conditions. In visualizations of the KNN graph, effect sizes
(logFC DA) associated with a Spatial FDR > 0.05 were whitened.

Deconvolution analysis of single cell neighborhood expression

A gene expression matrix of g genes (rows) by n single cell neighborhoods (SCNs, columns) in linear
space was extracted using the Milo nhoodExpression class method, TMM-transformed to normal-
ize library sizes and finally log10-transformed, i.e, My = logio(TM M (X) + 1), wherein X is
the output of nhoodExpression and My is the processed matrix of SCN expression. Similarly, a
g x 28 reference profile matrix Mg consisting of bulk reference RNASeq libraries with the 28 con-
ditions/columns unstimulated 2h -unstimulated 24h (i.e., no stimulation for 2 hours followed by
no stimulation for another 24 hours), unstimulated 2h -10 ng/ml TGFb 24h, unstimulated 2h -100
ng/ml I[FNy 24h, 10 ng/ml TGFb 2h -unstimulated 24h, 10 ng/ml TGFb 2h -100 ng/ml IFNy 24h,
100 ng/ml IFNy 2h -unstimulated 24h, 100 ng/ml IFNy 2h -10 ng/ml TGFb 24h, unstimulated 6h
-unstimulated 24h, unstimulated 6h -10 ng/ml TGFb 24h, unstimulated 6h -100 ng/ml IFNy 24h,
10 ng/ml TGFb 6h -unstimulated 24h, 10 ng/ml TGFb 6h -100 ng/ml IFNy 24h, 100 ng/ml IFNy 6h
-unstimulated 24h, 100 ng/ml IFNy 6h -10 ng/ml TGFb 24h, unstimulated 12h -unstimulated 24h,
unstimulated 12h -10 ng/ml TGFb 24h, unstimulated 12h -100 ng/ml [FNy 24h, 10 ng/ml TGFb 12h
-unstimulated 24h, 10 ng/ml TGFb 12h -100 ng/ml IFNy 24h, 100 ng/ml IFNy 12h -unstimulated
24h, 100 ng/ml [FNy 12h -10 ng/ml TGFb 24h, unstimulated 24h -unstimulated 24h, unstimulated
24h -10 ng/ml TGFb 24h, unstimulated 24h -100 ng/ml IFNy 24h, unstimulated 24h -100 ng/ml
IFNy 10 ng/ml TGFb 24h, 10 ng/ml TGFb 24h -unstimulated 24h, 10 ng/ml TGFb 24h -100 ng/ml
[FNy 24h, 100 ng/ml [FNy 24h -unstimulated 24h, 100 ng/ml IFNy 24h -10 ng/ml TGFb 24h in the

columns and genes in the rows) were TMM-normalized and then similarly log10-transformed. The
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matrices were identically row-ordered (genes), with as rows the intersection of detected genes in the
two unprocessed source matrices (g = 14, 620) such that they predominantly consisted of genes

that are minimally or not responsive to the cytokines of interest.

To estimate a SCN'’s stimulus exposure, its transcriptome was modeled as a linear combination of
the columns (samples) of M using lasso /1-penalized multivariate regression with the regression
coefficients () constrained to be larger than or equal to 0, such that they can be interpreted as mix-
ing weights. The cv.glmnet function from the R package glmnet was used for this regression®, as
well as to optimize the lambda penalty for regression coefficients with arguments: lower.limits=c(0),
family='gaussian’, alpha=.99. The mean squared error between the original transcriptome (y) and
reconstructed transcriptome (z (), i.e,. E[(y — z 3)?], was then extracted from the cv.glmnet object
with lambda set to the value that minimized the cross validation error. To assess the importance
of a subset of reference samples (columns) ¢ for the reconstruction of any particular SCN, the re-
construction error was recomputed with the remaining columns of Mg, after having removed sam-
ples/columns c. In this, a large increase in error can be interpreted as an indication that the samples
c contain co-variation in gene expression that cannot be accommodated by any of the remaining ref-
erence samples. To quantify the possibility that reconstruction error was simply raised by providing
the optimization algorithm a smaller set of basis vectors to work with (i.e., by limiting the span of
M), permutation testing was employed. Specifically, the reconstruction error was first computed
with 1,000 random selections of s reference profiles, where s is the number of reference profiles that
were not associated with the reference profiles (columns) of which the importance is assessed. For
example, to assess the importance of TGF-f3 stimulation, s is the number of profiles obtained from
experiments where no TGF-f3 stimulation was applied (i.e. only unstimulated and IFN-y stimulated
samples, s = 11, Figure 5.4g, left). Similarly, to assess the importance of IFN-vy stimulation, s rep-
resents the number of profiles obtained from experiments where no IFN-vy stimulation was applied
(i.e., only unstimulated and TGF-{3-stimulated samples, s = 11, Figure 5.4g, right). The quantile of
the observed error in the distribution of permutation errors was then acquired using the R function
ecdf. SCN reconstruction was finally labeled as worse (or better) than expected if the observed error

was in the 97.5st or higher (or 2.5th or lower) percentile of the permutation distribution.

Software and code availability

All preprocessing and analyses were done in R (version 4.1.0), frequently employing tidyverse pack-
ages (version 1.3.1). Row-or column-annotated heatmaps were made using the ComplexHeatmap
package (version 2.9.3). Remaining plots were made using the ggplot2 package (version 3.3.5). All
data processing and time-intensive computation was done inside of the R targets pipelining system™.
Code and notebooks can be accessed at

www.github.com/slagtermaarten/cyto_inference.
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Figure S5.1: Gene expression profiles of tumor cells exposed to IFN-y plus TNF-o or T cell - tumor
cell co-culture medium.

OVCARS5 tumor cells were stimulated with recombinant IFN-v, TNF-a, or IFN-vplus TNF-o (as in Figure
B5.1b), or with tissue culture medium (CM) obtained from co-cultures of CDK4r,. Ag" OVCARS5 tumor cells
and CDK4g,1.-specific CD8* T cells, for the indicated times and concentrations. Unsupervised hierarchical
clustering of bulk RNAseq data, with genes filtered for a variance of at least 0.4 across the included samples in
the library size normalized but unscaled representation of the data. Note that T cell-tumor co-culture medium-
exposed samples co-cluster with TNF-oplus IFN-y-stimulated samples.
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Figure S5.2: Model prediction and curation cycle to identify cytokine-responsive genes.

Starting with a small set of handpicked genes, a machine learning model trained on this initial seed set was used
to efficiently identify additional cytokine-responsive genes of the indicated classes. Line plots (as shown in ¢) of
each gene predicted to be cytokine-responsive were manually inspected and gene classes were corrected where
necessary. a Hierarchy of gene class assignment. Members of the TNF-o mono-responsive’ (blue) and TFN-y
mono-responsive’ (red) gene classes were used to calculate cytokine gene set scores. Synergistically-responsive
genes (purple), responding solely to the combination of TNF-a plus IFN-y and not to the individual cytokines,
form the ‘synergy gene set’ used to calculate synergy gene set scores.

b RNA expression profiles of two randomly selected members of the indicated gene classes, as described in b.
Expression profiles depict bulk RNAseq data from OVCARS cells exposed in vitro to the indicated concentration
of recombinant IFN-v, TNF-oor IFN-y plus TNF-a, for the indicated duration. ¢ Gene counts per class after
each prediction and curation cycle. Flattening of the curves with increasing numbers of cycles suggests that
most cytokine-responsive genes have been identified. d The cytokine specificity score (See Methods section
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‘Selection of cytokine-responsive genes’), quantifying differential transcriptional responsiveness to either TNF-o
(value of 1) or IFN-vy (value of 0), for members of the indicated gene classes.
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Figure S5.3: Validation and characterization of cytokine-responsive genes in bulk RNA-seq data.
a Limma moderated ¢-statistics for activating concentrations of cytokines (100ng/ml IFN-y, 10ng/ml TNF-o)
in the OVCARS bulk RNAseq reference data set (See methods section ‘In vitro cytokine stimulation” and Figure
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5.1). Depicted genes are present in one of the mono-responsive (MR) gene sets identified in this work and/or
in one or both of the Hallmark ‘Interferon gamma response’ and ‘TNF-asignaling via NFkB’ gene sets >, Note
that whereas MR genes were selected based on their response to exactly one stimulus in OVCARS5 cells (among
the cytokines tested), the majority of Hallmark genes did not qualify as MR, frequently responding to multiple
cytokines, or not responding to the purported stimulus in OVCARS5 cells.

b Comparison of limma moderated t-statistics between genes that are in- or excluded from the Hallmark In-
terferon gamma response (HM) gene set and in- or excluded from the OVCARS5-specific IFN-y MR set. Black
dots represent individual genes; red dots denote medians. Displayed comparisons are Wilcoxon rank sum test
p-values.

¢ As in b, but with the Hallmark “TNF-« signaling via NFkB’ and OVCAR5 TNF-a MR gene sets.

d As in Figure b.1le, but with the Hallmark gene sets instead of the OVCARS5 customized ones. The TNF-o
signaling via NFkB’ set shows virtually no response to TNF-a stimulation, whereas the ‘Interferon gamma re-
sponse’ responds more strongly to the combination of TNF-o and IFN-v than it does to [FN-v alone.

e Heatmaps of time-informative genes for TNF-o (left panel) and IFN-v (right panel). ‘Early’ genes reach maxi-
mal expression after 2 hours of cytokine exposure, with reduced expression at later timepoints. ‘Plateau’ genes
reach maximal expression at 6 hours of cytokine exposure, with relatively constant expression at later time-
points. ‘Late’ genes show a continuing increase in expression up to 24 hours of cytokine exposure.

f Violin plots depicting gene set scores of in vitro cultured and cytokine stimulated (100 ng/ml IFN-y and 10
ng/ml TNF-o for 24h) OVCARS cells that were or were not exposed to single cell digestion and fluorescence
activated cell sorting. Dots represent gene set scores of individual cells, violins represent densities of score dis-
tributions. Values represent AUROC values, denoting the separability of cells under the indicated conditions
(with 0.5 indicating no separation and 1 indicating a complete separation).
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Figure S5.4: Quantification of T-cell infiltration and functionality in vivo.

a NSG—BZm'/ " mice were injected subcutaneously with a mixture of 10% CDK4g.r, antigen expressing (Ag")
OVCARS5 cells and 90% Ag” CFP* bystander OVCAR5 tumor cells carrying a fluorescence based IFN-y sens-
ing (IGS) reporter. After tumor establishment, tumors were treated by intravenous injection of PBS (control)
or CDK4g., specific CD8" T cells, and tumors were harvested at the indicated timepoint after treatment. Left
panel: percentage of CD3" cells of non-tumor cells, as measured by flow cytometry. Right panel: fraction of
Ag bystander tumor cells with an activated IGS reporter (katushka®) from the total bystander tumor cell pop-
ulation, as measured by flow cytometry.
b Upper two panels: scatter plots of TNF-a and IFN-v gene set scores from OVCARS5 cells derived from con-
trol and T cell-exposed tumors. The horizontal and vertical lines demarcate the 95™ percentiles of the in vivo
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control condition for the TNF-a gene set score and IFN-y gene set score, respectively. Bottom four panels:
scatter plots of TNF-a and IFN-v gene set scores from OVCARS5 cells that have been stimulated in vitro with
recombinant cytokines, as described in Figure .1, serving as a reference for the two top panels. Note that the
synergy gene set score (color scale) is selectively elevated in cells that show high expression of both the TNF-o
and IFN-y mono-responsive gene sets.

¢ Tumor-infiltrated T cells retain the capacity to produce IFN-y and TNF-o. NSG-p2m”" mice were injected
subcutaneously with either a mixture of 10% antigen expressing (Ag") OVCARS5 cells and 90% Ag” CFP* by-
stander OVCARS5 tumor cells (mixed tumors) or with Ag- CFP* tumor cells (control tumors). After tumor es-
tablishment, mice were treated by intravenous injection of a mixture of control CD8" T cells (40%) and specific
CD8" T cells (60%), and tumors were harvested 44h after treatment. Digested tumors were subsequently cul-
tured in vitro in the presence of Ag” CFP* tumor cells (for digests from control tumors) or Ag" tumor cells (for
digests from Ag*/Ag” mixed tumors) for 3 hours in the presence of Golgi-plug to evaluate capacity for contin-
ued cytokine production. Subsequently, cells were stained for intracellular [FN-y and TNF-o and analyzed by
flow cytometry. Each dot represents T cells derived from one tumor, bar graphs show mean of the indicated
groups + SD, n=5 mice per group. Data of one experiment is depicted. Note that specific CD8" T cells derived
from mixed tumors retain the capacity to produce TNF-o and IFN-vy.

d Gene set scores of OVCARS5 tumor cells obtained from subcutaneous OVCARS5 tumors isolated 24h or 48h af-
ter intratumoral injection of IFN-y or PBS (control). Dots represent gene set scores of individual cells, violins
represent densities of score distributions. Values represent AUROC values, denoting the separability of cells
under the indicated conditions (with 0.5 indicating no separation and 1 indicating a complete separation). Note
that a single injection of IFN-vy leads to a transient increase in IFN-v gene set scores that is nearly reversed at
48h.
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Figure S5.5: Characterization of cytokine-responsiveness in a syngeneic tumor model.

a Heatmap of bulk RNAseq data of murine NMM melanoma cells exposed in vitro to the indicated cytokines.
Left and right show two separate RNAseq experiments, with different (combinations of) stimuli. Depicted Re-
sponsive’ genes were manually selected for mono-responsiveness to either IFN-y, TNF-a or TGF-3. Shown
are the ratios between expression in cytokine stimulated and control condition for the same duration of time.
Control conditions are hence not shown. b Scatter plot of IFN-y vs. TNF-o gene set scores of data described in



Figure 5.4a-b, in which every point represents a cell. Plots are partitioned based on the 95th percentiles of the
first control condition (top panel). ¢ Quantification of cytokine mediated growth inhibition of OVCAR5 and
NMM bystander tumor cells in vitro. Relative cell counts of CFP* OVCARS (left) and CFP* NMM (right) tumor
cells after incubation in the absence or presence of recombinant IFN-y TNF-o or IFN-y plus TNF-a for the
indicated time periods. Cells were analyzed by flow cytometry and cell counts were normalized to counting
beads. Bar graph shows mean of 3 technical replicates. Representative data of two independent experiments are
depicted. The cell inhibition that is observed upon IFN-vy exposure (in either the presence or absence of TNF-o)
for OVCARS at 44 hours indicates that analysis of single cell RNA-seq data may somewhat (up to a factor of
2) underestimate IFN-y sensing at this timepoint for this cell line (as ‘sensing’ cells are at a disadvantage). The
cell inhibition that is observed upon IFN-vy exposure and that is enhanced by additional TNF-aexposure for
NMM at 44 hours indicates that analysis of single cell RNA-seq data may somewhat underestimate IFN-vy (up
to a factor of 1.3) and IFN-y-TNF-o (up to a factor of 2) sensing at this timepoint for this cell line. Note that
such cell inhibition does not influence estimates at the 16hr timepoint.
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Figure S5.6: Quantification of exposure duration separability using time-informative gene sets
Quantification of distinguishability of experimental conditions using the indicated time-informative gene sets
in Figure b.1d. Included are so-called confusion matrices resulting from SVMs applied to held-out data (See
Methods section ‘Quantification of separability of experimental conditions using gene set scores’), showing the frac-
tion of assigned classes (vertical axes) for cells from each of the indicated experimental conditions (horizontal
axes). For a perfect classifier, the diagonals of these matrices are 1 and all off-diagonal entries are 0.

a Cells were stimulated with [FN-v (100 ng/ml) in vitro for the indicated durations. Data depict separability of
exposure durations solely using the IFN-vy late gene set score.

b As in a, but now including the IFN-vy plateau gene set score as an additional explanatory variable, resulting in
amodest increase in predictive performance (classifier AUROC of .89 from .87).

¢ As in a, but now using cells stimulated with culture medium (CM) from T cell - tumor cell co-cultures for the
indicated durations.
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d As in ¢, but including the IFN-v plateau gene set, for a modest increase in predictive performance.
e As in ¢, but employing the TNF-a early gene set.
f As in e, but additionally including the TNF-o late gene set for a modest increase in predictive performance.
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CHAPTER 6

DiscussioN

In this thesis, I present a number of studies of cytotoxic T cells in the tumor microenvironment.
This work demonstrates that for a multitude of tumors, the landscape of immunologically foreign
neoantigens is substantial (Chapter ), allowing for the application of immunotherapy beyond its
poster child, melanoma. Following up on this, we evaluated T cell checkpoint blockade therapy in
triple negative breast cancer and identified early molecular markers of clinical response (Chapter
3), further supporting the notion that T cell attack of varying tumor types is realistic. Moving over
to more fundamental research projects on how T cell activity sculpts the tumor microenvironment,
we first demonstrated that when T cells encounter cells that present the 'right’ (cognate) antigen in
the tumor microenvironment, they release IFN-vy that reaches (far) beyond the antigen-presenting
cell, whereas TNF-« is strongly localized (Chapter [5). We also tested for the loss of neoantigenic
mutations as a consequence of T cell pressure in treatment-naive tumors, but found no evidence for
it (Chapter ). A high level summary of these studies would be that T cell recognition of cancer is
expected to occur for many types of cancer (Chapter ), can be boosted using combinations of T
cell checkpoint blockade and other therapies in TNBC (Chapter 3) and that its repercussions reach
far and wide in the tumor microenvironment (Chapter 5) but do not occur in all matters one would
have expected them to (Chapter ). To conclude my thesis, I want to delve deeper into algorithmic
requirements to enable highly multiplexed transcriptome based stimulus inference, with the aim of
enabling the simultaneous study of many (T cell-secreted) cytokines in the tumor microenviron-

ment.

Cytokines mediate communication between cells of the immune system and other cell types and

vice versa, and thereby form key regulators of the immune response. Thus, our understanding of
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overall tumor biology and immunology would benefit from the ability to study the dissemination
of cytokines and other stimuli with high spatiotemporal resolution. While previous work has shed
light on the spatial effects of single or a small number of cytokines simultaneously, a lack of ex-
perimental tools for multiplexed investigation has impeded a comprehensive understanding of the
spatiotemporal spreading of the many cytokines that collectively mediate and orchestrate (tumor)

immunity.

As cytokines effectuate transcriptional changes in the cells that encounter them, a promising way to
study their functional dissemination (i.e., the reach of their gene regulatory capacity) is to infer it from
transcriptional read-outs. This leverages the reporting capability that nature has already granted us,
and frees us from having to engineer in reporters ourselves. Given the large diversity in response
kinetics among such endogenous reporter genes, we might not be limited to only inferring the na-
ture of the encountered stimuli. Possibly, we could also infer the duration and/or concentration
of exposure. Progress in the study of cell communication in general and cytokine dissemination in

particular will likely benefit from having available a toolkit for stimulus inference of such nuance.

Here, I will first delve deeper into considerations regarding application of transcription based stim-
ulus inference, that we did not fully explore in Chapter 5. Next, I'll discuss ideas for algorithms to
deal with the obstacles in this approach. By summarizing the understanding I have built up around

this topic, I hope to provide guidance to those interested in building upon our work.

I will start with an overview of the procedure of applying transcriptional/RNA-based stimulus in-
ference (Figure B.1). First, one would decide whether a specific cell type(s) will serve as reporter(s)
(Chapter B) or whether a mixture of cell types will be used!. The reporting cell type could be en-
grafted in a model system, typically a recipient mouse, but for certain questions an organoid cell
culture could also suffice. Alternatively, endogenous cells can also be used, obviating the need for
an engraftment step. Next, the experimental model would be exposed to a manipulation of interest
(e.g. activation of T cells or other immune cells). Then, the reporter cells would be harvested and
can potentially be separated from non-reporter cells using e.g., flow cytometry assisted cell sorting
(FACS), which can be facilitated by transducing the reporter cells with a fluorescent reporter before
engrafting them in the model system. Cells would then be extracted and sequenced using (single
cell) RNA-seq protocols, thereby yielding the query data set on which stimulus inference will subse-
quently be performed. In parallel, one would have to train models of gene expression in the reporting
cell type, and possibly also cell viability, in response to cytokines and other stimuli of interest. This
can be done using a compendium of reference RNA-seq samples to learn from, ideally of the exact
same cell type as that of the reporter cell type as different cell types can differ tremendously in their
transcriptional response to cytokines!. To increase power and reduce cost, this reference dataset
may be obtained using bulk RNA-seq and is composed of samples that were exposed to the vari-
ous stimuli of interest. Finally, the analyst would infer the stimulus exposure of the query (single
cell RNA-seq) expression data using the cytokine response models trained on the (bulk RNA-seq)

reference dataset.
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This approach has clear attraction and potential, but there are also a number of potential obstacles
to be mindful of in applying it. I will first detail these considerations and then discuss analytical

approaches to stimulus inference.

(i) overlap in reporter genes between studied and also ignored stimuli, complicating discrimi-

nation between stimuli.
(ii) (differing) sources of confounding variation in the query and reference data.

(i) modulation of the reporter cell pool’s size, by e.g. inducing differentiation into other cell

types, cell state transitions, reduced viability or cell death.

(i) Overlap in reporter genes between studied signals

A conceptually simple approach for stimulus inference from (single cell) transcriptome data, is to
identify so-called mono-responsive genes, which show convincing response to only one of the stud-
ied stimuli and minimal to no response to any other stimuli, and sum them for the query transcrip-
tomes. This gene set approach should work especially well if the studied cytokines show a high degree
of uniqueness, i.e., non-overlap, in terms of their reporter genes. However, the signal transduction
pathways that couple stimuli sensing receptors to gene regulatory mechanisms frequently typically
display a high degree of crosstalk, causing reporter genes to be shared between stimuli. This can limit
the applicability of this approach in two ways. First, the reporter genes may overlap with those of
other stimuli in the in vivo system of application, at risk of causing false positive inferences if this
is not properly accounted for in the experimental design. In Chapter J5, the unstimulated (control)
samples we collected in addition to the T cell-exposed (test) samples allowed us to establish the base-
line level of reporter gene expression signal in absence of the experimental manipulation. Second,
overlap between the stimuli of interest will limit our capability of differentiating between them. With
a growing number of cytokines or other stimuli, unique reporter genes for the cytokines of interest
will become increasingly rare. Supporting this notion, a high degree of overlap in transcriptional
response to various cytokines has been found using a large aggregate of publicly available transcrip-
tome datasets?. Similarly, related cytokines were shown to overlap in terms of activated genes in
single cell datal. For the murine system we studied in the last part of Chapter §, mono-responsive
genes were scarce to absent. Here, all genes that strongly respond to TGF-{3 turned out to negatively
respond to IFN-v. Clearly, analytical methodology to deal with this convolvement of factors is a first
requirement to studying large numbers of stimuli, especially when these stimuli display a large de-
gree of reporter overlap or when one aims to discriminate between different concentrations and/or
durations of the stimuli. In addition to the challenges reporter sharing presents, one clear advantage
is that absence of expression of such clusters allows for the inference of absence of not just one but

all overlapping stimuli.
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(ii) Interference of the transcriptome by confounding sources of variation

A second complication is that the reporter genes, selected for their stimulus reporting behavior, can

be subject to modulation by confounding technical factors and/or other biological processes.

A first technical problem may stem from differences in measurement (platform) technology between
the (unlabelled) query data and the labelled reference data. Considering the large number of stimuli
experimentalists will want to screen to generate reference datasets, bulk RNA-seq is attractive be-
cause of its cost effectiveness. However, when using these bulk reference data in conjunction with
query single cell data, one will have to deal with the ensuing technical variation between the two
platforms. Bulk RNA-seq data typically features millions of reads and detects 10s of thousands of
genes per sample, typically showing a rather homogeneous distribution of read counts across genes.
In contrast, (droplet-based) single cell RNA-seq only detects a few thousand genes per single cell,
with count distributions that are strongly dominated by a relatively small set of genes. When not
properly accounted for, the many zeros in the single-cell data would result in low overall similarity

to the bulk RNA-seq data, limiting the utility of query-to-reference similarity metrics.

A second complication in relating single cell query to bulk reference data is the potential activity
of cellular processes that will be averaged in bulk reference data but clearly not so in the single cell
query data. An example of a such a cell-intrinsic process is the cell cycle, which affects thousands of
genes in a periodic fashion®. An obvious, experimental remedy for cell-intrinsic sources of variation
could, in theory, be to neutralize the interfering process with a drug. However, this risks affect-
ing the transcriptome as well, biasing downstream stimulus inference. A first analytical alternative
approach is to a priori regress out’ the confounding process. All popular single cell RNA-seq anal-
ysis software packages offer functionality for a simple, statistical correlation-based version of this.
However, as the stimuli of interest could also modulate the confounding process (e.g. IFN-vy inhibits
cell cycle progression), this could remove much of the informative value pertaining to the stimulus
of interest, throwing away the baby with the bath water. A more sensitive approach to offset cell-
intrinsic variation could be to apply a deconvolution step in which active processes are identified
in a more data-driven, unsupervised manner, allowing for more granular removal of confounding
processes. Recent mathematical advances by Karin et al. (2023) have allowed upfront deconvolu-
tion of biological processes in (single cell) expression data through spectral analysis of the associated
covariance matrix*2, Rather than relying on pre-identified marker genes of the confounding pro-
cess to deconvolve the single cell transcriptomes, the authors only assume a 'topology’ of variation in
gene expression caused by the confounding process®. The topology can roughly be understood as the
general shape of the path that cells travel in 'state space’ as they progress through the confounding
process. Mapping the cells to the topology allows for post-hoc identification of genes that align with
the topology and filtering of the transcriptome for gene expression that is aligned with the topol-
ogy. For the specific case of the cell cycle, a circular topology was chosen®. Future work could use
‘gold standard’ single cell datasets, that contain cells exposed to a well-controlled stimulus in vitro

as reference data, to test whether more complex topologies than the circular one can clean the data
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of additional confounding processes and improve accuracy on the downstream stimulus inference
task.

Third, stimuli or confounding signals that are restricted to either the reference or to the query set-
tings might (partially) overlap in terms of reporter genes with the stimuli of interest. Probably most
prone to this are in vivo settings (e.g. the query single cell data in our case), wherein it is likely that
many biological processes and cell types are active that are absent from the well-controlled in vitro
reference conditions of a purified cell type. The possibility of such confounding warrants the design
of experiments to include unexposed, control, conditions to any 'test’ condition. In Chapter f§ we
included in vivo controls without T cells to the in vivo test conditions (i.e., with T cells) for this rea-
son. As we'll see below, an analytical approach to remedy this would be a form of data integration

that selectively removes covariation that is unique to any of the to be integrated datasets.

For the sake of completeness, I lastly also mention that confounding variation may stem from "mun-
dane” factors like varying batches of chemicals, room temperatures, and different people executing
the work.

(iii) Modulation of the reporter cell pool’s size

Cytokines and other stimuli of interest may cause (reporter) cells to differentiate into other cell types
or to attain differing cell states. They may also directly affect the number of the reporter cells by in-
or decreasing proliferation and even have cytotoxic effects. Unless the reporter cell pool is defined in
awide (i.e., unspecific) enough fashion (and e.g. cell state transitions cannot cause reporter cells to go
‘out of scope’), such modulation would bias direct and unadjusted stimulus abundance estimates. The
solution will be to explicitly model the effect of such stimuli on the cell pool, allowing for post-hoc

adjustment of the direct abundance estimates.

A first example of a stimulus that can modulate the reporter cell pool size is the cytokine IL-2, which
specifically induces T cells (more specifically: cells with the IL-2 receptor) to proliferate?. One can
then immediately see that a direct read-out of the number T cells that appeared to have experienced
IL-2 cells would not directly reflect the number that have actually done so - the reporter T cells may
have simply inherited IL-2-reporting transcripts from their ancestors. Stimuli may also decrease
the cell pool size. Among the cytokines we studied in Chapter 5, we found IFN-v to cause reduced
proliferation and be cytotoxic to OVCARS5 cells in particular. Dying cells lose their cell membrane
integrity and thereby lose their compatibility with FACS-based protocols. As such, if FACS-based
enrichment of reporter cells is part of the experimental setup and cytotoxicity remains unaccounted

for, the number of cells exposed to cytotoxic stimuli will appear lower than it actually is.

However, increased proliferation or even cytotoxicity (if not complete), does not have to be a show-
stopping problem. To attain unbiased estimates of the number of stimulus-experienced cells, one

can correct for the expected change in cell numbers due to a given stimulus. For this, one could
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use a parametric model of cell growth or death (a so-called viability model), as frequently employed
in drug sensitivity screens?. If the analyst is additionally willing to assume that the stimulus level
remained constant up until the moment of measurement, correcting for cell pool size modulation
effects is trivial. First, the viability model would describe viability as a function of stimulus con-
centration and/or duration with a monotonic, smooth function. Here, viability values larger than
1 would indicate relative cell growth, whereas values smaller than 1 would indicate decline. Next,
the number of cells that have experienced the stimulus can be recovered from the direct (biased) es-
timates. For this, one would multiply the direct estimates by the inverse of the expected change in
viability under the stimulus. This concept can be extended to combinations of stimuli as well, given
sufficient laboratory resources to combinatorially screen their effects on viability. Alternatively, if
one is additionally willing to assume that the cytotoxic effects are not synergistic but rather additive,
the cytotoxicity of combinations of stimuli can be modelled by multiplying those of the individual

stimulli.

There may be instances in which reference profiles of multiple concentrations and/or exposure du-
rations per stimulus are available and the analyst aims to discriminate and interpolate between these
levels. Viability-correction can also be done for such "continuous’ rather than 'discrete’ stimulus ex-
posure. Let s be a vector with entries denoting the concentrations and exposure durations, along
with other relevant indicators, of the various stimuli under study. Analogous to the ‘discrete’ case
described above, the computation of summary statistics (e.g., the fraction of cells that have experi-
enced stimulus s for at least 12 hours) would be done in a weighted rather than unweighted fashion.
Here, we would use an integral of the form [, ¢(s)/v(s)ds, wherein D is the domain of interest
(e.g., the set of all s for which IFN-y-exposure > 12), ¢(s) is the fraction of cells directly inferred to
have experienced stimulus (or the combination of stimuli) s and v(s) is the estimated viability with
this stimulus. A caveat here is that estimation accuracy will decrease with increased cytotoxicity (or
extreme degrees of cell growth), and by extension is not feasible for (combinations of) stimuli that

fully wipe out the reporter cells.

Regression based stimulus inference

Mindful of the obstacles to transcriptome-based stimulus inference we just considered, how do we
choose a stimulus inference methodology? In Chapter 5, we actually applied two different ones.
The first ‘geneset’ approach is methodologically simple but sufficed for the human OVCAR5 model,
in which mono-reporters were readily available and the experimental design helped us to further
disambiguate cytokines. However, for the murine NMM cell line we studied in the same chapter,
mono-reporters were virtually absent, necessitating a more sensitive approach. Such an approach
should maximally leverage the differential magnitudes with which reporter genes are modulated
between stimuli, or different concentrations and durations of one stimulus. Regression analysis, in
which gene expression levels are quantitatively compared between query and reference transcrip-

tomes, could be the ideal foundation for this. In theory, it can leverage expressional nuance to dis-



criminate between related stimuli, or even between different exposure durations/concentrations of
the same stimulus. Here, a query transcriptome (e.g., a single cell or aggregate of multiple similar sin-
gle cells) is modelled as a weighted sum of expression profiles from the reference dataset. The weights
assigned to each of the reference profiles are then interpreted as proportional to the similarities of

these reference profiles to the query transcriptome.

In using regression analysis to relate query (single cell) trancriptomes to (bulk) references, the re-
sulting regression coeflicients are sensitive to the way the input data are batch-normalized and inte-
grated. In Chapter § we employed pseudo-bulkification (i.e., aggregating transcriptionally similar
cells to 'meta’-cells, Figure .2.2) to first make the single cell data more similar to the bulk reference
data. We next employed a computational trick to work around the requirement of (near-)perfect
comparability. Specifically, we noticed that the presence of a stimulus can not just be shown by high
regression coefficients to the associated reference sample, but can also be inferred from obtaining
an increased reconstruction error when omitting the corresponding reference sample from the anal-
ysis. Comparing the ’full model’ error, obtained using the full set of reference samples, by a "partial’
one, obtained using only a subset of the reference profiles (i.e., by assessing the relative error of these
two models), allowed us to assess the importance of the left out reference samples and the potentially
unique gene expression patterns they contained that were not recoverable from any of the remaining
samples. As this relative reconstruction error can be computed for individual query transcriptomes
(relating to single cells or single cell neighborhoods), the relevance of individual or groups of refer-
ence samples to individual query transcriptomes could be quantified. In the absolute sense, the re-
construction error using the full reference set was quite variable between neighborhoods, probably
due to a host of possible reasons (as discussed above). However, assessing the relative reconstruc-
tion error inherently corrects for this variability. Such a reconstruction error is more frequently
used in regression analysis, typically to assess feature importance. However, In the context of (bulk)

RNA-seq deconvolution and stimulus inference, this was to the best of my knowledge a novelty.

With all data being derived of one particular cell line and acquired in one single (our) laboratory, the
homogeneous nature of the data in Chapter § permitted us to omit stringent batch effect correction.
However, using the relative reconstruction error does not fully obviate the need for sensitive cor-
rection of confounding variation. A computational methodology that can appropriately deal with
data from heterogeneous sources benefits from being able to draw upon a much broader set of data
sets and sources. With this in place, one could compile a compendium of cytokine stimulated tran-
scriptomes from a range of studies?, maximally leveraging past efforts of the scientific community,
and arrive at a more diverse and powerful predictor of cytokine exposure. To leverage such het-
erogeneous data, one needs to deal with confounding variation "upfront’ and preprocess the data in
a manner that filters out (biological or technical) confounding variation. How do we arrive at this

point?

A first obstacle is the difference in count distributions between bulk and single cell RNA-seq data

(see above), that precludes direct use of preprocessing solutions developed specifically for single cell

202



CHAPTER 6

RINA-seq data. This is probably why I found that existing single cell RNA-seq integration method-
ologies, which essentially rely on library size normalization and Euclidean distance-based similar-
ity metrics to relate transcriptomes, did not perform well when applied to the OVCAR5 data from
Chapter j (data not shown). However, such algorithms did achieve sensible integrations for their
intended domain of application, i.e., data sets that were exclusively of single cell nature. If one has
access to both bulk and single cell RNA-seq data of the same cell lines and stimuli - like we did -
then one viable approach may be to somehow learn how to simulate single cell transcriptomes from
bulk RNA-seq samples, such that these simulated cells can then be related to the query single cells.
Specifically, one could use a modification of the variational auto-encoder (VAE) for this, which would
disentangle the various active transcriptional programs from each other. The VAE would consist of
two (deep) neural networks: one encoder network which reduces the dimensionality of bulk ref-
erence gene expression to a much smaller number of latent factors, and a second decoder network
which reconstructs single cell expression profiles from the latent factors. Each latent factor should
represent a (biological) source of variation and captures combinations of correlated non-linear pat-
terns in the data, akin to the principal components in a (linear) principal component analysis. Input
to the probabilistic VAE encoder would be the bulk expression data, along with stimulus exposure
and batch-related metadata, and the output of the VAE decoder would be the associated single cell
transcriptomes. To ensure biological relevance of the identified latent factors, sparsity constraints
could be imposed on the VAE’s component models, limiting the number of active latent factors per
sample. Another approach towards this goal would be to pre-train the VAE on single cell data exclu-
sively. This is less ambitious as it doesn’t require the encoder network to additionally learn which
processes tend to co-occur in single cells, like it would have to when its input is bulk data. Then,
especially the encoder network could be adapted to the task of using bulk data as its source (i.e., an
application of transfer learning), or an additional encoder network could be placed in front of the
encoder network. Having the VAE in place, one could next simulate tons of single cells for each of the
reference samples, including the ones for which no matching ground truth single cells are available.
To then finally do stimulus inference for the query in vivo data, the frequently used and robust mu-
tual nearest neighbor algorithm® could be used to integrate them with the labelled, simulated cells

in an unsupervised manner.

Another approach to leveraging data from different labs or lab technologies is to directly relate query
and reference transcriptomes in a manner that is robust to distributional differences and confound-
ing variation. In collaboration with Soufiane Mourragui, I developed an approach to integrate data
such that it is insensitive to differences in count distributions and that resulted in a good balance
between inferential sensitivity and robustness (Data Integratlon inSensitive To distributional iN-
balanCes, DISTINCt, Figure p.2. It involves relating bulk RNA-seq and single cell RNA-seq data
in a higher-order feature space induced by the Mallow’s kernel? combined with Mourragui’s domain
adaptation algorithm TRANSACTY. On our own in vitro data, it remained completely insensitive to
the distributional differences between the bulk and single cell RNA-seq data, while nearly perfectly

inferring IFN-v stimulus exposure duration (Figure f).
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Figure 6.2: The Mallow’s kernel can be seen as a mathematical function to compute sample similarities,
using gene ordering (i.e., all pairwise comparisons between genes) instead of absolute expression levels to relate
sample to each other. This makes it robust against the distributional differences between bulk and single cell
sequencing samples. From the pairwise sample similarities within any of the individual datasets, one can de-
rive a latent, lower dimensional representation using kernel principal component analysis, a generalization of
’standard’ PCA. Oversimplifying, the non-linear principal components from the kernel PCA (with the Mallow’s
kernel) group comparisons of genes that tend to co-occur. TRANSACT builds on kernel PCA by matching sets
of non-linear principal components of the two datasets with each other and interpolating between them to com-
pute so-called consensus features (C). The consensus features capture sources of variation (e.g., gene expression
programs) within each dataset that are shared between the two datasets, discarding variation that is unique to
any one of the two individual datasets. This makes it robust to, among other confounders, cell-intrinsic sources
of covariation (e.g. the cell cycle). It finishes by projecting the reference and query datasets onto the consensus
space, allowing direct comparison between the reference and query samples. Proximity in the consensus space
can be interpreted as an indication of similar cytokine exposure (D). To further increase inferential strength and
speed up computation, one can optionally also a priori aggregate single, transcriptionally similar cells into local
averages and thereby denoise RNA expression values, using cell graph based aggregation™ (B).
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Figure 6.3: Seamless integration of reference bulk and in vitro single cell query data sets with DISTINCt.
All panels show a UMAP-transformation of samples projected onto the consensus features resulting from
TRANSACT-integration in combination with the Mallow’s kernel. The top 2 panels show the bulk RNA-seq
reference dataset, once colored by IFN-y-concentration (top row, left) and once by TNF-a-concentration (top
row, right). The lines connect samples that were stimulated with the same stimuli and concentrations. Since
we controlled the stimulus exposure of these cells experimentally in vitro, we can use them for benchmarking
purposes, along with unstimulated controls. The bottom 4 panels show the in vitro IFN-vy-titration single cell
query dataset, with one figure panel per exposure duration. Each circle (pie-chart) in these panels represents
one ‘neighborhood’ of cells, i.e., a variably sized group of transcriptionally similar cells, that is color coded by
the exposure concentration of IFN-vy. This single cell dataset shown here consists of all 16 combinations of 4
concentration of IFN-v (0, 1, 10 and 100 ng/ml) and 4 exposure durations (2, 6, 12 and 24h). The reference
reference dataset (top panels) covers these same stimuli but additionally also contains 3 TNF-o concentrations,
as well as the combination of IFN-y and TNF-o. The integrated data permit clear inference of IFN-y exposure
time, but not concentration, for the bulk reference and single cell query data. This can be seen by the clear sep-
aration of exposure durations for both the reference and query data. For instance, the first panel (middle row,
left) shows the coordinates of cells that were stimulated for 2 hours. Here, unstimulated cells (orange) gravitate
towards the top left in UMAP space, where the unstimulated reference samples are also positioned. In contrast,
all IFN-y-stimulated cells are located on the top right, exactly where the bulk reference data of this duration
are also positioned. For the other exposure durations, the single cell query and bulk reference data are also
well aligned. This shows that the Mallow’s kernel represents the input data in an informative manner, capable
of discerning different exposure durations of IFN-vy to each other, whereas different concentrations of IFN-y
at any of the evaluated exposure durations are too similar in order to be reliably distinguished. However, this
latter unseparability was already present in the untransformed, original data (data not shown). This indicates
that gene expression just cannot discriminate between these IFN-y concentrations. Also, notice how the TNF-
a-stimulated cells in the reference are positioned very close to the unstimulated samples. Due to the absence of
TNF-o-stimulation in the single-cell query data, TRANSACT mostly discards TNF-o-related variation in the
bulk RNA-seq data ('variational collapse’).

Currently still open is the question on how to deal with "variational collapse’ in DISTINCt. DIS-
TINCt finds consensus features using shared variability, and variability that is unique to any one of
the datasets will hence - by design - be discarded. This has the consequence that samples that have
been stimulated in a manner that uniquely occurs in just one of the two datasets to be integrated will
appear to not or barely have sensed this stimulus in the integrated data representation. Variational
collapse is observable in Figure [, wherein the reference samples stimulated with both IFN-y and
TNF-a appear eerily close to the reference samples that were exposed to IFN-y alone. This is due
to the absence of TNF-a-stimulated samples in the query dataset, such that all gene comparisons
that are informative in that regard are discarded in the consensus space. One way to (automati-
cally) diagnose this problem would be to assess how accurately the consensus space representation
resembles the original input representation (i.e., the reconstruction error), but the mathematics to
support this operation have not been developed yet. To get a proxy for the reconstruction error, the
relative distance between samples in the original and consensus representations can be considered.
For instance, to quantify the reconstructability of sample j, one could consider its distance (i.e., the
[2-norm) to an unstimulated "anchor’ sample in the consensus representation, and divide that by
the same sample ratio in the original/untransformed representation. Samples for which this recon-

structability value lies near 2 could be deemed as equally well represented in both the original and the
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integrated representations. In contrast, values closer to 0 would indicate the imprint of a stimulus
or process that was not represented in the consensus space, presumably because it wasn't present in
the other dataset. To offset such variational collapse, the last query to reference mapping step of the
algorithm would weight reference samples based on their reconstruction error, prioritizing samples
with high reconstructability, or fully remove (reference) samples for which the reconstruction does

not meet some predefined criterion (Figure 6.2.D).

Additional inferential value from alternative splicing information

Isoform specific mRNA quantification, along with large numbers of samples as are typically screened
in single cell RNA-seq experiments, allow for estimation of so called RNA velocity’d. RNA velocity
is a time derivative of gene expression which can be used to order cells along temporal and cell
differential axes. It might also offer a rich layer of information regarding the timing of cytokine
exposure, complementing that of the 'snapshot’ RNA abundance-derived estimates that are discussed

above and in Chapter f.

In exploratory analyses with our bulk RNA-seq data, which was not acquired using unique molecular
identifiers (UMISs) as is typically done in single cell RNA-seq, we obtained noisy estimates of RNA
velocity that did not offer informative value in addition to the readily available splicing-agnostic gene
expression estimates. However, in the single cell RNA-seq data we acquired using the 10x protocol
and with each identified molecule tagged with a UMI, RNA velocity should be much more robustly
inferrable. Even though the per sample sequencing depth in single cell RNA-seq is much lower, the
large number of samples in conjunction with population based estimates' in these datasets offer an

opportunity towards increasing the signal-to-noise ratio.

To then properly incorporate RNA velocity in the frameworks that are discussed above, one could
set up areference compendium with single cell RNA-seq. Compiling a reference dataset of single cell
data would be more costly but would also give more insight in terms of cell-to-cell response hetero-
geneity and extrinsic sources of variation. An exciting newer technology to use is VASA-seq, which
unlike more traditional single cell-seq protocols is not biased towards the 3’ ends of RNA molecules
and allows for more accurate RNA velocity estimates™. VASA-seq is also applicable to bulk RNA-seq
sequencing (personal communication with Soufiane Mourragui). I expect RNA velocity features to
especially become useful when deconvoluting transcriptomes affected by many cytokines of over-
lapping transcriptional signatures. On a related note, multimodal, rather than unimodal, data, for
instance additionally employing CITE-Seq' with antibodies directed against cell surface proteins

relevant to the stimulus in question, could also allow for further increases in inferential accuracy.
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Outlook of transcriptome-based cytokine inference

The work my colleagues and I have presented in Chapter 5 forms a useful step in our understanding
of cytokine mediated communication between T cells and the tumor microenvironment. I foresee
that in the decades to come, the field will continue to generate research tools to study signaling with
increasingly high throughput. This increasing throughput is likely to be valuable, as the complex
underpinnings of the tumor microenvironment and other biological systems can only be fully elu-
cidated by assessing these dynamic entities in parallel. The increasingly widespread use of spatial
single RNA-seq, and its ability to study cells in their physiological context'®, will unlock another
crucial layer of information with regard to cytokine dissemination and amplification. In this, de-
convolution of the effects of the many cytokines that may be at play will be especially important. As
transcriptome based inference has high discriminatory potential and does not require upfront mod-
ification of the reporter cell, it’s bound to continue to be a potent avenue towards studying stimulus

dissemination and cellular crosstalk in biological systems.
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APPENDIX A

SUMMARY

This thesis delves into the ways that T cells interact with the tumor microenvironment, the types of
tumors that they can be expected to see as immunologically foreign, whether such antigen-recognition
detectably leads to the specific destruction of antigen-carrying cells and how to enhance T cell ac-

tivity to treat cancer patients, specifically those with triple negative breast cancer.

The span of the questions that are addressed in this thesis is perhaps rather broad, considering that
present-day PhD theses are supposed to report deeply on an increasingly more narrow topic. What
ties the individual projects together, beyond the theme of T cells in the cancer microenvironment,
is the need for computational approaches to answer them - my primary area of interest. During my
time at the Netherlands Cancer Institute, I have worked on projects that had direct translational po-
tential, questions that could directly inform care for patients with cancer. I have also been interested
in improving our fundamental understanding of T cell biology, as such insights can eventually, but
not necessarily within the span of a PhD, have an impact on clinical practice. The history of science
demonstrates that the greatest technological achievements could not have originated in absence of
a prior fundamental understanding to fuel them. On a more personal note, exploring nature for the

sake of it is in my view oftentimes also more intellectually stimulating.

Taking a step back on cancer, we see a large diversity in the cells that make up a tumor. Cancer cells
arise by the accumulation of DNA damage in our own, healthy cells. But the tumors that such cells
form are not solely composed of mutated, cancer cells. Many unmutated host cells will also be re-
cruited to contribute to the growing tumor mass. These cells may - for example - provide structural

support, or facilitate the perfusion of blood flow through the tumor, in turn important for the dis-

211



tribution of nutrients and oxygen. Various cell types of the immune system will also migrate to the
nascent tumor mass. The immune system has classically been understood to clear pathogens, such
as bacteria and viruses, but a clear role in the control of cancer, and oftentimes also its facilitation, is
now a part of our immunological understanding as well. Cytotoxic T cells, those positive for the cell
surface marker CD8* and capable of killing cells that they can form interactions with, can respond
to antigens that directly results from DNA damage. These neoantigens are especially attractive from a
therapeutic perspective as their expression is restricted to tumor cells. Hence, boosting neoantigen-
reactive T cells should result in high on target activity, and be free of the off-target activity that more

traditional treatment modalities (surgical, chemotherapeutic, and radiation therapies) are limited by.

The first part of this thesis is translational, focusing on questions that have the potential to directly
affect the clinical care for patients with cancer. We now know that neoantigen-reactive T cells are
frequently integral to the clinical efficacy of T cell boosting cancer immunotherapies. Taking a he-
licopter view in Chapter 2, we mapped the number of neoantigens and its diversity across human
malignancies. Encouragingly, we found ~50% of assessed cancer samples to be sufficiently rich in
predicted (neo)antigens for at least minimal T cell recognition, suggesting widespread applicability
of T cell engaging therapies in cancer treatment. This means that a first critical requirement for T
cell-mediated tumor control (i.e., ‘immunological foreignness’) is met. However, it does not imply
that all these cancers respond to treatment. Specifically, tumors can throw up ingenious barricades
and subvert the immune system in order to preserve themselves during immune attack. Hence, suc-
cessful immune-mediated tumor clearance will require all environmental conditions to be conducive
to tumor clearance, besides the primary requirement for a 'recognition point’ (i.e., antigen) on the

tumor cell surface.

In Chapter 3, we study the application of T cell checkpoint blockade in a triple negative breast can-
cer. Breast cancer as a whole may not immediately have been expected to frequently respond to
immunotherapy, as it is generally lowly infiltrated by immune cells. However, triple negative breast
cancer is rather highly mutated and so should at least have sufficient antigenic diversity to facilitate
T cell recognition. The therapeutic class of T cell checkpoint inhibitors aims to stop a blockade that
(cancer) cells can throw up to inhibit T cells and tone down their activity. Importantly, this can only
be of use if the tumor is infiltratable by T cells in the first place. In order to increase immune infiltra-
tion before administration of T cell checkpoint inhibitors, we assessed different induction treatments.
Using extensive molecular characterization, we could trace how these induction treatments affected
the tumor microenvironment. We learned what clinical responses look like on a molecular level -
i.e., massive immune cell activity - and, using longitudinally collected samples, could compare in-
duction therapies in terms of their capacity to yield this immunoactive profile. Although we did see
differences between induction therapies, the strongest T cell activating effects could be ascribed -
not entirely unexpectedly - to the T cell checkpoint inhibition itself. This latter conclusion has since

been replicated in many other studies.

The second part of this thesis delves into fundamental T cell biology in the context of cancer. T cells
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are known to release a range of different signalling molecules (cytokines) upon their activation by
antigen-positive (visible’) cells. In Chapter 5, we investigate the effects of T cells on tumor cells
they could not directly recognize, in order to measure the range of cytokine spreading. Of these,
based on its mode of secretion, TNF-o has been thought to diffuse far beyond the antigen-positive
cells, whereas IFN-vy is thought to act in a more localized fashion, i.e., restricted to the target cell
that is being engaged. Given the known effects of IFN-y (upregulation of MHC molecules that are
required for T cell recognition, increased expression of T cell inhibitory receptors), this localized
action appeared illogical. Perhaps akin to sounding a battle horn, IFN-v§ stimulation of antigen
presentation machinery, but also induction of possible feedback mechanisms in case of profound T
cell activity, would appear most beneficial to ready tissues for T cell screening, and not as much to
modify the transcriptome of (cancer) cells that are already being screened by T cells. In line with
this theoretical argument, we found IFN-y to have large 'field effects, whereas TNF-os scope is
more focal. Additionally, IFN-y-experienced cells showed reduced TGF-{3 signaling, in a manner
that appeared orthogonal to IFN-y’s direct effect on TGF-3-responsive genes, indicating a potential

shift in (immune) cell activity around IFN-y-experienced cells.

In Chapter 4, we revisit the neoantigen predictions of Chapter 2 to explore the selective pres-
sure exerted by T cells on developing cancers. Despite robust methodology, this study did not find
evidence of neoantigen depletion in treatment-naive tumors. Several factors could explain this, in-
cluding limitations of current neoantigen identification capabilities and the possibility that tumors
primarily use other mechanisms besides the (genetic) loss of neoantigens to evade the T cell based

immune system.

This thesis concludes by discussing future directions for expanding the methodology developed in
Chapter 5. With further algorithmic innovation, RNA-based signal inference could extend beyond
the relatively small range of cytokines we studied in Chapter 5. Such methodology could further
enhance our understanding of immune interactions in cancer and other immune-related diseases,

and thereby inform the development of more effective immunotherapies.
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SAMENVATTING

Dit proefschrift onderzoekt hoe T-cellen interacteren met het tumor micromilieu, welke typen tu-
moren zij kunnen herkennen als immunologisch vreemd, of die antigeenherkenning daadwerke-
lijk leidt tot specifieke vernietiging van antigeen-dragende cellen, en hoe T-celactiviteit versterkt
kan worden om kankerpatiénten te behandelen, in het bijzonder patiénten met triple-negatieve

borstkanker.

De reikwijdte van de vragen die in dit proefschrift aan bod komen is wellicht breed, zeker gezien de
huidige trend waarin promotieonderzoeken een steeds nauwer onderwerp uitdiepen. Wat de indi-
viduele projecten hier met elkaar verbindt, naast het thema van T-cellen in het kankermicromilieu,
is de noodzaak van computationele benaderingen om ze te beantwoorden — mijn voornaamste in-
teressegebied. Tijdens mijn tijd bij het Nederlands Kanker Instituut heb ik gewerkt aan projecten
met directe translationele potentie — vragen die direct de zorg voor kankerpatiénten kunnen bein-
vloeden. Daarnaast heb ik mij geinteresseerd in het verbeteren van ons fundamentele begrip van
T-celbiologie, omdat zulke inzichten uiteindelijk, zij het niet noodzakelijk binnen het tijdsbestek
van een promotietraject, de klinische praktijk kunnen beinvloeden. De geschiedenis van de weten-
schap laat zien dat grote technologische doorbraken zelden zonder een voorafgaand fundamenteel
begrip tot stand zijn gekomen. Daarnaast is het verkennen van de natuur, puur uit nieuwsgierigheid,

vaak ook intellectueel het meest stimulerend.

Als we een stap terug doen bij kanker, zien we een grote diversiteit aan cellen die een tumor vor-
men. Kankercellen ontstaan door ophoping van DNA-schade in onze eigen, gezonde cellen. Maar

de tumoren die hieruit ontstaan bestaan niet alleen uit gemuteerde kankercellen. Veel ongemuteerde
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cellen van de gastheer worden eveneens gerekruteerd om bij te dragen aan de groeiende tumormassa.
Deze cellen kunnen bijvoorbeeld structurele ondersteuning bieden of de doorbloeding van de tumor
faciliteren, wat weer belangrijk is voor de distributie van voedingsstoffen en zuurstof. Verschillende
celtypen van het immuunsysteem zullen zich ook naar de zich ontwikkelende tumor begeven. Het im-
muunsysteem werd klassiek gezien als middel om pathogenen, zoals bacterién en virussen, te elim-
ineren, maar tegenwoordig is ook de rol in het controleren — en soms zelfs faciliteren — van kanker
een erkend onderdeel van ons immunologisch begrip. Cytotoxische T-cellen, die positief zijn voor
het celoppervlakte-eiwit CD8* en in staat zijn cellen waarmee ze interacteren te doden, kunnen rea-
geren op antigenen die direct voortkomen uit DNA-schade. Deze neoantigenen zijn therapeutisch
gezien bijzonder aantrekkelijk, omdat hun expressie is beperkt tot tumorcellen. Het versterken van
T-cellen die gericht zijn tegen zulke neoantigenen zou daarom moeten leiden tot hoge on-target
activiteit, en dat zonder de off-target toxiciteit waar traditionele behandelmodaliteiten (chirurgie,

chemotherapie en radiotherapie) vaak door worden beperkt.

Het eerste deel van dit proefschrift is translationeel van aard, gericht op vragen die de klinische zorg
voor kankerpatiénten direct kunnen beinvloeden. We weten inmiddels dat T-cellen gericht tegen
neoantigenen vaak cruciaal zijn voor de effectiviteit van kankerimmunotherapieén die T-cellen ver-
sterken. In een overzichtsstudie in Hoofdstuk 2 brachten we het aantal en de diversiteit van neoanti-
genen in menselijke maligniteiten in kaart. Bemoedigend was dat we in ~50% van de onderzochte
monsters voldoende voorspelde (neo)antigenen vonden voor ten minste minimale T-celherkenning,
wat wijst op een brede toepasbaarheid van T-celgerichte therapieén voor kankerbehandeling. Dat
betekent dat aan een eerste vereiste voor T-cel-gemedieerde tumorcontrole (namelijk immunologis-
che vreemdheid’) is voldaan. Maar dat betekent niet dat al deze kankers ook daadwerkelijk reageren
op behandeling. Specifiek kunnen tumoren ingenieuze barriéres opwerpen en het immuunsysteem
omzeilen om zichzelf te beschermen tegen een aanval. Succesvolle immuun-gemedieerde tumor-
eliminatie vereist daarom dat naast het ‘herkenningspunt’ (i.e. antigeen op de tumorcel) ook de rest

van de omgevingscondities bijdragen aan tumorcontrole door T-cellen.

In Hoofdstuk B bestuderen we de toepassing van checkpoint-remmers in triple-negatieve borstkanker.
Borstkanker als geheel stond niet bekend als gevoelig voor immunotherapie, omdat het doorgaans
weinig immuuncelinfiltratie vertoont. Triple-negatieve borstkanker is echter relatief hoog gemu-
teerd, en zou daarom voldoende diversiteit aan antigenen kunnen bevatten voor T-celherkenning.
Checkpointremmers trachten een remmend signaal op te heffen dat (kanker)cellen kunnen gebruiken
om T-cellen af te remmen. Cruciaal is dat dit alleen werkt als de tumor tiberhaupt door T-cellen gein-
filtreerd kan worden. Om de infiltratie voorafgaand aan checkpointremming te verhogen, onder-
zochten we verschillende inductiebehandelingen. Via uitgebreide moleculaire karakterisering kon-
den we nagaan hoe deze behandelingen het tumormilieu beinvloeden. We leerden hoe klinische
respons eruitziet op moleculair niveau — i.e. massale immuuncelactiviteit — en konden met longitu-
dinaal verzamelde monsters inductietherapieén vergelijken op hun vermogen om zo'n immuunactief
profiel op te wekken. Hoewel we verschillen tussen behandelingen zagen, waren de sterkste effecten

op T-celactivatie — niet geheel onverwacht — toe te schrijven aan de checkpointremming zelf. Deze
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conclusie is inmiddels in meerdere studies bevestigd.

Het tweede deel van dit proefschrift gaat over fundamentele T-celbiologie in de context van kanker.
T-cellen staan bekend om het afgeven van signaalmoleculen (cytokines) wanneer zij worden geac-
tiveerd door antigeen-positieve (‘zichtbare’) cellen. In Hoofdstuk [§ onderzoeken we de effecten
van T-cellen op tumorcellen die zij niet direct konden herkennen, om de reikwijdte van cytokine-
spreiding te meten. Van deze cytokines dacht men dat TNF-a, op basis van zijn secretiewijze, zich
ver verspreidt vanuit antigeen-positieve cellen, terwijl IFN-vy juist lokaal zou werken, i.e. beperkt
tot de cel waarmee interactie is. Gezien de bekende effecten van IFN-y (zoals verhoogde expressie
van MHC-moleculen en T-celremmende receptoren) leek dit lokale effect onlogisch. Het lijkt logis-
cher dat [FN-v, als een soort strijdkreet, de omgeving voorbereidt op T-celscreening, in plaats van
de transcriptie van al herkende kankercellen te beinvloeden. In lijn met dit theoretische argument
vonden we dat IFN-y brede ‘veld-effecten had, terwijl TNF-o juist meer lokaal werkte. Bovendien
lieten cellen die blootgesteld waren aan IFN-y een verminderde TGF-{3-signaaltransductie zien, op
een manier die orthogonaal leek aan het directe effect van IFN-y op TGF-3-responsieve genen, wat

wijst op een mogelijke verschuiving in (immuun)celactiviteit rondom door IFN-y beinvloede cellen.

In Hoofdstuk {4 keren we terug naar de neoantigeenvoorspellingen van Hoofdstuk 2 om de selec-
tiedruk van T-cellen op zich ontwikkelende tumoren te bestuderen. Ondanks robuuste methodolo-
gie vonden we geen bewijs voor neoantigeen-depletie in onbehandelde tumoren. Meerdere factoren
kunnen dit verklaren, waaronder de huidige beperkingen in het identificeren van neoantigenen, en
de mogelijkheid dat tumoren voornamelijk andere mechanismen gebruiken dan het genetisch ver-

liezen van neoantigenen om T-celherkenning te ontwijken.

Het proefschrift sluit af met een blik op de toekomst van de in Hoofdstuk 5 ontwikkelde method-
ologie. Met verdere algoritmische innovaties zou RNA-gebaseerde signaalinferentie zich kunnen
uitbreiden naar een breder scala van cytokines dan wat in Hoofdstuk 5 is bestudeerd. Dergeli-
jke methodologie zou ons begrip van immuuninteracties in kanker en andere immuun-gerelateerde
ziekten verder kunnen verdiepen, en zo bijdragen aan de ontwikkeling van effectievere immunother-

apieén.
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