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Chapter 5

Landau quantization near
generalized Van Hove
singularities: Magnetic
breakdown and orbit networks

5.1 Introduction

Magnetic breakdown (MB) in a single Bloch band occurs when two semiclassical
trajectories of quasiparticles come close to each other and quantum tunneling
between them becomes possible. This situation naturally appears near usual
saddle points that give rise to logarithmic van Hove singularities in the density of
states [107]. In novel atomically-thin 2D materials a new family of saddle points
arises, around which the dispersion is flatter than in the usual case. This leads
to power-law divergences in the density of states known as high-order van Hove
singularities [108, 109, 110]. In some cases, more than two trajectories approach
the saddle point, creating a MB structure with a larger s-matrix size proportional
to the number of trajectories. In this chapter, we present a method to calculate
the precise MB s-matrix for any type of saddle point. It is based on rewriting the
effective Hamiltonian in the Landau level basis, mapping the resulting algebraic
problem to the 1D scattering in the quantum chain, and calculating the MB
s-matrix by properly fixing semiclassical modes in the far-away region.

As was found in the 1960s in pioneering works by Pippard [111, 112, 113],
and Chambers [114, 115, 116, 117], and summarized in Ref. [118], MB can
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(c)

Figure 5.1. (a): Effective dispersion around Monkey saddle point in momentum space
given by Eq. (5.3) with three trajectories on a single energy level coming close at the
MB region (shown as blue lines). (b): Tight-binding dispersion of triangular lattice with
imaginary hoppings (5.18) in which monkey saddle points connect cyclotron orbits into
network. (c) Planar orbit network for dispersion (b) in rotated coordinate frame with
semiclassical regions labeled by weight coefficients 𝛼 [see Eq. (5.14)], and MB regions
with s-matrix (red circles). Reciprocal lattice vectors 𝒃𝑖 and highly-symmetric lines are
shown.

lead to formation of coherent orbit networks composed of localized Landau
level states (LLs) connected via tunneling between them. For 2D materials, the
orbit network occurs in the vicinity of energy levels where the Bloch band in
momentum space has saddle points located at the boundaries of the Brillouin
zone (BZ). Then, tunneling between orbits in different cells of the extended BZ
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scheme forms a network (see Fig.5.1). In the real space, this corresponds to
a network of semiclassical cyclotron orbits, which makes LLs to be extended
[111, 119, 118]. The discovery of novel 2D materials [120, 121, 122, 123]
dramatically increased the number of lattice geometries in which orbit networks
can be formed. Below we calculate the detailed structure of these states as well
as their band dispersion. In addition, we show that such extended LLs allow for
longitudinal bulk conductance in the quantum Hall bar, which strongly exceeds
the standard edge conductance [124].

There are two regimes of transport that orbit networks can govern: coherent
regime with quantum phase that is accumulated along the cyclotron orbits and
defines the exact energy spectrum, and incoherent regime with quantum phase
averaged by the presence of disorder. Below, we describe the coherent regime
and corresponding observable signatures that allow us to distinguish between
different types of MB that happens at saddle points that connect cyclotron orbits.
In addition, we note that the mini band structure appearing due to coherent orbit
networks can be linked with the topological Hall effect of electrons in skyrmion
crystals [128].

Recent studies of coherent orbit networks in 1D geometry predicted a number
of interesting effects such as magic zeros in Landau level spectra [129] and
broadening of the Landau levels by the coupling of Fermi arcs on opposite
surfaces in Kramers-Weyl semimetals [130]. Also, the predicted spectrum by 2D
incoherent orbit network shows relatively good agreement with the Hofstadter
butterfly for twisted bilayer graphene [131]. The scaling of miniband width
appearing from orbit networks with magnetic field was obtained for square lattice
[132, 133] and graphene [134].

The semiclassical equations of motion for the electron in crystal under exter-
nal weak magnetic field are given by the Lorentz force [135, 136]

ℏ𝜕𝑡 𝒌 = −𝑐−1𝑒(𝒗𝑘 × 𝑩). (5.1)

with usual velocity replaced by group velocity found from the dispersion law
𝒗𝑘 = 1

ℏ𝜕𝒌𝐸 (𝒌) that depends on wave vector 𝒌. Here, we consider 2D crys-
tals placed in perpendicular magnetic field along the 𝑧-direction 𝑩 = (0, 0, 𝐵).
Equation (5.1) restricts quasiparticles to move only along the lines of constant

1For the Hamiltonian written in gauge-invariant coordinates 𝐻 = 𝐴Π𝑛𝑥 + 𝐵Π𝑠𝑥Π𝑚𝑦 = 𝐴𝑘𝑛𝑥 +

𝐵𝑘𝑠𝑥

(
− 𝑖

𝑙2
𝐵

𝜕
𝜕𝑘𝑥

)𝑚
it is possible to introduce a change of variables 𝑞𝑥 = 𝑘𝑥 𝑙

2𝑚
𝑚+𝑛−𝑠
𝐵

, that would

convert it to 𝑙𝐵 = 1 Hamiltonian with additional factor 𝐻 = 𝑙
2𝑚𝑛
𝑚+𝑛−𝑠
𝐵

[
𝐴𝑞𝑛𝑥 + 𝐵𝑞𝑠𝑥

(
−𝑖 𝜕
𝜕𝑞𝑥

)𝑚]
. This

factor should be used to obtain energy dependence of S-matrix for any magnetic field value.
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Figure 5.2. (a) The geometry of usual, Monkey and 𝐴3 saddle points with equi-energy
contours in 𝑘−space. (b): The corresponding 1D chains after mapping. The cut-off
region with plane wave approximation is shown as a set of red sites with equal hopping
parameters. (c) The absolute value of s-matrix elements (reflection - R𝑖 and transmission
- T ). (d): The basis-independent scattering phase calculated as arg(det[𝑆]). For the
usual saddle point (top panels in (c), (d)) we also show the comparison with exact analytic
solution [125, 126, 127] marked by dots that perfectly agrees with the results obtained
with our approach. In (c), (d) we set 𝑙𝐵 = 1 and for any other magnetic field the results
can be obtained by proper rescaling of energy.1
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energy in momentum space. In Fig. 5.1 such lines are shown in the vicinity of the
monkey saddle point and in the dispersion of the tight-binding model introduced
below in Eq.(5.18). Before proceeding to MB, we note that after integration over
time in Eq. (5.1) one finds that the trajectory in real space is rotated by angle 𝜋/2
compared to the 𝐸 (𝒌) = const line in 𝑘-space and its size is rescaled by squared
magnetic length [136, 137]:

𝑘𝑥 = − 𝑦 − 𝑦0

𝑙2
𝐵

, 𝑘𝑦 =
𝑥 − 𝑥0

𝑙2
𝐵

, 𝑙𝐵 =

√︂
ℏ𝑐
𝑒𝐵
. (5.2)

In what follows, we set ℏ = 𝑐 = 1. Magnetic field is considered as weak if
magnetic length is much larger than the lattice constant of the crystal, 𝑙𝑏 ≫ 𝑎.

5.2 Magnetic breakdown at generalized Van Hove sin-
gularity

We now focus on the detailed description of tunneling that takes place in the
vicinity saddle point in dispersion due to magnetic breakdown. The saddle points
are defined as points where the gradient of dispersion vanishes, ∇𝒌𝐸 (𝒌) = 0.
As was shown in Ref. [108], they can be further classified as usual or high-order
depending on the “flatness” of dispersion around that point. More formally, the
usual type corresponds to non-vanishing determinant of Hessian matrix D𝑖 𝑗 =

𝜕𝑘𝑖𝜕𝑘 𝑗𝐸 (𝒌) for dispersion, while the high-order ones have zero determinant and
optionally zero Hessian itself. They could be further classified into many types
depending on the underlying symmetry point group, see Refs. [109, 110]. Below,
we show that our approach works for all possible saddle points. The magnetic
breakdown happens because several constant energy lines in 𝑘-space come close
to each other near the saddle point, see Fig. 5.1(a). Thus, the tunneling probability
between them becomes of order of one, and therefore we have to properly solve
the scattering problem in the corresponding region. The complication arises due
to the fact that typical dispersion around the saddle point has high powers of
polynomials in 𝒌, for example

𝐸𝑀 (𝒌) = −𝑡𝑎3(𝑘3
𝑥 − 3𝑘𝑥𝑘2

𝑦) (5.3)

for the monkey saddle. Here 𝑡 is a constant with dimension of energy. Generally, it
is not possible to solve a Schrödinger equation for such a Hamiltonian analytically
to match it with plane-wave solutions away from the MB region. The only
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available closed form solution of such kind exists for the usual saddle point
[125, 127], a partial case of 𝐴2𝑛−1 points,

𝐸𝑙𝑜𝑔 (𝒌) = 𝑡𝑎2(𝑘2
𝑥 − 𝑘2

𝑦), 𝐸𝐴2𝑛−1 (𝒌) = 𝑡 (𝑎2𝑘2
𝑥 − (𝑎𝑘𝑦)2𝑛), (5.4)

with 𝑛 = 1, 2, .... But we show that our semi-numerical method efficiently solves
the Schrödinger equation up to any precision and enables us to find the s-matrix.

To introduce our method, we use the cylindrical gauge for vector potential
𝑨 = 𝐵

2 (−𝑦, 𝑥, 0) and make use of the oscillator-type basis for Landau levels |𝑛⟩,
with their coordinate representation given by:

𝜓𝑛 (𝑥, 𝑦) =
(
𝜕

𝜕𝑤
− 𝑤∗

4𝑙2
𝐵

)𝑛
𝑤𝑛𝑒−|𝑤 |2/4𝑙2

𝐵 , 𝑤 = 𝑥 + 𝑖𝑦. (5.5)

Using Landau level basis2, the effective Hamiltonian of the saddle point in
magnetic field that is written in terms of canonical momenta Π𝑖 = 𝑘𝑖 + 𝑒𝐴𝑖 can
be expressed in terms of ladder operators by using the replacement:

𝑘𝑥 → Π𝑥 =
𝑎̂ + 𝑎̂†
√

2𝑙𝐵
, 𝑘𝑦 → Π𝑦 =

𝑖(𝑎̂ − 𝑎̂†)
√

2𝑙𝐵
, (5.6)

with standard commutation relation
[
𝑎̂, 𝑎̂†

]
= 1. In the simplest case of the usual

saddle point, we find

𝐻log = 𝑡𝑎2𝑙−2
𝐵 [𝑎̂2 +

(
𝑎̂†

)2
] . (5.7)

Here, we rescaled energy by 𝑡 and set 𝑙𝐵 = 𝑎 = 1, which can be later restored
by rescaling energy dependence of the s-matrix. The more complicated example
of monkey saddle (5.3) with mixed 𝑘𝑥𝑘

2
𝑦 product requires a symmetrization

procedure to make the Hamiltonian Hermitian in terms of ladder operators. In
the general case, different symmetrizations of particular polynomial Hamiltonian
give different results for the lower order terms due to non-trivial commutation
relations. To uniquely fix the symmetrization procedure, we expand the tight-
binding Hamiltonian of the underlying lattice with assumption that momenta
operators do not commute. For the Monkey saddle after simplification this reads
[see Appx.5.A]

𝐻𝑀 = −
𝑡𝑎3𝑙−3

𝐵

2
√

2

[(
𝑎̂ + 𝑎̂†

)3
+ 3

(
𝑎̂ − 𝑎̂†

) (
𝑎̂ + 𝑎̂†

) (
𝑎̂ − 𝑎̂†

)]
. (5.8)

2We note that we take Landau basis with 𝑚𝑧 = 0. For the problems in empty space different
𝑚𝑧 states are trivially degenerate. The problem at hand does not mix different 𝑚𝑧 states.
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We note that in more general case of higher polynomial Hamiltonians one might
find different symmetrization results depending on the lattice. If the tight-binding
Hamiltonian is not known exactly, all possible symmetrizations that give different
expressions in terms of ladder operators should be analyzed.

Next, we explain how to obtain the scattering matrix that describes magnetic
breakdown around a saddle point. We start by noting that the exact solution of the
Schödinger equation 𝐻Ψ = 𝐸Ψ with Ψ =

∑∞
𝑛=0 𝜙𝑛 |𝑛⟩ yields a set of recursive

equations. For a usual van Hove singularity, we find

𝐸𝜑0 −
√

2𝜙2 = 0, 𝐸𝜙1 −
√

6𝜙3 = 0,

𝐸𝜙𝑛 −
√︁
𝑛(𝑛 − 1)𝜙𝑛−2 −

√︁
(𝑛 + 1) (𝑛 + 2)𝜙𝑛+2 = 0. (5.9)

Recursive equations for other saddle points are derived in the Appendix 5.A. We
note that a set of recursive equations can be mapped onto a 1D tight-binding
problem: the term multiplying 𝜑𝑛 corresponds to an on-site potential for the
site with index 𝑛, while the terms involving 𝜑𝑚 with 𝑚 ≠ 𝑛 represent the tight-
binding hopping parameters that connect the 𝑛-th site to the 𝑚-th site. By
imposing truncation at large index 𝑛 = 𝑁𝑐 and replacing all remaining equation
with those where 𝑛 = 𝑁𝑐, we obtain a natural mapping to 𝑁𝑐-site 1D chain
of atoms connected to a translationally invariant semi-infinite lead, shown in
Fig.5.2(b). Then, we obtain the s-matrix using the propagating modes of the lead
at energy 𝐸 , with the number of scattering states corresponding to the number of
semiclassical orbits coming close at the MB region.

However, the obtained s-matrix is in the LL basis. To transform the s-matrix
into basis of modes with a definite angle in momentum space, we use the creation
ladder operator

𝑎† ∼ 𝑘𝑥 + 𝑖𝑘𝑦 ≡ 𝑘𝑒𝑖𝜙𝑘 , (5.10)

where 𝜙𝑘 is the angle in momentum space. Hence, performing a basis transfor-
mation on the propagating modes in semi-infinite leads to a basis where 𝑎† is
diagonal converts the obtained s-matrix into a physical one. The technical details
of this procedure for the usual and Monkey saddle are discussed in the Appendix
5.A. The chirality and consequent absence of backscattering of the states with
definite angle, that are spatially separated, ensures the unique definition of the
physical s-matrix.

For some saddle points the asymptotic modes at large momenta are indistin-
guishable by their angle in momentum space. In this case, we cannot apply our
procedure of transforming the s-matrix into a physical basis. An example of such
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a saddle point is 𝐴2𝑛−1 described by Eq. (5.4). For this saddle point, the angle
of trajectory in momentum space with respect to the 𝑥-axis tends to zero as the
wave number tends to infinity, see the bottom panel of Fig.5.2(a). We resolve
this by introducing angle-fixing regularization, achieved through the inclusion of
sufficient amount of sub-leading terms in the effective Hamiltonian

𝐸 ′
𝐴2𝑛−1

(𝒌) = 𝑡
(
𝑎2𝑘2

𝑥 − 𝑎2𝑛 (𝑘2𝑛
𝑦 − 𝛽𝑘2𝑛

𝑥 )
)
, 𝑛 ≥ 2, (5.11)

where we use the 𝛽 > 0 constant as a regularization parameter and this parameter
defines angles far away from the scattering region, not playing a role in the vicinity
of the saddle point. We choose the truncation number 𝑁𝑐 such that the leading
terms strongly dominate in effective 1D tight-binding equations and the mode
separation into the angle basis can be done with good precision: 𝑡𝑚𝑎𝑥

𝑁𝑐+1 ≫ 𝐸, ....
Physically, this corresponds to taking the region where the scattering between
modes with different angles is absent.

To demonstrate our method, we numerically solve for the scattering matrix
using Kwant code [99, 138]. We show our results for the absolute values of
the transmission and reflection elements of the s-matrix and scattering phases in
panels (c) and (d) of Fig.5.2. All these elements are gauge-invariant and inde-
pendent of incoming and outgoing basis modes selection. In the case of usual
van Hove singularity, it demonstrates perfect agreement with analytic expressions
[see [127], Appx. 5.B]. For the 𝐴3 saddle point, we find a nontrivial behavior
of transmission coefficients shown in bottom row in Fig.5.2(c). The presence of
zeros in the transmission coefficient signifies the complete reflection of a quasi-
particle moving along a cyclotron trajectory at that specific energy. Consequently,
this phenomenon results in the effective reduction of orbit network to a single
cell. The manifestation of this effect is demonstrated below by the narrowing
of the mini-band width in the spectrum and the corresponding reduction in bulk
conductance.

5.3 Coherent orbit network

With the complete description of MB at hand, we now propose a transport setup
which would probe the features of the high-order saddle points. Since our goal is
to distinguish energy dependence of both scattering amplitude and phase of MB
at different saddle points, we use the coherent orbit networks that appear when
the saddle points are placed at the edge of the BZ. Such coherent orbit networks
were widely discussed in literature in the late 1960s [111, 119, 118], but the
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Figure 5.3. Comparison of Landau mini-band spectrum with longitudinal conductance in
the quantum Hall bar for three systems: (a), (b) square lattice with usual (hopping 𝑡2 = 0
in Eq. (5.16)) and 𝐴3 (𝑡2 = 𝑡/4) saddle points, and (c) triangular lattice with imaginary
hoppings that contain Monkey saddles. LL mini-bands (orange solid lines) obtained from
tight-binding simulations are compared with solutions of spectral equations (5.17),(5.19)
for a set of 𝑞𝑦𝑎 (blue dashed lines). The flux value per unit cell was taken equal to
Φ = 1/40Φ0 and the width of the Hall bar was𝑊 = 320𝑎. For the spectrum calculation
a periodic boundary condition was imposed. A single period of Landau mini-band
oscillation is shown and corresponds to

√︁
Φ/Φ0 part of BZ. The width of conductance

peaks measures the Landau mini-band broadening. In panel (b) the miniband around
𝐸 ≈ −0.8𝑡 is wider than the one at 𝐸 ≈ −0.9𝑡 due to the first zero of transmission
coefficient at the 𝐴3 saddle point (see Fig. 5.2(c)).
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absence of experiments with 2D atomically-thin crystals limited discussion to
the simplest geometries, such as weak perturbative potential with square lattice
geometry. Here, we use the same approach of magnetic translation symmetry
groups and describe the orbit networks that are connected via usual as well
as high-order saddle points. As it is clear from the constant energy curves in
the spectrum in the extended BZ scheme (see Fig. 5.1(b)), the orbits networks
in 𝑘 space have perfect periodicity and thus should be periodic in 𝑟 space.
However, in the presence of external magnetic field, the translation operators of
the lattice 𝑇𝑹𝑖 = exp{∇𝑟𝑹𝑖}, with 𝑹𝑖 being a basis vector, should be replaced
by magnetic translation operators [118], which up to phase factor are equal to
𝑇𝑀𝑹𝑖

= exp{(∇𝑟 + 𝑖𝑒(𝑨(𝑹𝑖) + 𝑹𝑖 × 𝑩)) 𝑹𝑖}. The corresponding operators define
a magnetic unit cell. To obtain a closed set of equations for the orbit network,
we should restrict the value of magnetic flux per unit cell of the lattice to be a
rational number

Φ = 𝐵 |R1 × R2 | = 𝐵
(2𝜋)2

|b1 × b2 |
=
𝑞

𝑝
Φ0, Φ0 =

ℎ

𝑒
. (5.12)

Here, 𝒃𝑖 are the basis vectors of reciprocal lattice. In the further calculations,
we restrict ourselves to the case of 𝑞 = 1. This relation is equivalent to setting
magnetic unit cell to the integer number 𝑝 of lattice unit cells. Now we are ready
to proceed with defining a basis of semi-classical wave functions on the links of
networks. These are Zilberman-Fischbeck (ZF) wave functions [139, 118, 127],
written using the WKB-type approximation far from scattering region. The ZF
functions are expressed in a gauge-invariant coordinate space with replacement
Π𝑥 → 𝑘𝑥 and Π𝑦 → −𝑖𝑙−2

𝐵
𝜕𝑘𝑥 . Since the scope of this chapter is limited by the

linear effects in magnetic field, we use the first order expansion of ZF functions
with 𝑎2/𝑙2

𝐵
≪ 1:

Ψ𝑍𝐹 (𝑘𝑥) =
���� 𝜕𝐸 (𝒌)𝜕𝑘𝑦 (𝑘𝑥)

����− 1
2

exp
[
−𝑖𝑙2𝐵

∫ 𝑘𝑥

𝑘𝑥,0

𝑘𝐸𝑦 (𝑘𝑥) 𝑑𝑘𝑥
]
. (5.13)

Here 𝑘𝐸𝑦 (𝑘𝑥) stands for the solution of constant energy contour equation𝐸 (𝑘𝑥 , 𝑘𝐸𝑦 (𝑘𝑥)) =
𝐸 . The full wave function of the orbit network state is composed as a weighted
superposition of the Ψ𝑍𝐹 wave functions in different unit cells:

Ψ(𝑘𝑥) =
∞∑︁
𝑘,𝑙

𝑒𝑖𝑙
2
𝐵
[𝑘𝑥 𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]

∑︁
𝑗

𝛼
(𝑙,𝑘 )
𝑗

Ψ
𝑗

𝑍𝐹

(
𝑘𝑥 − 𝑘𝑏1,𝑥 − 𝑙𝑏2,𝑥

)
.

(5.14)
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In this expression, each weight coefficient 𝛼 (𝑙,𝑘 )
𝑗

contains two cell indices 𝑙, 𝑘 as
well as a unique index 𝑗 corresponding to the different parts of the orbit between
scattering points inside single cell of the network. The example of this notation is
shown in Fig. 5.1. Due to periodicity of the network, the solutions have the form
of Bloch waves 𝛼 (𝑙,𝑘 )

𝑗
= 𝛼 𝑗𝑒

𝑖 (𝑝𝑘𝑘+𝑝𝑙𝑙) . The magnetic translation group restricts
the allowed values of 𝑝𝑙,𝑘 to particular dependence on translation operator 𝑇𝑀𝑹𝑖
eigenvalues 𝒒: 𝑝𝑙 = −𝑙2

𝐵

(
𝑞𝑥𝑏2,𝑦 − 𝑞𝑦𝑏2,𝑥

)
, 𝑝𝑘 = 𝑙2

𝐵
𝑞𝑦𝐾1,𝑥 [see Appx. 5.B].

Next, we use the S-matrices obtained above to couple the ZF solutions in the
neighboring cells. By noting that ZF functions from Eq. (5.13) correspond to
the modes with proper angles, we can straightforwardly insert parameters of the
s-matrix into the system of equations, and write it in the form of a Ho-Chalker
operator [140]:

𝑆𝐻𝐶 (𝐸, 𝒒)𝜶 = 0. (5.15)

While substituting the s-matrix, we subtracted the difference in dynamical phases
of modes with defined angles and ZF functions (5.13) at given energy. Such a
difference appears due to the fact that in geometry of the scattering problem one
assumes semiclassical ZF solutions with the phase fixed at infinity, while in the
orbit network ZF function phase is fixed at particular point inside the network
unit cell.

5.4 Landau minibands

The nonlinear eigenvalue problem for the Ho-Chalker operator (5.15) can be
rewritten in the form of spectral equation det 𝑆𝐻𝑆 (𝐸, q) = 0 for a given lattice
model [see Appx. 5.B]. Below we demonstrate this for square and triangular
lattice, and show that the MB s-matrix calculated above plays a key role in
definition of the properties of coherent orbit network. In the case of square
lattice with only first and third NN hoppings taken into account,

𝐻𝑠𝑞 (𝒌) = −2
∑︁
𝑖=𝑥,𝑦

(𝑡 cos 𝑘𝑖𝑎 + 𝑡3 cos 2𝑘𝑖𝑎) , (5.16)

the spectral equation is:

cos

(
𝑙2
𝐵
A(𝐸)

2
− 𝜑𝑠𝑐

)
= ±TR

[
cos

(
𝑙2𝐵𝑞1𝑏2,𝑦

)
+ cos

(
𝑙2𝐵𝑞2𝑏1,𝑥

)]
. (5.17)
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Here, A(𝐸) is the area enclosed by the constant energy curve in momentum
space. The elements of the s-matrix, denoted asR-reflection, T -transmission and
𝜑𝑠𝑐 = arg(det 𝑆) is the scattering phase, are shown in Fig. 5.2. For such a lattice
Hamiltonian, the connection of orbits happens via usual van Hove singularity at
the X-point of BZ for 𝑡3 = 0 or via high-order van Hove singularity of 𝐴3 type
for 𝑡3 = 𝑡/4. In the case of the triangular lattice with imaginary hoppings, the
dispersion is

𝐻𝑡𝑟 (k) = 2𝑡

(
sin 𝑘𝑥𝑎 − sin

𝑘𝑥 −
√

3𝑘𝑦
2

𝑎 − sin
𝑘𝑥 +

√
3𝑘𝑦

2
𝑎

)
. (5.18)

The monkey saddle (see Fig. 5.1) connects orbits from different cells into a
network. The corresponding spectral equation is

cos

(
𝑙2
𝐵
A(𝐸) − 𝜑𝑠𝑐

2

)
= T

[
cos

(
𝑙2𝐵

[
𝑞1𝑏2,𝑦 + 𝑞2

(
𝑏1,𝑥 − 𝑏2,𝑥

) ]
− 𝜋𝑝

2

)
+ cos

(
𝑙2𝐵𝑞2𝑏1,𝑥 −

𝜋𝑝

2

)
+ cos

(
𝑙2𝐵

[
𝑞1𝑏2,𝑦 − 𝑞2𝑏2,𝑥

]
− 𝜋𝑝

2

)]
. (5.19)

The left-hand side of each spectral equation, as defined in (5.17) and (5.19),
yields the conventional flat Landau levels when equated to zero. On the other
hand, the nonzero right-hand side converts Landau levels into minibands. The
width of these minibands is determined by the van Hove singularity, the s-
matrix transmission coefficient, and the lattice-specific dispersion. To explore this
behavior, we numerically solve [138] the spectral equations for different values
of 𝑞𝑥 and for a small set of 𝑞𝑦 . The resulting miniband structures are depicted by
the blue dashed lines in Fig. 5.3, showing both the width and internal structure of
analytic spectrum of a mini-bands. The spectrum obtained from a tight-binding
simulations [138, 99] is shown as orange lines filling the corresponding regions
and demonstrates excellent agreement with the semi-classical predictions. For
our analysis, we utilized a narrow Hall bar geometry with periodic boundary
conditions, having a width several times larger than the magnetic unit cell. That
width is already enough to have many bulk conducting states inside the orbit
network.

5.5 Conclusion

The appearance of oscillating dispersion and broadening of Landau levels due
to orbit networks is expected to be manifested in the transport experiments such
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as Shubnikov-de-Haas oscillations or high-frequency magnetic breakdown os-
cillations [141, 142, 143, 144, 145, 130]. As the most pronounced signature,
we present a calculation of longitudinal conductance in two-terminal Hall bar
geometry. Typically, such conductance is governed by edge states [124] and is
strongly suppressed. As it is shown in the right part of each panel in Fig. 5.3, the
dispersive Landau mini-bands induce bulk conductance that is much larger than
background edge conductance. We compared the spectrum for the lattices with
periodic boundary condition with the conductance shape in finite size systems
for the same values of magnetic field. The width of the peaks in the conductance
agrees with the broadening of Landau mini-bands, thus providing a tool for es-
timation of the tunneling probabilities T for MB s-matrix at the saddle point.
In addition, we note that the specific property of the 𝐴3 saddle point with zero
transmission coefficient [see Fig.5.2(c)] leads to a much smaller conductance
peak at corresponding chemical potential comparing to other peaks, shown in
Fig.5.3(b).

To give an estimate of magnetic field required for the experiment, we use an
estimate of magnetic length 𝑙𝐵 ≈ 26 nm/

√︁
𝐵[T] with typical experimental values

of magnetic field 𝐵 ∼ 10𝑇 [146], which gives 𝑙𝐵 ≈ 10 nm. The broadening
of Landau miniband becomes significant compared to the hopping parameter
(see Fig. 5.3) and larger than disorder broadening for magnetic fluxes around
Φ = 10−2Φ0 per lattice unit cell. Thus, it requires lattice constant to be of the
order of 𝑎 ∼ 𝑙𝐵

√︁
2𝜋Φ/Φ0 ∼ 2.5nm. Such an estimate shows that one requires

extremely high magnetic field to measure such effects in conventional systems,
such as highly doped monolayer graphene [147]. But, such lattice constants
are typical for the modern artificial lattices [148] as well as for Moiré materials
such as twisted bilayer graphene [149, 150, 151]. In addition, we point out
that the method of solving the MB problem developed above can be applied
for the systems with spin-orbit coupling such as Moiré bilayer transition-metal
dichalcogenides [152]. The structure of the orbit network might be visualized by
injecting the current at proper chemical potential level into the system via narrow
lead. The picture of current density distribution is expected to follow the pattern
of orbit network shown in Fig. 5.1 and might be probed by STM-type microscopy
techniques [153, 154].
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Appendices

5.A Magnetic breakdown near usual and high-order
saddle points

In this section, we describe in detail the way how we obtain the scattering matrix
for the quasiclassical wave functions of WKB type that approach the saddle point
of any topology in 2D dispersion. After introducing the key notation of Landau
level basis in axial gauge and oscillator basis, we describe the full algorithm
on example of usual saddle point that leads to logarithmic van Hove singularity
(vHs). For such vHs the analytic S-matrix is known from exact solution of
Schrödinger equation [125, 126, 127] and can be compared with the results of
our calculation. Next, we extend this algorithm to a number of high-order saddle
points that were discussed in classifications in Refs. [109, 110]. In addition
to comparing technical subtleties of realizations and related physical effects, we
also compare the results with the simplest quasiclassical calculations of tunneling
probability.

5.A.1 Oscillator basis of Landau levels and formulation of problem
in terms of ladder operators

We use the axial gauge for vector potential 𝑨 = 𝐵
2 (−𝑦, 𝑥, 0) and insert this into

the effective model of quasiparticle with dispersion 𝜀(𝑘𝑥 , 𝑘𝑦), which is expressed
in terms of canonical momenta with standard commutation relation

𝐻 = 𝜀(Π𝑥 ,Π𝑦), Π𝑖 = 𝑘𝑖 + 𝑒𝐴𝑖 , [Π𝑥 ,Π𝑦] = −𝑖𝑙−2
𝐵 . (5.20)

Next, we introduce the ladder operators,

Π𝑥 =
1

√
2𝑙𝐵

(
𝑎̂ + 𝑎̂†

)
, Π𝑦 =

𝑖
√

2𝑙𝐵

(
𝑎̂ − 𝑎̂†

)
,

[
𝑎̂, 𝑎̂†

]
= 1, (5.21)

with 𝑙𝐵 =

√︃
ℏ
𝑒𝐵

being the magnetic length. These operators are analogous to the
ladder operators for the quantum harmonic oscillator. The basis of corresponding
number operator 𝑎†𝑎 |𝑛⟩ = 𝑛|𝑛⟩ with integer Landau level index 𝑛 ≥ 0 can be
used to represent any polynomial Hamiltonian 𝐻 = 𝜀(Π𝑥 ,Π𝑦) as a matrix. The
eigenstates |𝑛⟩ in the coordinate basis are given by

|𝑛⟩ = 𝜓𝑛 (𝑥, 𝑦) =
(
𝜕

𝜕𝑤
− 𝑤∗

4𝑙2
𝐵

)𝑛
𝑤𝑛𝑒−|𝑤 |2/4𝑙2

𝐵 , 𝑤 = 𝑥 + 𝑖𝑦, (5.22)



5.A Magnetic breakdown near usual and high-order saddle points 83

and the matrix elements of ladder operators are

⟨𝑛|𝑎̂ |𝑚⟩ =
√
𝑚𝛿𝑛,𝑚−1,

〈
𝑛
��𝑎̂†��𝑚〉

=
√
𝑚 + 1𝛿𝑛,𝑚+1. (5.23)

Next, we use this notation to obtain matrix representation of the effective Hamil-
tonians near different saddle points.

5.A.2 Magnetic breakdown S-matrix for the usual saddle point

The effective Hamiltonian in the vicinity of the usual saddle point in 𝑘-space of
2D band is given by

𝐻log = 𝛼𝑘2
𝑥 − 𝛽𝑘2

𝑦 . (5.24)

Below, we set 𝛼 = 𝛽 = 1 for simplicity. Using the notation of ladder operators
and oscillator basis, we rewrite this Hamiltonian in magnetic field as follows

𝐻log =
1

2𝑙2
𝐵

[(
𝑎̂ + 𝑎̂†

)2
+

(
𝑎̂ − 𝑎̂†

)2
]
=
𝑎̂2 +

(
𝑎̂†

)2

𝑙2
𝐵

. (5.25)

In the oscillator basis, this Hamiltonian is represented by the following matrix:

𝐻𝑙𝑜𝑔 =
1
𝑙2
𝐵

©­­­­­­­­­­­­­«

0 0
√

2 0 0 0 0 . . .

0 0 0
√

6 0 0 0 · · ·√
2 0 0 0 2

√
3 0 0 . . .

0
√

6 0 0 0 2
√

5 0 . . .

0 0 2
√

3 0 0 0
√

30 . . .

0 0 0 2
√

5 0 0 0
√︁
𝑁 (𝑁 + 1)

0 0 0 0
√

30 0 0 . . .

. . . . . . . . . . . . . . .
√︁
𝑁 (𝑁 + 1) . . . . . .

ª®®®®®®®®®®®®®¬
.

(5.26)

As a result, we transformed the problem into an eigenvalue equation, where the
eigenstates are superpositions of oscillator basis states:

𝐻Ψ = 𝐸Ψ, Ψ =

∞∑︁
𝑛=0

𝜙𝑛 |𝑛⟩. (5.27)
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Nc

0 1 2 3 Nc Nc + 1

t0 t1 tN tNc tNc tNc

Figure 5.4. Effective 1D tight-binding model that represents the system of equations
(5.28) with asymptotic truncation after Landau level index 𝑛 > 𝑁𝑐.

We then reformulate this eigenvalue equation as a coupled set of recursive alge-
braic equations:

𝐸𝜙0 −
√

2𝜙2 = 0,

𝐸𝜙1 −
√

6𝜙3 = 0,

𝐸𝜙2 −
√

2𝜙0 − 2
√

3𝜙4 = 0,

𝐸𝜙3 −
√

6𝜙1 − 2
√

5𝜙5 = 0,
· · ·

𝐸𝜙𝑛 −
√︁
𝑛(𝑛 − 1)𝜙𝑛−2 −

√︁
(𝑛 + 1) (𝑛 + 2)𝜙𝑛+2 = 0. (5.28)

The exact iterative solution of (5.28) quickly becomes very cumbersome because
of the complexity of coefficients in the recursive relation. Thus, to solve this sys-
tem of equations and those that shall appear for more complicated saddle points,
we introduce a truncation scheme. After the large value of index 𝑛 > 𝑁𝑐 we
replace the index 𝑛 by 𝑁𝑐 in the coefficients of recursive relation. This procedure
can be schematically illustrated by Fig. 5.4, where we represent solution coeffi-
cients 𝜑𝑛 as sites, coefficients of Hamiltonian that appear in recursive relations
as hopping terms and onsite potentials, respectively. This correspondence allow
us to solve the system of equations as an effective 1D tight-binding model of a
chain. The introduced cut-off at large 𝑁𝑐 separates the scattering region from the
translationally-invariant region with simplified coefficients. We note that there
are two disconnected sets of equations, and this fact manifests the presence of
two linearly-independent solutions in the original problem.

After setting up the correspondence between effective Hamiltonian in the
saddle point and 1D tight-binding model with two decoupled chains, we proceed
with finding the S-matrix of magnetic breakdown. The procedure of truncation
described above allows us to match the asymptotic solutions at high Landau level
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indices 𝑛 > 𝑁𝑐 with exact solution at lower indices 𝑛 ≤ 𝑁𝑐. We solve the scatter-
ing problem numerically using the Kwant package for tight-binding simulations
[99]. However, the scattering modes, matched solutions and S-matrix obtained
from numerical simulation are given in the oscillator basis. Thus, we perform an
additonal procedure to link them with quasiclassical wave functions of cyclotron
trajectories and corresponding magnetic breakdown S-matrix. To establish this
link, we solve the problem analytically in the translationally-invariant region with
𝑛 > 𝑁𝑐.

The eigenmodes of the infinite lead composed of two identical chains are
given by two Bloch wave functions with identical degenerate band dispersions.
These eigenmodes and their eigenenergies are given by the following expressions
in the basis of two atoms per unit cells:

Ψ1(𝑙) =
1
𝑀

∞∑︁
𝑛=𝑁𝑐+1

𝑒−2𝑖𝑙𝑛 |2𝑛⟩, Ψ2(𝑙) =
1
𝑀

∞∑︁
𝑛=𝑁𝑐+1

𝑒−2𝑖𝑙𝑛 |2𝑛 + 1⟩,

𝜀1,2(𝑙) = −𝐸 + 2𝑡𝑁𝑐 cos 2𝑙. (5.29)

Here, the length of the unit cell is 2 because the coupling is between second
neighbor oscillator basis states only. The normalization constant 𝑀 can be
omitted in next calculations as it does not alter the final result. We note that
the modes defined above are in the basis of oscillator states, with corresponding
indices depicted as sites, and the momentum 𝑙 is defined in the corresponding
reciprocal space. To obtain the S-matrix of physical modes, we have to establish
connection between these modes and asymptotic modes far from the saddle point
in 𝑘-space in the quasiclassical region (see Fig. 2(a) in the main text). To establish
this connection, we notice that the modes in quasiclassical region are classified
by their corresponding angle in momentum space: incoming modes correspond
to angles 𝜋/4 and 5𝜋/4 for energies 𝐸 > 0, while outgoin modes are at 3𝜋/4
and 7𝜋/4 angles. We find the modes in angle basis by diagonalizing the creation
ladder operator by noting that

𝑎̂† =
𝑙𝐵√

2
(Π𝑥 + 𝑖Π𝑦) →

𝐵→0
𝑘𝑥 + 𝑖𝑘𝑦 = 𝑘𝑒𝑖𝜙𝑘 . (5.30)

The limit of zero magnetic field is used only to point out that the ladder operator
𝑎̂† allows one to classify propagating modes in lead according to the asymptotic
angles of scattering modes in MB region that follow constant energy curves in
saddle point dispersion. In other words, in the basis of eigenmodes of 𝑎† operator,
the phase of eigenvalue of 𝑎† gives the angle of direction of propagation for
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incoming wave. Using the modes for the infinite lead defined in Eq. (5.29) as a
basis and taking into account that action of 𝑎† on oscillator state shifts this state
(see Eq. (5.23)), we obtain another form of the operator 𝑎̂†:

𝑎
†
Ψ,𝑖𝑛

=

(
0 𝑒2𝑖𝑙

1 0

)
. (5.31)

This form of creation operator can be checked by direct action on basis states:

𝑎̂†Ψ1(𝑙) =
√
𝑁𝑐 + 1
𝑀

∞∑︁
𝑁=𝑁𝑐+1

𝑒−2𝑖𝑙𝑁 |2𝑁 + 1⟩ ∼ Ψ2(𝑙),

𝑎̂†Ψ2(𝑙) =
√
𝑁𝑐 + 1
𝑀

∞∑︁
𝑁=𝑁𝑐+1

𝑒−2𝑖𝑙𝑁 |2𝑁 + 2⟩ ∼ 𝑒2𝑖𝑘𝑙Ψ1(𝑙). (5.32)

The eigenvalues and eigenvectors of 𝑎†
Ψ

operator are given by

𝜆1,2 = ±𝑒𝑖𝑙 , 𝜒1 =
1
√

2

(
1
𝑒−𝑖𝑙

)
, 𝜒2 =

1
√

2

(
−𝑒𝑖𝑙

1

)
. (5.33)

Notably, for momenta 𝑙 of the propagating modes close to Brillouin zone edge
𝑙 = ±𝜋/4, we uncover the correspondence with asymptotic angles of the constant
energy curves at large momenta that correspond to directions of incoming and
outgoing modes in MB region. Now we have to convert the 𝑆Ψ-matrix from the
basis of the modes (5.29) to the modes with definite angle. The S-matrix itself
has the form

𝑆Ψ =

(
𝑒𝑖𝛼1 0

0 𝑒𝑖𝛼2

)
(5.34)

with two phases calculated numerically by matching using Kwant code. The
transformation is performed via rotation defined by eigenvectors in Eq. (5.33),
while taking into account that outgoing modes have opposite momenta −𝑙 and
the sign of momenta changes in 𝑎†

Ψ,𝑜𝑢𝑡
. For example, 𝑎†

Ψ,𝑜𝑢𝑡
(𝑙) = 𝑎

†
Ψ,𝑖𝑛

(−𝑙) in
this system because of dispersion relation (5.29). Then, the rotation to new basis
of the S-matrix gives:

𝑆 = 𝑈𝑜𝑢𝑡𝑆Ψ𝑈
†
𝑖𝑛
, 𝑈𝑜𝑢𝑡 =

1
√

2

(
1 −𝑒−𝑖𝑙
𝑒𝑖𝑙 1

)
, 𝑈𝑖𝑛 =

1
√

2

(
1 −𝑒𝑖𝑙
𝑒−𝑖𝑙 1

)
,

(5.35)
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which results in

𝑆 =
1
2

(
𝑒𝑖𝛼1 + 𝑒𝑖𝛼2−2𝑖𝑙 𝑒𝑖 (𝛼1+𝑙) − 𝑒−𝑖 (𝑙−𝛼2 )

𝑒𝑖 (𝛼1+𝑙) − 𝑒−𝑖 (𝑙−𝛼2 ) 𝑒𝑖𝛼2 + 𝑒𝑖 (𝛼1+2𝑙)

)
, 𝑙 =

1
2

arccos
𝐸

2𝑡
.

(5.36)

This is the final form of S-matrix, which describes the magnetic breakdown
near usual saddle point. By making the cut-off parameter 𝑁𝑐 large enough, we
calculate the S-matrix with arbitrary precision. The results of the calculation in
comparison with exact expression as a function of energy are presented in Fig.2
of the main text. The figure demonstrates excellent agreement between exact
analytic expression given by and numerical calculations with 𝑁𝑐 = 2000.

5.A.3 Monkey saddle point

In this section, we extend the algorithm described above to the more complicated
case of Monkey saddle point. The main complication arises due to the fact that
the Hamiltonian is now third-order and we have to define 3× 3 S-matrix between
3 incoming and 3 outgoing trajectories. Typically, the effective Hamiltonian in
the vicinity of Monkey saddle point has the form [109, 110]:

𝐻𝑀 =

(
𝑘3
𝑥 − 3𝑘𝑥𝑘2

𝑦

)
, (5.37)

where we omit constants for simplicity. To obtain this operator in terms in ladder
operators for a system under magnetic field, we perform symmetrization of the
second term that makes the Hamiltonian Hermitian. The direct calculation shows
that possible choices Π𝑦Π𝑥Π𝑦 and 1

2

(
Π𝑥Π

2
𝑦 + Π2

𝑦Π𝑥

)
give the same result. In

other words, we find in terms of ladder operators that the following expressions
are identical:

− 2
√

2Π𝑦Π𝑥Π𝑦 =
(
𝑎̂ − 𝑎̂†

) (
𝑎̂ + 𝑎̂†

) (
𝑎 − 𝑎†

)
= 𝑎̂3 − 𝑎̂2𝑎̂† + 𝑎̂𝑎̂†𝑎̂ − 𝑎̂𝑎̂†,2 − 𝑎̂†𝑎̂2 + 𝑎̂†𝑎̂𝑎̂† − 𝑎̂†,2𝑎̂ + 𝑎̂†,3

(we use commutation relation [𝑎̂, 𝑎̂†] = 1 and find

− 𝑎̂2𝑎̂† − 𝑎̂†𝑎̂2 = −2𝑎̂𝑎̂†𝑎̂, −𝑎̂†,2𝑎̂ − 𝑎̂𝑎̂†,2 = −2𝑎̂†𝑎̂𝑎̂†)
= 𝑎̂3 − 𝑎̂𝑎̂†𝑎̂ − 𝑎̂†𝑎̂𝑎̂† + 𝑎̂†,3, (5.38)

−
√

2
(
Π𝑥Π

2
𝑦 + Π2

𝑦Π𝑥

)
= 𝑎̂3 − 𝑎̂𝑎̂†𝑎̂ − 𝑎̂†𝑎̂𝑎̂† + 𝑎̂†,3. (5.39)

However, the ambiguity of choice of symmetrization should be formally resolved
to apply the procedure for more complicated saddle point Hamiltonians. We do
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this by starting from the tight-binding Hamiltonian, that has such saddle point,
and introducing canonical momenta there. Using Eq.(18) from the main text, we
find the following third-order term in expansion

𝐻𝑡𝑟 (k) = 2𝑡

(
sinΠ𝑥𝑎 − sin

Π𝑥 −
√

3Π𝑦
2

𝑎 − sin
Π𝑥 +

√
3Π𝑦

2
𝑎

)
∼ − 𝑡

4

(
Π3
𝑥 − Π𝑥Π𝑦Π𝑦 − Π𝑦Π𝑥Π𝑦 − Π𝑦Π𝑦Π𝑥

)
𝑎3 +𝑂 (𝑎5). (5.40)

Using above-written two relations, we simplified the symmetrized expression
to Eq.(8) in the main text. However, in the general case one should keep full
expression of symmetrized Hamiltonian for a particular lattice. Converting into
matrix form, we find for Monkey saddle:

𝐻𝑀 = − 1
2
√

2
[
(
𝑎̂ + 𝑎̂†

)3
+ 3

(
𝑎̂ − 𝑎̂†

) (
𝑎̂ + 𝑎̂†

) (
𝑎 − 𝑎†

)
]

=
1

2
√

2

©­­­­­­­­­­­«

0 0 0 4
√

6 0 0 . . .

0 0 0 0 8
√

6 0 . . .

0 0 0 0 0 8
√

15 . . .

4
√

6 0 0 0 0 0 . . .

0 8
√

6 0 0 0 0 4
√︁
𝑛(𝑛 + 1) (𝑛 + 2)

0 0 8
√

15 0 0 0 . . .

. . . . . . . . . . . . 4
√︁
𝑛(𝑛 + 1) (𝑛 + 2) . . . . . .

ª®®®®®®®®®®®¬
.

(5.41)

Searching the solution in the form (5.27) of decomposition of wave function in
oscillator basis states, we find the following system of coupled equations:

2
√

2𝐸𝜙0 − 4
√

6𝜙3 = 0,

2
√

2𝐸𝜙1 − 8
√

6𝜙4 = 0,

2
√

2𝐸𝜙2 − 8
√

15𝜙5 = 0,

2
√

2𝐸𝜙3 − 4
√

6𝜙0 − 8
√

30𝜙6 = 0,
. . .

2
√

2𝐸𝜙𝑛 − 4
√︁
𝑛(𝑛 − 1) (𝑛 − 2)𝜙𝑛−3 − 4

√︁
(𝑛 + 1) (𝑛 + 2) (𝑛 + 3)𝜙𝑛+3 = 0.

(5.42)

Following the procedure of mapping on 1D tight-binding model, we find that this
system in turn converts into three decoupled chains with only nearest neighbor
hoppings in each (see Fig. 5.5 and Fig. 2 from the main text).
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Nc

0 1 2 3 4 Nc Nc + 1

t0 t1 t2 tN tNc tNc

Figure 5.5. Effective 1D tight-binding model that represents the system of equations
(5.42) for Monkey saddle with asymptotic truncation after Landau level index 𝑛 > 𝑁𝑐.

Next steps require the introduction of the cut-off parameter 𝑁𝑐 and classifica-
tion of the modes appearing for higher indices 𝑛 > 𝑁𝑐. In the case of the model
with three decoupled chains the Bloch eigenstates are

Ψ 𝑗 (𝑙) =
1
𝑀

∞∑︁
𝑛=𝑁𝑐+1

𝑒−3𝑖𝑙𝑛 |3𝑛 + 𝑖⟩, 𝜀 𝑗 (𝑙) = −𝐸 + 2𝑡𝑁𝑐 cos 3𝑙, 𝑗 = 0, 1, 2.

(5.43)

In this case, the size of the unit cell is 3𝑙. Acting with the creation operator 𝑎̂†,
we find the following expression for the matrix in the basis of these states:

𝑎
†
Ψ,𝑖𝑛

=
©­«

0 0 𝑒3𝑖𝑙

1 0 0
0 1 0

ª®¬ . (5.44)

Comparing to the matrix representation of 𝑎†
Ψ,𝑖𝑛

for usual van Hove singularity
(5.31), we see that it has similar structure with shift of nodes by one index in
the unit cell until the period reached. The eigenvalues and eigenvectors of this
matrix are

𝜆1,2,3 = 𝑒𝑖𝑙 , 𝑒𝑖𝑙±2𝜋𝑖/3, 𝜒1 =
1
√

3
©­«

1
𝑒−𝑖𝑙

𝑒−2𝑖𝑙

ª®¬ ,
𝜒2 =

1
√

3
©­«
𝑒𝑖𝑙+2𝜋𝑖/3

1
𝑒−𝑖𝑙−2𝜋𝑖/3

ª®¬ 𝜒3 =
1
√

3
©­«
𝑒2𝑖𝑙+2𝜋𝑖/3

𝑒𝑖𝑙−2𝜋𝑖/3)

1

ª®¬ (5.45)

In the limit of 𝐸 ≪ 2𝑡𝑁𝑐 , we find that momenta of the modes are approximately
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Nc

0 1 2 3 4 Nc Nc + 1

t0 t1 tN tNc tNc tNc

t ′0 t ′1 t ′Nc

Figure 5.6. Effective 1D tight-binding model that represents the system of equations
(5.51) for 𝐴3 saddle with asymptotic truncation after Landau level index 𝑛 > 𝑁𝑐. Note
that now next nearest neighbor hoppings are added in each chain.

at the effective Brillouin zone edge,

𝑙 =
1
3

arccos
𝐸

2𝑡𝑁𝑐
≈ 𝜋

6
, (5.46)

and the phases of eigenvalues 𝜆1,2,3 correspond to the angles at which scattering
states come from the quasiclassical regions for a Monkey saddle (see Fig. 2(a) in
the main text).

The eigenvectors in Eq. (5.45) define the rotation to the basis with definite
angles. Combining these eigenvectors into unitary transformation matrix, we
then apply the basis transformation to the diagonal scattering matrix obtained
from the numerical calculation,

𝑆Ψ = diag(𝑒𝑖𝛼1 , 𝑒𝑖𝛼2 , 𝑒𝑖𝛼3). (5.47)

The diagonal structure of this matrix is a result of chain decoupling in the effective
tight-binding model. We present the result of numerical calculation in Fig. 2 of
the main text.

5.A.4 High-order saddle points with different powers in effective
dispersion: 𝐴3 saddle point and regularization

Finally, we discuss the case of 𝐴3 saddle point, which has two trajectories coming
close in the magnetic breakdown region, but the effective Hamiltonian has dif-
ferent powers in leading order for 𝑘𝑥 and 𝑘𝑦 . The analysis of this point requires
several additional steps, that can be used together with algorithm from previous
section to analyze every other saddle point. There are two complications that
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appear for such system comparing to usual saddle point discussed in Sec. 5.A.2.
The effective Hamiltonian of the model is given by

𝐻𝐴3 = 𝛼𝑘
2
𝑥𝑎

2 − 𝑘4
𝑦𝑎

4. (5.48)

As we see, larger the deviation of momenta is from the center of saddle point,
𝑘𝑥 = 𝑘𝑦 = 0, the closer trajectory angles are to zero. In other words, the constant
energy curve solution 𝑘𝑦 (𝑘𝑥 , 𝐸) behaves asymptotically as

√
𝑘𝑥 and never reaches

the 𝑘𝑥-independent derivative. This introduces a problem of classification of
modes by angle of incoming quasiclassical particle, the central ingredient used in
previous cases. In fact, such problem may lead to unexpected numerical artifacts
appearing in the final scattering matrix. We resolve this problem by introducing
sub-leading terms into the Hamiltonian to make the highest polynomial powers
for 𝑘𝑥 and 𝑘𝑦 identical. In our case this would lead to the following modification
of original Hamiltonian:

𝐻̃𝐴3 = 𝛼𝑘
2
𝑥𝑎

2 + 𝛽𝑘4
𝑥𝑎

4 − 𝑘4
𝑦𝑎

4, 𝛽 > 0. (5.49)

Here, the condition 𝛽 > 0 enforces the trajectories to have different asymp-
totic angles, that are found from the equation tan4 𝜙𝑘 = 𝛽, and are equal to
± arctan 𝛽1/4, 𝜋 ± arctan 𝛽1/4. The ladder operator version of this Hamiltonian
is

𝐻̃𝐴3 = 𝛼

(
𝑎̂ + 𝑎̂†

)2
+ 𝛽

(
𝑎̂ + 𝑎̂†

)4
−

(
𝑎̂ − 𝑎̂†

)4
. (5.50)

The main difference comparing to the previously discussed cases is that this
Hamiltonian contains both second and fourth order terms, which implies the
existence of two kinds of hopping terms. The system of recursive equations in
this case is

𝐸𝜙0 − (𝜙0(𝛼 + 3𝛽 − 3) +
√

2𝜙2(𝛼 + 6𝛽 + 6) + 2
√

6(𝛽 − 1)𝜙4) = 0,

𝐸𝜙1 − (3𝜙1(𝛼 + 5𝛽 − 5) +
√

6𝜙3(𝛼 + 10𝛽 + 10) + 2
√

30(𝛽 − 1)𝜙5) = 0,
. . .

𝐸𝜙𝑛 −
(√︁

(𝑛 − 1)𝑛𝜙𝑛−2(𝛼 + 2(𝛽 + 1) (2𝑛 − 1))

+ 𝜙𝑛 (2𝛼𝑛 + 𝛼 + 3(𝛽 − 1) (2𝑛(𝑛 + 1) + 1))

+
√︁
(𝑛 + 1) (𝑛 + 2)𝜙𝑛+2(𝛽 + 2(𝛽 + 1) (2𝑛 + 3))

+ (𝛽 − 1)

√√√ 3∏
𝑗=0

(𝑛 − 𝑗)𝜙𝑛−4 + (𝛽 − 1)

√√√ 4∏
𝑗=1

(𝑛 + 𝑗)𝜙𝑛+4
ª®¬ = 0 (5.51)
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After mapping we obtain the system with two decoupled chains, see Fig. 5.6. Now
each of these chains contains both nearest neighbor 𝑡𝑖 and next nearest neighbor
𝑡′
𝑖

hopping terms as well as index-dependent on-site terms 𝜀𝑛. In the case of
more general saddle points one might obtain even more far-distanced next-next-
...-nearest hoppings according to polynomial powers in the Hamiltonian. The
basis of plane waves in the truncated region is built in the same way as before,
thus rotation to the basis with proper angles is done via the same procedure of
diagonalization of ladder operator 𝑎̂† acting on propagating modes. However, the
dispersion relation of plane wave modes is more complicated, in this particular
case it has the form:

𝜀1,2(𝑙) = −𝐸 + 𝐸𝑁𝑐 + 2𝑡𝑁𝑐 cos 2𝑙 + 2𝑡′𝑁𝑐 cos 4𝑙. (5.52)

Expressing momentum from this equation for 𝜀(𝑙) = 0 condition, we obtain
proper angles of the modes from 𝑎

†
Ψ

operator given by Eq. (5.33).
As a result of the regularization procedure, we have to introduce an additional

parameter 𝛽 into the lowest-order effective Hamiltonian. We check this by taking
this parameter small enough the convergence of results is reachable. We compare
the results for absolute value of the scattering matrix elements fixing 𝐴 = 1 and
taking different 𝛽 ≪ 1 in Eq. (5.49) The values of scattering matrix elements are
shown in Fig. 5.7. For small enough 𝛽 the results converge rapidly.

5.B Magnetic translation operators and spectral equa-
tions for coherent networks

In this section of Supplemental material, we present the main technical steps
that are required to describe the problem of two-dimensional Bloch electrons in
presence of magnetic field applied perpendicularly to the system at energies in
the vicinity of van Hove singularity, when a coherent orbit network is formed.
We demonstrate our approach in cases of square and triangular lattices that
exhibit three different types of van Hove singularities. Before proceeding to
the derivation of spectral equations for particular systems, we briefly recall the
translation symmetry group in the presence of magnetic field.

5.B.1 Magnetic translation group

The general aspects of the translation symmetry group theory in the presence of
magnetic field were discussed in Ref. [118]. Here, we recall the key definitions
and properties of Bloch electrons in the presence of magnetic field.
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Figure 5.7. Convergence of absolute values of S-matrix elements (𝑡-transmission, 𝑟-
reflection) for 𝐴3 saddle point with different values of regularization parameter 𝛽 in
Eq. (5.49). The coefficients 𝑎 = 1 and 𝛼 = 1 are taken for simplicity. Two panels
demonstrate convergence with different (a) 𝑁𝑐 cutoff parameters as function of 𝛽, (b) 𝛽
regularizing coefficients as function of 𝑁𝑐.

The key operator that commutes with a Hamiltonian and therefore identifies
the eigenstates and corresponding eigenvalues is the magnetic translation operator

𝑇𝑀𝑹 = exp{ 𝑖
ℏ

(
𝒑 + 𝑒

𝑐
𝑨(𝑹)

)
𝑹}, 𝑨(𝑹) = 𝑨(𝑹) + 𝑹 × 𝑩, (5.53)

with 𝒑 being a momenta operator. To find an analytical solution of the problem,
commensurability between lattice and magnetic translation periods is required.
This condition, expressed in terms of the magnetic translation operators, reads
𝑇𝑀
𝑁𝑹Ψ = Ψ, where 𝑁 is large integer and 𝑹 an arbitrary lattice vector. The

periodic condition implies [𝑇𝑀
𝑁𝑅
, 𝑇𝑀
𝑅′ ] = 0 and can be equally written as a

rationality condition on magnetic field flux through the elementary unit cell

Φ = 𝐵|𝑹1 × 𝑹2 | = 𝐵
(2𝜋)2

|𝒃1 × 𝒃2 |
=
𝑞

𝑝

2𝜋ℏ𝑐
𝑒

=
𝑞

𝑝
Φ0, (5.54)

where numbers 𝑞, 𝑝 are co-prime integers, 𝑝 is divisor of 𝑁 , and Φ0 = 2𝜋𝑒
𝑐

is
a flux quantum. Later on we shall concentrate on the case of 𝑞 = 1 for which
magnetic field values form a dense set for large 𝑝 and small magnetic fields.
Other values of 𝑞 can be analyzed in a similar manner.

For the set of magnetic translation operator to form a group, we need to adjust
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its definition by adding a phase factor [118]

𝑇𝑀𝑚,𝑹 = 𝑒𝑖 𝜋 (2𝑚− 𝑗𝑘 )/𝑝𝑇𝑀𝑹 ; 𝑹 = 𝑗𝑹1 + 𝑘𝑹2, (5.55)

where 𝑅1, 𝑅2 are elementary unit vectors. This group has 𝑁2 𝑝-dimensional irre-
ducible representations, classified by quasimomenta eigenvalues 𝒒 = 1

𝑁
(𝑛1𝒃1 +

𝑛2𝒃2), 𝑛1, 𝑛2 = 0, ..., 𝑁
𝑝
− 1 and corresponding eigenstates Ψ𝛼𝒒𝑠 as follows [118]

𝐻Ψ𝛼𝒒𝑠 = E𝛼 (𝒒)Ψ𝛼𝒒𝑠; 𝑇𝑀𝑚,𝑹Ψ𝛼𝒒𝑠 = 𝑒
𝑖 (𝒒+ 𝑠

𝑝
𝒃1 )𝑹Ψ𝛼𝒒𝑠; 𝑠 = 0, ..., 𝑝 − 1

(5.56)

This relation defines the translational symmetry of the problem and may be
considered as an analogy of Bloch’s theorem.

5.B.2 The wave function dependence on eigenvalues of the magnetic
translation operator

As described in the main text a general structure of the wave function expressed
in the gauge invariant space reads [139, 118, 127]

Ψ(𝑘𝑥) =
∞∑︁
𝑙,𝑘, 𝑗

𝛼 𝑗𝑒
𝑖 (𝑝𝑙𝑙+𝑝𝑘𝑘 )𝑒𝑖𝑙

2
𝐵
[𝑘𝑥 𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]Ψ 𝑗

𝑍𝐹
(𝑘𝑥 − 𝑘𝑏1,𝑥 − 𝑙𝑏2,𝑥),

(5.57)

where indices (𝑙, 𝑘) enumerate cells in the extended Brillouin zone scheme, 𝑗
identifies different branches of the wave function in the single cell, and Ψ

𝐸, 𝑗

𝑍𝐹
(𝑘𝑥)

stands for ZF function, defined in the (0, 0)-cell.
Phase factor 𝑒𝑖 (𝑝𝑙𝑙+𝑝𝑘𝑘 ) defines the translational symmetry of the system and

therefore must be expressed in terms of quasimomenta eigenvalues of magnetic
translational operator 𝒒. To find the connection between 𝑝𝑙, 𝑝𝑘 and 𝒒 we project
the solution on the representation space of magnetic translation group using a
projection operator 𝑃𝒒 [118]:

Ψq(𝑘𝑥) = 𝑃qΨ(𝑘𝑥), 𝑃q = 𝐶𝒒

∞∑︁
𝑘′ ,𝑙′=−∞

𝑒−𝑖𝒒 · (𝒃×𝝀 )𝑒𝑖 𝜋 𝑝𝑘
′𝑙′+𝑖 (𝒌− 𝑒

𝑐
𝑨) · (𝒃×𝝀 ) ,

𝒃 = 𝑘 ′𝒃1 + 𝑙′𝒃2
(5.58)

where 𝐶𝒒 is a normalization constant and 𝝀 = (0, 0, 𝑙2
𝐵
) is a vector oriented

along magnetic field . It is convenient to choose a system of coordinates where
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𝒃1 = (𝑏1,𝑥 , 0, 0) and 𝒃2 = (𝑏2,𝑥 , 𝑏2,𝑦 , 0) where the projection operator expressed
in the gauge invariant space 𝑘𝑥 = ( 𝒑 + 𝑒

𝑐
𝑨)𝑥 ,− 𝑖

𝑙2
𝐵

𝜕𝑘𝑥 = ( 𝒑 + 𝑒
𝑐
𝑨)𝑦 reads

𝑃q = 𝐶𝒒

∑︁
𝑘′ ,𝑙′

𝑒−𝑖𝑙
2
𝐵
𝑙′ (𝑞1𝑏2,𝑦−𝑞2𝑏2,𝑥 )𝑒

𝑖𝑙2
𝐵
𝑙′ (𝑏2,𝑦𝑘𝑥+𝑖

𝑏2,𝑥
𝑙2
𝐵

𝜕𝑘𝑥 )
𝑒𝑖𝑙

2
𝐵
𝑘′𝑞2𝑏1,𝑥 𝑒−𝑘

′𝑏1,𝑥𝜕𝑘𝑥

(5.59)

First, we calculate the projection part depending on 𝑘 ′

𝑒𝑖𝑙
2
𝐵
𝑘′𝑞2𝑏1,𝑥 𝑒−𝑘

′𝑏1,𝑥𝜕𝑘𝑥

∞∑︁
𝑙,𝑘, 𝑗

𝛼 𝑗𝑒
𝑖 (𝑝𝑙𝑙+𝑝𝑘𝑘 )𝑒𝑖𝑙

2
𝐵
[𝑘𝑥 𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]

×Ψ 𝑗

𝑍𝐹
(𝑘𝑥 − 𝑘𝑏1,𝑥 − 𝑙𝑏2,𝑥)

= 𝑒𝑖𝑙
2
𝐵
𝑘′𝑞2𝑏1,𝑥

∞∑︁
𝑙,𝑘, 𝑗

𝛼 𝑗𝑒
𝑖 (𝑝𝑙𝑙+𝑝𝑘𝑘 )𝑒𝑖𝑙

2
𝐵
[ (𝑘𝑥−𝑘′𝑏1,𝑥 )𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]

×Ψ 𝑗

𝑍𝐹
(𝑘𝑥 − (𝑘 + 𝑘 ′)𝑏1,𝑥 − 𝑙𝑏2,𝑥)

= 𝑒𝑖𝑘
′ [𝑙2
𝐵
𝑞2𝑏1,𝑥−𝑝𝑘 ]

∞∑︁
𝑙,𝑘, 𝑗

𝛼 𝑗𝑒
𝑖 (𝑝𝑙𝑙+𝑝𝑘𝑘 )𝑒𝑖𝑙

2
𝐵
[𝑘𝑥 𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]

×Ψ 𝑗

𝑍𝐹
(𝑘𝑥 − 𝑘𝑏1,𝑥 − 𝑙𝑏2,𝑥), (5.60)

where in the second line we used 𝑒𝑎𝜕𝑘𝑥 𝑓 (𝑘𝑥) = 𝑓 (𝑘𝑥 + 𝑎) and in the last line we
renamed 𝑘 → 𝑘 + 𝑘 ′ and used 𝑒𝑖𝑙2𝐵𝑏1,𝑥𝑏2,𝑦 = 𝑒𝑖𝑙

2
𝐵
|𝒃1×𝒃2 | = 𝑒𝑖2𝜋𝑝 = 1. Now, we
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calculate the second part of projection depending on 𝑙′

𝑒−𝑖𝑙
2
𝐵
𝑙′ (𝑞1𝑏2,𝑦−𝑞2𝑏2,𝑥 )𝑒

𝑖𝑙2
𝐵
𝑙′ (𝑏2,𝑦𝑘𝑥+𝑖

𝑏2,𝑥
𝑙2
𝐵

𝜕𝑘𝑥 )

×
∞∑︁
𝑙,𝑘, 𝑗

𝛼 𝑗𝑒
𝑖 (𝑝𝑙𝑙+𝑝𝑘𝑘 )𝑒𝑖𝑙

2
𝐵
[𝑘𝑥 𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]Ψ 𝑗

𝑍𝐹
(𝑘𝑥 − 𝑘𝑏1,𝑥 − 𝑙𝑏2,𝑥)

= 𝑒−𝑖𝑙
2
𝐵
(𝑙′ (𝑞1𝑏2,𝑦−𝑞2𝑏2,𝑥 )+ 𝑙

′2
2 𝑏2,𝑥𝑏2,𝑦−𝑙′𝑏2,𝑦𝑘𝑥 )𝑒−𝑙

′𝑏2,𝑥𝜕𝑘𝑥

×
∞∑︁
𝑙,𝑘, 𝑗

𝛼 𝑗𝑒
𝑖 (𝑝𝑙𝑙+𝑝𝑘𝑘 )𝑒𝑖𝑙

2
𝐵
[𝑘𝑥 𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]Ψ 𝑗

𝑍𝐹
(𝑘𝑥 − 𝑘𝑏1,𝑥 − 𝑙𝑏2,𝑥)

= 𝑒𝑖𝑙
2
𝐵
(𝑙′𝑏2,𝑦𝑘𝑥−𝑙′ (𝑞1𝑏2,𝑦−𝑞2𝑏2,𝑥 )− 𝑙

′2
2 𝑏2,𝑥𝑏2,𝑦 )

×
∞∑︁
𝑙,𝑘, 𝑗

𝛼 𝑗𝑒
𝑖 (𝑝𝑙𝑙+𝑝𝑘𝑘 )𝑒𝑖𝑙

2
𝐵
[ (𝑘𝑥−𝑙′𝑏2,𝑥 )𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]Ψ 𝑗

𝑍𝐹
(𝑘𝑥 − 𝑘𝑏1,𝑥 − (𝑙 + 𝑙′)𝑏2,𝑥)

= 𝑒−𝑖𝑙
′ [𝑙2
𝐵
(𝑞1𝑏2,𝑦−𝑞2𝑏2,𝑥 )−𝑝𝑙 ]

×
∞∑︁
𝑙,𝑘, 𝑗

𝛼 𝑗𝑒
𝑖 (𝑝𝑙𝑙+𝑝𝑘𝑘 )𝑒𝑖𝑙

2
𝐵
[𝑘𝑥 𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]Ψ 𝑗

𝑍𝐹
(𝑘𝑥 − 𝑘𝑏1,𝑥 − 𝑙𝑏2,𝑥)

(5.61)

Finally we see that the projecting results in

Ψq(𝑘𝑥) = 𝐶𝒒

∞∑︁
𝑘′ ,𝑙′=−∞

𝑒−𝑖𝑙
′ [𝑙2
𝐵
(𝑞1𝑏2,𝑦−𝑞2𝑏2,𝑥 )+𝑝𝑙 ]𝑒𝑖𝑘

′ [𝑙2
𝐵
𝑞2𝑏1,𝑥−𝑝𝑘 ]Ψ(𝑘𝑥). (5.62)

The summation over 𝑘 ′, 𝑙′ establishes the connection between 𝑝𝑘 , 𝑝𝑙 and 𝒒 as
𝑝𝑘 = 𝑙2

𝐵
𝑞2𝑏1,𝑥 and 𝑝𝑙 = 𝑙2

𝐵
(𝑞2𝑏2,𝑥 − 𝑞1𝑏2,𝑦). Utilizing this relation, we find a

general form of the wave function as a eigenfunction of the magnetic translation
operator

Ψ𝒒 (𝑘𝑥) =
∞∑︁
𝑙,𝑘, 𝑗

𝛼 𝑗𝑒
𝑖𝑙2
𝐵
( [𝑞2𝑏2,𝑥−𝑞1𝑏2,𝑦 ]𝑙+𝑞2𝑏1,𝑥𝑘 )𝑒𝑖𝑙

2
𝐵
[𝑘𝑥 𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]

×Ψ 𝑗

𝑍𝐹
(𝑘𝑥 − 𝑘𝑏1,𝑥 − 𝑙𝑏2,𝑥) (5.63)

To define 𝛼𝑖 coefficients and allowed energy values, we need to connect pieces
of the wave function in neighbouring cells of the Brillouin zone as well as pieces
corresponding to the different parts of the orbit in the single cell. In the following
sections, we perform this for the cases of square and triangular lattices by solving
a scattering problem near the van Hove singularities.
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(a)

Figure 5.8. Panel (a): schematic geometry of the orbit network from Eq.5.68 in the
square lattice. Panel (b): tight binding energy dispersion of the square lattice with
only nearest neighbor hoppings 𝑡 involved; constant energy contours and schematicly
represented orbits at a particular fixed energy (blue lines) are highlighted. Panel (c):
spectrum of the same square lattice as in (b) but with third nearest neighbor hoppings
𝑡3 = 1/4𝑡 taken into account.

5.B.3 Square lattice: derivation of spectral equation for orbit net-
work

In this section, we present the technical details of derivation of the orbit network
spectral equation for the simplest case of square lattice. The Brillouin zone
of the square lattice contains saddle points at the X-points. The tight-binding
Hamiltonian in the case where only nearest neighbor hopping is taken into account
reads

𝐻𝑠𝑞 = −2𝑡 (cos(𝑘𝑥𝑎) + cos
(
𝑘𝑦𝑎

)
), (5.64)

with 𝑎 being a lattice constant and 𝑡 is hopping parameter. This Hamiltonian
exhibits the saddle points at 𝑋-points in Brillouin zone

𝐸𝜋/𝑎,0(𝒌) ≈ −𝑎2𝑡 [(𝑘𝑥 − 𝜋/𝑎)2 − 𝑘2
𝑦], 𝐸0, 𝜋/𝑎 (𝒌) ≈ 𝑎2𝑡 [𝑘2

𝑥 − (𝑘𝑦 − 𝜋/𝑎)2] .
(5.65)
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They result in usual logarithmic van Hove singularities in the density of states.
One can modify Eq. (5.64) by taking hopping 𝑡3 to the third nearest neighbor into
account

𝐻𝑠𝑞,2 = −2𝑡
(
cos 𝑘𝑥𝑎 + cos 𝑘𝑦𝑎

)
− 2𝑡3

(
cos 2𝑘𝑥𝑎 + cos 2𝑘𝑦𝑎

)
, (5.66)

and obtain high-order saddle points of cusp type 𝐴3 [109] at each X-point for
𝑡3 = 1/4𝑡:

𝐸𝜋/𝑎,0 ≈ −1
4
𝑎4𝑡𝑞4

𝑥 −
5
12
𝑎4𝑡𝑞4

𝑦 + 2𝑎2𝑡𝑞2
𝑦 − 𝑡,

𝐸0, 𝜋/𝑎 ≈ − 5
12
𝑎4𝑡𝑞4

𝑥 + 2𝑎2𝑡𝑞2
𝑥 −

1
4
𝑎4𝑡𝑞4

𝑦 − 𝑡. (5.67)

Such saddle points result in high-order van Hove singularities with divergence
exponent 1/4. Recently, a slightly different version of this model with nearest-
neighbor (NN), next NN and third NN hoppings was analyzed in Ref. [155] with
relation to enhanced nematicity effects.

While we keep the hopping parameters isotropic (equal along x- and y-
directions), the qualitative geometry of the coherent orbit network does not
change due to saddle point type. It is schematically shown in Fig. 5.8 together
with tight-binding dispersion plots with highlighted equi-energy contours.

To derive a solution for the orbit network, we note that each unit cell of the
network in Fig. 5.8 can be separated into four quasiclassical regions which can
be described by WKB-type Zilberman-Fischbeck (ZF) wave functions, and four
scattering regions of magnetic breakdown with corresponding scattering matrices
𝑆1,2.

Ψ𝒒 (𝑘𝑥) =
∞∑︁

𝑙,𝑘=−∞
𝑒𝑖 (𝑝𝑘𝑘+𝑝𝑙𝑙)𝑒𝑖𝑙

2
𝐵
𝑙𝑏2,𝑦𝑘𝑥

×



𝛼1ℎ1(𝑘𝑥)𝑒
𝑖𝑙2
𝐵

𝑘𝑥∫
𝑘𝑏1,𝑥

𝑑𝑘𝑥𝑘
𝐸,𝑏
𝑦 (𝑘𝑥 )

+ 𝛼2ℎ2(𝑘𝑥)𝑒
𝑖𝑙2
𝐵

𝑘𝑥∫
𝑘𝑏1,𝑥

𝑑𝑘𝑥𝑘
𝐸,𝑡
𝑦 (𝑘𝑥 )

,

when 𝑘𝑏1,𝑥 < 𝑘𝑥 < (𝑘 + 1
2 )𝑏1,𝑥 ,

𝛼3ℎ3(𝑘𝑥)𝑒
𝑖𝑙2
𝐵

𝑘𝑦∫
𝑘𝑏1,𝑥

𝑑𝑘𝑥𝑘
𝐸,𝑡
𝑦 (𝑘𝑥 )

+ 𝛼4ℎ4(𝑘𝑥)𝑒
𝑖𝑙2
𝐵

𝑘𝑥∫
𝑘𝑏1,𝑥

𝑑𝑘𝑥𝑘
𝐸,𝑏
𝑦 (𝑘𝑥 )

,

when (𝑘 − 1
2 )𝑏1,𝑥 < 𝑘𝑥 < 𝑘𝑏1,𝑥 ,

(5.68)

where ℎ𝑖 (𝑘𝑥) =

(
| 𝜕𝐸 (𝒌 )
𝜕𝑘𝑦

|
)− 1

2 . We choose zero of 𝑘𝑥 as point in the middle of
single Brillouin zone. In each cell of reciprocal lattice, we have two solutions for
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𝑘𝐸𝑦 (𝑘𝑥) at constant energy which we call "top" 𝑘𝐸,𝑡𝑦 (𝑘𝑥) and "bottom" 𝑘𝐸,𝑏𝑦 (𝑘𝑥).
The functional dependence 𝑘𝐸,𝑡 (𝑏)𝑦 (𝑘𝑥) is found directly from exact dispersion
relation at a given energy. For example, in the case of Eq. (5.64), we find

𝑘
𝐸,𝑡 (𝑏)
𝑦 (𝑘𝑥 , 𝐸) = ±1

𝑎
arccos

[
−
𝐸 + 2𝑡 cos

(
𝑘𝑦𝑎

)
2𝑡

]
, (5.69)

while in most other cases the numerical evaluation has to be used.
To build the closed system of equations for coefficients 𝛼 𝑗 , we use the mag-

netic breakdown S-matrix that couples two neighboring cells of the network.
For the case of isotropic square lattice all S-matrices are identical, so the only
difference comes from the geometric arrangement of cyclotron orbits coming to
each magnetic breakdown region. We thus write the corresponding equations as
‘horizontal’ scattering with 𝑆1 matrix and ‘vertical’ scattering with 𝑆2 referring
to the notation from Fig. 5.8(a). For the ‘horizontal’ MB region we obtain:

©­­­­­­«
𝛼2𝑒

𝑖

(𝑘+ 1
2 )𝑏1,𝑥∫

𝑘𝑏1,𝑥

𝑑𝑘𝑥𝑘
𝐸,𝑡
𝑦 (𝑘𝑥 )

𝛼4𝑒

𝑖 𝑝𝑘−𝑖
(𝑘+ 1

2 )𝑏1,𝑥∫
𝑘𝑏1,𝑥

𝑑𝑘𝑥𝑘
𝐸,𝑏
𝑦 (𝑘𝑥 )

ª®®®®®®¬
= 𝑆1

©­­­­­­«
𝛼1𝑒

𝑖

(𝑘+ 1
2 )𝑏1,𝑥∫

𝑘𝑏1,𝑥

𝑑𝑘𝑥𝑘
𝐸,𝑏
𝑦 (𝑘𝑥 )

𝛼3𝑒

𝑖 𝑝𝑘−𝑖
(𝑘+ 1

2 )𝑏1,𝑥∫
𝑘𝑏1,𝑥

𝑑𝑘𝑥𝑘
𝐸,𝑡
𝑦 (𝑘𝑥 )

ª®®®®®®¬
, (5.70)

where we used that ℎ𝑖 (𝑘𝑥) are equal for all 𝑖 at scattering points. Similarly for
the ‘vertical’ MB region we write:(

𝛼1𝑒
𝑖 𝑝𝑙

𝛼3

)
= 𝑆2

(
𝛼2

𝛼4𝑒
𝑖 𝑝𝑙

)
. (5.71)

Note that here, we used the relation 𝑙2
𝐵
𝑏1,𝑥𝑏2,𝑦 = 2𝜋𝑝.

Now, taking into account the series decomposition of dispersion around
saddle point in the case of isotropic square lattice (e.g. Eq. (5.65) or Eq. (5.67))
and the geometry of the orbits in Fig. 5.8, we obtain the rotation rules for the
S-matrix (R and T are absolute values of reflection and transmission coefficients
along the 𝑘𝑥 direction for 𝑆1):

𝑆1 =

(
−𝑖R𝑒𝑖𝜑𝑟 T 𝑒𝑖𝜑𝑡
T 𝑒𝑖𝜑𝑡 −𝑖R𝑒𝑖𝜑𝑟

)
, 𝑆2 =

(
𝑖T 𝑒𝑖𝜑𝑡 R𝑒𝑖𝜑𝑟
R𝑒𝑖𝜑𝑟 𝑖T 𝑒𝑖𝜑𝑡

)
. (5.72)

These relations are obtained by noting that absolute values of transitions between
part of trajectories 1 → 2 and 3 → 4 at point 𝑆1 should be equal to 2 → 3 and
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4 → 1 at point 𝑆2. The unitarity of S-matrix implies the following restrictions
on S-matrix:

R2 + T 2 = 1, 𝑖RT 𝑒−𝑖 (𝜑𝑟−𝜑𝑡 ) − 𝑖RT 𝑒−𝑖 (𝜑𝑡−𝜑𝑟 ) = 2RT sin(𝜑𝑟 − 𝜑𝑡 ) = 0.
(5.73)

The second relation implies that either 𝜑𝑟 = 𝜑𝑡 + 0, 𝜋, . . . or one of 𝑟 or 𝑡 is
equal to zero. Indeed, we find that both cases are realized for the 𝐴3 saddle
point, which is an example of perfect transmission along the semiclassical orbit.
We note that the relation det(𝑆) = 𝑒𝑖𝜑𝑠𝑐 = 𝑒2𝑖𝜑𝑟 = 𝑒2𝑖𝜑𝑟 also follows from the
unitarity.

Combining (5.70) and (5.71) into system of equations for 𝛼𝑙,𝑘1,...4 parameters,
we find

©­­­«
−𝑖R𝑒𝑖𝜑𝑟 𝑒𝑖Φ𝑏 −𝑒𝑖Φ𝑡 T 𝑒𝑖𝜑𝑡 𝑒𝑖 (𝑝𝑘−Φ𝑡 ) 0
T 𝑒𝑖𝜑𝑡 𝑒𝑖Φ𝑏 0 −𝑖R𝑒𝑖𝜑𝑟 𝑒𝑖 (𝑝𝑘−Φ𝑡 ) −𝑒𝑖 (𝑝𝑘−Φ𝑏 )

−𝑒𝑖 𝑝𝑙 𝑖T 𝑒𝑖𝜑𝑡 0 R𝑒𝑖𝜑𝑟 𝑒𝑖 𝑝𝑙
0 R𝑒𝑖𝜑𝑟 −1 𝑖T 𝑒𝑖𝜑𝑡 𝑒𝑖 𝑝𝑙

ª®®®¬𝜶 = 0, (5.74)

where we used the short-hand notation

Φ𝑏 (𝑡 ) = 𝑙
2
𝐵

∫ (𝑘+ 1
2 )𝑏1,𝑥

𝑘𝑏1,𝑥

𝑑𝑘𝑥𝑘
𝐸,𝑏 (𝑡 )
𝑦 (𝑘𝑥) . (5.75)

The condition of existence of nontrivial solution gives the spectral equation:

( [R𝑒𝑖𝜑𝑟 ]2 + [T 𝑒𝑖𝜑𝑡 ]2)2𝑒𝑖 (Φ𝑏−Φ𝑡 ) + 𝑒−𝑖 (Φ𝑏−Φ𝑡 )

−R𝑒𝑖𝜑𝑟T 𝑒𝑖𝜑𝑡
(
𝑒𝑖 𝑝𝑙 + 𝑒−𝑖 𝑝𝑙 + 𝑒𝑖 (𝑝𝑘−Φ𝑏−Φ𝑡 )𝑒−𝑖 𝑝𝑙 + 𝑒−𝑖 (𝑝𝑘−Φ𝑏−Φ𝑡 )

)
= 0 (5.76)

Using that ( [R𝑒𝑖𝜑𝑟 ]2 + [T 𝑒𝑖𝜑𝑡 ]2)2 = det 𝑆2
1 = 𝑒2𝑖𝜑𝑠𝑐 , Φ𝑏 = 𝑙2

𝐵
𝑏1,𝑥𝑏2,𝑦 − Φ𝑡 =

2𝑝𝜋 − Φ𝑒 (see Fig. 5.8) and the area inside the orbit is 𝑙2
𝐵
A(𝐸) = 2(Φ𝑡 − Φ𝑏),

and obtain:

cos

(
𝑙2
𝐵
A(𝐸)

2
− 𝜑𝑠𝑐

)
= 𝑒𝑖 (𝜑𝑟−𝜑𝑡 )RT (cos (𝑝𝑘) + cos (𝑝𝑙))

= ±RT (cos (𝑝𝑘) + cos (𝑝𝑙)) , (5.77)

where the sign depends on whether 𝜑𝑟 = 𝜑𝑡 or 𝜑𝑟 = 𝜑𝑡 + 𝜋. Rewriting this
equation in terms of magnetic translation operators eigenvalues, we find:

cos

(
𝑙2
𝐵
A(𝐸)

2
− 𝜑𝑠𝑐

)
= ±RT

(
cos

(
𝑙2𝐵𝑞1𝑏2,𝑦

)
+ cos

(
𝑙2𝐵𝑞2𝑏1,𝑥

))
. (5.78)
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The cosine on the left defines the standard Lifshitz-Onsager quantization rule
with slightly shifted Landau levels in the vicinity of the energy of van Hove
singularity due to nonzero scattering phase. The right-hand side defines mini-
band broadening and leads to oscillatory behavior.

5.B.4 Triangular lattice with imaginary hoppings: orbit network
connected via Monkey saddle points

In this section, we analyze a case with a more complicated geometry of a trian-
gular lattice with imaginary hopping parameters. The tight-binding Hamiltonian
in the nearest neighbor approximation is given by Eq. (18) in the main text.
Similar structure of dispersion with Monkey saddle might effectively appear
in Moiré materials [152]. We apply a 𝜋/2 clockwise rotation of coordinates
𝑘𝑦 → 𝑘𝑥 , 𝑘𝑥 → −𝑘𝑦 to the system in order to have 𝒃1 = (𝑏1,𝑥 , 0, 0) as described
in the previous sections. A schematic picture of the orbits that constitute a net-
work is shown in Fig. 5.9. The general structure of a solution is described in the
main text, in the particular case of triangular lattice the wave function has three
different ZF-type terms in each unit cell and for 𝐸 > 0 reads:

Ψ𝒒 (𝑘𝑥) =
∑︁
𝑙,𝑘

𝑒𝑖 (𝑝𝑘𝑘+𝑝𝑙𝑙)𝑒𝑖𝑙
2
𝐵
[𝑘𝑥 𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]

×
[
𝛼3ℎ3(𝑘𝑥)𝑒

𝑖𝑙2
𝐵

𝑘𝑥∫
𝑘𝑏1,𝑥+𝑙𝑏2,𝑥

𝑑𝑘𝑥𝑘
𝐸,3
𝑦 (𝑘𝑥 )

,when 𝑘𝑏1,𝑥 + 𝑙𝑏2,𝑥 < 𝑘𝑥 < (𝑘 + 1)𝑏1,𝑥 + 𝑙𝑏2,𝑥

+



𝛼2ℎ2(𝑘𝑥) 𝑒

𝑖𝑙2
𝐵

𝑘𝑥∫
𝑘𝑏1,𝑥+(𝑙+1)𝑏2,𝑥

𝑑𝑘𝑥𝑘
𝐸,2
𝑦 (𝑘𝑥 )

,

when 𝑘𝑏1,𝑥 + 𝑙𝑏2,𝑥 < 𝑘𝑥 < 𝑘𝑏1,𝑥 + (𝑙 + 1)𝑏2,𝑥

𝛼1ℎ1(𝑘𝑥) 𝑒

𝑖𝑙2
𝐵

𝑘𝑥∫
𝑘𝑏1,𝑥+(𝑙+1)𝑏2,𝑥

𝑑𝑘𝑥𝑘
𝐸,1
𝑦 (𝑘𝑥 )

,

when 𝑘𝑏1,𝑥 + (𝑙 + 1)𝑏2,𝑥 < 𝑘𝑥 < (𝑘 + 1)𝑏1,𝑥 + 𝑙𝑏2,𝑥

]
.

(5.79)

The positions of scattering point are 𝑘 (𝑙,𝑘 )𝑥,𝑠𝑐𝑎𝑡𝑡 = 𝑘𝑏1,𝑥 + 𝑙𝑏2,𝑥 . The case of 𝐸 < 0
can be analyzed in the same way as 𝐸 > 0 by making use of a symmetry property
of the dispersion (3) that stays the same for 𝐸 → −𝐸 and 𝒌 → −𝒌 replacement.
Therefore, later on we concentrate on the case of 𝐸 > 0.

Now, we perform a derivation of spectral equation from the scattering equa-
tions that couple neighboring cells. The scattering equation at point 𝑘 (𝑙,𝑘 )𝑥,𝑠𝑐𝑎𝑡𝑡 has
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Figure 5.9. Schematic structure of the orbit network for triangular lattice with imaginary
hoppings. The 𝒃𝑖 vectors denote the basis in reciprocal space, red S circles label the
positions of scattering regions with Monkey saddle. The black lines with arrows show
example orbits with coefficients 𝛼𝑙,𝑘

𝑖
that appear in decomposition of the wave function

into Zilberman-Fischbeck wave functions between scattering regions. Indices 𝑙 and 𝑘
label the elementary unit cell in 𝑘-space with its position according to 𝒃1 and 𝒃2 vectors.
Only the case of positive energies is shown as the negative energies can be obtain by
using the symmetry of the model 𝐸 → −𝐸 with 𝒌 → −𝒌.
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the form:

©­­«
𝛼1𝑒

−𝑖 𝑝𝑘𝑒𝑖Φ1

𝛼2𝑒
−𝑖 𝑝𝑙𝑒−𝑖𝑙

2
𝐵

𝑏2,𝑥𝑏2,𝑦
2

𝛼3

ª®®¬ = 𝑆
©­­«
𝛼1𝑒

−𝑖 𝑝𝑙𝑒−𝑖𝑙
2
𝐵

𝑏2,𝑥𝑏2,𝑦
2

𝛼2𝑒
−𝑖Φ2

𝛼3𝑒
−𝑖 𝑝𝑘𝑒𝑖Φ3 ,

ª®®¬ , (5.80)

where we used the relation 𝑙2
𝐵
𝑏1,𝑥𝑏2,𝑦 = 2𝜋𝑝 and equality of ℎ𝑖 (𝑘𝑥) at the

scattering point as well as the short-hand notation for Φ𝑖 introduced in the
previous section.

Before we insert the numerically calculated S-matrix, there is one subtlety
that should be taken into account: the scattering basis of incoming and outgoing
modes in numerical approach (5.45) is different from the one used in the orbit
network (5.79). The difference between two pictures arises due to the fact that the
numerical approach couples the incoming and outgoing modes in quasiclassical
region at infinity |𝒌 | → ∞, while in the orbital network the modes are coupled
at the scattering point itself

Orbit network:
©­­«
Ψ
𝑜𝑢𝑡,1
𝑍𝐹

(𝑘 = 0)
Ψ
𝑜𝑢𝑡,2
𝑍𝐹

(𝑘 = 0)
Ψ
𝑜𝑢𝑡,3
𝑍𝐹

(𝑘 = 0)

ª®®¬ = 𝑆
©­­«
Ψ
𝑖𝑛,1
𝑍𝐹

(𝑘 = 0)
Ψ
𝑖𝑛,2
𝑍𝐹

(𝑘 = 0)
Ψ
𝑖𝑛,3
𝑍𝐹

(𝑘 = 0)

ª®®¬ ,
Numerical approach:

©­­«
Ψ
𝑜𝑢𝑡,1
𝑍𝐹

(𝑘 → ∞)
Ψ
𝑜𝑢𝑡,2
𝑍𝐹

(𝑘 → ∞)
Ψ
𝑜𝑢𝑡,3
𝑍𝐹

(𝑘 → ∞)

ª®®¬
′

= 𝑆′
©­­«
Ψ
𝑖𝑛,1
𝑍𝐹

(𝑘 → ∞)
Ψ
𝑖𝑛,2
𝑍𝐹

(𝑘 → ∞)
Ψ
𝑖𝑛,3
𝑍𝐹

(𝑘 → ∞)

ª®®¬
′

. (5.81)

Here,Ψ𝑖
𝑍𝐹

and the primedΨ𝑖,′
𝑍𝐹

wave functions correspond to the different choices
of normalization constant in the bases. Thus we continue with connecting the
two types of scattering states in these problems by introducing dynamical phases
as well as constant phase shifts that account for selected convention in basis
definitions:

Ψ
𝑖𝑛,𝑖

𝑍𝐹
(𝑘𝑥) = 𝑒𝑖 𝛿

𝑖𝑛
𝑖 Ψ

′𝑖𝑛,𝑖
𝑍𝐹

(𝑘𝑥) , Ψ
𝑖𝑛,𝑖

𝑍𝐹
(𝑘𝑥 → ±∞) = 𝑒𝑖𝜙

𝑖𝑛,𝑖

𝑑𝑦𝑛Ψ
𝑖𝑛,𝑖

𝑍𝐹
(0) (5.82)

Ψ
𝑜𝑢𝑡,𝑖

𝑍𝐹
(𝑘𝑥) = 𝑒𝑖 𝛿

𝑜𝑢𝑡
𝑖 Ψ

′𝑜𝑢𝑡,𝑖
𝑍𝐹

(𝑘𝑥) , Ψ
𝑜𝑢𝑡,𝑖

𝑍𝐹
(𝑘𝑥 → ±∞) = 𝑒𝑖𝜙

𝑜𝑢𝑡,𝑖

𝑑𝑦𝑛 Ψ
𝑖𝑛,𝑖

𝑍𝐹
(0).
(5.83)

The phase factors 𝑒𝑖 𝛿𝑖𝑛𝑖 , 𝑒𝑖 𝛿𝑜𝑢𝑡𝑖 do not depend on energy and represent differences
of the basis definitions, while 𝜙𝑖𝑛,𝑖

𝑑𝑦𝑛
, 𝜙
𝑜𝑢𝑡,𝑖

𝑑𝑦𝑛
are dynamical phases that correspond

to covered areas in momentum space of ZF wave functions 𝜓𝑖𝑛
𝑖

- see Fig. 5.10.
There, solid lines represent the real roots of equation

𝑘3
𝑦 + 3𝑘𝑦𝑘2

𝑥 = −𝐸, (5.84)
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defining semiclassical trajectory 𝑘𝐸𝑦 (𝑘𝑥), while the dashed lines correspond to
real parts of the complex roots in the intervals of 𝑘𝑥 with only one allowed
semiclassical trajectory. The relation between phases and the shaded areas is the
following: 

𝜙
𝑖𝑛,3
𝑑𝑦𝑛

= −𝐹1

𝜙
𝑖𝑛,1
𝑑𝑦𝑛

= −𝐹3 − 𝐹4

𝜙
𝑖𝑛,2
𝑑𝑦𝑛

= 𝐹1 + 𝐹2

,


𝜙
𝑜𝑢𝑡,3
𝑑𝑦𝑛

= 𝐹1

𝜙
𝑜𝑢𝑡,1
𝑑𝑦𝑛

= −𝐹1 − 𝐹2

𝜙
𝑜𝑢𝑡,2
𝑑𝑦𝑛

= 𝐹3 + 𝐹4

(5.85)

By using the symmetry of Monkey saddle dispersion 𝐸 → −𝐸 together with
𝒌 → −𝒌, we notice that Ψ𝑜𝑢𝑡,𝑖

𝑍𝐹
(𝑘𝑥 , 𝐸) = Ψ

𝑖𝑛,𝑖

𝑍𝐹
(−𝑘𝑥 ,−𝐸) and Ψ

′𝑜𝑢𝑡,𝑖
𝑍𝐹

(𝑘𝑥 , 𝐸) =
Ψ
𝑖𝑛,𝑖

𝑍𝐹
(−𝑘𝑥 ,−𝐸), which gives 𝑒𝑖 𝛿𝑖𝑛𝑖 = 𝑒𝑖 𝛿

𝑜𝑢𝑡
𝑖 = 𝑒𝑖 𝛿𝑖 . Hence,

𝑆 =

©­­­­«
𝑒
−𝑖

[
𝜙𝑜𝑢𝑡
𝑑𝑦𝑛,1−𝛿1

]
0 0

0 𝑒
−𝑖

[
𝜙𝑜𝑢𝑡
𝑑𝑦𝑛,2−𝛿2

]
0

0 0 𝑒
−𝑖

[
𝜙𝑜𝑢𝑡
𝑑𝑦𝑛,3−𝛿3

]
ª®®®®¬
𝑆num

×
©­­­­«
𝑒
𝑖

[
𝜙𝑖𝑛
𝑑𝑦𝑛,1−𝛿1

]
0 0

0 𝑒
𝑖

[
𝜙𝑖𝑛
𝑑𝑦𝑛,2−𝛿2

]
0

0 0 𝑒
𝑖

[
𝜙𝑖𝑛
𝑑𝑦𝑛,3−𝛿3

]
ª®®®®¬
. (5.86)

By calculating the areas shown in Fig. 5.10 we find the following relations:

𝐹4 = const , 𝐹3 =
2
3
𝐹1, 𝐹2 + 2𝐹3 = 𝐹4. (5.87)

Next, we change the notation to 𝜙0 = 𝐹1/3, and obtain
𝜙𝑖𝑛
𝑑𝑦𝑛,3 = −3𝜙0

𝜙𝑖𝑛
𝑑𝑦𝑛,1 = −𝐹4 − 2𝜙0

𝜙𝑖𝑛
𝑑𝑦𝑛,2 = 𝐹4 − 𝜙0

,


𝜙𝑜𝑢𝑡
𝑑𝑦𝑛,3 = 3𝜙0

𝜙𝑜𝑢𝑡
𝑑𝑦𝑛,1 = −𝐹4 + 𝜙0

𝜙𝑜𝑢𝑡
𝑑𝑦𝑛,2 = 𝐹4 + 2𝜙0

. (5.88)

At the same time following the numerical procedure described in above section,
we find S-matrix:

𝑆num =
©­«

T 𝑒𝑖𝜑𝑡 𝑒𝑖6𝜙0 (𝐸 ) R2𝑒
𝑖𝜑2𝑒−𝑖

𝜋
3 +𝑖2𝜙0 (𝐸 ) R1𝑒

𝑖𝜑1𝑒𝑖
𝜋
3 +𝑖4𝜙0 (𝐸 )

R1𝑒
𝑖𝜑1𝑒𝑖

𝜋
3 +𝑖4𝜙0 (𝐸 ) T 𝑒𝑖𝜑𝑡 𝑒𝑖6𝜙0 (𝐸 ) R2𝑒

𝑖𝜑2𝑒−𝑖
𝜋
3 +𝑖2𝜙0 (𝐸 )

R2𝑒
𝑖𝜑2𝑒−𝑖

𝜋
3 +𝑖2𝜙0 (𝐸 ) R1𝑒

𝑖𝜑1𝑒𝑖
𝜋
3 +𝑖4𝜙0 (𝐸 ) T 𝑒𝑖𝜑𝑡 𝑒𝑖6𝜙0 (𝐸 )

ª®¬ .
(5.89)
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Figure 5.10. Definition of different phases according to the integration in momentum
space for the scattering problem geometry around Monkey saddle point. Solid lines
represent semiclassical trajectories at fixed energy near Monkey saddle, whereas dashed
line depicts the real part of complex roots of Eq. (5.84) and dotted lines correspond
to 𝐸 = 0 regime. The shaded areas are related to the constant and dynamical phases
according to Eq. (5.85).

Here, T ,R1,R2 are real values. The presence of 𝑒𝑖
𝜋
3 and 𝑒𝑖𝐹4 phase factors is

a consequence uncertainty of the dynamical phases, that are defined only up to
an offset parameter. This arbitrariness is controlled by 𝑒𝑖 𝛿𝑖 phase factors which
transform the numerical basis to the basis of the network model. Phases 𝑒𝜑𝑡 , 𝑒𝜑1

and 𝑒𝜑2 are scattering phases that decay to zero with 𝐸 → ∞. Therefore, we
have

𝑆 =
©­­«

T 𝑒𝑖𝜑𝑡 𝑒𝑖3𝜙0 (𝐸 ) R2𝑒
𝑖𝜑2𝑒𝑖( 𝛿1−𝛿2+2𝐹4− 𝜋3 ) R1𝑒

𝑖𝜑1𝑒𝑖( 𝛿1−𝛿3+𝐹4+ 𝜋3 )
R1𝑒

𝑖𝜑1𝑒𝑖( 𝛿2−𝛿1−2𝐹4+ 𝜋3 ) T 𝑒𝑖𝜑𝑡 𝑒𝑖3𝜙0 (𝐸 ) R2𝑒
𝑖𝜑2𝑒𝑖( 𝛿2−𝛿3−𝐹4− 𝜋3 )−𝑖3𝜙0 (𝐸 )

R2𝑒
𝑖𝜑2𝑒𝑖( 𝛿3−𝛿1−𝐹4− 𝜋3 )−𝑖3𝜙0 (𝐸 ) R1𝑒

𝑖𝜑1𝑒𝑖( 𝛿3−𝛿2+𝐹4+ 𝜋3 ) T 𝑒𝑖𝜑𝑡

ª®®¬ .
(5.90)

To determine the connection between 𝛿𝑖 and 𝐹4, we may use the limiting cases
of big energies where the 𝑆-matrix written in the network basis must take the
form of full reflection scattering matrix for each of the three trajectories with
additional factor −𝑖 appearing at turning point [127] (see Fig. 5.9):

𝑆(𝐸 ≫ 0) = ©­«
0 0 −𝑖
1 0 0
0 −𝑖 0

ª®¬ . (5.91)

From this condition and previously obtained expression (5.90), we find a set of
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conditions, which in turn yield{
𝑒𝑖 (𝛿2−𝛿1−2𝐹4+𝜋/3) = 1
𝑒𝑖 (𝛿3−𝛿2+𝐹4+𝜋/3) = −𝑖 ⇒ 𝑒𝑖 (𝛿1−𝛿3+𝐹4+𝜋/3)

= 𝑒𝑖 𝜋𝑒−𝑖 (𝛿2−𝛿1−2𝐹4+𝜋/3)𝑒−𝑖 (𝛿3−𝛿2+𝐹4+𝜋/3) = −𝑖. (5.92)

In such a way we settle all additional constants and obtained the exact form of
the network model 𝑆-matrix from numerical 𝑆num-matrix:

𝑆 =
©­«
T 𝑒𝑖𝜑𝑡 𝑒𝑖3𝜙0 (𝐸 ) R2𝑒

𝑖𝜑2 −𝑖R1𝑒
𝑖𝜑1

R1𝑒
𝑖𝜑1 T 𝑒𝑖𝜑𝑡 𝑒𝑖3𝜙0 (𝐸 ) 𝑖R2𝑒

𝑖𝜑2𝑒−𝑖3𝜙0 (𝐸 )

R2𝑒
𝑖𝜑2𝑒−𝑖3𝜙0 (𝐸 ) −𝑖R1𝑒

𝑖𝜑1 T 𝑒𝑖𝜑𝑡
ª®¬ . (5.93)

Substituting it to (5.80) that couples solutions on neighboring orbits, we find:

©­«
𝛼1
𝛼2
𝛼3

ª®¬ =

©­­­«
𝑒𝑖 (𝑝𝑘−Φ1 ) 0 0

0 𝑒
𝑖

(
𝑝𝑙+𝑙2𝐵

𝑏2,𝑥𝑏2,𝑦
2

)
0

0 0 1

ª®®®¬
× ©­«

T 𝑒𝑖𝜑𝑡 𝑒𝑖3𝜙0 (𝐸 ) R2𝑒
𝑖𝜑2 −𝑖R1𝑒

𝑖𝜑1

R1𝑒
𝑖𝜑1 T 𝑒𝑖𝜑𝑡 𝑒𝑖3𝜙0 (𝐸 ) 𝑖R2𝑒

𝑖𝜑2𝑒−𝑖3𝜙0 (𝐸 )

R2𝑒
𝑖𝜑2𝑒−𝑖3𝜙0 (𝐸 ) −𝑖R1𝑒

𝑖𝜑1 T 𝑒𝑖𝜑𝑡
ª®¬

×
©­­­«
𝑒
−𝑖

(
𝑝𝑙+𝑙2𝐵

𝑏2,𝑥𝑏2,𝑦
2

)
0 0

0 𝑒−𝑖Φ2 0
0 0 𝑒𝑖 (Φ3−𝑝𝑘 )

ª®®®¬
©­«
𝛼1
𝛼2
𝛼3

ª®¬ . (5.94)

The condition for the existence of nontrivial solution, also known as non-linear
eigenvalue problem of the Ho-Chalker operator [140], gives the spectral equation

det 𝑆𝑒−𝑖 (Φ1+Φ2−Φ3 )/2 + 𝑒𝑖 (Φ1+Φ2−Φ3 )/2 − ((T 𝑒𝑖𝜑𝑡 )2𝑒𝑖6𝜙0 − R1𝑒
𝑖𝜑1R2𝑒

𝑖𝜑2)

×
[
𝑒−𝑖 𝑝𝑙−𝑖3𝜙0−𝑖 (Φ1−Φ2−Φ3+𝑙2𝐵𝑏2,𝑥𝑏2,𝑦 )/2 + 𝑒−𝑖 (𝑝𝑘−𝑝𝑙 )−𝑖3𝜙0−𝑖 (Φ2−Φ1−Φ3−𝑙2𝐵𝑏2,𝑥𝑏2,𝑦 )/2

+ 𝑒𝑖 𝑝𝑘−𝑖 (Φ2+Φ1+Φ3 )/2]
−T 𝑒𝑖𝜑𝑡

[
𝑒𝑖 𝑝𝑙+𝑖3𝜙0+𝑖 (Φ1−Φ2−Φ3+𝑙2𝐵𝑏2,𝑥𝑏2,𝑦 )/2 + 𝑒𝑖 (𝑝𝑘−𝑝𝑙 )+𝑖3𝜙0+𝑖 (Φ2−Φ1−Φ3−𝑙2𝐵𝑏2,𝑥𝑏2,𝑦 )/2

+ 𝑒−𝑖 𝑝𝑘+𝑖 (Φ2+Φ1+Φ3 )/2] = 0.
(5.95)

Note that for this kind of problems the spectral equations are a convenient tool
to solve eigenvalue problem of Ho-Chalker operator as it reduces to the well-
known Lifshitz-Onsager quantization condition in crystals with small corrections
coming from nonzero tunneling probabilities.
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We note that from unitarity of 𝑆-matrix,

T = | (T 𝑒𝑖𝜑𝑡 )2𝑒𝑖6𝜙0 − R1𝑒
𝑖𝜑1R2𝑒

𝑖𝜑2 |,
arg((T 𝑒𝑖𝜑𝑡 )2𝑒𝑖6𝜙0 − R1𝑒

𝑖𝜑1R2𝑒
𝑖𝜑2) = 𝜑𝑠𝑐 − 𝜑𝑡 , (5.96)

where det 𝑆 = 𝑒𝑖𝜑𝑠𝑐 . Therefore, we have

𝑒𝑖𝜑𝑠𝑐/2−𝑖 (Φ1+Φ2−Φ3 )/2 + 𝑒𝑖 (Φ1+Φ2−Φ3 )/2−𝑖𝜑𝑠𝑐/2

+T 𝑒𝑖 (𝜑𝑠𝑐/2−𝜑𝑡 )
[
𝑒−𝑖 𝑝𝑙−𝑖3𝜑0−𝑖 (Φ1−Φ2−Φ3+𝑙2𝐵𝑏2,𝑥𝑏2,𝑦 )/2

+ 𝑒−𝑖 (𝑝𝑘−𝑝𝑙 )−𝑖3𝜑0−𝑖 (Φ2−Φ1−Φ3−𝑙2𝐵𝑏2,𝑥𝑏2,𝑦 )/2 + 𝑒𝑖 𝑝𝑘−𝑖 (Φ2+Φ1+Φ3 )/2
]

+T 𝑒𝑖 (𝜑𝑡−𝜑𝑠𝑐/2)
[
𝑒𝑖 𝑝𝑙+𝑖3𝜑0+𝑖 (Φ1−Φ2−Φ3+𝑙2𝐵𝑏2,𝑥𝑏2,𝑦 )/2

+ 𝑒𝑖 (𝑝𝑘−𝑝𝑙 )+𝑖3𝜑0+𝑖 (Φ2−Φ1−Φ3−𝑙2𝐵𝑏2,𝑥𝑏2,𝑦 )/2 + 𝑒−𝑖 𝑝𝑘+𝑖 (Φ2+Φ1+Φ3 )/2
]
= 0. (5.97)

Numerical calculations show that for the particular case of Monkey saddle point
𝜑𝑠𝑐 = 2𝜑𝑡 . Using geometry of the problem (see Fig. 5.10), we note that the
particular combinations of phases can be expressed via area enclosed by the
orbit, Φ1 + Φ2 − Φ3 = 𝑙2

𝐵
A(𝐸) = 𝜋𝑝 − 2Φ3 and Φ3 = 2𝐹1 = 6𝜙0. In addition,

we note that 𝑙2
𝐵
𝑏1,𝑥𝑏2,𝑦 = 𝜋𝑝. Thus, we obtain a final form of spectral equation:

cos
(
𝑙2𝐵A(𝐸)/2 − 𝜑𝑠𝑐/2

)
= T

[
cos

(
𝑙2𝐵 [𝑞1𝑏2,𝑦 − 𝑞2𝑏2,𝑥] −

𝜋𝑝

2

)
+ cos

(
𝑙2𝐵 [𝑞1𝑏2,𝑦 + 𝑞2(𝑏1,𝑥 − 𝑏2,𝑥)] −

𝜋𝑝

2

)
+ cos

(
𝑙2𝐵𝑞2𝑏1,𝑥 −

𝜋𝑝

2

) ]
. (5.98)

These spectral equations appears in the main text. For the sake of completeness,
we present a difference in spectral structure with even and odd flux denominator
values 𝑝 in Fig. 5.11. As seen from the plots, for even 𝑝 = 200 spectrum is
symmetric, while for odd 𝑝 = 201 spectrum is antisymmetric with momentum.
The analytic predictions and numerical tight binding simulations demonstrate
excellent agreement.
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Figure 5.11. Two panels demonstrate comparison of analytic predictions (blue dashed
lines) and numerical tight-binding simulations (orange solid lines merging into shaded
areas) for the flux Φ = 1

𝑝
ℎ
𝑒

with (a) even 𝑝 = 200 and (b) odd 𝑝 = 201. The unit cell
width of the ribbon with periodic boundary condition is taken to be𝑊 = 20

√
3𝑝𝑎.


