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Chapter 2

Helical Luttinger liquid on a
space-time lattice

2.1 Introduction

A quantum spin Hall insulator [7] supports a one-dimensional (1D) helical edge
mode of counterpropagating massless electrons (Dirac fermions, see Fig. 2.1),
with a linear dispersion 𝐸 = ±ℏ𝑣F𝑘 . The crossing at momentum 𝑘 = 0 (the
Dirac point) is protected from gap-opening [8] — provided that there is only a
single species of low-energy excitations and provided that fundamental symme-
tries (time-reversal symmetry, chiral symmetry) are preserved. This topologi-
cal protection is broken on a lattice by fermion doubling [18]: Any local and
symmetry-preserving discretization of the momentum operator 𝑘 = −𝑖ℏ𝑑/𝑑𝑥
must introduce a spurious second Dirac point [5, 19].

Fermion doubling is problematic if one wishes to study interaction effects of
1D massless electrons (a Luttinger liquid [3, 20, 13, 21]) by means of a lattice
fermion method such as quantum Monte Carlo [22, 23, 24, 25, 26]. A way to
preserve the time-reversal and chiral symmetries on a lattice is to increase the

Figure 2.1. Helical edge mode, consisting of counter-propagating spin-up and spin-down
electrons on the 1D boundary of a 2D quantum spin Hall insulator.
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dimensionality of the system [27, 28]. One can simulate a 2D system in a ribbon
geometry, so that the two fermion species are spatially separated on opposite
edges [29, 30, 31, 32, 33]. The 2D simulation is computationally more expensive
than a fully 1D simulation, but more fundamentally, the presence of states in
the bulk may obscure the intrinsically 1D physics of a Luttinger liquid [34]. A
1D simulation using a nonlocal spatial discretization [35] that avoids fermion
doubling was studied recently [15], without success: The nonlocality gaps the
Dirac point [15, 36].

Here we show that it can be done: A 1D helical Luttinger liquid can be
simulated on a lattice if both space and time are discretized in a way that preserves
the locality of the Lagrangian. The time discretization (in units of 𝜏) pushes the
second Dirac point up to energies of order ℏ/𝜏, where it does not affect the
low-energy physics — as we demonstrate by comparing quantum Monte Carlo
simulations with results from bosonization [20, 13, 21, 14].

The lattice fermion approach which we will now describe refers specifically
to the massless Dirac fermions that appear in topological insulators. Other
approaches exist that exploit the boson-fermion correspondence. One can first
bosonize the fermion formulation of the problem [37] and then put it on a lattice
[38]. Luttinger liquid physics may also govern the low-energy properties of
bosonic systems such as spin chains [39], where fermion doubling does not apply
and a lattice formulation poses no difficulties [40, 41].

2.2 Locally discretized Lagrangian

We construct the space-time lattice using the tangent fermion discretization ap-
proach [16, 42, 43, 44, 45, 17]. We first outline that approach for the noninter-
acting case, in a Lagrangian formulation that is a suitable starting point for the
interacting problem.

Consider a 1D free massless fermion field 𝜓𝜎 (𝑥, 𝑡) with Lagrangian density
given by

Lcontinuum =
∑
𝜎𝜓

†
𝜎 (𝑖𝜕𝑡 + 𝑖𝜎𝑣F𝜕𝑥)𝜓𝜎 . (2.1)

The spin degree of freedom 𝜎, equal to ↑↓ or ±1, distinguishes right-movers from
left-movers, both propagating with velocity 𝑣F along the 𝑥-axis. We set ℏ = 1
and denote partial derivatives by 𝜕𝑥 , 𝜕𝑡 . The chemical potential is set to to zero
(the Dirac point, corresponding to a half-filled band).

We discretize space 𝑥 and time 𝑡, in units of 𝑎 and 𝜏, respectively. The naive
discretization of space replaces 𝜕𝑥 ↦→ (2𝑎)−1(𝑒𝑎𝜕𝑥 − 𝑒−𝑎𝜕𝑥 ), which amounts to



2.2 Locally discretized Lagrangian 19

Figure 2.2. Dispersion relation of a massless fermion on a 1+1-dimensional space-
time lattice. The two panels compare the sine and tangent discretization schemes, for
𝛾 = 𝑣F𝜏/𝑎 equal to 1 (dashed curves) or 0.9 (solid curves). The sawtooth discretization
has the 𝛾-independent dispersion 𝜔 = ±𝑣F𝜏 in the Brillouin zone |𝜔𝜏 |, |𝑘𝑎 | < 𝜋. Only
the tangent discretization gives a local Lagrangian with a single Dirac point at 𝜔 = 0.

𝜕𝑥 𝑓 (𝑥) ↦→ (2𝑎)−1 [ 𝑓 (𝑥 + 𝑎) − 𝑓 (𝑥 − 𝑎)]. Similarly, 𝜕𝑡 ↦→ (2𝜏)−1(𝑒𝜏𝜕𝑡 − 𝑒−𝜏𝜕𝑡 ),
producing a Lagrangian with a sine kernel,

Lsine = (𝑎𝜏)−1∑
𝜎𝜓

†
𝜎 (sin 𝜔̂𝜏 − 𝜎𝛾 sin 𝑘̂𝑎)𝜓𝜎 . (2.2)

We defined the frequency and momentum operators 𝜔̂ = 𝑖𝜕𝑡 and 𝑘̂ = −𝑖𝜕𝑥 and
denote 𝛾 = 𝑣F𝜏/𝑎. The discretized 𝜓’s are dimensionless.

The naive discretization is a local discretization, in the sense that the La-
grangian only couples nearby sites on the space-time lattice. However, it suffers
from fermion doubling: The dispersion relation sin𝜔𝜏 = 𝜎𝛾 sin 𝑘𝑎 has branches
of right-movers and left-movers which intersect at a Dirac point (see Fig. 2.2, left
panel). Kramers degeneracy protects the crossings at time-reversally invariant
points 𝜔𝜏, 𝑘𝑎 = 0 modulo 𝜋. In the Brillouin zone |𝑘𝑎 |, |𝜔𝜏 | < 𝜋 there are 4
inequivalent Dirac points, two of which are at 𝜔 = 0: one at 𝑘 = 0, the other
at |𝑘 | = 𝜋. Low-energy scattering processes can couple these two Dirac points
and open a gap without violating Kramers degeneracy. To avoid this we need to
ensure that there is only a single Dirac point at 𝜔 = 0.

One way to remove the spurious second species of low-energy excitations
goes by the name of slac fermions in the particle physics context [35], or
Floquet fermions in the context of periodically driven atomic lattices [46, 47]. In
that approach one truncates the continuum linear dispersion at the Brillouin zone
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boundaries, and then repeats sawtooth-wise1 with 2𝜋-periodicity:

Lsawtooth = −𝑖(𝑎𝜏)−1∑
𝜎𝜓

†
𝜎 (ln 𝑒𝑖 𝜔̂𝜏 − 𝜎𝛾 ln 𝑒𝑖 𝑘̂𝑎)𝜓𝜎 . (2.3)

The sawtooth dispersion relation ln 𝑒𝑖𝜔𝜏 = 𝜎𝛾 ln 𝑒𝑖𝑘𝑎 is strictly linear in the
Brillouin zone, with a single Dirac point at 𝜔 = 0, however the Lagrangian is
nonlocal:

(ln 𝑒𝑖 𝑘̂𝑎) 𝑓 (𝑥) =
∞∑︁
𝑛=1

(−1)𝑛𝑛−1 [ 𝑓 (𝑥 − 𝑛𝑎) − 𝑓 (𝑥 + 𝑛𝑎)], (2.4)

so distant points on the space-time lattice are coupled.
To obtain a local Lagrangian with a single Dirac point at 𝜔 = 0 we take two

steps: First we replace the sine in Lsine by a tangent with the same 2𝜋 periodicity:

Ltangent =
2
𝑎𝜏

∑
𝜎𝜓

†
𝜎

[
tan(𝜔̂𝜏/2) − 𝜎𝛾 tan

(
𝑘̂𝑎/2

)]
𝜓𝜎 . (2.5)

The resulting tangent dispersion tan(𝜔𝜏/2) = 𝜎𝛾 tan(𝑘𝑎/2) removes the spuri-
ous Dirac point (see Fig. 2.2, right panel), but it creates a non-local coupling.
The locality is restored by the substitution

𝜓𝜎 = 𝐷̂𝜙𝜎 , 𝐷̂ = 1
4 (1 + 𝑒𝑖 𝑘̂𝑎) (1 + 𝑒𝑖 𝜔̂𝜏), (2.6)

which produces the Lagrangian

Ltangent =
1
2 (𝑎𝜏)

−1∑
𝜎𝜙

†
𝜎

[
(1 + cos 𝑘̂𝑎) sin 𝜔̂𝜏

− 𝜎𝛾(1 + cos 𝜔̂𝜏) sin 𝑘̂𝑎
]
𝜙𝜎 . (2.7)

Product terms cos 𝑘̂𝑎 × sin 𝜔̂𝜏 and cos 𝜔̂𝜏 × sin 𝑘̂𝑎 couple 𝜙𝜎 (𝑥, 𝑡) to 𝜙𝜎 (𝑥 ±
𝑎, 𝑡 ± 𝜏), so the coupling is off-diagonal on the space-time lattice but local.

This recovery of a local Lagrangian from a nonlocal Hamiltonian can be
understood intuitively [17]: While the tangent discretization of the differential
operator is nonlocal, its functional inverse, which is the trapezoidal integration
rule, is local — allowing for a local path integral formulation of the quantum
dynamics.

The next step is to introduce the on-site Hubbard interaction (strength 𝑈,
repulsive for𝑈 > 0, attractive for𝑈 < 0) by adding to Ltangent the term

LHubbard = −(𝑈/𝑎)𝑛↑ (𝑥, 𝑡)𝑛↓ (𝑥, 𝑡), 𝑛𝜎 = :𝜓†
𝜎𝜓𝜎 : (2.8)

1We set the branch cut of the logarithm along the negative real axis, so ln 𝑒𝑖𝑘𝑎 is a sawtooth
that jumps at 𝑘𝑎 = 𝜋 + 2𝑛𝜋.
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The density 𝑛𝜎 is normal ordered (Fermi sea expectation value is subtracted).
Substitution of Eq. (2.6) expresses the density 𝑛𝜎 at point (𝑥, 𝑡) in terms of the
average of the field 𝜙𝜎 over the four corners of the adjacent space-time unit cell.

This completes the lattice formulation of the Luttinger liquid. We characterize
it by the functions

𝐶𝜎 (𝑥) = ⟨𝜓†
𝜎 (𝑥, 0)𝜓𝜎 (0, 0)⟩, 𝝍 = (𝜓↑, 𝜓↓), (2.9)

𝑅𝑥 (𝑥) = ⟨𝜌𝑥 (𝑥)𝜌𝑥 (0)⟩, 𝜌𝑥 (𝑥) = 1
2𝝍

†(𝑥, 0)𝝈𝑥𝝍(𝑥, 0).

Here ⟨· · · ⟩ = 𝑍−1 Tr 𝑒−𝛽𝐻 · · · indicates the thermal average at inverse tempera-
ture 𝛽 = 1/𝑘B𝑇 (with 𝑍 = Tr 𝑒−𝛽𝐻 the partition function). We first focus on the
propagator 𝐶𝜎 .

2.3 Discretized Euclidean action

The propagator can be rewritten as a fermionic path integral [48, 1] over anti-
commuting fields Ψ = {Ψ+,Ψ−} and Ψ̄ = {Ψ̄+, Ψ̄−},

𝐶𝜎 (𝑥) = 𝑍−1
∫

DΨ̄

∫
DΨ 𝑒−S[Ψ,Ψ̄]Ψ̄𝜎 (𝑥, 0)Ψ𝜎 (0, 0), (2.10)

with S the Euclidean action. For free fermions one has

S =

∫ 𝛽

0
𝑑𝑡

∫ 𝐿

0
𝑑𝑥

∑︁
𝜎

Ψ̄𝜎 (𝑥, 𝑡) (𝜕𝑡 − 𝑖𝜎𝑣F𝜕𝑥)Ψ𝜎 (𝑥, 𝑡). (2.11)

The Lagrangian (2.1) is integrated along the interval 0 < 𝑖𝑡 < 𝑖𝛽 on the imaginary
time axis, with antiperiodic boundary conditions: Ψ𝜎 (𝑥, 𝛽) = −Ψ𝜎 (𝑥, 0). On
the real space axis the integral runs from 0 to 𝐿with periodic boundary conditions,
Ψ𝜎 (0, 𝑡) = Ψ𝜎 (𝐿, 𝑡).

The tangent fermion discretization replaces 𝑖𝜕𝑡 ↦→ (2/𝜏) tan(𝜔̂𝜏/2) and
𝑖𝜕𝑥 ↦→ −(2/𝑎) tan

(
𝑘̂𝑎/2

)
, resulting in the discretized Euclidean action

Stangent = 2
∑
𝑥,𝑡 ,𝜎Ψ̄𝜎 (𝑥, 𝑡)

(
−𝑖 tan(𝜔̂𝜏/2)

+ 𝛾𝜎 tan
(
𝑘̂𝑎/2

) )
Ψ𝜎 (𝑥, 𝑡) (2.12a)

= 1
2
∑
𝑥,𝑡 ,𝜎Φ̄𝜎 (𝑥, 𝑡)

(
−𝑖(1 + cos 𝑘̂𝑎) sin 𝜔̂𝜏

+ 𝛾𝜎(1 + cos 𝜔̂𝜏) sin 𝑘̂𝑎
)
Φ𝜎 (𝑥, 𝑡). (2.12b)
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In the second equality we substituted the locally coupled fields, Ψ = 𝐷̂Φ,
Ψ̄ = Φ̄𝐷̂†, cf. Eq. (2.6). The Hubbard interaction is then included by adding to
Stangent the action

SHubbard = 𝑈𝜏
∑
𝑥,𝑡 Ψ̄+(𝑥, 𝑡)Ψ+(𝑥, 𝑡)Ψ̄− (𝑥, 𝑡)Ψ− (𝑥, 𝑡). (2.13)

We choose discretization units 𝜏, 𝑎 so that both 𝛽/𝜏 and 𝐿/𝑎 are integer. The
space-time lattice consists of the points 𝑖𝑡𝑛 = 𝑖𝑛𝜏, 𝑛 = 0, 1, 2 . . . 𝛽/𝜏 − 1, on the
imaginary time axis and 𝑥𝑛 = 𝑛𝑎, 𝑛 = 0, 1, 2 . . . 𝐿/𝑎 − 1 on the real space axis.
Upon Fourier transformation the sum over 𝑡𝑛 becomes a sum over the Matsubara
frequencies 𝜔𝑛 = (2𝑛 + 1)𝜋/𝛽, while the sum over 𝑥𝑛 becomes a sum over the
momenta 𝑘𝑛 = 2𝑛𝜋/𝐿. These are odd versus even multiples of the discretization
unit, to ensure the antiperiodic versus periodic boundary conditions in 𝑡 and 𝑥,
respectively. In order to avoid the pole in the tangent dispersion we choose 𝛽/𝜏
even and 𝐿/𝑎 odd.

2.4 Free-fermion propagator

Without the interaction term the propagator (2.10) is given by a Gaussian path
integral [48, 1], which evaluates to

𝐶𝜎 (𝑥) =
𝜏

𝛽𝐿

∑︁
𝑘,𝜔

𝑒−𝑖𝑘𝑥

2𝑖 tan(𝜔𝜏/2) − 2𝛾𝜎 tan(𝑘𝑎/2) . (2.14)

A simple closed-form answer follows for the Fourier transform 𝐶𝜎 (𝑘) in the
zero-temperature (𝛽 → ∞) limit,

𝐶𝜎 (𝑘) = 𝜏
∫ 𝜋/𝜏

−𝜋/𝜏

𝑑𝜔

2𝜋
1

2𝑖 tan(𝜔𝜏/2) − 2𝛾𝜎 tan(𝑘𝑎/2)

=
−1

2 sign(𝜎 tan(𝑘𝑎/2)) + 2𝛾𝜎 tan(𝑘𝑎/2) . (2.15)

For the sine dispersion we have instead

𝐶𝜎 (𝑘) =
− sign(𝜎 sin 𝑘𝑎)√︃

1 + 4𝛾2 sin2 𝑘𝑎

, (2.16)

while the sawtooth dispersion gives

𝐶𝜎 (𝑘) = − 1
𝜋

arctan
(

𝜋

𝛾𝜎𝑘𝑎

)
, |𝑘𝑎 | < 𝜋. (2.17)
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Figure 2.3. Free-fermion propagator in momentum space at zero temperature, calculated
for three different discretization schemes. The plots follow from Eqs. (2.15), (2.16), and
(2.17), for 𝛾 = 1, 𝜎 = +1. Only the tangent fermion discretization is continuous at the
Brillouin zone boundary 𝑘𝑎 = ±𝜋.

Each dispersion has the expected continuum limit2 𝐶𝜎 (𝑘) → − 1
2 sign(𝜎𝑘)

for |𝑘𝑎 | ≪ 1, up to a factor of two for the sine dispersion due to fermion doubling.
The difference appears near the boundary |𝑘𝑎 | = 𝜋/𝑎 of the Brillouin zone. As
shown in Fig. 2.3, only the tangent dispersion gives a propagator that is continuous
across the Brillouin zone boundary. In real space, the discontinuity shows up as
an oscillation of 𝐶𝜎 (𝑥) for separations 𝑥 that are even or odd multiples of 𝑎, see
Fig. 2.4. This is a known artefact of a finite band width [49] which is avoided by
tangent fermions: their 𝐶𝜎 (𝑥) is close to the continuum result 𝑖/2𝜋𝑥 for 𝑥 larger
than a few lattice spacings.

It is essential that the spatial discretization is accompanied by a discretization
of (imaginary) time: If we would only discretize space, taking the limit 𝜏 → 0 at
fixed 𝑎, then 𝛾 → 0 and the propagator tends to the wrong limit,

lim
𝜏→0

𝐶𝜎 (𝑥) = 1
2 𝑖𝜎

∫ 𝜋/𝑎

0
sin 𝑘𝑥 𝑑𝑘 =

𝑖𝜎 sin2(𝜋𝑥/2𝑎)
𝜋𝑥

, (2.18)

2The continuum limit 𝐶𝜎 (𝑘) = − 1
2 sign(𝜎𝑘) differs from the zero-temperature Fermi function

𝜃 (−𝜎𝑘) by a 1/2 offset. This offset corresponds to a delta function 𝛿(𝑥 − 𝑥′) contribution to the
propagator (2.9), which is lost in the discretization.
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Figure 2.4. Same as Fig. 2.3, but now in real space. The continuum result at zero
temperature is 𝐶 (𝑥) = 𝑖/2𝜋𝑥 (solid curve), close to the tangent fermion discretization
(black dots). The dashed lines are guides to the eye, to highlight the oscillatory behavior
of the sawtooth and sine discretizations.

irrespective of how space is discretized. This deficiency of the sawtooth (slac)
approach was noted in Ref. [15].

Luttinger liquid correlators – We now include the Hubbard interaction (2.13)
in the discretized Euclidean action (2.12), and evaluate the path integral (2.10)
numerically by the quantum Monte Carlo method [50]. In a Luttinger liquid the
zero-temperature correlators decay as a power law [13],

𝐶2
𝜎 ∝ 𝑥−𝐾−1/𝐾 , 𝑅𝑥 ∝ 𝑥−2𝐾 , (2.19a)

𝐾 =
√︁
(1 − 𝜅)/(1 + 𝜅), 𝜅 =

𝑈𝑎

2𝜋𝑣F
∈ (−1, 1). (2.19b)

For repulsive interactions,𝑈 > 0 ⇒ 𝐾 < 1, the transverse spin-density correlator
𝑅𝑥 decays more slowly than the 1/𝑥2 decay expected from a Fermi liquid.

Results for the interaction dependent decay are shown in Fig. 2.5. The
data from the quantum Monte Carlo calculation of 𝑅𝑥 (𝑥) is compared with the
predictions from bosonization theory [14]. The power law decay (2.19) applies
to an infinite 1D system. For a more reliable comparison with the numerics we
include finite size effects in the bosonization calculations [50].

The finite band width 1/𝜏 on the lattice requires that the dimensionless
interaction strength 𝜅 is small compared to unity. As we see in Fig. 2.5 the
agreement with the continuum results (dashed curves) remains quite satisfactory
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Figure 2.5. Main panels: The data points show the quantum Monte Carlo results for the
correlator 𝑅𝑥 (𝑥) = 1

4 ⟨𝝍
† (𝑥)𝝈𝑥𝝍(𝑥)𝝍† (0)𝝈𝑥𝝍(0)⟩ of the helical Luttinger liquid, on the

space-time lattice with parameters 𝛽/𝜏 = 34, 𝐿/𝑎 = 71, 𝑣F = 𝑎/𝜏. The different colors
refer to different Hubbard interaction strengths 𝜅 = 𝑈𝑎/2𝜋𝑣F, repulsive on the left panel
and attractive on the right panel. In the latter case the correlator 𝑅𝑥 changes sign, the
plot shows the absolute value on a log-linear scale. The 𝑥-dependence at 𝑥 and 𝐿 − 𝑥 is
the same, because of the periodic boundary conditions, so only the range 0 < 𝑥 < 𝐿/2 is
plotted. The numerical data on the lattice is compared with the analytical bosonization
theory in the continuum (dashed curves [50]). Note that the lattice calculation slightly
overestimates the interaction strength, for both the repulsive and attractive cases. The
inset in the left panel combines data for both repulsive and attractive interactions on a
log-log scale, to compare with the power law decay (2.19) (dashed lines).

for |𝜅 | up to about 0.4. We stress that this comparison does not involve any
adjustable parameter.

2.5 Conclusion

We have shown that it is possible to faithfully represent an interacting Luttinger
liquid on a lattice, without compromising the fundamental symmetries of mass-
less fermions. The key step is a space-time discretization of the Lagrangian
which is local but does not introduce a spurious second species of low-energy
excitations. We have tested the validity of this “tangent fermion” approach in the
simplest setting where we can compare with the known bosonization results in
the continuum.

We anticipate that tangent fermions can become a powerful tool for the study
of topological states of matter, where it is essential to maintain the topological
protection of an unpaired Dirac cone. An application to the fermionic Casimir
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effect was published in Ref. [51]. We have shown that the technique can be applied
to quantum Monte Carlo calculations, but we expect it to be more generally
applicable to fermionic lattices. Indeed, a second quantized formulation has very
recently been used to avoid fermion doubling in the context of tensor networks
[52].

Appendices

2.A Derivation of the Euclidean action in the tangent
discretization

In this appendix, we explain how to arrive at the Euclidean action given in Eqs.
(2.12) and (2.13). In particular, we show that the shift in chemical potential,
originating from the normal ordering of the density operator in the Hubbard-
interaction Lagrangian (2.8), is absent in the Euclidean action. We start from the
continuum Hamiltonian 𝐻 = 𝐻0 + 𝐻Hubbard, with

𝐻0 =
∑︁
𝜎,𝑘

𝜎𝑣F𝑘 :𝜓†
𝜎 (𝑘)𝜓𝜎 (𝑘) :

=
∑︁
𝜎,𝑘

𝜎𝑣F𝑘
[
𝜓†
𝜎 (𝑘)𝜓𝜎 (𝑘) − 1 + 𝜃 (𝜎𝑘)

]
, (2.20)

𝐻Hubbard = 𝑈

∫
𝑑𝑥 𝑛+(𝑥)𝑛− (𝑥), (2.21)

𝑛𝜎 (𝑥) = :𝜓𝜎 (𝑥)†𝜓𝜎 (𝑥) : (2.22)

=
1
𝐿

∑︁
𝑘≠𝑘′

𝑒𝑖 (𝑘−𝑘
′ )𝑥 [𝜓𝜎 (𝑘 ′)†𝜓𝜎 (𝑘) + (𝜃 (𝜎𝑘) − 1)𝛿𝑘𝑘′],

where the normal ordering : · · · : brings to the right operators 𝜓𝜎 (𝑘) with
𝜎𝑘 > 0, and 𝜓†

𝜎 (𝑘) with 𝜎𝑘 ≤ 0. Here 𝜃 is the unit step function, defined by
𝜃 (𝜎𝑘) = 1 for 𝜎𝑘 > 0, and 𝜃 (𝜎𝑘) = 0 for 𝜎𝑘 ≤ 0.

We introduce fermionic coherent states |Ψ⟩, which satisfy

𝜓𝜎 (𝑘) |Ψ⟩ = Ψ𝜎 (𝑘) |Ψ⟩, ⟨Ψ|𝜓†
𝜎 (𝑘) = ⟨Ψ|Ψ̄𝜎 (𝑘) . (2.23)

Then, with 𝜏 = 𝛽/𝑁 and |Ψ(0)⟩ = −|Ψ(𝑁)⟩, where 𝑁 is a positive integer, the
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partition function is

𝑍 = Tr 𝑒−𝛽𝐻 = lim
𝑁→∞

∫ 𝑁∏
𝑡=1

DΨ(𝑡)DΨ̄(𝑡)𝑒−Ψ̄(𝑡 )Ψ(𝑡 ) ⟨Ψ(𝑡) |𝑒−𝜏𝐻 |Ψ(𝑡 − 1)⟩ ,

(2.24)

where Ψ(0) = −Ψ(𝑁).
We perform a Hubbard-Stratonovich transformation,

𝑒−𝜏𝐻Hubbard =

∫
D𝑊 (𝑡)D𝑊∗(𝑡) exp

{ ∫
𝑑𝑥 − 𝜏 |𝑊 (𝑥, 𝑡) |2

|𝑈 |

+ 𝜏𝑊 (𝑥, 𝑡)𝑛+(𝑥) − 𝜏 sign(𝑈)𝑊∗(𝑥, 𝑡)𝑛− (𝑥)
}
, (2.25)

which yields

𝑍 = lim
𝑁→∞

∫ (
𝑁∏
𝑡=1

DΨ(𝑡)DΨ̄(𝑡)D𝑊 (𝑡)D𝑊∗(𝑡)
)

exp

{∑︁
𝑡

[
−
∫

𝑑𝑥
𝜏 |𝑊 (𝑥, 𝑡) |2

|𝑈 |

− Ψ̄(𝑡) [Ψ(𝑡) − Ψ(𝑡 − 1)] − 𝜏
∑︁
𝜎,𝑘

𝜎𝑣F𝑘 [Ψ̄𝜎 (𝑘, 𝑡)Ψ𝜎 (𝑘, 𝑡 − 1) − 1 + 𝜃 (𝜎𝑘)]

+ 𝜏

𝐿

∫
𝑑𝑥𝑊 (𝑥, 𝑡)

∑︁
𝑘,𝑘′

𝑒𝑖 (𝑘−𝑘
′ )𝑥 [Ψ̄+(𝑘 ′, 𝑡)Ψ+(𝑘, 𝑡 − 1) + (𝜃 (𝑘) − 1)𝛿𝑘𝑘′]

− 𝜏
𝐿

sign(𝑈)
∫

𝑑𝑥𝑊∗(𝑥, 𝑡)
∑︁
𝑘𝑘′

𝑒𝑖 (𝑘−𝑘
′ )𝑥 [Ψ̄− (𝑘 ′, 𝑡)Ψ− (𝑘, 𝑡−1)+(−1+𝜃 (−𝑘))𝛿𝑘𝑘′]

]}
.

(2.26)

We make the variable change

Ψ𝜎 (𝑘, 𝑡) ↦→
1
2
[Ψ𝜎 (𝑘, 𝑡) + Ψ𝜎 (𝑘, 𝑡 + 1)] , (2.27)
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under which the partition function becomes

𝑍 = lim
𝑁→∞

∫ (
𝑁∏
𝑡=1

DΨ(𝑡)DΨ̄(𝑡)D𝑊 (𝑡)D𝑊∗(𝑡)
)

exp

{∑︁
𝑡

[
−
∫

𝑑𝑥
𝜏 |𝑊 (𝑥, 𝑡) |2

|𝑈 |

− 1
2

∑︁
𝜎

∑︁
𝑘,𝑘′

(𝛿𝑘𝑘′ + 𝜏Λ𝜎 (𝑘, 𝑘 ′)) Ψ̄𝜎 (𝑘 ′, 𝑡) [Ψ𝜎 (𝑘, 𝑡 + 1) − Ψ𝜎 (𝑘, 𝑡 − 1)]

−𝜏
∑︁
𝜎

∑︁
𝑘

𝜎𝑣F𝑘

(
Ψ̄𝜎 (𝑘, 𝑡)

Ψ𝜎 (𝑘, 𝑡 − 1) + 2Ψ𝜎 (𝑘, 𝑡) + Ψ𝜎 (𝑘, 𝑡 + 1)
4

− 1 + 𝜃 (𝜎𝑘)
)

+ 𝜏

𝐿

∫
𝑑𝑥𝑊 (𝑥, 𝑡)

∑︁
𝑘,𝑘′

𝑒𝑖 (𝑘−𝑘
′ )𝑥

(
(𝜃 (𝑘) − 1)𝛿𝑘𝑘′

+ Ψ̄+(𝑘 ′, 𝑡)
Ψ+(𝑘, 𝑡 + 1) + 2Ψ+(𝑘, 𝑡) + Ψ+(𝑘, 𝑡 − 1)

4

)
− 𝜏

𝐿
sign(𝑈)

∫
𝑑𝑥𝑊∗(𝑥, 𝑡)

∑︁
𝑘,𝑘′

𝑒𝑖 (𝑘−𝑘
′ )𝑥

(
(𝜃 (−𝑘) − 1)𝛿𝑘𝑘′

+ Ψ̄− (𝑘 ′, 𝑡)
Ψ− (𝑘, 𝑡 + 1) + 2Ψ− (𝑘, 𝑡) + Ψ− (𝑘, 𝑡 − 1)

4

)]}
, (2.28)

where

Λ𝜎 (𝑘, 𝑘 ′) = −𝜎𝑣F𝑘

2
𝛿𝑘𝑘′ +

1
2𝐿

∫
𝑑𝑥

[
𝑊 (𝑥, 𝑡)𝑒𝑖 (𝑘−𝑘′ )𝑥𝛿𝜎+

− sign(𝑈)𝑊∗(𝑥, 𝑡)𝑒𝑖 (𝑘−𝑘′ )𝑥𝛿𝜎−
]
. (2.29)

We next make the substitution

Ψ̄𝜎 (𝑘 ′) ↦→
∑︁
𝑘′′

[𝛿𝑘′𝑘′′ − 𝜏Λ𝜎 (𝑘 ′, 𝑘 ′′)]Ψ𝜎 (𝑘 ′′) . (2.30)

Ignoring the subleading terms, the Jacobian of the variable change is

det(𝛿𝑘′𝑘′′ − 𝜏Λ𝜎 (𝑘 ′, 𝑘 ′′)) = exp

{
− 𝜏

∑︁
𝑘

(
− 𝜎𝑣F𝑘 +

1
2𝐿

∫
𝑑𝑥 [𝑊 (𝑥, 𝑡)

− sign(𝑈)𝑊∗(𝑥, 𝑡)]
)}
. (2.31)
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The change of measure of Grassmann variables produces the inverse of the
Jacobian, which cancels the shift in chemical potential [the term 𝜃 (𝜎𝑘) −1] from
normal ordering. This yields the action

𝑍 = lim
𝑁→∞

∫ (
𝑁∏
𝑡=1

DΨ(𝑡)DΨ̄(𝑡)D𝑊 (𝑡)D𝑊∗(𝑡)
)

exp

{∑︁
𝑡

[
−
∫

𝑑𝑥
𝜏 |𝑊 (𝑥, 𝑡) |2

|𝑈 |

− 1
2

∑︁
𝜎,𝑘

Ψ̄𝜎 (𝑘, 𝑡) [Ψ𝜎 (𝑘, 𝑡 + 1) − Ψ𝜎 (𝑘, 𝑡 − 1)]

− 𝜏
∑︁
𝜎,𝑘

𝜎𝑣F𝑘Ψ̄𝜎 (𝑘, 𝑡)
Ψ𝜎 (𝑘, 𝑡 − 1) + 2Ψ𝜎 (𝑘, 𝑡) + Ψ𝜎 (𝑘, 𝑡 + 1)

4

+ 𝜏
∫

𝑑𝑥𝑊 (𝑥, 𝑡)Ψ̄+(𝑥, 𝑡)
Ψ+(𝑥, 𝑡 + 1) + 2Ψ+(𝑥, 𝑡) + Ψ+(𝑥, 𝑡 − 1)

4

−𝜏 sign(𝑈)
∫

𝑑𝑥𝑊∗(𝑥, 𝑡)Ψ̄− (𝑥, 𝑡)
Ψ− (𝑥, 𝑡 + 1) + 2Ψ− (𝑥, 𝑡) + Ψ− (𝑥, 𝑡 − 1)

4

]}
.

(2.32)

Finally we can integrate out the Hubbard-Stratonovich field, substituteΨ𝜎 ↦→
2(1 + cos 𝜔̂𝜏)−1Ψ𝜎 , and apply the tangent discretization 𝑘 ↦→ 2𝑎−1 tan(𝑎𝑘/2),
which results in

𝑍 = lim
𝑁→∞

∫ (
𝑁∏
𝑡=1

DΨ(𝑡)DΨ̄(𝑡)
)

exp

{
−
∑︁
𝑡

[
2
∑︁
𝜎,𝑘

Ψ̄𝜎 (𝑘) (−𝑖 tan(𝜔̂𝜏/2)Ψ𝜎 (𝑘)

+ 𝜏𝜎𝑣F tan(𝑘/2))Ψ𝜎 (𝑘, 𝑡) + 𝜏𝑈
∑︁
𝑥

Ψ̄+(𝑥, 𝑡)Ψ+(𝑥, 𝑡)Ψ̄− (𝑥, 𝑡)Ψ− (𝑥, 𝑡)
]}
.

(2.33)

For finite 𝑁 , this is the partition function corresponding to the tangent-discretized
action given in Eqs. (2.12) and (2.13) in the main text.

2.B Quantum Monte Carlo calculation

2.B.1 Hubbard-Stratonovich transformation of the Euclidean action

To evaluate the fermionic path integral representation of the partition function,

𝑍 =

∫
DΨ̄

∫
DΨ 𝑒−S[Ψ,Ψ̄] (2.34)
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we follow the usual auxiliary field approach [22, 23, 24, 25, 26], by which the two-
body Hubbard interaction is transformed into a sum of one-body terms coupled
to a fluctuating Ising field 𝑠(𝑥, 𝑡) ∈ {+1,−1}. In a Hamiltonian formulation
this is accomplished by the discrete Hubbard-Stratonovich transformation of Ref.
[23]. We cannot follow that route, because the tangent fermion Hamiltonian is
nonlocal, instead we need to work with the Lagrangian formulation — which is
local.

Starting from the discretized Euclidean action in Eqs. (2.12) and (2.13) we
factor out the two-body term,

𝑒−S = 𝑒−Stangent
∏
𝑥,𝑡

𝑒−𝑈𝜏Ψ̄+ (𝑥,𝑡 )Ψ+ (𝑥,𝑡 )Ψ̄− (𝑥,𝑡 )Ψ− (𝑥,𝑡 ) . (2.35)

This is allowed because all bilinears Ψ̄Ψ of the anticommuting Grassmann fields
commute. (The approximate Trotter splitting [25, 26] from the Hamiltonian
formulation does not appear here.)

Focusing on one factor, we have the sequence of identities (using Ψ2 = Ψ̄2 =

0)

𝑒−𝑈𝜏Ψ̄+Ψ+Ψ̄−Ψ− = 1 −𝑈𝜏Ψ̄+Ψ+Ψ̄−Ψ−

= 1
2

∑︁
𝑠=±

[
1 + 𝑠

√︁
|𝑈𝜏 | (Ψ̄+Ψ+ − sign(𝑈𝜏)Ψ̄−Ψ−) −𝑈𝜏𝑠2Ψ̄+Ψ+Ψ̄−Ψ−

]
= 1

2

∑︁
𝑠=±

exp
[
𝑠
√︁
|𝑈𝜏 | (Ψ̄+Ψ+ − sign(𝑈𝜏)Ψ̄−Ψ−)] . (2.36)

Collecting all factors we thus arrive at the desired Hubbard-Stratonovich trans-
formation of the Euclidean action,

𝑒−S = 𝑒−Stangent
1

2
𝛽𝐿

𝜏𝑎

∑︁
𝑠 (𝑥,𝑡 )=±1

exp
[
|𝑈𝜏 |1/2

∑︁
𝑥,𝑡

𝑠(𝑥, 𝑡)
(
Ψ̄+(𝑥, 𝑡)Ψ+(𝑥, 𝑡)

− sign(𝑈𝜏)Ψ̄− (𝑥, 𝑡)Ψ− (𝑥, 𝑡)
)]
, (2.37)

In the tangent fermion discretization the charge density Ψ̄Ψ is rewritten in
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terms of the locally coupled fields Φ, Φ̄, cf. Eq. (2.6),

Ψ̄±(𝑥, 𝑡)Ψ±(𝑥, 𝑡) = Φ̄±𝐷̂
† |𝑥, 𝑡⟩⟨𝑥, 𝑡 |𝐷̂Φ±

= 1
16Φ̄±(1 + 𝑒−𝑖 𝑘̂𝑎) (1 + 𝑒−𝑖 𝜔̂𝑡 ) |𝑥, 𝑡⟩⟨𝑥, 𝑡 | (1 + 𝑒𝑖 𝑘̂𝑎) (1 + 𝑒𝑖 𝜔̂𝑡 )Φ±,

= 1
16 [Φ̄±(𝑥, 𝑡) + Φ̄±(𝑥 − 𝑎, 𝑡) + Φ̄±(𝑥, 𝑡 + 𝜏) + Φ̄±(𝑥 − 𝑎, 𝑡 + 𝜏)

]
× [Φ±(𝑥, 𝑡) +Φ±(𝑥 − 𝑎, 𝑡) +Φ±(𝑥, 𝑡 + 𝜏) +Φ±(𝑥 − 𝑎, 𝑡 + 𝜏)

]
.

(2.38)

The Jacobian 𝐽 = det 𝐷̂†𝐷̂ of the transformation is independent of the Ising field.
For any given Ising field configuration 𝑠(𝑥, 𝑡) the action is now quadratic in

the Grassmann fields Φ, Φ̄,

S[Φ, Φ̄, 𝑠] =
∑︁

𝜎,𝑥,𝑥′ ,𝑡 ,𝑡 ′
Φ̄𝜎 (𝑥′, 𝑡′)𝑀𝜎 (𝑥, 𝑥′, 𝑡, 𝑡′) [𝑠]Φ𝜎 (𝑥, 𝑡), (2.39)

with a local kernel

𝑀𝜎 (𝑥, 𝑥′, 𝑡, 𝑡′) [𝑠] = 1
2
(
−𝑖(1 + cos 𝑘̂𝑎) sin 𝜔̂𝜏 + 𝜎𝛾(1 + cos 𝜔̂𝜏) sin 𝑘̂𝑎

)
+ 𝛿𝑥,𝑥′𝛿𝑡 ,𝑡 ′ |𝑈𝜏 |1/2𝑠(𝑥, 𝑡)𝐷† |𝑥, 𝑡⟩⟨𝑥, 𝑡 |𝐷 ×

{
𝜎 if 𝑈 > 0,
1 if 𝑈 < 0.

(2.40)

The Gaussian path integral over the fields Φ, Φ̄ produces a weight functional

𝑃[𝑠] =
∫

DΦ̄

∫
DΦ 𝑒−S[Φ,Φ̄,𝑠] = det𝑀+ [𝑠]𝑀− [𝑠] (2.41)

for the average over the Ising field. This final average is carried out by means of
the Monte Carlo importance sampling algorithm.

2.B.2 Absence of a sign problem

For the Monte Carlo averaging we need to ascertain the absence of a sign problem:
The weight functional 𝑃[𝑠] should be non-negative for any Ising field configu-
ration. This is indeed the case: From Eq. (2.40) one sees that for the attractive
interaction (𝑈 < 0)

𝑀∗
− [𝑠] = 𝑀+ [𝑠] ⇒ 𝑃[𝑠] = | det𝑀+ [𝑠] |2. (2.42)

(Note that 𝑘̂ = −𝑖𝜕𝑥 and 𝜔̂ = 𝑖𝜕𝑡 changes sign upon complex conjugation.) For
the repulsive interaction (𝑈 > 0)

𝑀†
− [𝑠] = −𝑀+ [𝑠] ⇒ 𝑃[𝑠] = (−1)𝛽𝐿/𝜏𝑎 | det𝑀+ [𝑠] |2 = | det𝑀+ [𝑠] |2, (2.43)

because 𝛽𝐿/𝜏𝑎 is an even integer.
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2.B.3 Correlators

We apply the quantum Monte Carlo calculation to equal-time correlators of the
form

⟨𝜓†
𝜎 (𝑥1)𝜓𝜎 (𝑥2)𝜓†

𝜎′ (𝑥3)𝜓𝜎′ (𝑥4)⟩ = ⟨(𝐷̂𝜙𝜎)†(𝑥1) (𝐷̂𝜙𝜎) (𝑥2) (𝐷̂𝜙𝜎′)†(𝑥3) (𝐷̂𝜙)𝜎′ (𝑥4)⟩

=

∫
DΦ̄

∫
DΦ ⟨𝑒−𝑆 [Φ,Φ̄,𝑠]⟩𝑠 (Φ̄𝜎 𝐷̂

†) (𝑥1) (𝐷̂Φ𝜎) (𝑥2) (Φ̄𝜎′ 𝐷̂†) (𝑥3) (𝐷̂Φ)𝜎′ (𝑥4)

=
1
𝑍

∑︁
𝑠 (𝑥,𝑡 )=±1

𝑃[𝑠]
(
𝐴̂𝜎 (𝑥2, 𝑥1) [𝑠] 𝐴̂𝜎′ (𝑥4, 𝑥3) [𝑠]−𝛿𝜎𝜎′ 𝐴̂𝜎 (𝑥4, 𝑥1) [𝑠] 𝐴̂𝜎 (𝑥2, 𝑥3) [𝑠]

)
.

(2.44)

In the final equality we defined 𝐴̂𝜎 [𝑠] = 𝐷̂𝑀−1
𝜎 [𝑠]𝐷̂† and we have used the

integration formula (Wick’s theorem)∫
DΦ̄

∫
DΦ 𝑒−Φ̄𝑀ΦΦ𝑘Φ𝑙Φ̄𝑚Φ̄𝑛 = (det𝑀)

[
(𝑀−1)𝑘𝑛 (𝑀−1)𝑙𝑚−(𝑀−1)𝑘𝑚(𝑀−1)𝑙𝑛

]
.

(2.45)
We consider the spin correlator

𝑅𝑥 (𝑥) = 1
4 ⟨𝝍

†(𝑥)𝝈𝑥𝝍(𝑥)𝝍†(0)𝝈𝑥𝝍(0)⟩
= − 1

4
(
⟨𝜓†

↑ (𝑥)𝜓↑ (0)𝜓†
↓ (𝑦)𝜓↓ (𝑥)⟩ + ⟨𝜓†

↓ (𝑥)𝜓↓ (0)𝜓†
↑ (0)𝜓↑ (𝑥)⟩

)
. (2.46)

In the second equality we used spin conservation symmetry,

⟨𝜓†
↑ (𝑥)𝜓↓ (𝑥)𝜓†

↑ (0)𝜓↓ (0)⟩ = 0, ⟨𝜓†
↓ (𝑥)𝜓↑ (𝑥)𝜓†

↓ (0)𝜓↑ (0)⟩ = 0. (2.47)

We substitute Eq. (2.44) into to Eq. (2.46),

𝑅𝑥 (𝑥) = − 1
4
〈
𝐴̂↑ (0, 𝑥) [𝑠] 𝐴̂↓ (𝑥, 0) [𝑠] + 𝐴̂↓ (0, 𝑥) [𝑠] 𝐴̂↑ (𝑥, 0) [𝑠]

〉
𝑠
. (2.48)

Using the symmetries (2.42) and (2.43) of the 𝑀-matrix we simplify it to

𝑅𝑥 (𝑥) =
{

1
4
〈��𝐴↑ (𝑥, 0) [𝑠]��2 + ��𝐴↑ (0, 𝑥) [𝑠]��2〉𝑠 if𝑈 > 0,

− 1
2 Re

〈
{𝐴↑ (𝑥, 0) [𝑠]𝐴∗

↑ (0, 𝑥) [𝑠]}
〉
𝑠

if𝑈 < 0,
(2.49)

with {· · · } the anticommutator.
The average in Eq. (2.49) is over the Ising field 𝑠. To improve the statistics we

make use of translational invariance in space and imaginary time, by additionally
averaging the correlator over the initial position (replacing (𝑥, 0) ↦→ (𝑥 + 𝑦, 𝑦)
with 0 < 𝑦 < 𝐿), as well as over 0 < 𝑡 < 𝛽.
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2.B.4 Monte Carlo averaging

For the Monte Carlo averaging we perform local updates of the auxiliary Ising
field, one spin-flip at the time. An operator average is then sampled at each
Monte Carlo iteration, which includes 𝛽𝐿/𝜏𝑎 local spin-flip steps.

We have tried out three alternative numerical methods:

1. The first method is a simple dense matrix calculation, where we recalculate
𝑃[𝑠] after each spin-flip and 𝐴↑ [𝑠] after each Monte Carlo step, using
neither the sparsity of the 𝑀-matrix nor the locality of the update. This is
optimal for systems of small sizes (𝐿/𝑎 ≲ 11, 𝛽/𝜏 ≲ 6).

2. In the second method we use the locality of the update of the Ising field, by
employing the Woodbury formula for the update of 𝑃[𝑠] and 𝐴↑ [𝑠]. This
is favorable for systems of medium sizes (𝐿/𝑎 ≈ 41, 𝛽/𝜏 ≈ 20).

3. In the third method we use the sparsity of the 𝑀-matrix, with the help of
the SuperLU library.3 This gives the best performance for large systems
(𝐿/𝑎 ≳ 61, 𝛽/𝜏 ≳ 30).

In Fig. 2.6 we compare results for three system sizes. We fix the ratio 𝑎/𝜏 = 𝑣F
of the discretization units of space and (imaginary) time and for each choice of
𝑎, 𝜏 we ensure that 𝐿/𝑎 is an odd integer and 𝛽/𝜏 is an even integer (to avoid
the pole in the tangent dispersion). The size dependence is relatively weak for
the repulsive interaction, and more significant for the attractive interaction near
values of 𝑥 where the correlator changes sign.

2.C Bosonization results

The curves in Fig. 2.5 are the bosonization results for the spin correlator 𝑅𝑥 (𝑥)
of the helical Luttinger liquid on a ring of length 𝐿. We describe that calculation.

3X. S. Li, An overview of SuperLU: Algorithms, implementation, and user interface, ACM
Transactions on Mathematical Software, 31, 302 (2005).
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Figure 2.6. Quantum Monte Carlo results for the correlator 𝑅𝑥 (𝑥) =

⟨𝝍† (𝑥)𝝈𝑥𝝍(𝑥)𝝍† (0)𝝈𝑥𝝍(0)⟩ of the helical Luttinger liquid (interaction strength |𝜅 | =
0.1), on the space-time lattice for three different lattice sizes (at fixed 𝑎/𝜏 = 𝑣F). The
data for the largest system corresponds to Fig. 2.5 from the main text. The dotted line
connecting the data points is a guide to the eye.

2.C.1 Bosonic form of the Hamiltonian

We start directly from the bosonic form of the Luttinger Hamiltonian [14],

𝐻 =
2𝜋𝑣F

𝐿

[ ∞∑︁
𝑛𝑞=1

𝑛𝑞
(
𝑏
†
𝑞↑𝑏𝑞↑ + 𝑏

†
𝑞↓𝑏𝑞↓

)
− 𝜅

∞∑︁
𝑛𝑞=1

𝑛𝑞
(
𝑏
†
𝑞↑𝑏

†
𝑞↓ + 𝑏𝑞↑𝑏𝑞↓

)
+ 1

2𝑁↑ (𝑁↑ + 1) + 1
2𝑁↓ (𝑁↓ + 1) + 𝜅𝑁↑𝑁↓

]
. (2.50)

The bosonic creation and annihilation operators 𝑏†, 𝑏 are constructed from the
fermionic operators 𝑐†, 𝑐 by

𝑏†𝑞𝜎 =
𝑖

√
𝑛𝑞

∑︁
𝑘

𝑐
†
(𝑘+𝑞)𝜎𝑐𝑘𝜎 , 𝑞 =

2𝜋
𝐿
𝜎𝑛𝑞 . (2.51)
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We impose periodic boundary conditions, quantizing 𝑘 = 2𝜋𝑛/𝐿, 𝑛 ∈ Z. The
bosonic wave number 𝑞 = 2𝜋𝜎𝑛𝑞/𝐿 is defined such that 𝑛𝑞 > 0 and the sign of
𝑞 is fixed by the spin index.

The normally ordered fermionic number operator

𝑁𝜎 =
∑︁
𝑘

: 𝑐†
𝑘𝜎
𝑐
𝑘𝜎

: =
∑︁
𝑘

(
𝑐
†
𝑘𝜎
𝑐
𝑘𝜎

− ⟨0|𝑐†
𝑘𝜎
𝑐
𝑘𝜎

|0⟩
)

(2.52)

commutes with the bosonic operators. The Fermi sea expectation value ⟨0|𝑐†
𝑘𝜎
𝑐
𝑘𝜎

|0⟩
is defined such that wave numbers 𝜎𝑘 ≤ 0 contribute, so all states with energy
𝐸 ≤ 0, including the spin-up and spin-down states at 𝑘 = 0. For later use we
note that this implies that

⟨𝑁𝜎⟩ = 1/2 − 1 = −1/2 (2.53)

at zero temperature in a half-filled band (the state at 𝑘 = 0 only contributes 1/2
per spin direction to the ground state).

The Hamiltonian can be diagonalised by a Bogoliubov transformation [14],

𝐵𝑞± = 2−3/2(𝐾−1/2 + 𝐾1/2) (𝑏𝑞↑ ∓ 𝑏𝑞↓) ± 2−3/2(𝐾−1/2 − 𝐾1/2) (𝑏†
𝑞↑ ∓ 𝑏

†
𝑞↓),
(2.54)

with 𝐾 =
√

1 − 𝜅/
√

1 + 𝜅, resulting in

𝐻 =
2𝜋𝑣F

𝐿

[√︁
1 − 𝜅2

∞∑︁
𝑛𝑞=1

𝑛𝑞 (𝐵†
𝑞+𝐵𝑞+ + 𝐵†

𝑞−𝐵𝑞−)

+ 1
2𝑁↑ (𝑁↑ + 1) + 1

2𝑁↓ (𝑁↓ + 1) + 𝜅𝑁↑𝑁↓

]
. (2.55)

2.C.2 Spin correlator in terms of the bosonic fields

We wish to compute the (equal-time) spin correlator

𝑅𝑥 (𝑥) = 1
4 ⟨𝝍

†(𝑥)𝝈𝑥𝝍(𝑥)𝝍†(0)𝝈𝑥𝝍(0)⟩ − 1
2 Re ⟨𝜓†

↑ (𝑥)𝜓↑ (0)𝜓†
↓ (0)𝜓↓ (𝑥)⟩.

(2.56)

In the second equality we used spin conservation symmetry (2.47) and transla-
tional symmetry,

⟨𝜓†
↑ (𝑥)𝜓↓ (𝑥)𝜓†

↓ (0)𝜓↑ (0)⟩ = ⟨𝜓†
↑ (0)𝜓↓ (0)𝜓†

↓ (−𝑥)𝜓↑ (−𝑥)⟩

= ⟨𝜓†
↑ (0)𝜓↓ (0)𝜓†

↓ (𝑥)𝜓↑ (𝑥)⟩∗. (2.57)
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The correlator diverges when 𝑥 → 0, we regularize this ultraviolet divergence
with cutoff length 𝑎0.

The fermion field is related to the bosonic operators by the “refermionization”
relation [14]

𝜓𝜎 (𝑥) =
1

√
2𝜋𝑎0

𝐹𝜎𝑒
−𝑖𝜎2𝜋𝑁𝜎 𝑥/𝐿𝑒−𝑖𝜙𝜎 (𝑥 ) , (2.58)

where 𝐹𝜎 is a Klein factor and

𝜙𝜎 (𝑥) = −
∞∑︁
𝑛𝑞=1

1
√
𝑛𝑞
𝑒−𝜋𝑛𝑞𝑎0/𝐿

(
𝑒−𝑖𝑞𝑥𝑏𝑞𝜎 + 𝑒𝑖𝑞𝑥𝑏†𝑞𝜎

)
. (2.59)

The correlator then takes the form

𝑅𝑥 (𝑥) = − 1
2 Re

1
(2𝜋𝑎0)2 ⟨𝑒

𝑖𝜙↑ (𝑥 )𝑒𝑖2𝜋𝑁↑𝑥/𝐿𝐹†
↑𝐹↑𝑒

−𝑖𝜙↑ (0)𝑒𝑖𝜙↓ (0)𝐹†
↓𝐹↓𝑒

𝑖2𝜋𝑁↓𝑥/𝐿𝑒−𝑖𝜙↓ (𝑥 )⟩

= −1
2 Re

1
(2𝜋𝑎0)2 ⟨𝑒

𝑖2𝜋 (𝑁↓+𝑁↑ )𝑥/𝐿⟩⟨𝑒𝑖𝜙↑ (𝑥 )𝑒−𝑖𝜙↑ (0)𝑒𝑖𝜙↓ (0)𝑒−𝑖𝜙↓ (𝑥 )⟩,

(2.60)

where we used the identity 𝐹†
𝜎𝐹𝜎′ = 𝛿𝜎𝜎′ . In the second equality the expectation

value has been factored into a product of two expectation values, which is allowed
because every state can be completely and uniquely described by the number of
fermions 𝑁𝜎 and bosonic excitations 𝑏†𝑞𝜎𝑏𝑞𝜎 , implying the independence of
their expectation values.

The next step is to transform to the eigenbasis of the 𝐵-operators,

Φ𝜎 (𝑥) = −
∞∑︁
𝑛𝑞=1

1
√
𝑛𝑞
𝑒−𝜋𝑛𝑞𝑎0/𝐿

(
𝑒−𝑖𝑞𝑥𝐵𝑞𝜎 + 𝑒𝑖𝑞𝑥𝐵†

𝑞𝜎

)
, (2.61)

by means of the relations

𝜙↑ = − 2−3/2(𝐾−1/2 + 𝐾1/2) [Φ+(𝑥) +Φ− (−𝑥)]
− 2−3/2(𝐾−1/2 − 𝐾1/2) [Φ+(−𝑥) −Φ− (𝑥)], (2.62a)

𝜙↓ = − 2−3/2(𝐾−1/2 + 𝐾1/2) [Φ− (𝑥) −Φ+(−𝑥)]
+ 2−3/2(𝐾−1/2 − 𝐾1/2) [Φ− (−𝑥) +Φ+(𝑥)] . (2.62b)
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We thus evaluate the expectation value

⟨𝑒𝑖𝜙↑ (𝑥 )𝑒−𝑖𝜙↑ (0)𝑒𝑖𝜙↓ (0)𝑒−𝑖𝜙↓ (𝑥 )⟩

=
〈
𝑒−𝑖

√
𝐾
2 (Φ+ (𝑥 )+Φ+ (−𝑥 )−2Φ+ (0) ) 〉〈𝑒−𝑖√𝐾

2 (Φ− (𝑥 )−Φ− (−𝑥 ) ) 〉
× 𝑒 [Φ+ (𝑥 ) ,Φ+ (0) ]𝑒−

1
4 [Φ+ (𝑥 ) ,Φ+ (−𝑥 ) ]𝑒−

1
4 [Φ− (𝑥 ) ,Φ− (−𝑥 ) ] , (2.63)

where we used the Baker-Campbell-Hausdorff formula and the fact that the
commutator [Φ𝜎 (𝑥),Φ𝜎 (𝑦)] is a 𝑐-number.

Because of inversion symmetry,

[Φ+(𝑥),Φ+(−𝑥)] = [Φ− (−𝑥),Φ− (𝑥)] = −[Φ− (𝑥),Φ− (−𝑥)], (2.64)

the last two exponentials in Eq. (2.63) cancel each other. The identity for the
thermal average ⟨𝑒𝐵⟩ = 𝑒⟨𝐵

2 ⟩/2 of an operator 𝐵 that is linear in free bosonic
operators then gives〈
𝑒−𝑖

√
𝐾
2 (Φ+ (𝑥 )+Φ+ (−𝑥 )−2Φ+ (0) ) 〉 = 𝑒− 𝐾4 ⟨6Φ2

+ (0)+{Φ+ (𝑥 ) ,Φ+ (−𝑥 ) }−4{Φ+ (𝑥 ) ,Φ+ (0) }⟩ ,
(2.65a)〈

𝑒−𝑖
√
𝐾
2 (Φ− (𝑥 )−Φ− (−𝑥 ) ) 〉 = 𝑒− 𝐾4 ⟨2Φ2

− (0)−{Φ− (𝑥 ) ,Φ− (−𝑥 ) }⟩ , (2.65b)

where we also used the translational symmetry ⟨Φ+(0)Φ+(𝑥)⟩ = ⟨Φ+(−𝑥)Φ+(0)⟩.
We need one more identity,

𝑒⟨{Φ− (𝑥 ) ,Φ− (−𝑥 ) }⟩−⟨{Φ+ (𝑥 ) ,Φ+ (−𝑥 ) }⟩ = 1, (2.66)

again because of inversion symmetry, to finally arrive at

𝑅𝑥 (𝑥) = − 1
2 Re

1
(2𝜋𝑎0)2 ⟨𝑒

𝑖2𝜋𝑁tot𝑥/𝐿⟩𝑒𝐾 ⟨{Φ+ (𝑥 ) ,Φ+ (0) }−2Φ2
+ (0) ⟩𝑒 [Φ+ (𝑥 ) ,Φ+ (0) ] ,

(2.67)
with 𝑁tot = 𝑁↑ + 𝑁↓.

2.C.3 Evaluation of the thermal averages

It remains to thermally average the bosonic field correlators and the exponential
of the fermionic number operators. We do the latter average first.

The number operators 𝑁↑, 𝑁↓ commute with each other and with the bosonic
fields, so the average is a classical ensemble average with the Gibbs measure at
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inverse temperature 𝛽 and chemical potential 𝜇,

𝐺𝑁 (𝑥) ≡ ⟨𝑒𝑖2𝜋𝑁tot𝑥/𝐿⟩ =
∑∞
𝑁↑ ,𝑁↓=−∞ 𝑒

𝑖2𝜋𝑁tot𝑥/𝐿𝑒−𝛽𝐸+𝛽𝜇𝑁tot∑∞
𝑁↑ ,𝑁↓=−∞ 𝑒

−𝛽𝐸+𝛽𝜇𝑁tot
, (2.68a)

𝐸 =
2𝜋𝑣F

𝐿

[
1
2𝑁↑ (𝑁↑ + 1) + 1

2𝑁↓ (𝑁↓ + 1) + 𝜅𝑁↑𝑁↓

]
. (2.68b)

The chemical potential 𝜇 = 0 without interactions, corresponding to a half-
filled band at zero temperature. To keep the half-filled band also for nonzero 𝜅
we adjust

𝜇 = −1
2 𝜅

2𝜋𝑣F

𝐿
. (2.69)

Then lim𝛽→∞⟨𝑁𝜎⟩ = −1/2 independent of the interaction strength 𝜅 ∈ (−1, 1),
as required by Eq. (2.53).

We next turn to the average of the bosonic field correlators:

⟨Φ𝜎 (𝑥)Φ𝜎 (0)⟩ =
∞∑︁

𝑛𝑞 ,𝑛
′
𝑞=1

1√︁
𝑛𝑞𝑛

′
𝑞

𝑒−2𝜋𝑛𝑞𝑎0/𝐿 ⟨
(
𝑒−𝑖𝑞𝑥𝐵𝑞𝜎+𝑒𝑖𝑞𝑥𝐵†

𝑞𝜎

) (
𝐵𝑞′𝜎+𝐵†

𝑞′𝜎

)
⟩

=

∞∑︁
𝑛𝑞=1

1
𝑛𝑞
𝑒−2𝜋𝑛𝑞𝑎0/𝐿 ⟨𝑒−𝑖𝑞𝑥𝐵𝑞𝜎𝐵†

𝑞𝜎 + 𝑒𝑖𝑞𝑥𝐵†
𝑞𝜎𝐵𝑞𝜎⟩

=

∞∑︁
𝑛𝑞=1

1
𝑛𝑞
𝑒−2𝜋𝑛𝑞𝑎0/𝐿

(
𝑒−𝑖𝜎2𝜋𝑛𝑞 𝑥/𝐿

1 − 𝑒−𝑛𝑞2𝜋𝑣𝛽/𝐿 + 𝑒𝑖𝜎2𝜋𝑛𝑞 𝑥/𝐿

𝑒𝑛𝑞2𝜋𝑣𝛽/𝐿 − 1

)
=

∞∑︁
𝑛𝑞=1

1
𝑛𝑞
𝑒−𝑛𝑞 (2𝜋/𝐿) (𝑎0+𝑖𝜎𝑥 ) +

∞∑︁
𝑛𝑞=1

1
𝑛𝑞
𝑒−2𝜋𝑛𝑞𝑎0/𝐿 2 cos

(
2𝜋𝑛𝑞𝑥/𝐿

)
𝑒𝑛𝑞2𝜋𝑣𝛽/𝐿 − 1

= − ln
(
1 − 𝑒−(2𝜋/𝐿) (𝑎0+𝑖𝜎𝑥 )

)
+

∞∑︁
𝑛𝑞=1

1
𝑛𝑞
𝑒−2𝜋𝑛𝑞𝑎0/𝐿 2 cos

(
2𝜋𝑛𝑞𝑥/𝐿

)
𝑒𝑛𝑞2𝜋𝑣𝛽/𝐿 − 1

. (2.70)

We subtract ⟨Φ2
𝜎 (0)⟩ and expand to first order in the cutoff length 𝑎0,

⟨Φ𝜎 (𝑥)Φ𝜎 (0) −Φ2
𝜎 (0)⟩ = 𝐺𝜎 (𝑥) + ln(2𝜋𝑎0/𝐿) + O(𝑎0),

𝐺𝜎 (𝑥) = − ln
(
1 − 𝑒−𝑖𝜎2𝜋𝑥/𝐿

)
+

∞∑︁
𝑛𝑞=1

4
𝑛𝑞

sin2(𝜋𝑛𝑞𝑥/𝐿)
𝑒𝑛𝑞2𝜋𝑣𝛽/𝐿 − 1

.
(2.71)

With the help of two further identities,

⟨{Φ+(𝑥),Φ+(0)} − 2Φ2
+(0)⟩ = 2 Re⟨Φ+(𝑥)Φ+(0) −Φ2

+(0)⟩, (2.72a)

[Φ+(𝑥),Φ+(0)] = 2𝑖 Im⟨Φ+(𝑥)Φ+(0) −Φ2
+(0)⟩ = 2𝜋𝑖(𝑥/𝐿 − 1/2), (2.72b)
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we conclude that

𝑅𝑥 (𝑥) =
𝑒2𝐾 Re𝐺+ (𝑥 ) Re

[
𝑒𝑖2𝜋𝑥/𝐿𝐺𝑁 (𝑥)

]
2𝐿2(2𝜋𝑎0/𝐿)2−2𝐾 . (2.73)

The two functions 𝐺𝑁 (𝑥) and 𝐺+(𝑥) can be computed efficiently from Eqs.
(2.68) and (2.71). For the comparison with the lattice theory we identify the
cutoff length 𝑎0 with the lattice constant 𝑎.

2.C.4 Propagator

For reference we also give the finite-size bosonization result for the propagator:

𝐶𝜎 (𝑥) = ⟨𝜓†
𝜎 (𝑥, 0)𝜓𝜎 (0, 0)⟩ =

1
2𝜋𝑎0

⟨𝑒𝑖𝜎2𝜋𝑁𝜎 𝑥/𝐿⟩⟨𝑒𝑖𝜙𝜎 (𝑥 )𝑒−𝑖𝜙𝜎 (0)⟩

=
𝜎

2𝜋𝑖𝑎0

(
2𝜋𝑎0

𝐿

) (1/2) (𝐾+1/𝐾 )
⟨𝑒𝑖𝜎𝜋 (2𝑁𝜎+1)𝑥/𝐿⟩𝑒 (1/2) (𝐾+1/𝐾 ) Re𝐺𝜎 (𝑥 ) .

(2.74)
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