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Chapter 1

Introduction

1.1 Preface

One of the difficult problems in condensed matter physics is treating systems
with interactions. An interaction in a Hamiltonian is typically represented by
terms that are non-quadratic in quasi-particle creation and annihilation operators.
Standard methods based on solving the eigenvalue equation for a single particle
then do not apply. The problem becomes intrinsically many-body and must be
solved in the full Fock space. The size of the Fock space grows exponentially
with the size of the physical system, and quite quickly the problem becomes
unsolvable via a direct approach. This obstruction represents the main difficulty
in solving many-body physics.

Nevertheless, the development of theoretical physics has produced several
ways to deal with the problem of interactions [1]. One of the most well-known
theories in this regard is the theory of the Landau liquid [2], whose essential idea
is the concept of a quasiparticle. In many materials, the effect of interactions
can be efficiently described as a "dressing" of the electron in a cloud of other
electrons with which it interacts. The cloud changes the characteristics of the
particle, such as its mass or velocity, and gives it a finite lifetime. But ultimately,
the quasiparticle can still be described as a free particle.

As famous as the concept of the Fermi liquid is, equally well-known is the
fact that it breaks down in one spatial dimension. In 1D, physics can no longer
be described with the quasiparticle picture and becomes necessarily strongly
correlated. This is why the 1D theory of interacting electrons requires a special
name. It is known as the Luttinger or Tomonaga—Luttinger liquid [3, 4]. Despite
being truly a many-body problem, the Luttinger liquid is, in the simplest case of
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Figure 1.1. Dispersion of one-dimensional electrons for (a) topologically non-protected
Luttinger liquid, (b) chiral Luttinger liquid, and (c) helical Luttinger liquid. For (b) and
(c) we assume Er = 0 and kg = 0. Filled (empty) circles represent occupied (non-
occupied) electron states.

on-site interactions, fully solvable via the bosonization technique. This technique,
however, has its limits and cannot solve all variations of the problem — for
example, more complicated interactions or the presence of disorder make the
problem analytically unsolvable again. Therefore, one would like to have a
numerical method capable of describing the physics of such systems.

At the same time, numerical methods for solving Luttinger liquid theory are
complicated because of the Nielsen—Ninomiya theorem [5], which prohibits a
straightforward discrete formulation of the problem.

These last two facts — the necessity of a numerical method and the simulta-
neous difficulty of creating one — are the main motivations for the major topic
of this thesis. In the remainder of the introduction, I will formally define the
Luttinger liquid and describe its main characteristics, as well as introduce the
concept of the bosonization technique and briefly describe the lattice formulation
of the problem and the no-go theorem.

1.2 Topologically protected Luttinger liquid

The standard image of a Luttinger liquid dispersion, i.e., the non-interacting part
of the energy, is presented in Figure 1.1. Panel (a) represents a generic band with
finite filling, far from the ends of the band. In one spatial dimension, such a band
has two points where the Fermi energy Er crosses the dispersion. In the vicinity
of these crossings, one may approximate the dispersion as

E(k) ~ +vp(k £ kp) + EF. (1.1)
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Calling the corresponding eigen-wavefunctions Wr and ¥y, and making a
matching transformation k — k ¥ kp, one defines an effective one-dimensional
problem of an electron with a quasi-spin:

~

HY = EY, H=vpo;k. (1.2)

This Hamiltonian describes a gapless (metallic) system in one dimension. But
the gaplessness in this picture is not protected and results from fine-tuning. Since
both Wg and ¥}, come from the same electronic band, nothing prevents a generic
term in the initial Hamiltonian that would couple the kr and —k g points — for
instance, a random disorder. Coupling of these two points is a backscattering
process that introduces an effective mass term mo to the Hamiltonian (1.2) and
opens a gap in the spectrum.

To protect the metallic behavior, one needs to rely on topological protection.
In other words, the quasi-spin of the electron must be a symmetry-protected
quantum number. One such system is a chiral fermion with a dispersion shown
in Figure 1.1 (b). In one dimension chiral fermion is defined by its velocity
direction, it is strictly a right- or left-mover. The absence of a counter-propagating
electron makes backscattering impossible and therefore topologically guarantees
gaplessness. A one-dimensional interacting system with a single chiral electron
mode is then called a chiral Luttinger liquid, whose Hamiltonian in the non-
interacting limit is simply

H = vpk. (1.3)

Obviously, adding any number of additional fermions with the same chirality
cannot open a gap either, since backscattering remains impossible. A physical
example of such a system in condensed matter is the edge of a quantum Hall
system [6], schematically represented in Figure 1.2 (a), which is topologically
equivalent to a one-dimensional ring with all electrons being chiral right- or
left-movers.

Moreover, one may also include pairs of different fermions with opposite
chiralities without spoiling the metallic behavior, as long as their chirality is
protected. The minimal example of one right- and one left-mover is shown in
Figure 1.1 (c) and described by the same Hamiltonian as in (1.2), but now with
chirality as a well-defined quantum number fixed by the band. The absence of a
backscattering process is typically guaranteed by time-reversal (TR) symmetry:
the Hamiltonian must be invariant under the transformation (o, k) — (-0, k).
This model is called a helical Luttinger liquid and is physically realized at the
edge of a quantum spin Hall insulator [7, 8], illustrated in Figure 1.2 (b).
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Figure 1.2. Schematic representation of (a) a Quantum Hall insulator and (b) a Quantum
Spin Hall insulator. Both systems are insulating in the bulk and have conducting edges.
Propagating electrons, represented by dots at the boundaries, are chiral; their velocity,
illustrated by small arrow-vectors, is determined either by (a) the topology of the system
or by (b) their (quasi-)spin depicted by different colors. The edges are quasi-one-
dimensional, conducting, and topologically protected, and therefore represent a physical
realization of a Luttinger liquid system.

Platforms that experimentally realize the physics of chiral or helical Luttinger
liquids include the topological states of matter mentioned above, as well as
composite systems such as Josephson junction chains and cold atoms [9].

1.3 Chiral fermions in QFT and SPT

Although the title of this thesis is "Luttinger liquid on a lattice," and most chapters
focus on the specific example of a helical Luttinger liquid, the key ingredient
in that physical picture is the concept of a one-dimensional chiral fermion, as
discussed in Section 1.2. This concept plays a crucial role both in quantum
field theories in (1+1)D and in symmetry-protected topological (SPT) phases of
matter in 2D. Accordingly, the numerical methods developed in this thesis are
also highly relevant to these broader areas. In this section, I briefly describe how
the concept of chiral fermions arises in QFT and SPT phases.

Fermions in quantum field theory are spinors described by the Dirac equation,

S = / xy (iyoat +iy'a, + m) v, (1.4)

where ¢ = 7y, and the gamma matrices y° = oy, y! =i oy satisfy the Clifford
algebra {y*,y”} = 2n*” with n* = diag(1, —1). When the fermion is massless
(m = 0), the action simplifies to

S = / iyt (a, —y5ax) v, (1.5)
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where y° = —y%y! = o, In this form, the massless Dirac fermion decouples
into two independent chiral components . = %(1 + ). Thus, the original

vector ( — ¢i%y) and axial (¥ — €/®”’ ) symmetries of the theory become
two independent chiral symmetries: ¢, — e’ %,

An SPT phase of matter [10] is a type of topological insulator (TI), charac-
terized by a gapped bulk and a gapless, symmetry-protected edge. In this sense,
a quasi-1D edge of a 2D TI provides a natural platform to realize Luttinger liquid
physics. TIs can exhibit either short-range or long-range entanglement. Here,
we focus on short-range entangled TIs, known as SPT phases, which, in contrast
to long-range entangled TIs, do not support intrinsic topological order such as
fractional statistics (as seen, for instance, in the fractional quantum Hall effect).

SPT phases generalize the notion of topological band insulators (TBIs) to
include interactions. Hence, examples like the integer quantum Hall state and the
quantum spin Hall state discussed in the previous section are both fermionic SPT
phases in two dimensions. Further, fermionic SPT phases include many-body
interacting states that cannot be realized within a free-particle picture [11]. The
boundaries of these more exotic phases can often be described by multicomponent
Luttinger liquid theories [12].

1.4 Bosonization

The fundamental features of Luttinger liquid physics can be captured analytically
using the method of bosonization [13]. Here we consider a helical system on
a ring of length L, with the dispersion shown in Fig. 1.1(c), described by the
Hamiltonian

L/2

H= [ de|uliveagus - u](iveou + gipy (0P + g2 (4300 + 1) |-
L2
(1.6)

where V¥, = % Sre *ci o and py = z,bfrl,//(,-. The terms with coefficients g
and g, represent density-density interactions between opposite and same chirality,
respectively. Colons denote normal ordering. In this regime, the model becomes
analytically solvable in the bosonic representation [14]. In this section I briefly
describe how to do it.
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We construct bosonic operators as bilinears of fermionic operators:

i 2
byo = _Tq Z g.oCkor 4= f(rnq, ng >0,
\ k
1 . .
do(x) = — Z — [e_lq"laq(re'_“"'q/2 + e’qxbgo_e_a"q/z] . (1.7)

Vig

where b - is a bosonic annihilation operator and ¢ - (x) is the bosonic field. The
ultraviolet regularization parameter a is introduced to control divergences of the
theory.

Now the fermionic fields and densities can now be expressed in terms of
¢ (x) via the famous bosonization transformation:

ng

por() = TNo + A-dbod,  (18)
T

=L p o Re-l1-6,1/2)x it (x)

U(X) o mF(,e e . (1.9)
Here, since by the construction the bosonic operators can not measure the total
amount of fermions in the system, we introduced N, as the total number of
electrons counted from the half-filling point. Correspondingly we define the
|No) states as the ground states of the non-interacting Hamiltonian with fixed
amount of electrons. In other words |NT> is a state with all |(k < - 2” oo T)>
filled and respectively |N i> is a state with all !(k > 2”" , o :,L)> filled. Obv10us1y
the eigenvalue relation N [N-) = N, holds. Addltlonally, to be able to switch
between different |N) states, and to satisfy the fermionic statistic the Klein
factors F, are being introduced as

FolNg)=TsINe =1y, Ty =(=D", T;=1 (1.10)

Substituting the bosonization relation (1.8) into Eq. (1.6), the Hamiltonian
becomes [14]

v 1 1
H=" ;(§+g) SN: +an F b

+(——g) NN = ng [b b +ququ]

ng

+ 65 Z LN,

(1.11)
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where the renormalized velocity v and dimensionless electron-electron interac-
tion parameter g (g = 1 for the free case) are given by

2 2
V:VFJ(HE) _ 812’ g:\/VF+g2/”_g1/(2”) (1.12)

VE+ g /m+g1/(2m)

In Eq.(1.11) the term with coefficient (é + g) corresponds to the kinematic part

of the initial Hamiltonian, the (é — g) term comes from the interacting part, and
the last term originates from the finite size formulation with §; = 1 for periodic
boundary conditions and ¢, = 0 if it is antiperiodic.

Finally, the beauty of the bosonization idea becomes visible: the interaction
terms, originally quartic in the fermionic formulation, become quadratic in the
bosonic representation. This bosonic Hamiltonian can be diagonalized via a
Bogoliubov transformation:

Bys = % (% +\/§) (byr Fbgy) £ (% —\/§) (bjo “_Lbjzl)} ,

2y v

o ng o

1

(1.13)

Thus, the Luttinger liquid model defined in Eq. (1.6) is solved analytically. With
access to the full eigenspectrum and eigenfunctions, one can compute various
observables such as Green’s functions or spin correlators, which exhibit power-
law behavior characteristic of gapless one-dimensional systems. In Chapter 2,
we calculate these correlators, carefully taking finite-size and finite-temperature
effects into account, to compare the analytical predictions with our numerical
simulations.

1.5 Lattice formulation and no-go theorem

In the previous sections, we described the fundamentals of the helical Luttinger
liquid and showed that, in its simplest form, it is fully analytically solvable.
Bosonization is a powerful tool that provides deep insights into the physics of
chiral fermions in one dimension. Nevertheless, not all scenarios can be solved
analytically. Breaking translational symmetry, via disorder or scalar potentials,
or introducing more complex interactions, such as spatially dependent terms
or higher-order fermionic operators, makes the model analytically intractable.
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Figure 1.3. Dispersion relations of free electrons resulting from different discretization
schemes of the Dirac Hamiltonian in one dimension, shown over two Brillouin zones.
Only the Stacey derivative simultaneously preserves chiral symmetry, avoids doublers,
and supports efficient numerical simulations due to hidden locality.

Therefore, one would like to simulate Luttinger liquid physics in silico, ideally
in a numerically efficient manner. Or, in other words, to put the Luttinger liquid
on a lattice. However, one immediately encounters the nontrivial problem of
discretizing the momentum operator:

k = -idx. (1.14)
This obstacle is known as the fermion-doubling problem, formalized in the no-go
theorem by Nielsen and Ninomiya [5]:

Any hermitian and local in real space Hamiltonian
that preserves the chirality of the Dirac fermions
must have an even number of left- and right-movers in the Brillouin zone.

Here we illustrate this phenomenon (see also Fig. 1.3) with several examples that
implement different discretization schemes of the Dirac Hamiltonian:

~

Hp = —ivpo,0« = vpo,k. (1.15)

Sine derivative

The most straightforward discretization of the derivative is the central finite
difference:

O f(x) = (2a) ' (f(x +a) - f(x —a)). (1.16)
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In momentum space, this leads to a sine dispersion:
Hp — Hyip = vp/ao sin(ka). (1.17)

This formulation is local and chiral symmetric (Hgj, « o), but, consistent with
the no-go theorem, it results in a doubler with opposite chirality at the Brillouin
zone (BZ) edge (see Figure 1.3). As discussed in Section 1.2, the presence of
doublers results in the theory unstable to disorder or generic inter-cone coupling,
making it incapable for simulating Luttinger liquid physics.

Wilson derivative

To resolve the doubling problem in Eq. (1.17), one can add a momentum-
dependent mass term to gap out the unwanted cone:

Hp — Hwiison = Vi/a |o; sin(ka) + (l - cos(l%a)) O’x] . (1.18)

This formulation of discretized Dirac Hamiltonian has a name of Wilson fermion.
Certainly it is still local (cos(ka) is a sparce matrix in real space) and eliminates
the doubler. However, it explicitly breaks chirality by introducing a o, mass term
that mixes the chiralities, violating a key assumption of the Nielsen-Ninomiya
theorem. This term needs to be fine-tuned in order to vanish at & = 0 and
therefore it is unstable to disorder. Furthermore, it reintroduces chirality mixing
away from k = 0 (see how at Figure 1.3 dispersions of left- and right-mover
of Wilson discretization smoothly merge at the edge of the BZ), resulting in
backscattering and undermining the chiral nature of the system.

SLAC derivative

From the previous schemes, we see that either explicit chirality breaking (Wilson)
or the presence of doublers (sine) obstructs the topological protection of the chiral
fermion on a lattice. Therefore the only remaining assumption of the no-go
theorem that can be relaxed is the locality of the derivative operator in real space.
One of the formulation exploiting this idea is called SLAC derivative

uf (x) = Y (=1)"(an) ™' (f (x + na) - f(x - na)). (1.19)
n=1

As depicted at the Figure 1.3 it produces a Hamiltonian that is strictly linear in
momentum

Hp _>HSLAC =vF/(ia)0'Z1ne”2“. (120)



10 CHAPTER 1. INTRODUCTION

Ultimately, SLAC lattice formulation produces a strictly chiral fermion with-
out a doubler by the cost of being non-local, making it a reasonable candidate for
simulating chiral physics. However, attempts of reproducing the Luttinger liquid
behavior within SLAC framework seem to fail [15] presumably due to the utter
non-locality of SLAC fermion.

Stacey derivative

An alternative non-local discretization is provided by the Stacey derivative [16]:
Of() = 2@ Y (=D)"(f(x+na) = f(x—na)).  (121)
n=1

This leads to the tangent dispersion (see Figure 1.3) in momentum space:
Hp — Hygn = 2vp ac, tan(iéa /2). (1.22)

This discretization scheme, called the tangent fermion [17], plays a central role in
this thesis and lays in the foundation of the numerical methods developed herein.

Tangent fermion is highly non-local in its’ original formulation. Namely,
Eq. (1.21) contains all-to-all hoppings of the same, not-decaying amplitude.
Remarkably, tangent fermion, as it explained in the Chapter 3, possess hidden
locality, which allows for various efficient local formulations. Furthermore,
it accomplishes the task of reproducing Luttinger liquid physics faithfully, a
success we attribute to its’ unique combination of chirality preservation and
hidden locality.

1.5.1 Domain wall fermion

Finally it is worth to mention here another approach to circumvent the fermion
doubling. It has the name of domain wall fermion and exploits the idea of
reproducing the physics of one-dimensional chiral fermions as the edge state of
a two-dimensional topological system, thereby lifting the dimensionality of the
system from 1D to 2D. While being rigorous, this formulation is consequentially
more demanding numerically since one needs to simulate a system of a greater
dimensionality. Further, it introduces an unavoidable bulk-edge coupling, which
compromises the intrinsic one-dimensional character of the model.
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1.6 This thesis

During my PhD journey I encountered and worked on several different topics in
theory of condensed matter. The physics of strongly correlated chiral fermions
in one dimension became the main focus of my PhD, two chapters of this thesis
represent it. In Chapter 2 we implement the idea of tangent fermions to simulate
the helical Luttinger liquid using quantum Monte Carlo (QMC) approach, and
then we extend the idea further to tensor network methods in Chapter 3. The
remaining two chapters of this thesis focus on two-dimensional single-particle
physics. In Chapter 4 we study the Majorana metal transition as a percolation
of topological edge modes. Finally, Chapter 5 investigates the phenomenon of
Landau quantization in systems with generalized Van Hove singularities. Below,
I summarize the main results of each chapter.

1.6.1 Chapter 2

In this chapter we tackle the significant challenge in simulating strongly correlated
one-dimensional systems for the first time. We choose helical Luttinger liquid as
a test ground, an ideal candidate to do the benchmark of our method due to its
analytical solvability. We introduce a novel approach using tangent fermions on a
space-time lattice. This method possess the hidden locality that makes numerical
simulations feasible, while preserving the chirality of the fermions and removing
the doublers. Namely the approach has a local Euclidean action formulation
which is applicable in Quantum Monte Carlo (QMC) simulations.

T T
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Figure 1.4. Quantum Monte Carlo results (data points) for the spin correlator of a helical
Luttinger liquid on a space-time lattice, showing excellent agreement with analytical
bosonization theory (dashed curves) for both repulsive and attractive interactions. This
validates the tangent fermion approach for simulating correlated systems.
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Crucially, our fermionic auxiliary-field QMC simulations for the helical Lut-
tinger liquid at half-filling are shown to be sign-problem-free, a common chal-
lenge in fermionic simulations. The results from our simulations accurately
reproduce the expected Luttinger liquid continuum physics without needing any
adjustable parameters. We validate our findings by comparing them with analyt-
ical bosonization theory, even deriving finite-size and finite-temperature correc-
tions for precise comparisons. This work represents a significant step as the first
successful lattice simulation of the helical Luttinger liquid.

1.6.2 Chapter 3

Following the successful validation of the tangent fermion approach using QMC
in Chapter 2, this chapter pushes the boundaries further by employing powerful
tensor network methods, specifically the Density Matrix Renormalization Group
(DMRG). While QMC proved the concept, it was limited by the sign problem to
specific conditions like helical systems at half-filling without external potentials.
Tensor networks offer a way to overcome these limitations.

We demonstrate that the hidden locality inherent in the tangent fermion
formulation allows for an efficient representation using tensor networks. This
finding, coupled with the non-locality required by the Nielsen-Ninomiya theorem
to avoid fermion doubling and the necessity of preserving well-defined chirality,
provides strong support for the uniqueness of the tangent fermion approach.
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oo 13 20 25
Figure 1.5. Absolute value of the propagator calculated using tensor networks for
the tangent (dots) and sine (plusses) discretizations of the Luttinger Hamiltonian. The
tangent discretization agrees well with the continuum analytical results (curves), while
the sine discretization shows an unphysical gap. This highlights the advantage of the
tangent fermion approach.

Using DMRG, we achieve excellent agreement between our results and
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bosonization theory. We also perform a critical comparison with a straight-
forward sine discretization formulation, which, in contrast, results in a gapped
spectrum, highlighting the instability of lattice formulations burdened by fermion
doublers. This work establishes tensor networks as a viable and versatile tool
for simulating strongly correlated chiral fermions on a lattice using the tangent
fermion framework.

1.6.3 Chapter 4

This chapter delves into the behavior of disordered chiral p-wave superconductors,
atype of topological material classified by the Chern number. While conventional
superconductors are typically thermal insulators, disorder can transform these
topological superconductors into a thermal metal phase, where heat is transported
by Majorana fermions. The transition to this Majorana metal phase has been
observed in computer simulations but not yet experimentally.

0 (W) 1 o thermal conductance G/Gy 1
BT e

e op/t

0

3 -3 -2 -1 0 1 2 3

-3 -2 -1

Figure 1.6. Left panel shows the average number of percolating domain walls as a func-
tion of disorder parameters, clearly distinguishing the region where the Majorana metal
phase emerges. Right panel shows the corresponding thermal conductance, confirming
the transition. This demonstrates that the thermal metal-insulator transition is driven by
the percolation of topological domain walls.

Our research provides compelling numerical evidence that this thermal metal
— insulator transition occurs via the percolation of boundaries separating regions
with different topological properties (specifically, different Chern numbers). In
a clean system, the Chern number is uniform, making the bulk insulating. How-
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ever, disorder creates a "topological landscape” of domains with varying Chern
numbers.

To study this process in real space, we employ the innovative concept of the
spectral localizer, which acts as a "topological landscape function" capable of
determining local Chern numbers. This allows us to visualize the formation of
a network of domain walls between these topologically distinct domains. As
disorder increases, these domains grow and eventually connect, forming a perco-
lating cluster that spans the system, providing a channel for Majorana fermions
and enabling thermal conduction. By analyzing this percolation transition, we
successfully determine the thermal metal-insulator phase diagram.

1.6.4 Chapter 5

This chapter explores the phenomenon of magnetic breakdown in 2D materials,
particularly focusing on regions with generalized Van Hove singularities (vHs).
Magnetic breakdown occurs when electron trajectories in a magnetic field come
close together, allowing quantum tunneling. While well-studied at usual vHs,
newer 2D materials feature "high-order" vHs with flatter dispersions, leading to
richer magnetic breakdown behavior and new challenges.

0.2

(b70.7 (c)
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-0.9
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-0.05 0.00 0.05 0 35 70 -0.05 0.00 0.05 0 50 100

gxa Gle?/h] gxa Gle?/h]

Figure 1.7. Longitudinal conductance (right panels, blue lines) calculated for finite
systems with (b) square lattice and A3 saddle point and (c) triangular lattice and Monkey
saddle point, compared with the spectral structure of Landau minibands (left panels,
orange solid lines (tight-binding simulations) and blue dashed lines (analytically via
our approach)) arising from coherent orbit networks connected via magnetic breakdown
at different types of Van Hove singularities. The conductance peaks correspond to the
minibands, demonstrating the possibility of bulk conduction mediated by these networks.

We develop a general method to calculate the precise magnetic breakdown
scattering matrix (s-matrix) for any type of saddle point, including these high-
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order cases. Our approach maps the problem onto a 1D scattering problem in a
quantum chain derived from the Landau level basis.

A key consequence of magnetic breakdown, especially when saddle points
are at the edge of the Brillouin zone, is the formation of coherent orbit networks.
These networks delocalize the Landau level states, forming dispersive Landau
mini-bands that can support bulk electrical conduction in the presence of a
magnetic field. We calculate the longitudinal bulk conductance in a quantum
Hall bar geometry and show that this conduction, enabled by the orbit networks,
can strongly exceed the standard edge conductance. The energy-dependent width
of these mini-bands (and thus the conductance peaks) is uniquely tied to the
type of vHs, offering a potential experimental signature to distinguish between
different types of saddle points through conductance measurements.
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