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Chapter 3

Luttinger liquid tensor network:
sine versus tangent dispersion of
massless Dirac fermions

3.1 Introduction

The linear energy-momentum relation, 𝐸 = ±ℏ𝑣𝑘 , of massless Dirac fermions
remains gapless in the presence of disorder, provided that a pair of fundamental
symmetries, chiral symmetry and time reversal symmetry, are not both broken
[54]. To preserve this so-called topological protection on a lattice one needs to
work around the fermion doubling obstruction [5]: if the Brillouin zone contains
multiple Dirac cones they can hybridize and open a gap at 𝐸 = 0. The nearest-
neighbor finite difference discretization suffers from this problem: The resulting
sine dispersion, 𝐸 = (ℏ𝑣/𝑎) sin 𝑎𝑘 , has a spurious second Dirac cone at the edge
𝑘 = 𝜋/𝑎 of the Brillouin zone.

It was shown recently [45, 17] that an alternative discretization of the differ-
ential operator, introduced in the 1980’s by Stacey [16], preserves a gapless Dirac
cone in a disordered system. The dispersion is a tangent, 𝐸 = (2ℏ𝑣/𝑎) tan(𝑎𝑘/2),
with a pole rather than a zero at the Brillouin zone edge. No other discretiza-
tion scheme (staggered fermions, Wilson fermions, slac fermions [18]) has this
topological protection. One fundamental consequence is that the Casimir effect
for lattice fermions requires the tangent discretization [51].

All of this is for non-interacting particles. Interacting models of massless
Dirac fermions need a lattice formulation for numerical studies [55, 56, 57, 58],
which use methods such as quantum Monte Carlo or DMRG (density matrix renor-
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malization group). The Luttinger liquid with Hubbard interaction, a paradig-
matic non-Fermi liquid [13, 21], can be solved analytically in the continuum via
bosonization [3, 20], providing a testing ground for lattice calculations. Such a
test was reported for quantum Monte Carlo in Ref. [59]. Here we consider the
DMRG implementation.

The two techniques require a different approach, each with its own challenges.
For quantum Monte Carlo the discretization is at the level of the Lagrangian, and
the challenge is to ensure a positive action determinant (avoiding the so-called
sign problem). For DMRG the discretization involves the representation of the
second quantized Hamiltonian by a tensor network [60, 61]: a product of matrices
of operators acting locally on each site. The challenge is to ensure that the rank
of each matrix (the bond dimension) is small and does not grow with the number
of sites.

Tangent fermions have a hidden locality originating from the fact that —
although the tangent discretization produces a Hamiltonian with a highly non-
local, non-decaying, coupling of distant sites [16] — the ground state can be
obtained from a local generalized eigenproblem [44]. Our key finding is that this
allows for an exact matrix-product-operator (MPO) representation of low bond
dimension. In an independent study [52], Haegeman et al. reached the same
conclusion.

In what follows we will compare the sine and tangent discretizations of the
Luttinger Hamiltonian, and test the correlators against the continuum results. We
first construct the MPO explicitly in Sec. 3.2. The correlators are calculated via
the DMRG approach and compared with bosonization in Sec. 3.3. We conclude
in Sec. 3.4. Appendix 3.A contains the connection between a local generalized
eigenproblem and a scale-independent MPO.

3.2 Matrix product operator

The starting point of a tensor network DMRG calculation [57] is the representation
of the Hamiltonian by a matrix product operator (MPO), to ensure that the
variational ground state energy can be computed efficiently for a matrix product
state.

In this section we construct the MPO representation of the one-dimensional
(1D) Dirac Hamiltonian

𝐻 = −𝑖ℏ𝑣
(
𝜕/𝜕𝑥 0

0 −𝜕/𝜕𝑥

)
, (3.1)
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discretized on a lattice. (The matrix structure refers to the spin degree of freedom.)
Once we have done that we will compute the correlators via DMRG in the presence
of a Hubbard interaction (Luttinger model).

3.2.1 Free fermions

Consider noninteracting, spinless chiral fermions on a chain of 𝑁 sites (unit
spacing), with hopping matrix elements 𝑡𝑛𝑚 (𝑛 > 𝑚 ≥ 1). (We will include the
spin degree of freedom and the electron-electron interaction later on.) For an
infinite translationally invariant lattice, 𝑡𝑛𝑚 = 𝑡 (𝑛 −𝑚) is a Fourier coefficient of
the dispersion relation,

𝐸 (𝑘) = 2 Re
∞∑︁
𝑛=1

𝑡 (𝑛)𝑒𝑖𝑛𝑘 . (3.2)

The second quantized Hamiltonian

𝐻 =

𝑁∑︁
𝑛>𝑚=1

(
𝑡𝑛𝑚𝑐

†
𝑛𝑐𝑚 + 𝑡∗𝑛𝑚𝑐†𝑚𝑐𝑛

)
(3.3)

can be rewritten as a product of matrices 𝑀 (𝑛) that act only on site 𝑛, but the
dimension of each matrix (the bond dimension) will typically grow linearly with
𝑁 .

An exact MPO representation with scale-independent bond dimension is
possible in two cases [62, 63, 64, 65]: for a short-range hopping (𝑡𝑛𝑚 ≡ 0 for
𝑛 − 𝑚 > 𝑟) and for a long-range hopping with a polynomial-times-exponential
distance dependence:

𝑡𝑛𝑚 = 2𝑡0𝑒𝑖𝜙 (𝑛 − 𝑚) 𝑝𝑒𝛽 (𝑛−𝑚) , 𝛽 ∈ C, 𝑝 ∈ N, (3.4)

and linear combinations of this functional form. While the exponent 𝛽 = 𝛽1+ 𝑖𝛽2
can be an arbitrary complex number, the power 𝑝 must be a non-negative integer
[65]. A decaying 𝑡𝑛𝑚 ∝ 1/(𝑛 − 𝑚) 𝑝 does not qualify.

The sine dispersion corresponds to a short-range, nearest-neighbor hopping,

𝑡𝑛𝑚 = (𝑡0/2𝑖)𝛿𝑛−𝑚,1 ⇔ 𝐸 (𝑘) = 𝑡0 sin 𝑘. (3.5)
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The MPO Hamiltonian has bond dimension 4,

𝐻sine =
1
2 𝑖𝑡0 [𝑀

(1)𝑀 (2) · · ·𝑀 (𝑁 ) ]1,4, (3.6a)

𝑀 (𝑛) =
©­­­«
1 𝑐𝑛 𝑐

†
𝑛 0

0 0 0 𝑐
†
𝑛

0 0 0 𝑐𝑛
0 0 0 1

ª®®®¬ . (3.6b)

A no-go theorem [5] forbids short-range hopping if one wishes to avoid
fermion doubling and preserve chiral symmetry. If we also require a scale-
independent bond dimension we need the hopping (3.4). In the simplest case
𝑝 = 0 of a purely exponential distance dependence1, one has the dispersion

𝐸 (𝑘) = 2𝑡0
𝑒𝛽1 cos 𝜙 − cos(𝛽2 + 𝑘 + 𝜙)

cos(𝛽2 + 𝑘) − cosh 𝛽1
. (3.7)

This should be a continuous function in the interval (−𝜋, 𝜋), crossing 𝐸 = 0
at 𝑘 = 0 but not at any other point in this interval. The only parameter choice
consistent with these requirements is 𝜙 = 𝜋/2, 𝛽1 = 0, 𝛽2 = 𝜋, when

𝑡𝑛𝑚 = 2𝑖𝑡0(−1)𝑛−𝑚 ⇔ 𝐸 (𝑘) = 2𝑡0 tan(𝑘/2). (3.8)

This is Stacey’s tangent dispersion2 [16].
The corresponding MPO Hamiltonian is

𝐻tangent = 2𝑖𝑡0 [𝑀 (1)𝑀 (2) · · ·𝑀 (𝑁 ) ]1,4, (3.9a)

𝑀 (𝑛) =
©­­­«
1 𝑐𝑛 𝑐

†
𝑛 0

0 −1 0 𝑐
†
𝑛

0 0 −1 𝑐𝑛
0 0 0 1

ª®®®¬ , (3.9b)

again with bond dimension 4, differing from the sine MPO (3.6) by the −1’s on
the diagonal.

1The tangent discretization (3.8) corresponds to Eq. (3.4) with 𝑝 = 0 (purely exponential
distance dependence). More generally, one can take 𝑝 = 1, 2, . . . (polynomial-times-exponential
distance dependence), in which case the dispersion contains terms ∝ tan(𝑘/2) (1 + cos 𝑘)−𝑝 .
The MPO representation of the discretized Hamiltonian remains scale independent, but the bond
dimension is larger than for 𝑝 = 0.

2The Fourier series tan(𝑘/2) = −2
∑∞
𝑛=1 (−1)𝑛 sin 𝑛𝑘 implied by the identification

(3.8) should be understood in the sense of a distribution:
∫ 𝜋

0 tan(𝑘/2) 𝑓 (𝑘) 𝑑𝑘 =

−2
∑∞
𝑛=1 (−1)𝑛

∫ 𝜋

0 𝑓 (𝑘) sin 𝑛𝑘 𝑑𝑘 , with 𝑓 (𝑘) a test function that vanishes at 𝜋.
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3.2.2 Helical Luttinger liquid

We next include the spin degree of freedom and consider helical instead of chiral
fermions,

𝐻 =

𝑁∑︁
𝑛>𝑚=1

[
𝑡𝑛𝑚

(
𝑐
†
𝑛↑𝑐𝑚↑ − 𝑐

†
𝑛↓𝑐𝑚↓

)
+ H.c.

]
+

𝑁∑︁
𝑛=1

𝑈𝑛. (3.10)

(H.c. denotes the Hermitian conjugate.) We have added an on-site Hubbard
interaction,

𝑈𝑖 = 𝑈 (𝑛𝑖↑ − 1
2 ) (𝑛𝑖↓ −

1
2 ), 𝑛𝑖𝜎 = 𝑐

†
𝑖𝜎
𝑐
𝑖𝜎
. (3.11)

The MPO representation for the tangent discretization (3.8) is

𝐻tangent = 2𝑖𝑡0 [𝑀 (1)𝑀 (2) · · ·𝑀 (𝑁 ) ]1,6, (3.12a)

𝑀 (𝑛) =

©­­­­­­­­­«

1 𝑐𝑛↑ 𝑐
†
𝑛↑ 𝑐𝑛↓ 𝑐

†
𝑛↓ (2𝑖𝑡0)−1𝑈𝑛

0 −1 0 0 0 𝑐
†
𝑛↑

0 0 −1 0 0 𝑐𝑛↑
0 0 0 −1 0 −𝑐†

𝑛↓
0 0 0 0 −1 −𝑐𝑛↓
0 0 0 0 0 1

ª®®®®®®®®®¬
, (3.12b)

with bond dimension 6. For the sine discretization the −1’s on the diagonal are
replaced by 0’s,

𝐻sine =
1
2 𝑖𝑡0 [𝑀

(1)𝑀 (2) · · ·𝑀 (𝑁 ) ]1,6, (3.13a)

𝑀 (𝑛) =

©­­­­­­­­­«

1 𝑐𝑛↑ 𝑐
†
𝑛↑ 𝑐𝑛↓ 𝑐

†
𝑛↓ ( 1

2 𝑖𝑡0)
−1𝑈𝑛

0 0 0 0 0 𝑐
†
𝑛↑

0 0 0 0 0 𝑐𝑛↑
0 0 0 0 0 −𝑐†

𝑛↓
0 0 0 0 0 −𝑐𝑛↓
0 0 0 0 0 1

ª®®®®®®®®®¬
. (3.13b)

To deal with fermionic statistics, we apply the Jordan-Wigner transformation
to the MPOs (see App. 3.B).

The MPOs written down so far refer to an open chain of 𝑁 sites. To minimize
finite-size effects periodic boundary conditions are preferrable: the chain is
wrapped around a circle, and sites 𝑛 and 𝑛 + 𝑁 are identified. A translationally
invariant hopping, 𝑡𝑛𝑚 = 𝑡 (𝑛 − 𝑚), then requires

𝑡 (𝑁 − 𝑛) = 𝑡 (𝑛)∗, 1 ≤ 𝑛 ≤ 𝑁 − 1. (3.14)
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For 𝑁 odd the Hamiltonian in the tangent discretization (3.8) satisfies this
condition without further modification: because of the all-to-all hopping a closing
of the chain on a circle makes no difference. (For 𝑁 even one would have
antiperiodic boundary conditions3.) We can therefore still use the MPO (3.12).

The sine discretization (3.5) requires an additional hopping term between
sites 1 and 𝑁 . We construct this MPO explicitly in App. 3.C.

3.3 Correlators

3.3.1 Free fermions

The propagator

𝐶𝜎 (𝑥, 𝑥′) = ⟨𝑐†𝜎 (𝑥)𝑐𝜎 (𝑥′)⟩, 𝜎 ∈ {↑, ↓} ↔ {1,−1}, (3.15)

of a non-interacting 1D Dirac fermion with dispersion 𝐸 (𝑘) = ±ℏ𝑣𝑘 can be
readily evaluated:

𝐶𝜎 (𝑥, 𝑥′) =
1
𝑍

Tr 𝑒−𝛽𝐻𝑐†𝜎 (𝑥)𝑐𝜎 (𝑥′) =
∫ ∞

−∞

𝑑𝑘

2𝜋
𝑒𝑖𝑘 (𝑥−𝑥

′ )

1 + 𝑒𝛽𝐸 (𝑘 )

=
𝜎ℏ𝑣

2𝑖𝛽 sinh[𝜋(ℏ𝑣/𝛽) (𝑥 − 𝑥′)] , (3.16)

for 𝑥 ≠ 𝑥′, with 𝑍 = Tr 𝑒−𝛽𝐻 the partition function at inverse temperature
𝛽 = 1/𝑘B𝑇 . This reduces to

lim
𝛽→∞

𝐶𝜎 (𝑥, 𝑥′) =
𝜎

2𝜋𝑖(𝑥 − 𝑥′) (3.17)

in the zero-temperature limit.
On a lattice (𝑥/𝑎 = 𝑛 ∈ Z, 𝑐𝜎 (𝑥 = 𝑛𝑎) ≡ 𝑐𝜎 (𝑛)) the integration range of

𝑘 is restricted to the interval (−𝜋/𝑎, 𝜋/𝑎). In the zero-temperature limit, with
𝜎𝐸 (𝑘) < 0 for −𝜋/𝑎 < 𝑘 < 0, one then finds

𝐶𝜎 (𝑛, 𝑚) = 𝜎
∫ 0

−𝜋/𝑎

𝑑𝑘

2𝜋
𝑒𝑖𝑘𝑎 (𝑛−𝑚) =

{
2𝜎

2𝜋𝑖𝑎 (𝑛−𝑚) if 𝑛 − 𝑚 is odd,
0 if 𝑛 − 𝑚 is even,

(3.18)

3As a consistency check, we note that in real space the fact that an odd (even) number 𝑁 of lattice
sites corresponds to periodic (antiperiodic) boundary conditions, ensures in momentum space that
the discrete wave numbers avoid the pole of the tangent dispersion relation at the Brillouin zone
boundary.
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irrespective of the functional form of the dispersion relation𝐸 (𝑘). The continuum
result (3.17) is only recovered if one averages over even and odd lattice sites.

The even-odd oscillation also appears in the transverse spin correlator,

𝑅(𝑥, 𝑥′) = 1
4 ⟨𝒄

†(𝑥)𝜎𝑥𝒄(𝑥) 𝒄†(𝑥′)𝜎𝑥𝒄(𝑥′)⟩, (3.19)

defined in terms of the spinor 𝒄 = (𝑐↑, 𝑐↓) and Pauli matrix 𝜎𝑥 .
For free fermions Wick’s theorem gives

𝑅(𝑥, 𝑥′) = −1
4

(
𝐶↑ (𝑥, 𝑥′)𝐶↓ (𝑥′, 𝑥) + 𝐶↓ (𝑥, 𝑥′)𝐶↑ (𝑥′, 𝑥)

)
, (3.20)

which at zero temperature results in

𝑅(𝑥, 𝑥′) = 1
2
[2𝜋(𝑥 − 𝑥′)]−2, (3.21)

in the continuum and

𝑅(𝑛, 𝑚) =
{

2[2𝜋𝑎(𝑛 − 𝑚)]−2 if 𝑛 − 𝑚 is odd,
0 if 𝑛 − 𝑚 is even.

(3.22)

The even-odd oscillation [15] can be removed in a path integral formulation,
by discretizing the Lagrangian in both space and (imaginary) time [59], but in
the Hamiltonian formulation considered here it is unavoidable. In what follows
we will consider smoothed lattice correlators, defined by averaging the fermionic
operators 𝑐𝜎 (𝑛) over nearby lattice sites. The precise form of the smoothing
profile will not matter in the continuum limit 𝑎 → 0, we take the simple form

𝑐𝑛𝜎 = 1
2𝑐𝑛𝜎 + 1

2𝑐𝑛+1𝜎 , (3.23)

so an equal-weight average over adjacent sites. The smoothed correlators are
then defined by

𝐶̄𝜎 (𝑛, 𝑚) = ⟨𝑐†𝑛𝜎𝑐𝑚𝜎⟩, (3.24a)

𝑅̄(𝑛, 𝑚) = 1
4 ⟨𝒄

†
𝑛𝜎𝑥𝒄𝑛 𝒄†𝑚𝜎𝑥𝒄𝑚⟩. (3.24b)

3.3.2 DMRG calculation with Hubbard interaction

We represent the ground state wave functionΨ of the Luttinger liquid Hamiltonian
(3.10) by a matrix product state (MPS) and carry out the tensor network DMRG
algorithm [57] to variationally minimize ⟨Ψ|𝐻 |Ψ⟩/⟨Ψ|Ψ⟩. (We used the TeNPy
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Library [66] for these calculations.) We compare the results for tangent and
sine discretization. The MPOs for both are exact with small bond dimension
(given explicitly in App. 3.B and App. 3.C). The bond dimension 𝜒 of the MPS
is increased until convergence is reached (see App. 3.D).

The Luttinger liquid is simulated at zero temperature (𝛽 → ∞) and at fixed
particle number N = N↑ + N↓ (canonical ensemble). We take 𝑁 = 51 an
odd integer, with periodic boundary conditions for the MPO. The periodicity of
the MPS is not prescribed a priori, to simplify the DMRG code. By setting
N↑ = (𝑁 + 1)/2 and N↓ = (𝑁 − 1)/2 we model a half-filled band.

The bosonization theory of an infinite Luttinger liquid gives a power law
decay of the zero-temperature, zero-chemical-potential correlators [13],

𝐶𝜎 (𝑥, 𝑥′) ∝ |𝑥 − 𝑥′ |−(1/2) (𝐾+1/𝐾 ) , (3.25a)

𝑅(𝑥, 𝑥′) ∝ |𝑥 − 𝑥′ |−2𝐾 , (3.25b)

𝐾 =
√︁
(1 − 𝜅)/(1 + 𝜅), 𝜅 =

𝑈

2𝜋𝑡0
∈ (−1, 1). (3.25c)

For repulsive interactions, 𝑈 > 0 ⇒ 𝐾 < 1, the transverse spin correlator 𝑅
decays more slowly than the 1/𝑥2 decay expected from a Fermi liquid.

The numerical results are shown in Figs. 3.1 and 3.2 (data points). The curves
are the continuum bosonization formulas (including finite-size corrections, see
App. 3.E). The lattice calculations with the tangent dispersion (crosses) agree
nicely with the continuum formulas, without any adjustable parameter. The sine
dispersion (plusses), in contrast, only agrees for free fermions. With interactions
the sine dispersion gives an exponential decay of the propagator, indicative of the
opening of an excitation gap.

3.4 Conclusion

We have constructed a Hamiltonian-based tensor network formulation of a Lut-
tinger liquid on a 1D lattice, complementing the Lagrangian-based path integral
formulation of Ref. [59]. The key step is the Hermitian discretization of the mo-
mentum operator −𝑖ℏ𝑑/𝑑𝑥 in a way that preserves the fundamental symmetries
(chiral symmetry and time reversal symmetry) of massless Dirac fermions. We
have compared two discretizations, both allowing for a tensor network of low,
scale-independent bond dimension. In this concluding section we also discuss a
third.
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Figure 3.1. Data points: absolute value of the propagator 𝐶̄𝜎 (𝑛, 𝑚), defined in Eq.
(3.24a) for 𝜎 =↑, 𝑛 = 𝑥/𝑎 and 𝑚 = 0, calculated in the tensor network of 𝐿/𝑎 = 51
sites and bond dimension 𝜒 = 4096 of the matrix-product state. Results are shown for
the tangent and sine discretization of the Luttinger Hamiltonian, for free fermions and
for a repulsive Hubbard interaction of strength 𝜅 = 𝑈/2𝜋𝑡0 = 0.3. The curves are the
analytical results in the continuum.

The three discretizations of the differential operator on a 1D lattice (unit
lattice constant 𝑎) are the following:

𝑑𝑓

𝑑𝑥
↦→ 1

2 [ 𝑓 (𝑥 + 1) − 𝑓 (𝑥 − 1)] (sine dispersion), (3.26a)

𝑑𝑓

𝑑𝑥
↦→ 2

∞∑︁
𝑛=1

(−1)𝑛 [ 𝑓 (𝑥 − 𝑛) − 𝑓 (𝑥 + 𝑛)]

(tangent dispersion), (3.26b)

𝑑𝑓

𝑑𝑥
↦→

∞∑︁
𝑛=1

(−1)𝑛 1
𝑛
[ 𝑓 (𝑥 − 𝑛) − 𝑓 (𝑥 + 𝑛)]

(sawtooth dispersion). (3.26c)

The corresponding dispersion relations are shown in Fig. 3.3. The energy-
momentum relation is a sine for the nearest-neighbor difference and a tangent for
the long-range Stacey derivative [16]. The third dispersion is a (piecewise linear)
sawtooth, produced by a nonlocal discretization known as the slac derivative in
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Figure 3.2. Same as Fig. 3.1, but now for the transverse spin correlator 𝑅̄(𝑛, 𝑚) defined
in Eq. (3.24b).

the particle physics literature [35].
The sine dispersion suffers from fermion doubling [18] — a second species of

low-energy excitations appears at the Brillouin zone boundary. The tangent and
sawtooth dispersion describe an unpaired chiral fermion, they rely on nonlocality
to work around the theorem [5] that requires chiral fermions to come in pairs in
any local theory on a lattice.

Both the Stacey derivative and the slac derivative couple arbitarily distant
sites 𝑛, 𝑚, the former ∝ (−1)𝑛−𝑚 and the latter ∝ (−1)𝑛−𝑚× (𝑛−𝑚)−1. From the
perspective of a tensor network there is an essential difference between the two:
Because the MPO condition (3.4) allows for an exponential distance dependence
but excludes a coupling that decays as a power law with distance, only the
tangent dispersion has an exact MPO representation with scale-independent bond
dimension — the sawtooth dispersion does not. Tangent fermions have a hidden
locality, their spectrum is governed by a local generalized eigenproblem [44],
which is at the origin of the efficient tensor network (see App. 3.A).

The method we developed here enables simulations of systems with various
filling factors and scalar potentials, including those with disorder. By focusing
on the impurity-free Luttinger liquid we could in this work test the numerical
approach against analytical formulas. The close agreement gives us confidence
that tangent fermion DMRG is a reliable method, which at least in 1D is highly
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Figure 3.3. The three ways to discretize the derivative operator in Eq. (3.26) produce
three different dispersion relations: sine (blue), tangent (red), and sawtooth (black). The
energy-momentum relation of a chiral fermion is obtained from the discretized derivative
by substituting 𝑓 (𝑥 + 𝑛𝑎) = 𝑒𝑖𝑛𝑘𝑎 𝑓 (𝑥) and equating −𝑖ℏ𝑣𝑑𝑓 /𝑑𝑥 = 𝐸 𝑓 . The tangent and
sawtooth dispersions are discontinuous at the Brillouin zone boundaries (𝑘 = ±𝜋/𝑎),
where the sine dispersion has a second root (fermion doubling). The three dispersion
relations coincide near 𝑘 = 0, so the corresponding discretized derivatives are equivalent
if applied to functions that vary smoothly on the scale of the lattice spacing.

efficient.
The next step is to apply it to problems where no analytics exists, condensed

matter and particle physics provide a variety of such problems. One class of
applications is the stability of gapless chiral modes to the combination of disorder
and interactions. Existing DMRG studies [67] work around the fermion doubling
obstruction by studying a strip geometry with two edges — tangent fermions
would allow for a single-edge implementation.

For such applications it would of interest to proceed from 1D to 2D. It is known
that in two spatial dimensions the tangent discretization of 𝜎𝑥𝑑𝑓 /𝑑𝑥 + 𝜎𝑦𝑑𝑓 /𝑑𝑦
still allows for a reformulation of H𝜓 = 𝐸𝜓 as a generalized eigenvalue problem
[44]:

Q𝜓 = 𝐸P𝜓, P = 1
4 (1 + cos 𝑘𝑥) (1 + cos 𝑘𝑦), (3.27)

Q = 1
2𝜎𝑥 (1 + cos 𝑘𝑦) sin 𝑘𝑥 + 1

2𝜎𝑦 (1 + cos 𝑘𝑥) sin 𝑘𝑦 .

Therefore, we expect that an efficient 2D tensor network representation of the 2D
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tangent Hamiltonian in the form of Projected Entangled Pair Operators (PEPO)
[58] can be constructed similarly to the 1D MPO approach.

Appendices

3.A Local generalized eigenproblem allows for a scale-
independent MPO

The DMRG approach described in the main text works because the tangent
fermion Hamiltonian, while having a highly nonlocal long-range coupling, can
still be described by an MPO with a low and scale-independent bond dimension.
Ref. [44] attributes the “hidden locality” of tangent fermions to the fact that their
spectrum is obtained from a local generalized eigenproblem. Here we make the
connection to the scale-independent MPO explicit.

Consider 1D lattice fermions with a dispersion relation 𝐸 (𝑘) = 𝑃(𝑘)/𝑄(𝑘)
such that both 𝑃(𝑘) and 𝑄(𝑘) are polynomials of finite degree in 𝑒𝑖𝑘 ,

𝑃(𝑘) =
𝑁𝑃∑︁
𝑛=0

𝑝𝑛𝑒
𝑖𝑛𝑘 , 𝑄(𝑘) =

𝑁𝑄∑︁
𝑛=0

𝑞𝑛𝑒
𝑖𝑛𝑘 . (3.28)

For example, the tangent dispersion 𝐸 (𝑘) = 2 tan(𝑘/2) corresponds to 𝑃(𝑘) =
2𝑖(1 − 𝑒𝑖𝑘), 𝑄(𝑘) = 1 + 𝑒𝑖𝑘 . In real space the operators 𝑃 and 𝑄 couple sites
separated by at most 𝑁𝑃 or 𝑁𝑄 lattice spacings. The generalized eigenproblem
𝑃Ψ = 𝐸𝑄Ψ is therefore local.

Consider first the case that

𝑄(𝑘) =
𝑁𝑄∏
𝑛=1

(𝛼𝑛 − 𝑒𝑖𝑘) (3.29)

has distinct roots 𝛼𝑛. The partial fraction decomposition is

𝑃(𝑘)
𝑄(𝑘) = 𝐷 (𝑘) +

𝑁𝑄∑︁
𝑛=1

𝛽𝑛

𝛼𝑛 − 𝑒𝑖𝑘
(3.30)

with 𝐷 (𝑘) a polynomial of degree 𝑁𝑃 − 𝑁𝑄 (vanishing if 𝑁𝑃 < 𝑁𝑄). The
sum over 𝑛 corresponds in real space to a sum over coupling terms 𝑡𝑖 𝑗 with
an exponential spacing dependence ∝ (1/𝛼𝑛)𝑖− 𝑗 for 𝑖 > 𝑗 . So in this case
of distinct roots we are guaranteed to have an exact MPO representation with
scale-independent bond dimension.
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The situation is slightly more complicated if 𝑄(𝑘) has repeated roots,

𝑄(𝑘) =
𝐿∏
𝑛=1

(𝛼𝑛 − 𝑒𝑖𝑘)ℓ𝑛 ,
𝐿∑︁
𝑛=1

ℓ𝑛 = 𝑁𝑄 . (3.31)

The partial fraction decomposition now reads

𝑃(𝑘)
𝑄(𝑘) = 𝐷 (𝑘) +

𝐿∑︁
𝑛=1

ℓ𝑛∑︁
𝑚=1

𝛽𝑛𝑚

(𝛼𝑛 − 𝑒𝑖𝑘)𝑚
. (3.32)

A term 1/(𝛼𝑛 − 𝑒𝑖𝑘)𝑚 corresponds in real space to a coupling 𝑡𝑖 𝑗 ∝ (1/𝛼𝑛)𝑖− 𝑗 ×
𝑍 (𝑖 − 𝑗) that is an exponential times a polynomial 𝑍 in the spacing of degree
𝑚 − 1. This is still of the form (3.4) that allows for a scale-independent MPO
[65].

3.B Jordan-Wigner transformation

To enable the DMRG calculation, we need to convert the fermionic operators
𝑐𝑛𝜎 into bosonic operators 𝑎𝑛𝜎 (hard-core bosons, excluding double occupancy
of a state). This is achieved by the Jordan-Wigner transformation,

𝑐𝑛↑ = 𝐹1𝐹2 · · · 𝐹𝑛−1𝑎𝑛↑,

𝑐𝑛↓ = 𝐹1𝐹2 · · · 𝐹𝑛−1𝐹𝑛𝑎𝑛↓,
(3.33)

with fermion parity operator

𝐹𝑖 = (1 − 2𝑛𝑖↑) (1 − 2𝑛𝑖↓) = (−1)𝑛𝑖↑+𝑛𝑖↓ . (3.34)

The transformation does not increase the bond dimension of the MPO, instead
of Eq. (3.12) one now has

𝐻tangent = 2𝑖𝑡0 [𝑀 (1)𝑀 (2) · · ·𝑀 (𝑁 ) ]1,6, (3.35a)

𝑀 (𝑛) =

©­­­­­­­­­«

1 𝑎𝑛↑𝐹𝑛 𝑎
†
𝑛↑𝐹𝑛 𝑎𝑛↓ 𝑎

†
𝑛↓ (2𝑖𝑡0)−1𝑈𝑛

0 −𝐹𝑛 0 0 0 𝑎
†
𝑛↑

0 0 −𝐹𝑛 0 0 𝑎𝑛↑
0 0 0 −𝐹𝑛 0 −𝐹𝑛𝑎†𝑛↓
0 0 0 0 −𝐹𝑛 −𝐹𝑛𝑎𝑛↓
0 0 0 0 0 1

ª®®®®®®®®®¬
. (3.35b)
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This is for the tangent discretization. For the sine discretization the −𝐹𝑛 on the
diagonal are replaced by 0,

𝐻sine =
1
2 𝑖𝑡0 [𝑀

(1)𝑀 (2) · · ·𝑀 (𝑁 ) ]1,6, (3.36a)

𝑀 (𝑛) =

©­­­­­­­­­«

1 𝑎𝑛↑𝐹𝑛 𝑎
†
𝑛↑𝐹𝑛 𝑎𝑛↓ 𝑎

†
𝑛↓ ( 1

2 𝑖𝑡0)
−1𝑈𝑛

0 0 0 0 0 𝑎
†
𝑛↑

0 0 0 0 0 𝑎𝑛↑
0 0 0 0 0 −𝐹𝑛𝑎†𝑛↓
0 0 0 0 0 −𝐹𝑛𝑎𝑛↓
0 0 0 0 0 1

ª®®®®®®®®®¬
. (3.36b)

3.C Periodic boundary condition for MPO with sine dis-
cretization

The sine discretization (3.5) requires an additional hopping term between sites 1
and 𝑁 . The modified MPO has bond dimension 10,

𝐻sine =
1
2 𝑖𝑡0 [𝑀̃

(1) 𝑀̃ (2) · · · 𝑀̃ (𝑁 ) ]1,6, (3.37a)

𝑀̃ (𝑛) =

(
𝑀 (𝑛) 𝛿𝑛,1𝑊

(𝑛)

𝛿𝑛,𝑁𝑊
(𝑛) (1 − 𝛿𝑛,1 − 𝛿𝑛,𝑁 )𝑊 (𝑛)

)
, (3.37b)

with 𝑀 (𝑛) as in Eq. (3.36) and

𝑊 (1) =

©­­­­­­­­«

𝑎1↑𝐹1 𝑎
†
1↑𝐹1 𝑎1↓ 𝑎

†
1↓

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ª®®®®®®®®¬
, (3.37c)

𝑊 (1<𝑛<𝑁 ) =
©­­­«
𝐹𝑛 0 0 0
0 𝐹𝑛 0 0
0 0 𝐹𝑛 0
0 0 0 𝐹𝑛

ª®®®¬ , (3.37d)

𝑊 (𝑁 ) =

©­­­­«
0 0 0 0 0 𝑎

†
𝑁↑

0 0 0 0 0 𝑎𝑁↑
0 0 0 0 0 −𝐹𝑁𝑎†𝑁↓
0 0 0 0 0 −𝐹𝑁𝑎𝑁↓

ª®®®®¬
(3.37e)



3.D Convergence of the DMRG calculations 55

Figure 3.4. Log-linear plot of the Schmidt coefficients 𝜆𝑛 of the ground state wave
function of the Luttinger liquid Hamiltonian (3.10) (𝑈 = 𝑡0, 𝑁 = 11 partitioned into
𝑁1 = 5 and 𝑁2 = 6), for the sine and tangent dispersions (3.5) and (3.8). The exponential
decay allows for an MPS with bond dimension 𝜒 ≪ 4𝑁/2.

3.D Convergence of the DMRG calculations

The tensor network formulation of the Luttinger liquid on an 𝑁-site chain is based
on two matrix-product representations: of the operator 𝐻 (MPO) and of the state
Ψ (MPS). The MPO is exact, in terms of an 𝑁-fold product of 6 × 6 matrices of
creation and annihilation operators.

The MPS is approximate: defined on 𝑁 sites with physical dimensional 𝑑,
it is an 𝑁-fold product of 𝜒 × 𝜒 × 𝑑 tensors that introduces an error of order
𝑁

∑
𝑛>𝜒 𝜆

2
𝑛, with 1 ≥ 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑑𝑁/2 ≥ 0 the coefficients in the Schmidt

decomposition of Ψ ∈ H1 ⊗ H2 (describing the entanglement between the first
and second half of the chain, with Hilbert spaces H1 and H2) [68].

The MPS is efficient at bond dimension 𝜒 ≪ 𝑑𝑁/2 if the Schmidt coefficients
𝜆𝑛 decrease exponentially with 𝑛. In Fig. 3.4 we check this for both the sine
and tangent dispersions. In Fig. 3.5 we show the convergence of the DMRG
calculation with increasing 𝜒. We conclude that 𝜒 = 46 ≪ 425 (in our case
𝑑 = 4) is sufficient for the results to converge to the expected behavior.
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Figure 3.5. Dependence of the propagator on the bond dimension 𝜒 of the MPS in
the tangent fermion Luttinger liquid (𝐿/𝑎 = 51, 𝜅 = 0.3). The data in Fig. 3.1 (black
crosses) corresponds to 𝜒 = 4096.

3.E Bosonization results with finite-size effects

The power law correlators (3.25) follow from bosonization of the helical Luttinger
liquid in the limit of an infinite system [13]. To reliably compare with the
numerical results on a lattice of length 𝐿 we need to include finite size effects [14].
In Ref. [59] such a calculation was reported for the grand canonical ensemble
(fixed chemical potential) at finite temperature, appropriate for quantum Monte
Carlo. For the DMRG calculations we need the results at zero temperature in the
canonical ensemble (fixed particle number N = N↑ + N↓).

The Hamiltonian of a helical Luttinger liquid with Hubbard interaction on a
ring of length 𝐿 (periodic boundary conditions) is given by

𝐻 =

𝐿/2∫
−𝐿/2

𝑑𝑥

(
𝑣𝜓

†
↑ (𝑥)𝑝𝑥𝜓↑ (𝑥) − 𝑣𝜓†

↓ (𝑥)𝑝𝑥𝜓↓ (𝑥) +𝑈𝑎𝜌↑ (𝑥)𝜌↓ (𝑥)
)
. (3.38)

The density 𝜌𝜎 = : 𝜓†
𝜎𝜓𝜎 : is normal ordered — the Fermi sea of a half-filled

band (𝑁 particles) is subtracted.
The bosonization results in the canonical ensemble at zero temperature are
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[59]

𝐶𝜎 (𝑥, 0) =
𝜎𝑒𝑖 𝜋 (2N𝜎−𝑁 )𝑥/𝐿

2𝜋𝑖𝑎∗ | (𝐿/𝜋𝑎∗) sin(𝜋𝑥/𝐿) | (1/2) (𝐾+1/𝐾 ) , (3.39a)

𝑅(𝑥, 0) =
cos

(
2𝜋(N − 𝑁)𝑥/𝐿

)
2(2𝜋𝑎∗)2 | (𝐿/𝜋𝑎∗) sin(𝜋𝑥/𝐿) |2𝐾

, (3.39b)

𝐾 =
√︁
(1 − 𝜅)/(1 + 𝜅), 𝜅 =

𝑈

2𝜋𝑡0
∈ (−1, 1). (3.39c)

The hopping energy is 𝑡0 and 𝑎∗ is a short-distance (UV) regularization constant.
For the comparison with a lattice calculation we identify 𝑡0 = ℏ𝑣/𝑎 and take
𝐿/𝑎 = 𝑁 an odd integer. The half-filled band corresponds to N𝜎 = (𝑁 + 𝜎)/2.
To relate the lattice constant 𝑎 to the continuum regularization constant 𝑎∗ we
argue as follows.

In the continuum theory [14] large momentum transfers 𝑞 are cut-off by the
substitution

𝑐
†
𝜎,𝑞/2𝑐−𝑞/2 ↦→ 𝑒−𝑞𝑎∗/2𝑐†

𝜎,𝑞/2𝑐−𝑞/2. (3.40)
On the lattice the averaging (3.23) takes care of the UV regularization,

𝑐
†
𝜎,𝑞/2𝑐−𝑞/2 ↦→ 𝑐

†
𝜎,𝑞/2𝑐𝜎,−𝑞/2 = 𝑓 (𝑞)𝑐†

𝜎,𝑞/2𝑐𝜎,−𝑞/2,

𝑓 (𝑞) = 1
4 (1 + 𝑒−𝑖𝑞𝑎/2)2, | 𝑓 (𝑞) | = cos2(𝑞𝑎/4).

(3.41)

We fix the ratio 𝑎/𝑎∗ by equating the integrated weight factors,∫ 2𝜋/𝑎

0
𝑒−𝑞𝑎∗/2 𝑑𝑞 =

∫ 2𝜋/𝑎

0
| 𝑓 (𝑞) | 𝑑𝑞 ⇒ 𝑎/𝑎∗ ≈ 2. (3.42)

The resulting correlators are plotted in Figs. 3.1 and 3.2.

3.F Alternative tensor network representation of Ref.
[52]

An alternative tensor network representation of the problem has been developed
in Ref. [52], starting from the transformations

𝒂 = 𝐷†𝒄, 𝒃 = 𝐷−1𝒄, 𝐷𝑛𝑚 = 1
2 (𝛿𝑛,𝑚 + 𝛿𝑛,𝑚−1), (3.43)

of the free fermion operators 𝑐𝑛. These are not canonical transformations, as a
consequence the commutation relations of the 𝑎- and 𝑏-operators are nontrivial:

{𝑎𝑛, 𝑎†𝑚} = (𝐷†𝐷)𝑛𝑚, {𝑏𝑛, 𝑏†𝑚} = (𝐷†𝐷)−1
𝑛𝑚,

{𝑐𝑛, 𝑐†𝑚} = 𝛿𝑛𝑚, {𝑏𝑛, 𝑎†𝑚} = 𝛿𝑛𝑚.
(3.44)



58 Chapter 3. Luttinger liquid tensor network

The corresponding 𝑁-fermion bases in Fock space are

|𝜓⟩ =
∑︁
𝑛𝑖=0,1

𝜓𝛼𝑛1,...,𝑛𝑁
|𝑛1, ..., 𝑛𝑁 ⟩𝛼,

|𝑛1, ..., 𝑛𝑁 ⟩𝛼 = (𝛼†1)
𝑛1 ...(𝛼†

𝑁
)𝑛𝑁 ,

(3.45)

with 𝛼 ∈ {𝑎, 𝑏, 𝑐}. Only the 𝑐-basis is orthonormal, the two other bases produce
non-diagonal norm matrices 𝑁̃ ,

𝑎⟨𝑚1, ..., 𝑚𝑁 |𝑛1, ..., 𝑛𝑁 ⟩𝑎 = 𝑁̃𝑚1,...,𝑚𝑁
𝑛1,...,𝑛𝑁

,

𝑏⟨𝑚1, ..., 𝑚𝑁 |𝑛1, ..., 𝑛𝑁 ⟩𝑏 = (𝑁̃−1)𝑚1,...,𝑚𝑁
𝑛1,...,𝑛𝑁

,

𝑐⟨𝑚1, ..., 𝑚𝑁 |𝑛1, ..., 𝑛𝑁 ⟩𝑐 = 𝛿𝑚1𝑛1 · · · 𝛿𝑚𝑁𝑛𝑁 . (3.46)

The 𝑎 and 𝑏 bases are bi-orthogonal,

𝑎⟨𝑚1, ..., 𝑚𝑁 |𝑛1, ..., 𝑛𝑁 ⟩𝑏 = 𝛿𝑚1𝑛1 · · · 𝛿𝑚𝑁𝑛𝑁 . (3.47)

The motivation for these transformations is that the tangent fermion Hamil-
tonian becomes local in terms of the 𝑏-operators,

𝐻tangent = 2𝑖𝑡0
𝑁∑︁

𝑛>𝑚=1
(−1)𝑛−𝑚

(
𝑐†𝑛𝑐𝑚 − 𝑐†𝑚𝑐𝑛

)
(3.48a)

=
𝑡0

2𝑖

𝑁∑︁
𝑛=1

(
𝑏
†
𝑛+1𝑏𝑛 − 𝑏

†
𝑛𝑏𝑛+1

)
. (3.48b)

Matrix elements of𝐻tangent in the 𝑎-basis, orthogonal to the 𝑏-basis, can therefore
be evaluated efficiently.

The key step of Ref. [52] is to derive a scale-independent MPO representation
of the norm matrix 𝑁̃ in the 𝑎-basis. We have followed a different route, we stay
with the orthonormal 𝑐-basis and a nonlocal Hamiltonian, but we have found that
it does not stand in the way of a scale-independent MPO representation.



Chapter 4

Majorana-metal transition in a
disordered superconductor:
percolation in a landscape of
topological domain walls

4.1 Introduction

While a superconductor is a perfect conductor of electricity, it generally conducts
heat poorly. Adding disorder is not expected to improve this, but in a two-
dimensional (2D) superconductor with chiral p-wave pairing [69] the unexpected
happens: If sufficiently many defects are added the thermal insulator becomes
a thermal metal [70, 71, 72]. This unusual state is known as a Majorana metal,
because the quasiparticles that conduct the heat are Majorana fermions (equal-
weight superpositions of electrons and holes). Although the transition from a
thermal insulator to a thermal metal has not yet been observed in experiments, it
has been demonstrated in computer simulations [73, 74, 75, 76, 77, 78, 79, 80].

The Majorana-metal transition is well understood if the defects consist of the
Abrikosov vortices that appear when a perpendicular magnetic field is applied to a
type-II superconductor. A vortex can bind sub-gap quasiparticles [81], but bound
states in nearby vortices will not typically be aligned in energy, making them
inefficient for heat transport. A special property of a chiral p-wave superconductor
is that its vortices have a bound state exactly in the middle of the gap (𝐸 = 0, the
Fermi level), a socalled Majorana zero-mode [82, 83, 84, 85, 86]. The energetic
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alignment of Majorana zero-modes allows for resonant heat conduction when the
density of Abrikosov vortices crosses a critical threshold [73, 74].

Electrostatic disorder in zero magnetic field can also produce a thermal metal
phase [75]. The phase transition falls in the same universality class D as for vortex
disorder [80], and one would expect the mechanism to be related in the same way
to the appearance of Majorana zero-modes — even without any vortices to bind
them. Can we demonstrate that in a computer simulation?

To address this question we use the spectral localizer approach pioneered by
Loring and Schulz-Baldes [87, 88, 89, 90, 91, 92, 93, 94]. The spectral localizer
embeds the Hamiltonian ±𝐻 on the diagonal of a 2 × 2 matrix, with the position
operator 𝑥 ± 𝑖𝑦 on the off-diagonal. Its spectrum quantifies whether Hamiltonian
and position can be made commuting by a deformation that does not close the
excitation gap [95, 96].

In a class D system the matrix signature of the spectral localizer (number of
positive minus number of negative eigenvalues) identifies domains of different
Chern number [90, 94]. As discussed by Volovik [97], the domain walls support
low-lying states at energy 𝐸 ≃ ℏ𝑣F/ℓ for a domain of linear dimension ℓ. These
states become Majorana zero-modes in the limit ℓ → ∞ of a percolating domain
wall. By identifying the metal-insulator transition with the percolation transition
of the domain walls we construct the phase diagram in a closed system, and
compare with calculations based on the thermal conduction in an open system
[75, 80].

4.2 Topological landscape function

4.2.1 Lattice Hamiltonian

The Bogoliubov-De Gennes Hamiltonian for a chiral p-wave superconductor is

𝐻BdG =

(
𝑝2/2𝑚 − 𝐸F 𝑣Δ(𝑝𝑥 − 𝑖𝑝𝑦)
𝑣Δ(𝑝𝑥 + 𝑖𝑝𝑦) 𝐸F − 𝑝2/2𝑚

)
. (4.1)

It acts on a two-component wave function Ψ = (𝜓e, 𝜓h), the pair potential ∝ 𝑣Δ
couples the electron and hole components (filled states above the Fermi level 𝐸F,
respectively, empty states below 𝐸F, with 𝐸F = 1

2𝑚𝑣
2
F in terms of the effective

mass 𝑚 and Fermi velocity 𝑣F). Because this is equal-spin pairing, we can omit
the spin degree of freedom.

The particle-hole symmetry relation,

𝜎𝑥𝐻
∗
BdG𝜎𝑥 = −𝐻BdG, (4.2)
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Figure 4.1. Panels a) and b) show the topological landscape function [Chern number
C(𝑥, 𝑦) and localizer gap 𝛿(𝑥, 𝑦)] in a disordered chiral p-wave superconductor (Hamilto-
nian (4.3), parameters Δ = 4𝑡, 𝜇̄ = 𝑡, 𝛿𝜇 = 4 𝑡, 𝐿 = 32𝑎, periodic boundary conditions).
At these parameters the superconductor is in the thermal metal phase. Panel c) shows
that the network of domain walls leaves no trace in the local density of states (integrated
over the energy interval |𝐸 | < 0.2 𝑡).

places the system in symmetry class D [98]. Here 𝜎𝑥 is a Pauli matrix that acts
on the electron-hole degree of freedom and the complex conjugation operation
is taken in the real-space basis (so the momentum 𝒑 = ℏ𝒌 = −𝑖ℏ𝜕/𝜕𝒓 changes
sign).

We discretize the Hamiltonian on a 2D square lattice (lattice constant 𝑎),

𝐻 =

(
𝜀𝑘 − 𝜇 Δ(sin 𝑎𝑘𝑥 − 𝑖 sin 𝑎𝑘𝑦)

Δ(sin 𝑎𝑘𝑥 + 𝑖 sin 𝑎𝑘𝑦) 𝜇 − 𝜀𝑘

)
,

𝜀𝑘 = −𝑡 (cos 𝑎𝑘𝑥 + cos 𝑎𝑘𝑦), (4.3)

with the definitions Δ = (ℏ/𝑎)𝑣Δ, 𝑡 = ℏ2/𝑚𝑎2, 𝜇 = 𝐸F − 2𝑡.

We introduce electrostatic disorder by letting the chemical potential 𝜇(𝑥, 𝑦)
fluctuate randomly, uniformly distributed in the interval ( 𝜇̄ − 𝛿𝜇, 𝜇̄ + 𝛿𝜇). Our
approach requires some degree of smoothness of the fluctuating potential on the
scale of the lattice constant, in what follows we choose the same 𝜇 on the four
neighboring sites (2𝑛, 2𝑚), (2𝑛 + 1, 2𝑚), (2𝑛, 2𝑚 + 1), and (2𝑛 + 1, 2𝑚 + 1).



62 Chapter 4. Majorana-metal transition

4.2.2 Spectral localizer: open boundary conditions

The spectral localizer for a two-dimensional class D Hamiltonian with open
boundary conditions is [90]

L(𝑥0, 𝑦0) =
(
𝐻 0
0 −𝐻

)
+ 𝜅Ω(𝑥 − 𝑥0, 𝑦 − 𝑦0), (4.4a)

Ω(𝑥, 𝑦) =
(

0 𝜎0(𝑥 − 𝑖𝑦)
𝜎0(𝑥 + 𝑖𝑦) 0

)
. (4.4b)

The Hermitian operators L and Ω are both 4 × 4 matrices, we have introduced
the 2× 2 unit matrix 𝜎0 to indicate that Ω is diagonal in the electron-hole degree
of freedom. Note also that 𝑥 and 𝑦 are operators (which do not commute with
𝐻), while 𝑥0 and 𝑦0 are parameters. Our choice 𝜅 = 2.5 𝑡 for the scale parameter
𝜅 is explained in App. 4.A.

The operator Ω breaks the ±𝐸 symmetry of the spectrum of L, allowing for a
nonzero matrix signature: SigL = number of positive eigenvalues minus number
of negative eigenvalues. This even integer determines a topological invariant, the
Chern number [90],

C(𝑥0, 𝑦0) = 1
2 SigL(𝑥0, 𝑦0), (4.5)

of a domain containing the point (𝑥0, 𝑦0). Domain walls, contours across which
C(𝑥0, 𝑦0) changes by ±1, are contours along which det{L}(𝑥0, 𝑦0) vanishes.
These can be visualized by plotting the localizer gap

𝛿(𝑥0, 𝑦0) = min
𝑛

|𝜆𝑛 |, 𝜆𝑛 eigenvalue of L(𝑥0, 𝑦0), (4.6)

which vanishes along the domain walls.

4.2.3 Spectral localizer: periodic boundary conditions

Our system is a square of size 𝐿 × 𝐿 in the 𝑥- and 𝑦-directions. To avoid edge
states and focus on bulk properties, we prefer to work with periodic boundary
conditions, rather than open boundary conditions. For that purpose, following
Ref. [94], the term 𝑥 ± 𝑖𝑦 on the off-diagonal of Ω is replaced by the periodic
combination sin(2𝜋𝑥/𝐿)±𝑖 sin(2𝜋𝑦/𝐿). The eigenvalues ofΩ(𝑥−𝑥0, 𝑦−𝑦0) then
cannot distinguish between points 𝑥0 and 𝑥0 + 𝐿/2, or between 𝑦0 and 𝑦0 + 𝐿/2.
To remove this doubling, cosine terms are added on the diagonal of Ω [94],
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Figure 4.2. Topological landscape function (Chern number on top row, localizer gap
on bottom row) for five different disorder strengths 𝛿𝜇 at fixed 𝜇̄ = 1.05 𝑡 (and Δ = 4𝑡,
𝐿 = 24𝑎), to show the appearance of a percolating domain wall when 𝛿𝜇 ≳ 3.1 𝑡. These
are results for a single realization of the random potential 𝜇(𝑥, 𝑦), only the amplitude is
rescaled.

L(𝑥0, 𝑦0) =
(
𝐻 0
0 −𝐻

)
+ 𝜅Ω(𝑥 − 𝑥0, 𝑦 − 𝑦0), (4.7a)

Ω(𝑥, 𝑦) =
(
𝜎0 [cos(2𝜋𝑥/𝐿) + cos(2𝜋𝑦/𝐿) − 2] 𝜎0 [sin(2𝜋𝑥/𝐿) − 𝑖 sin(2𝜋𝑦/𝐿)]
𝜎0 [sin(2𝜋𝑥/𝐿) + 𝑖 sin(2𝜋𝑦/𝐿)] −𝜎0 [cos(2𝜋𝑥/𝐿) + cos(2𝜋𝑦/𝐿) − 2]

)
.

(4.7b)

For |𝑥 |, |𝑦 | ≪ 𝐿 the localizers (4.4) and (4.7) coincide.
In Fig. 4.1 we show the resulting network of domain walls for a particular

disorder realization (panels a and b). The topological information contained in
the spectral localizer is essential: as shown in panel c, the domain walls do not
show up in the local density of states near 𝐸 = 0.

4.3 Phase diagram from percolation transition

4.3.1 Percolating domain walls

The clean system (without disorder, 𝛿𝜇 = 0) is a topologically trivial thermal
insulator (C = 0) for | 𝜇̄ | > 2𝑡 and a topologically nontrivial thermal insulator
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Figure 4.3. Same as Fig. 4.1b), but now the domain walls are highlighted in yellow,
according to the criterion of localizer gap 𝛿(𝒓) < 0.1 𝑡. The location of the average
𝒓 (“center of mass”) for each connected domain wall is indicated by a red dot. The
extension ℓ of a domain wall is defined by ℓ2 = 4|𝒓 − 𝒓 |2. The red dot marked with a
cross identifies the center of mass of a percolating domain wall (ℓ > 𝐿).

(C = ±1) for | 𝜇̄ | < 2𝑡. At 𝜇̄ = 0 there is an insulator-to-insulator transition
at which C changes sign [80]. Disorder introduces minority domains with a
different Chern number than these clean values Cclean. See for example Fig. 4.1,
where 𝜇̄ = 𝑡 and Cclean = +1.

The domain walls that separate regions of different Chern number support
states close to the Fermi level, at energy 𝐸 ≃ ℏ𝑣F/ℓ dictated by the requirement
that the kinematic phase upon traveling once around the domain wall cancels
the 𝜋 Berry phase. When the extension ℓ of the largest domain wall reaches the
system size 𝐿 thermal conduction becomes possible near the Fermi level and the
thermal insulator becomes a thermal metal. In Fig. 4.2 we show this percolation
transition of topological domain walls for a single disorder realization, upon
increasing the amplitude 𝛿𝜇 of the potential fluctuations at fixed average 𝜇̄.

To identify the percolation transition we need a computationally efficient way
to measure the extension ℓ of a domain wall. We take localizer gap 𝛿(𝑥0, 𝑦0) <
0.1 𝑡 as the criterion for a domain wall. All points 𝒓 = (𝑥0, 𝑦0) satisfying this
criterion in a connected region belong to a single domain wall D. We then
compute the domain wall extension ℓ from the variance 𝜎2 of these points,

ℓ = 2𝜎, 𝜎2 = |𝒓 − 𝒓 |2, (4.8)
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Figure 4.4. Left panel: Color scale plot of the average number ⟨N⟩ of percolating
domain walls, averaged over 100 disorder realizations in the chiral p-wave superconductor
(parameters Δ = 4𝑡, 𝐿 = 24𝑎). The value of the Chern number C in the clean system
(𝛿𝜇 = 0) is indicated. Right panel: Dimensionless thermal conductance for the same
system. The uniformly yellow bar at 𝜇̄ = 0 indicates 𝐺/𝐺0 > 1.

where 𝑓 (𝒓) averages a function 𝑓 (𝒓) over all 𝒓 ∈ D. The procedure is illustrated
in Fig. 4.3. Our criterion for a percolating domain wall is ℓ > 𝐿.

4.3.2 Phase diagram

The number N of percolating domain walls (with ℓ > 𝐿) for a given disorder
realization is averaged over the disorder. The resulting dependence of ⟨N⟩ on the
parameters 𝜇̄ and 𝛿𝜇 is shown in Fig. 4.4 (left panel). The region N ≈ 1 where
the domain walls percolate is clearly distinguished.

The data in Fig. 4.4 is for a relatively small system (𝐿/𝑎 = 24), in Fig. 4.5 we
compare with a larger system. The critical disorder strength for the percolation
transition is approximately scale invariant.
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Figure 4.5. Comparison of the disorder strength dependence of the average number ⟨N⟩
of percolating domain walls for different system sizes 𝐿. The data points are averaged
over 200 disorder realizations (parameters Δ = 4𝑡, 𝜇̄ = 𝑡).

4.3.3 Comparison with thermal conductance

So far we have considered a closed system. If we connect leads at the two ends
we can study the thermal conductance,

𝐺 = 𝐺0 Tr 𝒕 𝒕†, 𝐺0 = 𝜋2𝑘2
B𝑇/6ℎ, (4.9)

at temperature 𝑇 , with 𝒕 the transmission matrix at the Fermi level. The result of
such a calculation, using the kwant code [99], is also shown in Fig. 4.4 (right
panel).

If we compare with the percolation transition (left panel), we see a good
quantitative agreement on the low-disorder side of the phase boundary. The
high-disorder side misses a feature in the region near 𝜇̄ = 0, 𝛿𝜇 = 4𝑡, where the
thermal conductance localizes more quickly than inferred from the percolating
domain walls. We are unsure about the origin of this difference. Apart from this
region the agreement is quite satisfactory, without any adjustable parameters.
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4.4 Conclusion

We have shown that the thermal metal phase in a model of a chiral p-wave super-
conductor with electrostatic disorder has a precursor in the thermally insulating
phase: The disorder produces domain walls that separate topologically distinct
regions (different Chern number). The thermal metal–insulator transition is ac-
companied by a percolation of the domain walls across the system, providing a
transport channel for Majorana fermions (charge-neutral, low-energy excitations).

To reveal the network of domains walls we have used the matrix signature of
the spectral localizer [90, 94]. We turned to this topological invariant after we
were not able to identify localized Majorana fermions using a variation [100, 101]
of the landscape function approach that has been so succesful in the study of
Anderson localization [102, 103, 104, 105]. In a sense, the matrix signature of
the spectral localizer functions as a topological landscape function, sensitive to
topological electronic properties that remain hidden in the local density of states.

It would be interesting to study the critical exponent 𝜈 for the percolation tran-
sition of the topological domain walls (the exponent that governs the divergence
of the largest domain size). Classical 2D percolation has 𝜈classical = 4/3. It is
suggestive that a recent numerical study [80] of the divergence of the localization
length at the thermal metal–insulator transition found 𝜈 ≈ 1.35, but the proximity
to 𝜈classical may well be accidental.

Data and code availability

Our computer codes are provided in a Zenodo repository [106].

Appendices

4.A Spectral localizer in a clean system

We have tested the ability of the spectral localizer (4.7) to identify the Chern num-
ber domains in a clean system, with a smoothly varying 𝜇, where the boundaries
are known analytically [80]:

C =


0 if 𝜇 < −2𝑡,
−1 if − 2𝑡 < 𝜇 < 0,
+1 if 0 < 𝜇 < 2𝑡,
0 if 𝜇 > 2𝑡.

(4.10)
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Figure 4.6. Top panel: linearly varying 𝜇(𝑥) (at constant Δ = 4𝑡), producing a central
domain of Chern number C = 0, flanked by domains of C = +1. The domain walls
are at 𝑥/𝑎 = 6 and 𝑥/𝑎 = 12. Bottom panels: Chern number domains produced by the
spectral localizer, via Eq. (4.5), for different values of the scale parameter 𝜅. We need
𝜅 ≳ 2𝑡 for reliable results.

This test allows us to find a suitable value of the scale parameter 𝜅.
Refs. [90, 94] argue that 𝜅 should be of the order of the norm of the Hamil-

tonian, which in our case is below 10−2 𝑡. We find a poor performance for such
small 𝜅, see Fig. 4.6, we need 𝜅 ≳ 2𝑡 to reliably identify the domain walls. The
results in the main text are for 𝜅 = 2.5 𝑡.


