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Chapter 4

Majorana-metal transition in a
disordered superconductor:
percolation in a landscape of
topological domain walls

4.1 Introduction

While a superconductor is a perfect conductor of electricity, it generally conducts
heat poorly. Adding disorder is not expected to improve this, but in a two-
dimensional (2D) superconductor with chiral p-wave pairing [69] the unexpected
happens: If sufficiently many defects are added the thermal insulator becomes
a thermal metal [70, 71, 72]. This unusual state is known as a Majorana metal,
because the quasiparticles that conduct the heat are Majorana fermions (equal-
weight superpositions of electrons and holes). Although the transition from a
thermal insulator to a thermal metal has not yet been observed in experiments, it
has been demonstrated in computer simulations [73, 74, 75, 76, 77, 78, 79, 80].

The Majorana-metal transition is well understood if the defects consist of the
Abrikosov vortices that appear when a perpendicular magnetic field is applied to a
type-1I superconductor. A vortex can bind sub-gap quasiparticles [81], but bound
states in nearby vortices will not typically be aligned in energy, making them
inefficient for heat transport. A special property of a chiral p-wave superconductor
is that its vortices have a bound state exactly in the middle of the gap (£ = 0, the
Fermi level), a socalled Majorana zero-mode [82, 83, 84, 85, 86]. The energetic
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alignment of Majorana zero-modes allows for resonant heat conduction when the
density of Abrikosov vortices crosses a critical threshold [73, 74].

Electrostatic disorder in zero magnetic field can also produce a thermal metal
phase [75]. The phase transition falls in the same universality class D as for vortex
disorder [80], and one would expect the mechanism to be related in the same way
to the appearance of Majorana zero-modes — even without any vortices to bind
them. Can we demonstrate that in a computer simulation?

To address this question we use the spectral localizer approach pioneered by
Loring and Schulz-Baldes [87, 88, 89, 90, 91, 92, 93, 94]. The spectral localizer
embeds the Hamiltonian +H on the diagonal of a 2 x 2 matrix, with the position
operator x + iy on the off-diagonal. Its spectrum quantifies whether Hamiltonian
and position can be made commuting by a deformation that does not close the
excitation gap [95, 96].

In a class D system the matrix signature of the spectral localizer (number of
positive minus number of negative eigenvalues) identifies domains of different
Chern number [90, 94]. As discussed by Volovik [97], the domain walls support
low-lying states at energy E =~ Avg/{ for a domain of linear dimension €. These
states become Majorana zero-modes in the limit £ — oo of a percolating domain
wall. By identifying the metal-insulator transition with the percolation transition
of the domain walls we construct the phase diagram in a closed system, and
compare with calculations based on the thermal conduction in an open system
[75, 80].

4.2 Topological landscape function

4.2.1 Lattice Hamiltonian

The Bogoliubov-De Gennes Hamiltonian for a chiral p-wave superconductor is

o .
p*/2m—Er  va(px —ipy) (4.1)

Hgac = . .
BdG va(px +ipy) EF—pz/Zm

It acts on a two-component wave function ¥ = (i, Y1), the pair potential oc v
couples the electron and hole components (filled states above the Fermi level EF,
respectively, empty states below Ef, with Ep = %mv% in terms of the effective
mass m and Fermi velocity vg). Because this is equal-spin pairing, we can omit
the spin degree of freedom.

The particle-hole symmetry relation,

O-ngdGO-x = —Hpqg, 4.2)
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Figure 4.1. Panels a) and b) show the topological landscape function [Chern number
C(x,y) and localizer gap 6 (x, y)] in a disordered chiral p-wave superconductor (Hamilto-
nian (4.3), parameters A = 4¢, i = t, 6 = 4t, L = 32a, periodic boundary conditions).
At these parameters the superconductor is in the thermal metal phase. Panel c) shows
that the network of domain walls leaves no trace in the local density of states (integrated
over the energy interval |E| < 0.21).

places the system in symmetry class D [98]. Here o is a Pauli matrix that acts
on the electron-hole degree of freedom and the complex conjugation operation
is taken in the real-space basis (so the momentum p = hk = —ihd/dr changes
sign).

We discretize the Hamiltonian on a 2D square lattice (lattice constant a),

B gk — M A(sinak, —isinak,)
~ \A(sinaky + isinaky) U= &k ’
gx = —t(cosaky + cosaky), 4.3)

with the definitions A = (h/a)va, t = h?/ma?, u = Ep — 2t.

We introduce electrostatic disorder by letting the chemical potential u(x, y)
fluctuate randomly, uniformly distributed in the interval (g — Sy, i + du). Our
approach requires some degree of smoothness of the fluctuating potential on the
scale of the lattice constant, in what follows we choose the same u on the four
neighboring sites (2n,2m), 2n + 1,2m), (2n,2m + 1), and (2n + 1,2m + 1).
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4.2.2 Spectral localizer: open boundary conditions

The spectral localizer for a two-dimensional class D Hamiltonian with open
boundary conditions is [90]

L(x0, y0) = (I(L)I _(;1) + kQ(x — X0,y = Yo), (4.42)
_ 0 oo(x —iy)
2 = [ "0 ") (4.4)

The Hermitian operators £ and € are both 4 X 4 matrices, we have introduced
the 2 X 2 unit matrix oy to indicate that € is diagonal in the electron-hole degree
of freedom. Note also that x and y are operators (which do not commute with
H), while xg and yq are parameters. Our choice x = 2.5 ¢ for the scale parameter
k is explained in App. 4.A.

The operator Q breaks the + £ symmetry of the spectrum of £, allowing for a
nonzero matrix signature: Sig £ = number of positive eigenvalues minus number
of negative eigenvalues. This even integer determines a topological invariant, the
Chern number [90],

C(x0, y0) = % Sig L(x0. y0). (4.5)

of a domain containing the point (xg, yg). Domain walls, contours across which
C(xp,y0) changes by +1, are contours along which det{L}(xg, yo) vanishes.
These can be visualized by plotting the localizer gap

6(x0,yo) = min |4,|, A, eigenvalue of L (xo, yo), (4.6)

which vanishes along the domain walls.

4.2.3 Spectral localizer: periodic boundary conditions

Our system is a square of size L X L in the x- and y-directions. To avoid edge
states and focus on bulk properties, we prefer to work with periodic boundary
conditions, rather than open boundary conditions. For that purpose, following
Ref. [94], the term x + iy on the off-diagonal of € is replaced by the periodic
combination sin(2zx/L)+i sin(2wy/L). The eigenvalues of Q(x—xg, y—yo) then
cannot distinguish between points xo and xg + L/2, or between yg and yo + L/2.
To remove this doubling, cosine terms are added on the diagonal of Q [94],
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Figure 4.2. Topological landscape function (Chern number on top row, localizer gap
on bottom row) for five different disorder strengths oy at fixed g = 1.057 (and A = 41,
L = 24a), to show the appearance of a percolating domain wall when du 2 3.1+¢. These
are results for a single realization of the random potential u(x, y), only the amplitude is
rescaled.

L(xo,y0) = (I(_)I —(;I) + kQ(x = x0,y = Yo)s (4.72)
Q _ [(oolcos(2nx/L) + cos(2my/L) — 2] oo[sin(2rx/L) —isin(2ny/L)]
@3 =1 gy [sin(2x /L) + isin(Gay/L)]  —oplcos(2mx/L) + cos(2ny/L) — 2] ]

(4.7b)

For |x|, |y] < L the localizers (4.4) and (4.7) coincide.

In Fig. 4.1 we show the resulting network of domain walls for a particular
disorder realization (panels a and b). The topological information contained in
the spectral localizer is essential: as shown in panel c, the domain walls do not
show up in the local density of states near £ = 0.

4.3 Phase diagram from percolation transition

4.3.1 Percolating domain walls

The clean system (without disorder, 6u = 0) is a topologically trivial thermal
insulator (C = 0) for || > 2¢ and a topologically nontrivial thermal insulator
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Figure 4.3. Same as Fig. 4.1b), but now the domain walls are highlighted in yellow,
according to the criterion of localizer gap d(r) < 0.1¢. The location of the average
7 (“center of mass”) for each connected domain wall is indicated by a red dot. The

extension £ of a domain wall is defined by £> = 4|r — 7|2. The red dot marked with a
cross identifies the center of mass of a percolating domain wall (£ > L).

(C = z1) for |a| < 2t. At g = 0 there is an insulator-to-insulator transition
at which C changes sign [80]. Disorder introduces minority domains with a
different Chern number than these clean values C;ean. See for example Fig. 4.1,
where i = ¢t and Cgjean = +1.

The domain walls that separate regions of different Chern number support
states close to the Fermi level, at energy E ~ hvg/¢ dictated by the requirement
that the kinematic phase upon traveling once around the domain wall cancels
the m Berry phase. When the extension ¢ of the largest domain wall reaches the
system size L thermal conduction becomes possible near the Fermi level and the
thermal insulator becomes a thermal metal. In Fig. 4.2 we show this percolation
transition of topological domain walls for a single disorder realization, upon
increasing the amplitude 6u of the potential fluctuations at fixed average /.

To identify the percolation transition we need a computationally efficient way
to measure the extension ¢ of a domain wall. We take localizer gap 6(xo, yo) <
0.17 as the criterion for a domain wall. All points r = (xg, yo) satisfying this
criterion in a connected region belong to a single domain wall . We then
compute the domain wall extension £ from the variance o2 of these points,

=20, o?=|r-F], (4.8)
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Figure 4.4. Left panel: Color scale plot of the average number (N) of percolating
domain walls, averaged over 100 disorder realizations in the chiral p-wave superconductor
(parameters A = 4t, L = 24a). The value of the Chern number C in the clean system
(0u = 0) is indicated. Right panel: Dimensionless thermal conductance for the same
system. The uniformly yellow bar at g = 0 indicates G/Gg > 1.

where f(r) averages a function f(r) over all r € D. The procedure is illustrated
in Fig. 4.3. Our criterion for a percolating domain wall is £ > L.

4.3.2 Phase diagram

The number N of percolating domain walls (with £ > L) for a given disorder
realization is averaged over the disorder. The resulting dependence of (N') on the
parameters (i and du is shown in Fig. 4.4 (left panel). The region N ~ 1 where
the domain walls percolate is clearly distinguished.

The data in Fig. 4.4 is for a relatively small system (L/a = 24), in Fig. 4.5 we
compare with a larger system. The critical disorder strength for the percolation
transition is approximately scale invariant.
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Figure 4.5. Comparison of the disorder strength dependence of the average number (N\')
of percolating domain walls for different system sizes L. The data points are averaged
over 200 disorder realizations (parameters A = 4¢, i = t).

4.3.3 Comparison with thermal conductance

So far we have considered a closed system. If we connect leads at the two ends
we can study the thermal conductance,

G =Go Trtt', Go=n*kiT/6h, (4.9)

at temperature 7', with ¢ the transmission matrix at the Fermi level. The result of
such a calculation, using the kwaNT code [99], is also shown in Fig. 4.4 (right
panel).

If we compare with the percolation transition (left panel), we see a good
quantitative agreement on the low-disorder side of the phase boundary. The
high-disorder side misses a feature in the region near g = 0, du = 4¢, where the
thermal conductance localizes more quickly than inferred from the percolating
domain walls. We are unsure about the origin of this difference. Apart from this
region the agreement is quite satisfactory, without any adjustable parameters.



4.4 CONCLUSION 67

4.4 Conclusion

We have shown that the thermal metal phase in a model of a chiral p-wave super-
conductor with electrostatic disorder has a precursor in the thermally insulating
phase: The disorder produces domain walls that separate topologically distinct
regions (different Chern number). The thermal metal—insulator transition is ac-
companied by a percolation of the domain walls across the system, providing a
transport channel for Majorana fermions (charge-neutral, low-energy excitations).

To reveal the network of domains walls we have used the matrix signature of
the spectral localizer [90, 94]. We turned to this topological invariant after we
were not able to identify localized Majorana fermions using a variation [100, 101]
of the landscape function approach that has been so succesful in the study of
Anderson localization [102, 103, 104, 105]. In a sense, the matrix signature of
the spectral localizer functions as a topological landscape function, sensitive to
topological electronic properties that remain hidden in the local density of states.

It would be interesting to study the critical exponent v for the percolation tran-
sition of the topological domain walls (the exponent that governs the divergence
of the largest domain size). Classical 2D percolation has vcjagsicat = 4/3. It is
suggestive that a recent numerical study [80] of the divergence of the localization
length at the thermal metal—insulator transition found v ~ 1.35, but the proximity
tO Velassical may well be accidental.

Data and code availability

Our computer codes are provided in a Zenodo repository [106].

Appendices

4.A Spectral localizer in a clean system

We have tested the ability of the spectral localizer (4.7) to identify the Chern num-
ber domains in a clean system, with a smoothly varying u, where the boundaries
are known analytically [80]:

0 if pu< -2t
-1 if -2t<u<0,

C= ) (4.10)
+1 if O0<pu<?2t,

0 if u>2t
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Figure 4.6. Top panel: linearly varying u(x) (at constant A = 4¢), producing a central
domain of Chern number C = 0, flanked by domains of C = +1. The domain walls
are at x/a = 6 and x/a = 12. Bottom panels: Chern number domains produced by the
spectral localizer, via Eq. (4.5), for different values of the scale parameter k. We need
k 2, 2t for reliable results.

This test allows us to find a suitable value of the scale parameter .

Refs. [90, 94] argue that « should be of the order of the norm of the Hamil-
tonian, which in our case is below 1072 ¢. We find a poor performance for such
small «, see Fig. 4.6, we need « 2 2t to reliably identify the domain walls. The
results in the main text are for k = 2.5¢.



