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Chapter 1

Introduction

1.1 Preface

One of the difficult problems in condensed matter physics is treating systems
with interactions. An interaction in a Hamiltonian is typically represented by
terms that are non-quadratic in quasi-particle creation and annihilation operators.
Standard methods based on solving the eigenvalue equation for a single particle
then do not apply. The problem becomes intrinsically many-body and must be
solved in the full Fock space. The size of the Fock space grows exponentially
with the size of the physical system, and quite quickly the problem becomes
unsolvable via a direct approach. This obstruction represents the main difficulty
in solving many-body physics.

Nevertheless, the development of theoretical physics has produced several
ways to deal with the problem of interactions [1]. One of the most well-known
theories in this regard is the theory of the Landau liquid [2], whose essential idea
is the concept of a quasiparticle. In many materials, the effect of interactions
can be efficiently described as a "dressing" of the electron in a cloud of other
electrons with which it interacts. The cloud changes the characteristics of the
particle, such as its mass or velocity, and gives it a finite lifetime. But ultimately,
the quasiparticle can still be described as a free particle.

As famous as the concept of the Fermi liquid is, equally well-known is the
fact that it breaks down in one spatial dimension. In 1D, physics can no longer
be described with the quasiparticle picture and becomes necessarily strongly
correlated. This is why the 1D theory of interacting electrons requires a special
name. It is known as the Luttinger or Tomonaga–Luttinger liquid [3, 4]. Despite
being truly a many-body problem, the Luttinger liquid is, in the simplest case of
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Figure 1.1. Dispersion of one-dimensional electrons for (a) topologically non-protected
Luttinger liquid, (b) chiral Luttinger liquid, and (c) helical Luttinger liquid. For (b) and
(c) we assume 𝐸𝐹 = 0 and 𝑘𝐹 = 0. Filled (empty) circles represent occupied (non-
occupied) electron states.

on-site interactions, fully solvable via the bosonization technique. This technique,
however, has its limits and cannot solve all variations of the problem — for
example, more complicated interactions or the presence of disorder make the
problem analytically unsolvable again. Therefore, one would like to have a
numerical method capable of describing the physics of such systems.

At the same time, numerical methods for solving Luttinger liquid theory are
complicated because of the Nielsen–Ninomiya theorem [5], which prohibits a
straightforward discrete formulation of the problem.

These last two facts — the necessity of a numerical method and the simulta-
neous difficulty of creating one — are the main motivations for the major topic
of this thesis. In the remainder of the introduction, I will formally define the
Luttinger liquid and describe its main characteristics, as well as introduce the
concept of the bosonization technique and briefly describe the lattice formulation
of the problem and the no-go theorem.

1.2 Topologically protected Luttinger liquid

The standard image of a Luttinger liquid dispersion, i.e., the non-interacting part
of the energy, is presented in Figure 1.1. Panel (a) represents a generic band with
finite filling, far from the ends of the band. In one spatial dimension, such a band
has two points where the Fermi energy 𝐸𝐹 crosses the dispersion. In the vicinity
of these crossings, one may approximate the dispersion as

𝐸 (𝑘) ≈ ±𝑣𝐹 ( 𝑘̂ ± 𝑘𝐹) + 𝐸𝐹 . (1.1)



1.2 Topologically protected Luttinger liquid 3

Calling the corresponding eigen-wavefunctions Ψ𝑅 and Ψ𝐿 , and making a
matching transformation 𝑘̂ → 𝑘̂ ∓ 𝑘𝐹 , one defines an effective one-dimensional
problem of an electron with a quasi-spin:

𝐻𝚿 = 𝐸𝚿, 𝐻 = 𝑣𝐹𝜎𝑧 𝑘̂ . (1.2)

This Hamiltonian describes a gapless (metallic) system in one dimension. But
the gaplessness in this picture is not protected and results from fine-tuning. Since
both Ψ𝑅 and Ψ𝐿 come from the same electronic band, nothing prevents a generic
term in the initial Hamiltonian that would couple the 𝑘𝐹 and −𝑘𝐹 points — for
instance, a random disorder. Coupling of these two points is a backscattering
process that introduces an effective mass term 𝑚𝜎𝑥 to the Hamiltonian (1.2) and
opens a gap in the spectrum.

To protect the metallic behavior, one needs to rely on topological protection.
In other words, the quasi-spin of the electron must be a symmetry-protected
quantum number. One such system is a chiral fermion with a dispersion shown
in Figure 1.1 (b). In one dimension chiral fermion is defined by its velocity
direction, it is strictly a right- or left-mover. The absence of a counter-propagating
electron makes backscattering impossible and therefore topologically guarantees
gaplessness. A one-dimensional interacting system with a single chiral electron
mode is then called a chiral Luttinger liquid, whose Hamiltonian in the non-
interacting limit is simply

𝐻 = 𝑣𝐹 𝑘̂ . (1.3)

Obviously, adding any number of additional fermions with the same chirality
cannot open a gap either, since backscattering remains impossible. A physical
example of such a system in condensed matter is the edge of a quantum Hall
system [6], schematically represented in Figure 1.2 (a), which is topologically
equivalent to a one-dimensional ring with all electrons being chiral right- or
left-movers.

Moreover, one may also include pairs of different fermions with opposite
chiralities without spoiling the metallic behavior, as long as their chirality is
protected. The minimal example of one right- and one left-mover is shown in
Figure 1.1 (c) and described by the same Hamiltonian as in (1.2), but now with
chirality as a well-defined quantum number fixed by the band. The absence of a
backscattering process is typically guaranteed by time-reversal (TR) symmetry:
the Hamiltonian must be invariant under the transformation (𝜎, 𝑘̂) → (−𝜎,−𝑘̂).
This model is called a helical Luttinger liquid and is physically realized at the
edge of a quantum spin Hall insulator [7, 8], illustrated in Figure 1.2 (b).
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Quantum Hall Quantum Spin Hall

Figure 1.2. Schematic representation of (a) a Quantum Hall insulator and (b) a Quantum
Spin Hall insulator. Both systems are insulating in the bulk and have conducting edges.
Propagating electrons, represented by dots at the boundaries, are chiral; their velocity,
illustrated by small arrow-vectors, is determined either by (a) the topology of the system
or by (b) their (quasi-)spin depicted by different colors. The edges are quasi-one-
dimensional, conducting, and topologically protected, and therefore represent a physical
realization of a Luttinger liquid system.

Platforms that experimentally realize the physics of chiral or helical Luttinger
liquids include the topological states of matter mentioned above, as well as
composite systems such as Josephson junction chains and cold atoms [9].

1.3 Chiral fermions in QFT and SPT

Although the title of this thesis is "Luttinger liquid on a lattice," and most chapters
focus on the specific example of a helical Luttinger liquid, the key ingredient
in that physical picture is the concept of a one-dimensional chiral fermion, as
discussed in Section 1.2. This concept plays a crucial role both in quantum
field theories in (1+1)D and in symmetry-protected topological (SPT) phases of
matter in 2D. Accordingly, the numerical methods developed in this thesis are
also highly relevant to these broader areas. In this section, I briefly describe how
the concept of chiral fermions arises in QFT and SPT phases.

Fermions in quantum field theory are spinors described by the Dirac equation,

𝑆 =

∫
d2𝑥𝜓

(
𝑖𝛾0𝜕𝑡 + 𝑖𝛾1𝜕𝑥 + 𝑚

)
𝜓, (1.4)

where 𝜓 = 𝜓†𝛾0, and the gamma matrices 𝛾0 = 𝜎𝑥 , 𝛾1 = 𝑖𝜎𝑦 satisfy the Clifford
algebra {𝛾𝜇, 𝛾𝜈} = 2𝜂𝜇𝜈 with 𝜂𝜇𝜈 = diag(1,−1). When the fermion is massless
(𝑚 = 0), the action simplifies to

𝑆 =

∫
d2𝑥𝑖𝜓†

(
𝜕𝑡 − 𝛾5𝜕𝑥

)
𝜓, (1.5)
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where 𝛾5 = −𝛾0𝛾1 = 𝜎𝑧 . In this form, the massless Dirac fermion decouples
into two independent chiral components 𝜓± = 1

2 (1 ± 𝛾5)𝜓. Thus, the original
vector (𝜓 → 𝑒𝑖𝛼𝜓) and axial (𝜓 → 𝑒𝑖𝛼𝛾

5
𝜓) symmetries of the theory become

two independent chiral symmetries: 𝜓± → 𝑒𝑖𝛼±𝜓±.
An SPT phase of matter [10] is a type of topological insulator (TI), charac-

terized by a gapped bulk and a gapless, symmetry-protected edge. In this sense,
a quasi-1D edge of a 2D TI provides a natural platform to realize Luttinger liquid
physics. TIs can exhibit either short-range or long-range entanglement. Here,
we focus on short-range entangled TIs, known as SPT phases, which, in contrast
to long-range entangled TIs, do not support intrinsic topological order such as
fractional statistics (as seen, for instance, in the fractional quantum Hall effect).

SPT phases generalize the notion of topological band insulators (TBIs) to
include interactions. Hence, examples like the integer quantum Hall state and the
quantum spin Hall state discussed in the previous section are both fermionic SPT
phases in two dimensions. Further, fermionic SPT phases include many-body
interacting states that cannot be realized within a free-particle picture [11]. The
boundaries of these more exotic phases can often be described by multicomponent
Luttinger liquid theories [12].

1.4 Bosonization

The fundamental features of Luttinger liquid physics can be captured analytically
using the method of bosonization [13]. Here we consider a helical system on
a ring of length 𝐿, with the dispersion shown in Fig. 1.1(c), described by the
Hamiltonian

𝐻 =

𝐿/2∫
−𝐿/2

d𝑥 :
[
𝜓
†
↑ (−𝑖𝑣𝐹𝜕𝑥)𝜓↑ − 𝜓†

↓ (−𝑖𝑣𝐹𝜕𝑥)𝜓↓ + 𝑔1 𝜌̂↑ (𝑥) 𝜌̂↓ (𝑥) + 𝑔2

(
𝜌̂2
↑ (𝑥) + 𝜌̂

2
↓ (𝑥)

)]
:,

(1.6)

where 𝜓𝜎 = 1√
𝐿

∑
𝑘 𝑒

−𝑖𝑘𝑥𝑐𝑘,𝜎 and 𝜌𝜎 = 𝜓
†
𝜎𝜓𝜎 . The terms with coefficients 𝑔1

and 𝑔2 represent density-density interactions between opposite and same chirality,
respectively. Colons denote normal ordering. In this regime, the model becomes
analytically solvable in the bosonic representation [14]. In this section I briefly
describe how to do it.
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We construct bosonic operators as bilinears of fermionic operators:

𝑏𝑞𝜎 = − 𝑖
√
𝑛𝑞

∑︁
𝑘

𝑐
†
𝑘−𝑞,𝜎𝑐𝑘,𝜎 , 𝑞 =

2𝜋
𝐿
𝜎𝑛𝑞, 𝑛𝑞 > 0,

𝜙𝜎 (𝑥) = −
∑︁
𝑛𝑞

1
√
𝑛𝑞

[
𝑒−𝑖𝑞𝑥𝑏𝑞𝜎𝑒

−𝑎𝜎𝑞/2 + 𝑒𝑖𝑞𝑥𝑏†𝑞𝜎𝑒−𝑎𝜎𝑞/2] . (1.7)

where 𝑏𝑞𝜎 is a bosonic annihilation operator and 𝜙𝜎 (𝑥) is the bosonic field. The
ultraviolet regularization parameter 𝑎 is introduced to control divergences of the
theory.

Now the fermionic fields and densities can now be expressed in terms of
𝜙𝜎 (𝑥) via the famous bosonization transformation:

𝜌𝜎 (𝑥) =
1
𝐿
𝑁̂𝜎 + 𝜎

2𝜋
𝜕𝑥𝜙𝜎 (𝑥), (1.8)

𝜓(𝑥)𝜎 =
1

√
2𝜋𝑎

𝐹𝜎𝑒
−𝑖𝜎 2𝜋

𝐿
( 𝑁̂𝜎−[1−𝛿𝑏 ]/2)𝑥𝑒−𝑖𝜙𝜎 (𝑥 ) . (1.9)

Here, since by the construction the bosonic operators can not measure the total
amount of fermions in the system, we introduced 𝑁̂𝜎 as the total number of
electrons counted from the half-filling point. Correspondingly we define the
|𝑁𝜎⟩ states as the ground states of the non-interacting Hamiltonian with fixed
amount of electrons. In other words

��𝑁↑
〉

is a state with all
��(𝑘 < −2𝜋𝑛

𝐿
, 𝜎 =↑)

〉
filled and respectively

��𝑁↓
〉

is a state with all
��(𝑘 > 2𝜋𝑛

𝐿
, 𝜎 =↓)

〉
filled. Obviously

the eigenvalue relation 𝑁̂𝜎 |𝑁𝜎⟩ = 𝑁𝜎 holds. Additionally, to be able to switch
between different |𝑁𝜎⟩ states, and to satisfy the fermionic statistic the Klein
factors 𝐹𝜎 are being introduced as

𝐹𝜎 |𝑁𝜎⟩ = 𝑇𝜎 |𝑁𝜎 − 1⟩ , 𝑇↓ = (−1)𝑁↑ , 𝑇↑ = 1. (1.10)

Substituting the bosonization relation (1.8) into Eq. (1.6), the Hamiltonian
becomes [14]

𝐻 =
𝜋𝑣

𝐿

[∑︁
𝜎

( 1
𝑔
+ 𝑔) ©­«1

2
𝑁̂2
𝜎 +

∑︁
𝑛𝑞

𝑛𝑞𝑏
†
𝑞𝜎𝑏𝑞𝜎

ª®¬
+( 1
𝑔
− 𝑔) ©­«𝑁̂↑𝑁̂↓ −

∑︁
𝑛𝑞

𝑛𝑞

[
𝑏
†
𝑞↑𝑏

†
𝑞↓ + 𝑏𝑞↑𝑏𝑞↓

]ª®¬
]
+ 𝛿𝑏

∑︁
𝜎

𝜋𝑣𝐹

𝐿
𝑁𝜎 ,

(1.11)
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where the renormalized velocity 𝑣 and dimensionless electron-electron interac-
tion parameter 𝑔 (𝑔 = 1 for the free case) are given by

𝑣 = 𝑣𝐹

√√(
1 + 𝑔2

𝜋𝑣𝐹

)2
−

𝑔2
1

4𝜋2𝑣2
𝐹

, 𝑔 =

√︄
𝑣𝐹 + 𝑔2/𝜋 − 𝑔1/(2𝜋)
𝑣𝐹 + 𝑔2/𝜋 + 𝑔1/(2𝜋)

. (1.12)

In Eq.(1.11) the term with coefficient ( 1
𝑔
+ 𝑔) corresponds to the kinematic part

of the initial Hamiltonian, the ( 1
𝑔
− 𝑔) term comes from the interacting part, and

the last term originates from the finite size formulation with 𝛿𝑏 = 1 for periodic
boundary conditions and 𝛿𝑏 = 0 if it is antiperiodic.

Finally, the beauty of the bosonization idea becomes visible: the interaction
terms, originally quartic in the fermionic formulation, become quadratic in the
bosonic representation. This bosonic Hamiltonian can be diagonalized via a
Bogoliubov transformation:

𝐵𝑞± =
1
√

8

[(
1
√
𝑔
+ √

𝑔

) (
𝑏𝑞↑ ∓ 𝑏𝑞↓

)
±

(
1
√
𝑔
− √

𝑔

) (
𝑏
†
𝑞↑ ∓ 𝑏

†
𝑞↓

)]
,

𝐻 =
2𝜋𝑣
𝐿

∑︁
𝜎

∑︁
𝑛𝑞

𝑛𝑞𝐵
†
𝑞𝜎𝐵𝑞𝜎 +

∑︁
𝜎

𝜋𝑣𝐹

𝐿
𝑁𝜎 [𝑁𝜎 + 𝛿𝑏] +

𝑔1

𝐿
𝑁↑𝑁↓ +

∑︁
𝜎

𝑔2

𝐿
𝑁2
𝜎 .

(1.13)

Thus, the Luttinger liquid model defined in Eq. (1.6) is solved analytically. With
access to the full eigenspectrum and eigenfunctions, one can compute various
observables such as Green’s functions or spin correlators, which exhibit power-
law behavior characteristic of gapless one-dimensional systems. In Chapter 2,
we calculate these correlators, carefully taking finite-size and finite-temperature
effects into account, to compare the analytical predictions with our numerical
simulations.

1.5 Lattice formulation and no-go theorem

In the previous sections, we described the fundamentals of the helical Luttinger
liquid and showed that, in its simplest form, it is fully analytically solvable.
Bosonization is a powerful tool that provides deep insights into the physics of
chiral fermions in one dimension. Nevertheless, not all scenarios can be solved
analytically. Breaking translational symmetry, via disorder or scalar potentials,
or introducing more complex interactions, such as spatially dependent terms
or higher-order fermionic operators, makes the model analytically intractable.
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Figure 1.3. Dispersion relations of free electrons resulting from different discretization
schemes of the Dirac Hamiltonian in one dimension, shown over two Brillouin zones.
Only the Stacey derivative simultaneously preserves chiral symmetry, avoids doublers,
and supports efficient numerical simulations due to hidden locality.

Therefore, one would like to simulate Luttinger liquid physics in silico, ideally
in a numerically efficient manner. Or, in other words, to put the Luttinger liquid
on a lattice. However, one immediately encounters the nontrivial problem of
discretizing the momentum operator:

𝑘̂ = −𝑖𝜕𝑥 . (1.14)

This obstacle is known as the fermion-doubling problem, formalized in the no-go
theorem by Nielsen and Ninomiya [5]:

Any hermitian and local in real space Hamiltonian
that preserves the chirality of the Dirac fermions

must have an even number of left- and right-movers in the Brillouin zone.

Here we illustrate this phenomenon (see also Fig. 1.3) with several examples that
implement different discretization schemes of the Dirac Hamiltonian:

𝐻𝐷 = −𝑖𝑣𝐹𝜎𝑧𝜕𝑥 = 𝑣𝐹𝜎𝑧 𝑘̂ . (1.15)

Sine derivative

The most straightforward discretization of the derivative is the central finite
difference:

𝜕𝑥 𝑓 (𝑥) → (2𝑎)−1( 𝑓 (𝑥 + 𝑎) − 𝑓 (𝑥 − 𝑎)). (1.16)



1.5 Lattice formulation and no-go theorem 9

In momentum space, this leads to a sine dispersion:

𝐻𝐷 → 𝐻𝑠𝑖𝑛 = 𝑣𝐹/𝑎𝜎𝑧 sin( 𝑘̂𝑎). (1.17)

This formulation is local and chiral symmetric (𝐻sin ∝ 𝜎𝑧), but, consistent with
the no-go theorem, it results in a doubler with opposite chirality at the Brillouin
zone (BZ) edge (see Figure 1.3). As discussed in Section 1.2, the presence of
doublers results in the theory unstable to disorder or generic inter-cone coupling,
making it incapable for simulating Luttinger liquid physics.

Wilson derivative

To resolve the doubling problem in Eq. (1.17), one can add a momentum-
dependent mass term to gap out the unwanted cone:

𝐻𝐷 → 𝐻𝑊𝑖𝑙𝑠𝑜𝑛 = 𝑣𝐹/𝑎
[
𝜎𝑧 sin( 𝑘̂𝑎) +

(
1 − cos( 𝑘̂𝑎)

)
𝜎𝑥

]
. (1.18)

This formulation of discretized Dirac Hamiltonian has a name of Wilson fermion.
Certainly it is still local (cos( 𝑘̂𝑎) is a sparce matrix in real space) and eliminates
the doubler. However, it explicitly breaks chirality by introducing a 𝜎𝑥 mass term
that mixes the chiralities, violating a key assumption of the Nielsen-Ninomiya
theorem. This term needs to be fine-tuned in order to vanish at 𝑘 = 0 and
therefore it is unstable to disorder. Furthermore, it reintroduces chirality mixing
away from 𝑘 = 0 (see how at Figure 1.3 dispersions of left- and right-mover
of Wilson discretization smoothly merge at the edge of the BZ), resulting in
backscattering and undermining the chiral nature of the system.

SLAC derivative

From the previous schemes, we see that either explicit chirality breaking (Wilson)
or the presence of doublers (sine) obstructs the topological protection of the chiral
fermion on a lattice. Therefore the only remaining assumption of the no-go
theorem that can be relaxed is the locality of the derivative operator in real space.
One of the formulation exploiting this idea is called SLAC derivative

𝜕𝑥 𝑓 (𝑥) →
∞∑︁
𝑛=1

(−1)𝑛 (𝑎𝑛)−1( 𝑓 (𝑥 + 𝑛𝑎) − 𝑓 (𝑥 − 𝑛𝑎)). (1.19)

As depicted at the Figure 1.3 it produces a Hamiltonian that is strictly linear in
momentum

𝐻𝐷 → 𝐻𝑆𝐿𝐴𝐶 = 𝑣𝐹/(𝑖𝑎)𝜎𝑧 ln 𝑒𝑖 𝑘̂𝑎 . (1.20)
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Ultimately, SLAC lattice formulation produces a strictly chiral fermion with-
out a doubler by the cost of being non-local, making it a reasonable candidate for
simulating chiral physics. However, attempts of reproducing the Luttinger liquid
behavior within SLAC framework seem to fail [15] presumably due to the utter
non-locality of SLAC fermion.

Stacey derivative

An alternative non-local discretization is provided by the Stacey derivative [16]:

𝜕𝑥 𝑓 (𝑥) → 2(𝑎)−1
∞∑︁
𝑛=1

(−1)𝑛 ( 𝑓 (𝑥 + 𝑛𝑎) − 𝑓 (𝑥 − 𝑛𝑎)). (1.21)

This leads to the tangent dispersion (see Figure 1.3) in momentum space:

𝐻𝐷 → 𝐻𝑡𝑎𝑛 = 2𝑣𝐹/𝑎𝜎𝑧 tan
(
𝑘̂𝑎/2

)
. (1.22)

This discretization scheme, called the tangent fermion [17], plays a central role in
this thesis and lays in the foundation of the numerical methods developed herein.

Tangent fermion is highly non-local in its’ original formulation. Namely,
Eq. (1.21) contains all-to-all hoppings of the same, not-decaying amplitude.
Remarkably, tangent fermion, as it explained in the Chapter 3, possess hidden
locality, which allows for various efficient local formulations. Furthermore,
it accomplishes the task of reproducing Luttinger liquid physics faithfully, a
success we attribute to its’ unique combination of chirality preservation and
hidden locality.

1.5.1 Domain wall fermion

Finally it is worth to mention here another approach to circumvent the fermion
doubling. It has the name of domain wall fermion and exploits the idea of
reproducing the physics of one-dimensional chiral fermions as the edge state of
a two-dimensional topological system, thereby lifting the dimensionality of the
system from 1D to 2D. While being rigorous, this formulation is consequentially
more demanding numerically since one needs to simulate a system of a greater
dimensionality. Further, it introduces an unavoidable bulk-edge coupling, which
compromises the intrinsic one-dimensional character of the model.



1.6 This thesis 11

1.6 This thesis

During my PhD journey I encountered and worked on several different topics in
theory of condensed matter. The physics of strongly correlated chiral fermions
in one dimension became the main focus of my PhD, two chapters of this thesis
represent it. In Chapter 2 we implement the idea of tangent fermions to simulate
the helical Luttinger liquid using quantum Monte Carlo (QMC) approach, and
then we extend the idea further to tensor network methods in Chapter 3. The
remaining two chapters of this thesis focus on two-dimensional single-particle
physics. In Chapter 4 we study the Majorana metal transition as a percolation
of topological edge modes. Finally, Chapter 5 investigates the phenomenon of
Landau quantization in systems with generalized Van Hove singularities. Below,
I summarize the main results of each chapter.

1.6.1 Chapter 2

In this chapter we tackle the significant challenge in simulating strongly correlated
one-dimensional systems for the first time. We choose helical Luttinger liquid as
a test ground, an ideal candidate to do the benchmark of our method due to its
analytical solvability. We introduce a novel approach using tangent fermions on a
space-time lattice. This method possess the hidden locality that makes numerical
simulations feasible, while preserving the chirality of the fermions and removing
the doublers. Namely the approach has a local Euclidean action formulation
which is applicable in Quantum Monte Carlo (QMC) simulations.

Figure 1.4. Quantum Monte Carlo results (data points) for the spin correlator of a helical
Luttinger liquid on a space-time lattice, showing excellent agreement with analytical
bosonization theory (dashed curves) for both repulsive and attractive interactions. This
validates the tangent fermion approach for simulating correlated systems.
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Crucially, our fermionic auxiliary-field QMC simulations for the helical Lut-
tinger liquid at half-filling are shown to be sign-problem-free, a common chal-
lenge in fermionic simulations. The results from our simulations accurately
reproduce the expected Luttinger liquid continuum physics without needing any
adjustable parameters. We validate our findings by comparing them with analyt-
ical bosonization theory, even deriving finite-size and finite-temperature correc-
tions for precise comparisons. This work represents a significant step as the first
successful lattice simulation of the helical Luttinger liquid.

1.6.2 Chapter 3

Following the successful validation of the tangent fermion approach using QMC
in Chapter 2, this chapter pushes the boundaries further by employing powerful
tensor network methods, specifically the Density Matrix Renormalization Group
(DMRG). While QMC proved the concept, it was limited by the sign problem to
specific conditions like helical systems at half-filling without external potentials.
Tensor networks offer a way to overcome these limitations.

We demonstrate that the hidden locality inherent in the tangent fermion
formulation allows for an efficient representation using tensor networks. This
finding, coupled with the non-locality required by the Nielsen-Ninomiya theorem
to avoid fermion doubling and the necessity of preserving well-defined chirality,
provides strong support for the uniqueness of the tangent fermion approach.

Figure 1.5. Absolute value of the propagator calculated using tensor networks for
the tangent (dots) and sine (plusses) discretizations of the Luttinger Hamiltonian. The
tangent discretization agrees well with the continuum analytical results (curves), while
the sine discretization shows an unphysical gap. This highlights the advantage of the
tangent fermion approach.

Using DMRG, we achieve excellent agreement between our results and
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bosonization theory. We also perform a critical comparison with a straight-
forward sine discretization formulation, which, in contrast, results in a gapped
spectrum, highlighting the instability of lattice formulations burdened by fermion
doublers. This work establishes tensor networks as a viable and versatile tool
for simulating strongly correlated chiral fermions on a lattice using the tangent
fermion framework.

1.6.3 Chapter 4

This chapter delves into the behavior of disordered chiral p-wave superconductors,
a type of topological material classified by the Chern number. While conventional
superconductors are typically thermal insulators, disorder can transform these
topological superconductors into a thermal metal phase, where heat is transported
by Majorana fermions. The transition to this Majorana metal phase has been
observed in computer simulations but not yet experimentally.

  

Figure 1.6. Left panel shows the average number of percolating domain walls as a func-
tion of disorder parameters, clearly distinguishing the region where the Majorana metal
phase emerges. Right panel shows the corresponding thermal conductance, confirming
the transition. This demonstrates that the thermal metal-insulator transition is driven by
the percolation of topological domain walls.

Our research provides compelling numerical evidence that this thermal metal
– insulator transition occurs via the percolation of boundaries separating regions
with different topological properties (specifically, different Chern numbers). In
a clean system, the Chern number is uniform, making the bulk insulating. How-
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ever, disorder creates a "topological landscape" of domains with varying Chern
numbers.

To study this process in real space, we employ the innovative concept of the
spectral localizer, which acts as a "topological landscape function" capable of
determining local Chern numbers. This allows us to visualize the formation of
a network of domain walls between these topologically distinct domains. As
disorder increases, these domains grow and eventually connect, forming a perco-
lating cluster that spans the system, providing a channel for Majorana fermions
and enabling thermal conduction. By analyzing this percolation transition, we
successfully determine the thermal metal–insulator phase diagram.

1.6.4 Chapter 5

This chapter explores the phenomenon of magnetic breakdown in 2D materials,
particularly focusing on regions with generalized Van Hove singularities (vHs).
Magnetic breakdown occurs when electron trajectories in a magnetic field come
close together, allowing quantum tunneling. While well-studied at usual vHs,
newer 2D materials feature "high-order" vHs with flatter dispersions, leading to
richer magnetic breakdown behavior and new challenges.
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Figure 1.7. Longitudinal conductance (right panels, blue lines) calculated for finite
systems with (b) square lattice and 𝐴3 saddle point and (c) triangular lattice and Monkey
saddle point, compared with the spectral structure of Landau minibands (left panels,
orange solid lines (tight-binding simulations) and blue dashed lines (analytically via
our approach)) arising from coherent orbit networks connected via magnetic breakdown
at different types of Van Hove singularities. The conductance peaks correspond to the
minibands, demonstrating the possibility of bulk conduction mediated by these networks.

We develop a general method to calculate the precise magnetic breakdown
scattering matrix (s-matrix) for any type of saddle point, including these high-
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order cases. Our approach maps the problem onto a 1D scattering problem in a
quantum chain derived from the Landau level basis.

A key consequence of magnetic breakdown, especially when saddle points
are at the edge of the Brillouin zone, is the formation of coherent orbit networks.
These networks delocalize the Landau level states, forming dispersive Landau
mini-bands that can support bulk electrical conduction in the presence of a
magnetic field. We calculate the longitudinal bulk conductance in a quantum
Hall bar geometry and show that this conduction, enabled by the orbit networks,
can strongly exceed the standard edge conductance. The energy-dependent width
of these mini-bands (and thus the conductance peaks) is uniquely tied to the
type of vHs, offering a potential experimental signature to distinguish between
different types of saddle points through conductance measurements.
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Chapter 2

Helical Luttinger liquid on a
space-time lattice

2.1 Introduction

A quantum spin Hall insulator [7] supports a one-dimensional (1D) helical edge
mode of counterpropagating massless electrons (Dirac fermions, see Fig. 2.1),
with a linear dispersion 𝐸 = ±ℏ𝑣F𝑘 . The crossing at momentum 𝑘 = 0 (the
Dirac point) is protected from gap-opening [8] — provided that there is only a
single species of low-energy excitations and provided that fundamental symme-
tries (time-reversal symmetry, chiral symmetry) are preserved. This topologi-
cal protection is broken on a lattice by fermion doubling [18]: Any local and
symmetry-preserving discretization of the momentum operator 𝑘 = −𝑖ℏ𝑑/𝑑𝑥
must introduce a spurious second Dirac point [5, 19].

Fermion doubling is problematic if one wishes to study interaction effects of
1D massless electrons (a Luttinger liquid [3, 20, 13, 21]) by means of a lattice
fermion method such as quantum Monte Carlo [22, 23, 24, 25, 26]. A way to
preserve the time-reversal and chiral symmetries on a lattice is to increase the

Figure 2.1. Helical edge mode, consisting of counter-propagating spin-up and spin-down
electrons on the 1D boundary of a 2D quantum spin Hall insulator.
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dimensionality of the system [27, 28]. One can simulate a 2D system in a ribbon
geometry, so that the two fermion species are spatially separated on opposite
edges [29, 30, 31, 32, 33]. The 2D simulation is computationally more expensive
than a fully 1D simulation, but more fundamentally, the presence of states in
the bulk may obscure the intrinsically 1D physics of a Luttinger liquid [34]. A
1D simulation using a nonlocal spatial discretization [35] that avoids fermion
doubling was studied recently [15], without success: The nonlocality gaps the
Dirac point [15, 36].

Here we show that it can be done: A 1D helical Luttinger liquid can be
simulated on a lattice if both space and time are discretized in a way that preserves
the locality of the Lagrangian. The time discretization (in units of 𝜏) pushes the
second Dirac point up to energies of order ℏ/𝜏, where it does not affect the
low-energy physics — as we demonstrate by comparing quantum Monte Carlo
simulations with results from bosonization [20, 13, 21, 14].

The lattice fermion approach which we will now describe refers specifically
to the massless Dirac fermions that appear in topological insulators. Other
approaches exist that exploit the boson-fermion correspondence. One can first
bosonize the fermion formulation of the problem [37] and then put it on a lattice
[38]. Luttinger liquid physics may also govern the low-energy properties of
bosonic systems such as spin chains [39], where fermion doubling does not apply
and a lattice formulation poses no difficulties [40, 41].

2.2 Locally discretized Lagrangian

We construct the space-time lattice using the tangent fermion discretization ap-
proach [16, 42, 43, 44, 45, 17]. We first outline that approach for the noninter-
acting case, in a Lagrangian formulation that is a suitable starting point for the
interacting problem.

Consider a 1D free massless fermion field 𝜓𝜎 (𝑥, 𝑡) with Lagrangian density
given by

Lcontinuum =
∑
𝜎𝜓

†
𝜎 (𝑖𝜕𝑡 + 𝑖𝜎𝑣F𝜕𝑥)𝜓𝜎 . (2.1)

The spin degree of freedom 𝜎, equal to ↑↓ or ±1, distinguishes right-movers from
left-movers, both propagating with velocity 𝑣F along the 𝑥-axis. We set ℏ = 1
and denote partial derivatives by 𝜕𝑥 , 𝜕𝑡 . The chemical potential is set to to zero
(the Dirac point, corresponding to a half-filled band).

We discretize space 𝑥 and time 𝑡, in units of 𝑎 and 𝜏, respectively. The naive
discretization of space replaces 𝜕𝑥 ↦→ (2𝑎)−1(𝑒𝑎𝜕𝑥 − 𝑒−𝑎𝜕𝑥 ), which amounts to
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Figure 2.2. Dispersion relation of a massless fermion on a 1+1-dimensional space-
time lattice. The two panels compare the sine and tangent discretization schemes, for
𝛾 = 𝑣F𝜏/𝑎 equal to 1 (dashed curves) or 0.9 (solid curves). The sawtooth discretization
has the 𝛾-independent dispersion 𝜔 = ±𝑣F𝜏 in the Brillouin zone |𝜔𝜏 |, |𝑘𝑎 | < 𝜋. Only
the tangent discretization gives a local Lagrangian with a single Dirac point at 𝜔 = 0.

𝜕𝑥 𝑓 (𝑥) ↦→ (2𝑎)−1 [ 𝑓 (𝑥 + 𝑎) − 𝑓 (𝑥 − 𝑎)]. Similarly, 𝜕𝑡 ↦→ (2𝜏)−1(𝑒𝜏𝜕𝑡 − 𝑒−𝜏𝜕𝑡 ),
producing a Lagrangian with a sine kernel,

Lsine = (𝑎𝜏)−1∑
𝜎𝜓

†
𝜎 (sin 𝜔̂𝜏 − 𝜎𝛾 sin 𝑘̂𝑎)𝜓𝜎 . (2.2)

We defined the frequency and momentum operators 𝜔̂ = 𝑖𝜕𝑡 and 𝑘̂ = −𝑖𝜕𝑥 and
denote 𝛾 = 𝑣F𝜏/𝑎. The discretized 𝜓’s are dimensionless.

The naive discretization is a local discretization, in the sense that the La-
grangian only couples nearby sites on the space-time lattice. However, it suffers
from fermion doubling: The dispersion relation sin𝜔𝜏 = 𝜎𝛾 sin 𝑘𝑎 has branches
of right-movers and left-movers which intersect at a Dirac point (see Fig. 2.2, left
panel). Kramers degeneracy protects the crossings at time-reversally invariant
points 𝜔𝜏, 𝑘𝑎 = 0 modulo 𝜋. In the Brillouin zone |𝑘𝑎 |, |𝜔𝜏 | < 𝜋 there are 4
inequivalent Dirac points, two of which are at 𝜔 = 0: one at 𝑘 = 0, the other
at |𝑘 | = 𝜋. Low-energy scattering processes can couple these two Dirac points
and open a gap without violating Kramers degeneracy. To avoid this we need to
ensure that there is only a single Dirac point at 𝜔 = 0.

One way to remove the spurious second species of low-energy excitations
goes by the name of slac fermions in the particle physics context [35], or
Floquet fermions in the context of periodically driven atomic lattices [46, 47]. In
that approach one truncates the continuum linear dispersion at the Brillouin zone
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boundaries, and then repeats sawtooth-wise1 with 2𝜋-periodicity:

Lsawtooth = −𝑖(𝑎𝜏)−1∑
𝜎𝜓

†
𝜎 (ln 𝑒𝑖 𝜔̂𝜏 − 𝜎𝛾 ln 𝑒𝑖 𝑘̂𝑎)𝜓𝜎 . (2.3)

The sawtooth dispersion relation ln 𝑒𝑖𝜔𝜏 = 𝜎𝛾 ln 𝑒𝑖𝑘𝑎 is strictly linear in the
Brillouin zone, with a single Dirac point at 𝜔 = 0, however the Lagrangian is
nonlocal:

(ln 𝑒𝑖 𝑘̂𝑎) 𝑓 (𝑥) =
∞∑︁
𝑛=1

(−1)𝑛𝑛−1 [ 𝑓 (𝑥 − 𝑛𝑎) − 𝑓 (𝑥 + 𝑛𝑎)], (2.4)

so distant points on the space-time lattice are coupled.
To obtain a local Lagrangian with a single Dirac point at 𝜔 = 0 we take two

steps: First we replace the sine in Lsine by a tangent with the same 2𝜋 periodicity:

Ltangent =
2
𝑎𝜏

∑
𝜎𝜓

†
𝜎

[
tan(𝜔̂𝜏/2) − 𝜎𝛾 tan

(
𝑘̂𝑎/2

)]
𝜓𝜎 . (2.5)

The resulting tangent dispersion tan(𝜔𝜏/2) = 𝜎𝛾 tan(𝑘𝑎/2) removes the spuri-
ous Dirac point (see Fig. 2.2, right panel), but it creates a non-local coupling.
The locality is restored by the substitution

𝜓𝜎 = 𝐷̂𝜙𝜎 , 𝐷̂ = 1
4 (1 + 𝑒𝑖 𝑘̂𝑎) (1 + 𝑒𝑖 𝜔̂𝜏), (2.6)

which produces the Lagrangian

Ltangent =
1
2 (𝑎𝜏)

−1∑
𝜎𝜙

†
𝜎

[
(1 + cos 𝑘̂𝑎) sin 𝜔̂𝜏

− 𝜎𝛾(1 + cos 𝜔̂𝜏) sin 𝑘̂𝑎
]
𝜙𝜎 . (2.7)

Product terms cos 𝑘̂𝑎 × sin 𝜔̂𝜏 and cos 𝜔̂𝜏 × sin 𝑘̂𝑎 couple 𝜙𝜎 (𝑥, 𝑡) to 𝜙𝜎 (𝑥 ±
𝑎, 𝑡 ± 𝜏), so the coupling is off-diagonal on the space-time lattice but local.

This recovery of a local Lagrangian from a nonlocal Hamiltonian can be
understood intuitively [17]: While the tangent discretization of the differential
operator is nonlocal, its functional inverse, which is the trapezoidal integration
rule, is local — allowing for a local path integral formulation of the quantum
dynamics.

The next step is to introduce the on-site Hubbard interaction (strength 𝑈,
repulsive for𝑈 > 0, attractive for𝑈 < 0) by adding to Ltangent the term

LHubbard = −(𝑈/𝑎)𝑛↑ (𝑥, 𝑡)𝑛↓ (𝑥, 𝑡), 𝑛𝜎 = :𝜓†
𝜎𝜓𝜎 : (2.8)

1We set the branch cut of the logarithm along the negative real axis, so ln 𝑒𝑖𝑘𝑎 is a sawtooth
that jumps at 𝑘𝑎 = 𝜋 + 2𝑛𝜋.
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The density 𝑛𝜎 is normal ordered (Fermi sea expectation value is subtracted).
Substitution of Eq. (2.6) expresses the density 𝑛𝜎 at point (𝑥, 𝑡) in terms of the
average of the field 𝜙𝜎 over the four corners of the adjacent space-time unit cell.

This completes the lattice formulation of the Luttinger liquid. We characterize
it by the functions

𝐶𝜎 (𝑥) = ⟨𝜓†
𝜎 (𝑥, 0)𝜓𝜎 (0, 0)⟩, 𝝍 = (𝜓↑, 𝜓↓), (2.9)

𝑅𝑥 (𝑥) = ⟨𝜌𝑥 (𝑥)𝜌𝑥 (0)⟩, 𝜌𝑥 (𝑥) = 1
2𝝍

†(𝑥, 0)𝝈𝑥𝝍(𝑥, 0).

Here ⟨· · · ⟩ = 𝑍−1 Tr 𝑒−𝛽𝐻 · · · indicates the thermal average at inverse tempera-
ture 𝛽 = 1/𝑘B𝑇 (with 𝑍 = Tr 𝑒−𝛽𝐻 the partition function). We first focus on the
propagator 𝐶𝜎 .

2.3 Discretized Euclidean action

The propagator can be rewritten as a fermionic path integral [48, 1] over anti-
commuting fields Ψ = {Ψ+,Ψ−} and Ψ̄ = {Ψ̄+, Ψ̄−},

𝐶𝜎 (𝑥) = 𝑍−1
∫

DΨ̄

∫
DΨ 𝑒−S[Ψ,Ψ̄]Ψ̄𝜎 (𝑥, 0)Ψ𝜎 (0, 0), (2.10)

with S the Euclidean action. For free fermions one has

S =

∫ 𝛽

0
𝑑𝑡

∫ 𝐿

0
𝑑𝑥

∑︁
𝜎

Ψ̄𝜎 (𝑥, 𝑡) (𝜕𝑡 − 𝑖𝜎𝑣F𝜕𝑥)Ψ𝜎 (𝑥, 𝑡). (2.11)

The Lagrangian (2.1) is integrated along the interval 0 < 𝑖𝑡 < 𝑖𝛽 on the imaginary
time axis, with antiperiodic boundary conditions: Ψ𝜎 (𝑥, 𝛽) = −Ψ𝜎 (𝑥, 0). On
the real space axis the integral runs from 0 to 𝐿with periodic boundary conditions,
Ψ𝜎 (0, 𝑡) = Ψ𝜎 (𝐿, 𝑡).

The tangent fermion discretization replaces 𝑖𝜕𝑡 ↦→ (2/𝜏) tan(𝜔̂𝜏/2) and
𝑖𝜕𝑥 ↦→ −(2/𝑎) tan

(
𝑘̂𝑎/2

)
, resulting in the discretized Euclidean action

Stangent = 2
∑
𝑥,𝑡 ,𝜎Ψ̄𝜎 (𝑥, 𝑡)

(
−𝑖 tan(𝜔̂𝜏/2)

+ 𝛾𝜎 tan
(
𝑘̂𝑎/2

) )
Ψ𝜎 (𝑥, 𝑡) (2.12a)

= 1
2
∑
𝑥,𝑡 ,𝜎Φ̄𝜎 (𝑥, 𝑡)

(
−𝑖(1 + cos 𝑘̂𝑎) sin 𝜔̂𝜏

+ 𝛾𝜎(1 + cos 𝜔̂𝜏) sin 𝑘̂𝑎
)
Φ𝜎 (𝑥, 𝑡). (2.12b)
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In the second equality we substituted the locally coupled fields, Ψ = 𝐷̂Φ,
Ψ̄ = Φ̄𝐷̂†, cf. Eq. (2.6). The Hubbard interaction is then included by adding to
Stangent the action

SHubbard = 𝑈𝜏
∑
𝑥,𝑡 Ψ̄+(𝑥, 𝑡)Ψ+(𝑥, 𝑡)Ψ̄− (𝑥, 𝑡)Ψ− (𝑥, 𝑡). (2.13)

We choose discretization units 𝜏, 𝑎 so that both 𝛽/𝜏 and 𝐿/𝑎 are integer. The
space-time lattice consists of the points 𝑖𝑡𝑛 = 𝑖𝑛𝜏, 𝑛 = 0, 1, 2 . . . 𝛽/𝜏 − 1, on the
imaginary time axis and 𝑥𝑛 = 𝑛𝑎, 𝑛 = 0, 1, 2 . . . 𝐿/𝑎 − 1 on the real space axis.
Upon Fourier transformation the sum over 𝑡𝑛 becomes a sum over the Matsubara
frequencies 𝜔𝑛 = (2𝑛 + 1)𝜋/𝛽, while the sum over 𝑥𝑛 becomes a sum over the
momenta 𝑘𝑛 = 2𝑛𝜋/𝐿. These are odd versus even multiples of the discretization
unit, to ensure the antiperiodic versus periodic boundary conditions in 𝑡 and 𝑥,
respectively. In order to avoid the pole in the tangent dispersion we choose 𝛽/𝜏
even and 𝐿/𝑎 odd.

2.4 Free-fermion propagator

Without the interaction term the propagator (2.10) is given by a Gaussian path
integral [48, 1], which evaluates to

𝐶𝜎 (𝑥) =
𝜏

𝛽𝐿

∑︁
𝑘,𝜔

𝑒−𝑖𝑘𝑥

2𝑖 tan(𝜔𝜏/2) − 2𝛾𝜎 tan(𝑘𝑎/2) . (2.14)

A simple closed-form answer follows for the Fourier transform 𝐶𝜎 (𝑘) in the
zero-temperature (𝛽 → ∞) limit,

𝐶𝜎 (𝑘) = 𝜏
∫ 𝜋/𝜏

−𝜋/𝜏

𝑑𝜔

2𝜋
1

2𝑖 tan(𝜔𝜏/2) − 2𝛾𝜎 tan(𝑘𝑎/2)

=
−1

2 sign(𝜎 tan(𝑘𝑎/2)) + 2𝛾𝜎 tan(𝑘𝑎/2) . (2.15)

For the sine dispersion we have instead

𝐶𝜎 (𝑘) =
− sign(𝜎 sin 𝑘𝑎)√︃

1 + 4𝛾2 sin2 𝑘𝑎

, (2.16)

while the sawtooth dispersion gives

𝐶𝜎 (𝑘) = − 1
𝜋

arctan
(

𝜋

𝛾𝜎𝑘𝑎

)
, |𝑘𝑎 | < 𝜋. (2.17)
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Figure 2.3. Free-fermion propagator in momentum space at zero temperature, calculated
for three different discretization schemes. The plots follow from Eqs. (2.15), (2.16), and
(2.17), for 𝛾 = 1, 𝜎 = +1. Only the tangent fermion discretization is continuous at the
Brillouin zone boundary 𝑘𝑎 = ±𝜋.

Each dispersion has the expected continuum limit2 𝐶𝜎 (𝑘) → − 1
2 sign(𝜎𝑘)

for |𝑘𝑎 | ≪ 1, up to a factor of two for the sine dispersion due to fermion doubling.
The difference appears near the boundary |𝑘𝑎 | = 𝜋/𝑎 of the Brillouin zone. As
shown in Fig. 2.3, only the tangent dispersion gives a propagator that is continuous
across the Brillouin zone boundary. In real space, the discontinuity shows up as
an oscillation of 𝐶𝜎 (𝑥) for separations 𝑥 that are even or odd multiples of 𝑎, see
Fig. 2.4. This is a known artefact of a finite band width [49] which is avoided by
tangent fermions: their 𝐶𝜎 (𝑥) is close to the continuum result 𝑖/2𝜋𝑥 for 𝑥 larger
than a few lattice spacings.

It is essential that the spatial discretization is accompanied by a discretization
of (imaginary) time: If we would only discretize space, taking the limit 𝜏 → 0 at
fixed 𝑎, then 𝛾 → 0 and the propagator tends to the wrong limit,

lim
𝜏→0

𝐶𝜎 (𝑥) = 1
2 𝑖𝜎

∫ 𝜋/𝑎

0
sin 𝑘𝑥 𝑑𝑘 =

𝑖𝜎 sin2(𝜋𝑥/2𝑎)
𝜋𝑥

, (2.18)

2The continuum limit 𝐶𝜎 (𝑘) = − 1
2 sign(𝜎𝑘) differs from the zero-temperature Fermi function

𝜃 (−𝜎𝑘) by a 1/2 offset. This offset corresponds to a delta function 𝛿(𝑥 − 𝑥′) contribution to the
propagator (2.9), which is lost in the discretization.
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Figure 2.4. Same as Fig. 2.3, but now in real space. The continuum result at zero
temperature is 𝐶 (𝑥) = 𝑖/2𝜋𝑥 (solid curve), close to the tangent fermion discretization
(black dots). The dashed lines are guides to the eye, to highlight the oscillatory behavior
of the sawtooth and sine discretizations.

irrespective of how space is discretized. This deficiency of the sawtooth (slac)
approach was noted in Ref. [15].

Luttinger liquid correlators – We now include the Hubbard interaction (2.13)
in the discretized Euclidean action (2.12), and evaluate the path integral (2.10)
numerically by the quantum Monte Carlo method [50]. In a Luttinger liquid the
zero-temperature correlators decay as a power law [13],

𝐶2
𝜎 ∝ 𝑥−𝐾−1/𝐾 , 𝑅𝑥 ∝ 𝑥−2𝐾 , (2.19a)

𝐾 =
√︁
(1 − 𝜅)/(1 + 𝜅), 𝜅 =

𝑈𝑎

2𝜋𝑣F
∈ (−1, 1). (2.19b)

For repulsive interactions,𝑈 > 0 ⇒ 𝐾 < 1, the transverse spin-density correlator
𝑅𝑥 decays more slowly than the 1/𝑥2 decay expected from a Fermi liquid.

Results for the interaction dependent decay are shown in Fig. 2.5. The
data from the quantum Monte Carlo calculation of 𝑅𝑥 (𝑥) is compared with the
predictions from bosonization theory [14]. The power law decay (2.19) applies
to an infinite 1D system. For a more reliable comparison with the numerics we
include finite size effects in the bosonization calculations [50].

The finite band width 1/𝜏 on the lattice requires that the dimensionless
interaction strength 𝜅 is small compared to unity. As we see in Fig. 2.5 the
agreement with the continuum results (dashed curves) remains quite satisfactory
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Figure 2.5. Main panels: The data points show the quantum Monte Carlo results for the
correlator 𝑅𝑥 (𝑥) = 1

4 ⟨𝝍
† (𝑥)𝝈𝑥𝝍(𝑥)𝝍† (0)𝝈𝑥𝝍(0)⟩ of the helical Luttinger liquid, on the

space-time lattice with parameters 𝛽/𝜏 = 34, 𝐿/𝑎 = 71, 𝑣F = 𝑎/𝜏. The different colors
refer to different Hubbard interaction strengths 𝜅 = 𝑈𝑎/2𝜋𝑣F, repulsive on the left panel
and attractive on the right panel. In the latter case the correlator 𝑅𝑥 changes sign, the
plot shows the absolute value on a log-linear scale. The 𝑥-dependence at 𝑥 and 𝐿 − 𝑥 is
the same, because of the periodic boundary conditions, so only the range 0 < 𝑥 < 𝐿/2 is
plotted. The numerical data on the lattice is compared with the analytical bosonization
theory in the continuum (dashed curves [50]). Note that the lattice calculation slightly
overestimates the interaction strength, for both the repulsive and attractive cases. The
inset in the left panel combines data for both repulsive and attractive interactions on a
log-log scale, to compare with the power law decay (2.19) (dashed lines).

for |𝜅 | up to about 0.4. We stress that this comparison does not involve any
adjustable parameter.

2.5 Conclusion

We have shown that it is possible to faithfully represent an interacting Luttinger
liquid on a lattice, without compromising the fundamental symmetries of mass-
less fermions. The key step is a space-time discretization of the Lagrangian
which is local but does not introduce a spurious second species of low-energy
excitations. We have tested the validity of this “tangent fermion” approach in the
simplest setting where we can compare with the known bosonization results in
the continuum.

We anticipate that tangent fermions can become a powerful tool for the study
of topological states of matter, where it is essential to maintain the topological
protection of an unpaired Dirac cone. An application to the fermionic Casimir



26 Chapter 2. Helical Luttinger liquid on a space-time lattice

effect was published in Ref. [51]. We have shown that the technique can be applied
to quantum Monte Carlo calculations, but we expect it to be more generally
applicable to fermionic lattices. Indeed, a second quantized formulation has very
recently been used to avoid fermion doubling in the context of tensor networks
[52].

Appendices

2.A Derivation of the Euclidean action in the tangent
discretization

In this appendix, we explain how to arrive at the Euclidean action given in Eqs.
(2.12) and (2.13). In particular, we show that the shift in chemical potential,
originating from the normal ordering of the density operator in the Hubbard-
interaction Lagrangian (2.8), is absent in the Euclidean action. We start from the
continuum Hamiltonian 𝐻 = 𝐻0 + 𝐻Hubbard, with

𝐻0 =
∑︁
𝜎,𝑘

𝜎𝑣F𝑘 :𝜓†
𝜎 (𝑘)𝜓𝜎 (𝑘) :

=
∑︁
𝜎,𝑘

𝜎𝑣F𝑘
[
𝜓†
𝜎 (𝑘)𝜓𝜎 (𝑘) − 1 + 𝜃 (𝜎𝑘)

]
, (2.20)

𝐻Hubbard = 𝑈

∫
𝑑𝑥 𝑛+(𝑥)𝑛− (𝑥), (2.21)

𝑛𝜎 (𝑥) = :𝜓𝜎 (𝑥)†𝜓𝜎 (𝑥) : (2.22)

=
1
𝐿

∑︁
𝑘≠𝑘′

𝑒𝑖 (𝑘−𝑘
′ )𝑥 [𝜓𝜎 (𝑘 ′)†𝜓𝜎 (𝑘) + (𝜃 (𝜎𝑘) − 1)𝛿𝑘𝑘′],

where the normal ordering : · · · : brings to the right operators 𝜓𝜎 (𝑘) with
𝜎𝑘 > 0, and 𝜓†

𝜎 (𝑘) with 𝜎𝑘 ≤ 0. Here 𝜃 is the unit step function, defined by
𝜃 (𝜎𝑘) = 1 for 𝜎𝑘 > 0, and 𝜃 (𝜎𝑘) = 0 for 𝜎𝑘 ≤ 0.

We introduce fermionic coherent states |Ψ⟩, which satisfy

𝜓𝜎 (𝑘) |Ψ⟩ = Ψ𝜎 (𝑘) |Ψ⟩, ⟨Ψ|𝜓†
𝜎 (𝑘) = ⟨Ψ|Ψ̄𝜎 (𝑘) . (2.23)

Then, with 𝜏 = 𝛽/𝑁 and |Ψ(0)⟩ = −|Ψ(𝑁)⟩, where 𝑁 is a positive integer, the
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partition function is

𝑍 = Tr 𝑒−𝛽𝐻 = lim
𝑁→∞

∫ 𝑁∏
𝑡=1

DΨ(𝑡)DΨ̄(𝑡)𝑒−Ψ̄(𝑡 )Ψ(𝑡 ) ⟨Ψ(𝑡) |𝑒−𝜏𝐻 |Ψ(𝑡 − 1)⟩ ,

(2.24)

where Ψ(0) = −Ψ(𝑁).
We perform a Hubbard-Stratonovich transformation,

𝑒−𝜏𝐻Hubbard =

∫
D𝑊 (𝑡)D𝑊∗(𝑡) exp

{ ∫
𝑑𝑥 − 𝜏 |𝑊 (𝑥, 𝑡) |2

|𝑈 |

+ 𝜏𝑊 (𝑥, 𝑡)𝑛+(𝑥) − 𝜏 sign(𝑈)𝑊∗(𝑥, 𝑡)𝑛− (𝑥)
}
, (2.25)

which yields

𝑍 = lim
𝑁→∞

∫ (
𝑁∏
𝑡=1

DΨ(𝑡)DΨ̄(𝑡)D𝑊 (𝑡)D𝑊∗(𝑡)
)

exp

{∑︁
𝑡

[
−
∫

𝑑𝑥
𝜏 |𝑊 (𝑥, 𝑡) |2

|𝑈 |

− Ψ̄(𝑡) [Ψ(𝑡) − Ψ(𝑡 − 1)] − 𝜏
∑︁
𝜎,𝑘

𝜎𝑣F𝑘 [Ψ̄𝜎 (𝑘, 𝑡)Ψ𝜎 (𝑘, 𝑡 − 1) − 1 + 𝜃 (𝜎𝑘)]

+ 𝜏

𝐿

∫
𝑑𝑥𝑊 (𝑥, 𝑡)

∑︁
𝑘,𝑘′

𝑒𝑖 (𝑘−𝑘
′ )𝑥 [Ψ̄+(𝑘 ′, 𝑡)Ψ+(𝑘, 𝑡 − 1) + (𝜃 (𝑘) − 1)𝛿𝑘𝑘′]

− 𝜏
𝐿

sign(𝑈)
∫

𝑑𝑥𝑊∗(𝑥, 𝑡)
∑︁
𝑘𝑘′

𝑒𝑖 (𝑘−𝑘
′ )𝑥 [Ψ̄− (𝑘 ′, 𝑡)Ψ− (𝑘, 𝑡−1)+(−1+𝜃 (−𝑘))𝛿𝑘𝑘′]

]}
.

(2.26)

We make the variable change

Ψ𝜎 (𝑘, 𝑡) ↦→
1
2
[Ψ𝜎 (𝑘, 𝑡) + Ψ𝜎 (𝑘, 𝑡 + 1)] , (2.27)
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under which the partition function becomes

𝑍 = lim
𝑁→∞

∫ (
𝑁∏
𝑡=1

DΨ(𝑡)DΨ̄(𝑡)D𝑊 (𝑡)D𝑊∗(𝑡)
)

exp

{∑︁
𝑡

[
−
∫

𝑑𝑥
𝜏 |𝑊 (𝑥, 𝑡) |2

|𝑈 |

− 1
2

∑︁
𝜎

∑︁
𝑘,𝑘′

(𝛿𝑘𝑘′ + 𝜏Λ𝜎 (𝑘, 𝑘 ′)) Ψ̄𝜎 (𝑘 ′, 𝑡) [Ψ𝜎 (𝑘, 𝑡 + 1) − Ψ𝜎 (𝑘, 𝑡 − 1)]

−𝜏
∑︁
𝜎

∑︁
𝑘

𝜎𝑣F𝑘

(
Ψ̄𝜎 (𝑘, 𝑡)

Ψ𝜎 (𝑘, 𝑡 − 1) + 2Ψ𝜎 (𝑘, 𝑡) + Ψ𝜎 (𝑘, 𝑡 + 1)
4

− 1 + 𝜃 (𝜎𝑘)
)

+ 𝜏

𝐿

∫
𝑑𝑥𝑊 (𝑥, 𝑡)

∑︁
𝑘,𝑘′

𝑒𝑖 (𝑘−𝑘
′ )𝑥

(
(𝜃 (𝑘) − 1)𝛿𝑘𝑘′

+ Ψ̄+(𝑘 ′, 𝑡)
Ψ+(𝑘, 𝑡 + 1) + 2Ψ+(𝑘, 𝑡) + Ψ+(𝑘, 𝑡 − 1)

4

)
− 𝜏

𝐿
sign(𝑈)

∫
𝑑𝑥𝑊∗(𝑥, 𝑡)

∑︁
𝑘,𝑘′

𝑒𝑖 (𝑘−𝑘
′ )𝑥

(
(𝜃 (−𝑘) − 1)𝛿𝑘𝑘′

+ Ψ̄− (𝑘 ′, 𝑡)
Ψ− (𝑘, 𝑡 + 1) + 2Ψ− (𝑘, 𝑡) + Ψ− (𝑘, 𝑡 − 1)

4

)]}
, (2.28)

where

Λ𝜎 (𝑘, 𝑘 ′) = −𝜎𝑣F𝑘

2
𝛿𝑘𝑘′ +

1
2𝐿

∫
𝑑𝑥

[
𝑊 (𝑥, 𝑡)𝑒𝑖 (𝑘−𝑘′ )𝑥𝛿𝜎+

− sign(𝑈)𝑊∗(𝑥, 𝑡)𝑒𝑖 (𝑘−𝑘′ )𝑥𝛿𝜎−
]
. (2.29)

We next make the substitution

Ψ̄𝜎 (𝑘 ′) ↦→
∑︁
𝑘′′

[𝛿𝑘′𝑘′′ − 𝜏Λ𝜎 (𝑘 ′, 𝑘 ′′)]Ψ𝜎 (𝑘 ′′) . (2.30)

Ignoring the subleading terms, the Jacobian of the variable change is

det(𝛿𝑘′𝑘′′ − 𝜏Λ𝜎 (𝑘 ′, 𝑘 ′′)) = exp

{
− 𝜏

∑︁
𝑘

(
− 𝜎𝑣F𝑘 +

1
2𝐿

∫
𝑑𝑥 [𝑊 (𝑥, 𝑡)

− sign(𝑈)𝑊∗(𝑥, 𝑡)]
)}
. (2.31)
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The change of measure of Grassmann variables produces the inverse of the
Jacobian, which cancels the shift in chemical potential [the term 𝜃 (𝜎𝑘) −1] from
normal ordering. This yields the action

𝑍 = lim
𝑁→∞

∫ (
𝑁∏
𝑡=1

DΨ(𝑡)DΨ̄(𝑡)D𝑊 (𝑡)D𝑊∗(𝑡)
)

exp

{∑︁
𝑡

[
−
∫

𝑑𝑥
𝜏 |𝑊 (𝑥, 𝑡) |2

|𝑈 |

− 1
2

∑︁
𝜎,𝑘

Ψ̄𝜎 (𝑘, 𝑡) [Ψ𝜎 (𝑘, 𝑡 + 1) − Ψ𝜎 (𝑘, 𝑡 − 1)]

− 𝜏
∑︁
𝜎,𝑘

𝜎𝑣F𝑘Ψ̄𝜎 (𝑘, 𝑡)
Ψ𝜎 (𝑘, 𝑡 − 1) + 2Ψ𝜎 (𝑘, 𝑡) + Ψ𝜎 (𝑘, 𝑡 + 1)

4

+ 𝜏
∫

𝑑𝑥𝑊 (𝑥, 𝑡)Ψ̄+(𝑥, 𝑡)
Ψ+(𝑥, 𝑡 + 1) + 2Ψ+(𝑥, 𝑡) + Ψ+(𝑥, 𝑡 − 1)

4

−𝜏 sign(𝑈)
∫

𝑑𝑥𝑊∗(𝑥, 𝑡)Ψ̄− (𝑥, 𝑡)
Ψ− (𝑥, 𝑡 + 1) + 2Ψ− (𝑥, 𝑡) + Ψ− (𝑥, 𝑡 − 1)

4

]}
.

(2.32)

Finally we can integrate out the Hubbard-Stratonovich field, substituteΨ𝜎 ↦→
2(1 + cos 𝜔̂𝜏)−1Ψ𝜎 , and apply the tangent discretization 𝑘 ↦→ 2𝑎−1 tan(𝑎𝑘/2),
which results in

𝑍 = lim
𝑁→∞

∫ (
𝑁∏
𝑡=1

DΨ(𝑡)DΨ̄(𝑡)
)

exp

{
−
∑︁
𝑡

[
2
∑︁
𝜎,𝑘

Ψ̄𝜎 (𝑘) (−𝑖 tan(𝜔̂𝜏/2)Ψ𝜎 (𝑘)

+ 𝜏𝜎𝑣F tan(𝑘/2))Ψ𝜎 (𝑘, 𝑡) + 𝜏𝑈
∑︁
𝑥

Ψ̄+(𝑥, 𝑡)Ψ+(𝑥, 𝑡)Ψ̄− (𝑥, 𝑡)Ψ− (𝑥, 𝑡)
]}
.

(2.33)

For finite 𝑁 , this is the partition function corresponding to the tangent-discretized
action given in Eqs. (2.12) and (2.13) in the main text.

2.B Quantum Monte Carlo calculation

2.B.1 Hubbard-Stratonovich transformation of the Euclidean action

To evaluate the fermionic path integral representation of the partition function,

𝑍 =

∫
DΨ̄

∫
DΨ 𝑒−S[Ψ,Ψ̄] (2.34)
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we follow the usual auxiliary field approach [22, 23, 24, 25, 26], by which the two-
body Hubbard interaction is transformed into a sum of one-body terms coupled
to a fluctuating Ising field 𝑠(𝑥, 𝑡) ∈ {+1,−1}. In a Hamiltonian formulation
this is accomplished by the discrete Hubbard-Stratonovich transformation of Ref.
[23]. We cannot follow that route, because the tangent fermion Hamiltonian is
nonlocal, instead we need to work with the Lagrangian formulation — which is
local.

Starting from the discretized Euclidean action in Eqs. (2.12) and (2.13) we
factor out the two-body term,

𝑒−S = 𝑒−Stangent
∏
𝑥,𝑡

𝑒−𝑈𝜏Ψ̄+ (𝑥,𝑡 )Ψ+ (𝑥,𝑡 )Ψ̄− (𝑥,𝑡 )Ψ− (𝑥,𝑡 ) . (2.35)

This is allowed because all bilinears Ψ̄Ψ of the anticommuting Grassmann fields
commute. (The approximate Trotter splitting [25, 26] from the Hamiltonian
formulation does not appear here.)

Focusing on one factor, we have the sequence of identities (using Ψ2 = Ψ̄2 =

0)

𝑒−𝑈𝜏Ψ̄+Ψ+Ψ̄−Ψ− = 1 −𝑈𝜏Ψ̄+Ψ+Ψ̄−Ψ−

= 1
2

∑︁
𝑠=±

[
1 + 𝑠

√︁
|𝑈𝜏 | (Ψ̄+Ψ+ − sign(𝑈𝜏)Ψ̄−Ψ−) −𝑈𝜏𝑠2Ψ̄+Ψ+Ψ̄−Ψ−

]
= 1

2

∑︁
𝑠=±

exp
[
𝑠
√︁
|𝑈𝜏 | (Ψ̄+Ψ+ − sign(𝑈𝜏)Ψ̄−Ψ−)] . (2.36)

Collecting all factors we thus arrive at the desired Hubbard-Stratonovich trans-
formation of the Euclidean action,

𝑒−S = 𝑒−Stangent
1

2
𝛽𝐿

𝜏𝑎

∑︁
𝑠 (𝑥,𝑡 )=±1

exp
[
|𝑈𝜏 |1/2

∑︁
𝑥,𝑡

𝑠(𝑥, 𝑡)
(
Ψ̄+(𝑥, 𝑡)Ψ+(𝑥, 𝑡)

− sign(𝑈𝜏)Ψ̄− (𝑥, 𝑡)Ψ− (𝑥, 𝑡)
)]
, (2.37)

In the tangent fermion discretization the charge density Ψ̄Ψ is rewritten in
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terms of the locally coupled fields Φ, Φ̄, cf. Eq. (2.6),

Ψ̄±(𝑥, 𝑡)Ψ±(𝑥, 𝑡) = Φ̄±𝐷̂
† |𝑥, 𝑡⟩⟨𝑥, 𝑡 |𝐷̂Φ±

= 1
16Φ̄±(1 + 𝑒−𝑖 𝑘̂𝑎) (1 + 𝑒−𝑖 𝜔̂𝑡 ) |𝑥, 𝑡⟩⟨𝑥, 𝑡 | (1 + 𝑒𝑖 𝑘̂𝑎) (1 + 𝑒𝑖 𝜔̂𝑡 )Φ±,

= 1
16 [Φ̄±(𝑥, 𝑡) + Φ̄±(𝑥 − 𝑎, 𝑡) + Φ̄±(𝑥, 𝑡 + 𝜏) + Φ̄±(𝑥 − 𝑎, 𝑡 + 𝜏)

]
× [Φ±(𝑥, 𝑡) +Φ±(𝑥 − 𝑎, 𝑡) +Φ±(𝑥, 𝑡 + 𝜏) +Φ±(𝑥 − 𝑎, 𝑡 + 𝜏)

]
.

(2.38)

The Jacobian 𝐽 = det 𝐷̂†𝐷̂ of the transformation is independent of the Ising field.
For any given Ising field configuration 𝑠(𝑥, 𝑡) the action is now quadratic in

the Grassmann fields Φ, Φ̄,

S[Φ, Φ̄, 𝑠] =
∑︁

𝜎,𝑥,𝑥′ ,𝑡 ,𝑡 ′
Φ̄𝜎 (𝑥′, 𝑡′)𝑀𝜎 (𝑥, 𝑥′, 𝑡, 𝑡′) [𝑠]Φ𝜎 (𝑥, 𝑡), (2.39)

with a local kernel

𝑀𝜎 (𝑥, 𝑥′, 𝑡, 𝑡′) [𝑠] = 1
2
(
−𝑖(1 + cos 𝑘̂𝑎) sin 𝜔̂𝜏 + 𝜎𝛾(1 + cos 𝜔̂𝜏) sin 𝑘̂𝑎

)
+ 𝛿𝑥,𝑥′𝛿𝑡 ,𝑡 ′ |𝑈𝜏 |1/2𝑠(𝑥, 𝑡)𝐷† |𝑥, 𝑡⟩⟨𝑥, 𝑡 |𝐷 ×

{
𝜎 if 𝑈 > 0,
1 if 𝑈 < 0.

(2.40)

The Gaussian path integral over the fields Φ, Φ̄ produces a weight functional

𝑃[𝑠] =
∫

DΦ̄

∫
DΦ 𝑒−S[Φ,Φ̄,𝑠] = det𝑀+ [𝑠]𝑀− [𝑠] (2.41)

for the average over the Ising field. This final average is carried out by means of
the Monte Carlo importance sampling algorithm.

2.B.2 Absence of a sign problem

For the Monte Carlo averaging we need to ascertain the absence of a sign problem:
The weight functional 𝑃[𝑠] should be non-negative for any Ising field configu-
ration. This is indeed the case: From Eq. (2.40) one sees that for the attractive
interaction (𝑈 < 0)

𝑀∗
− [𝑠] = 𝑀+ [𝑠] ⇒ 𝑃[𝑠] = | det𝑀+ [𝑠] |2. (2.42)

(Note that 𝑘̂ = −𝑖𝜕𝑥 and 𝜔̂ = 𝑖𝜕𝑡 changes sign upon complex conjugation.) For
the repulsive interaction (𝑈 > 0)

𝑀†
− [𝑠] = −𝑀+ [𝑠] ⇒ 𝑃[𝑠] = (−1)𝛽𝐿/𝜏𝑎 | det𝑀+ [𝑠] |2 = | det𝑀+ [𝑠] |2, (2.43)

because 𝛽𝐿/𝜏𝑎 is an even integer.
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2.B.3 Correlators

We apply the quantum Monte Carlo calculation to equal-time correlators of the
form

⟨𝜓†
𝜎 (𝑥1)𝜓𝜎 (𝑥2)𝜓†

𝜎′ (𝑥3)𝜓𝜎′ (𝑥4)⟩ = ⟨(𝐷̂𝜙𝜎)†(𝑥1) (𝐷̂𝜙𝜎) (𝑥2) (𝐷̂𝜙𝜎′)†(𝑥3) (𝐷̂𝜙)𝜎′ (𝑥4)⟩

=

∫
DΦ̄

∫
DΦ ⟨𝑒−𝑆 [Φ,Φ̄,𝑠]⟩𝑠 (Φ̄𝜎 𝐷̂

†) (𝑥1) (𝐷̂Φ𝜎) (𝑥2) (Φ̄𝜎′ 𝐷̂†) (𝑥3) (𝐷̂Φ)𝜎′ (𝑥4)

=
1
𝑍

∑︁
𝑠 (𝑥,𝑡 )=±1

𝑃[𝑠]
(
𝐴̂𝜎 (𝑥2, 𝑥1) [𝑠] 𝐴̂𝜎′ (𝑥4, 𝑥3) [𝑠]−𝛿𝜎𝜎′ 𝐴̂𝜎 (𝑥4, 𝑥1) [𝑠] 𝐴̂𝜎 (𝑥2, 𝑥3) [𝑠]

)
.

(2.44)

In the final equality we defined 𝐴̂𝜎 [𝑠] = 𝐷̂𝑀−1
𝜎 [𝑠]𝐷̂† and we have used the

integration formula (Wick’s theorem)∫
DΦ̄

∫
DΦ 𝑒−Φ̄𝑀ΦΦ𝑘Φ𝑙Φ̄𝑚Φ̄𝑛 = (det𝑀)

[
(𝑀−1)𝑘𝑛 (𝑀−1)𝑙𝑚−(𝑀−1)𝑘𝑚(𝑀−1)𝑙𝑛

]
.

(2.45)
We consider the spin correlator

𝑅𝑥 (𝑥) = 1
4 ⟨𝝍

†(𝑥)𝝈𝑥𝝍(𝑥)𝝍†(0)𝝈𝑥𝝍(0)⟩
= − 1

4
(
⟨𝜓†

↑ (𝑥)𝜓↑ (0)𝜓†
↓ (𝑦)𝜓↓ (𝑥)⟩ + ⟨𝜓†

↓ (𝑥)𝜓↓ (0)𝜓†
↑ (0)𝜓↑ (𝑥)⟩

)
. (2.46)

In the second equality we used spin conservation symmetry,

⟨𝜓†
↑ (𝑥)𝜓↓ (𝑥)𝜓†

↑ (0)𝜓↓ (0)⟩ = 0, ⟨𝜓†
↓ (𝑥)𝜓↑ (𝑥)𝜓†

↓ (0)𝜓↑ (0)⟩ = 0. (2.47)

We substitute Eq. (2.44) into to Eq. (2.46),

𝑅𝑥 (𝑥) = − 1
4
〈
𝐴̂↑ (0, 𝑥) [𝑠] 𝐴̂↓ (𝑥, 0) [𝑠] + 𝐴̂↓ (0, 𝑥) [𝑠] 𝐴̂↑ (𝑥, 0) [𝑠]

〉
𝑠
. (2.48)

Using the symmetries (2.42) and (2.43) of the 𝑀-matrix we simplify it to

𝑅𝑥 (𝑥) =
{

1
4
〈��𝐴↑ (𝑥, 0) [𝑠]��2 + ��𝐴↑ (0, 𝑥) [𝑠]��2〉𝑠 if𝑈 > 0,

− 1
2 Re

〈
{𝐴↑ (𝑥, 0) [𝑠]𝐴∗

↑ (0, 𝑥) [𝑠]}
〉
𝑠

if𝑈 < 0,
(2.49)

with {· · · } the anticommutator.
The average in Eq. (2.49) is over the Ising field 𝑠. To improve the statistics we

make use of translational invariance in space and imaginary time, by additionally
averaging the correlator over the initial position (replacing (𝑥, 0) ↦→ (𝑥 + 𝑦, 𝑦)
with 0 < 𝑦 < 𝐿), as well as over 0 < 𝑡 < 𝛽.
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2.B.4 Monte Carlo averaging

For the Monte Carlo averaging we perform local updates of the auxiliary Ising
field, one spin-flip at the time. An operator average is then sampled at each
Monte Carlo iteration, which includes 𝛽𝐿/𝜏𝑎 local spin-flip steps.

We have tried out three alternative numerical methods:

1. The first method is a simple dense matrix calculation, where we recalculate
𝑃[𝑠] after each spin-flip and 𝐴↑ [𝑠] after each Monte Carlo step, using
neither the sparsity of the 𝑀-matrix nor the locality of the update. This is
optimal for systems of small sizes (𝐿/𝑎 ≲ 11, 𝛽/𝜏 ≲ 6).

2. In the second method we use the locality of the update of the Ising field, by
employing the Woodbury formula for the update of 𝑃[𝑠] and 𝐴↑ [𝑠]. This
is favorable for systems of medium sizes (𝐿/𝑎 ≈ 41, 𝛽/𝜏 ≈ 20).

3. In the third method we use the sparsity of the 𝑀-matrix, with the help of
the SuperLU library.3 This gives the best performance for large systems
(𝐿/𝑎 ≳ 61, 𝛽/𝜏 ≳ 30).

In Fig. 2.6 we compare results for three system sizes. We fix the ratio 𝑎/𝜏 = 𝑣F
of the discretization units of space and (imaginary) time and for each choice of
𝑎, 𝜏 we ensure that 𝐿/𝑎 is an odd integer and 𝛽/𝜏 is an even integer (to avoid
the pole in the tangent dispersion). The size dependence is relatively weak for
the repulsive interaction, and more significant for the attractive interaction near
values of 𝑥 where the correlator changes sign.

2.C Bosonization results

The curves in Fig. 2.5 are the bosonization results for the spin correlator 𝑅𝑥 (𝑥)
of the helical Luttinger liquid on a ring of length 𝐿. We describe that calculation.

3X. S. Li, An overview of SuperLU: Algorithms, implementation, and user interface, ACM
Transactions on Mathematical Software, 31, 302 (2005).
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Figure 2.6. Quantum Monte Carlo results for the correlator 𝑅𝑥 (𝑥) =

⟨𝝍† (𝑥)𝝈𝑥𝝍(𝑥)𝝍† (0)𝝈𝑥𝝍(0)⟩ of the helical Luttinger liquid (interaction strength |𝜅 | =
0.1), on the space-time lattice for three different lattice sizes (at fixed 𝑎/𝜏 = 𝑣F). The
data for the largest system corresponds to Fig. 2.5 from the main text. The dotted line
connecting the data points is a guide to the eye.

2.C.1 Bosonic form of the Hamiltonian

We start directly from the bosonic form of the Luttinger Hamiltonian [14],

𝐻 =
2𝜋𝑣F

𝐿

[ ∞∑︁
𝑛𝑞=1

𝑛𝑞
(
𝑏
†
𝑞↑𝑏𝑞↑ + 𝑏

†
𝑞↓𝑏𝑞↓

)
− 𝜅

∞∑︁
𝑛𝑞=1

𝑛𝑞
(
𝑏
†
𝑞↑𝑏

†
𝑞↓ + 𝑏𝑞↑𝑏𝑞↓

)
+ 1

2𝑁↑ (𝑁↑ + 1) + 1
2𝑁↓ (𝑁↓ + 1) + 𝜅𝑁↑𝑁↓

]
. (2.50)

The bosonic creation and annihilation operators 𝑏†, 𝑏 are constructed from the
fermionic operators 𝑐†, 𝑐 by

𝑏†𝑞𝜎 =
𝑖

√
𝑛𝑞

∑︁
𝑘

𝑐
†
(𝑘+𝑞)𝜎𝑐𝑘𝜎 , 𝑞 =

2𝜋
𝐿
𝜎𝑛𝑞 . (2.51)
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We impose periodic boundary conditions, quantizing 𝑘 = 2𝜋𝑛/𝐿, 𝑛 ∈ Z. The
bosonic wave number 𝑞 = 2𝜋𝜎𝑛𝑞/𝐿 is defined such that 𝑛𝑞 > 0 and the sign of
𝑞 is fixed by the spin index.

The normally ordered fermionic number operator

𝑁𝜎 =
∑︁
𝑘

: 𝑐†
𝑘𝜎
𝑐
𝑘𝜎

: =
∑︁
𝑘

(
𝑐
†
𝑘𝜎
𝑐
𝑘𝜎

− ⟨0|𝑐†
𝑘𝜎
𝑐
𝑘𝜎

|0⟩
)

(2.52)

commutes with the bosonic operators. The Fermi sea expectation value ⟨0|𝑐†
𝑘𝜎
𝑐
𝑘𝜎

|0⟩
is defined such that wave numbers 𝜎𝑘 ≤ 0 contribute, so all states with energy
𝐸 ≤ 0, including the spin-up and spin-down states at 𝑘 = 0. For later use we
note that this implies that

⟨𝑁𝜎⟩ = 1/2 − 1 = −1/2 (2.53)

at zero temperature in a half-filled band (the state at 𝑘 = 0 only contributes 1/2
per spin direction to the ground state).

The Hamiltonian can be diagonalised by a Bogoliubov transformation [14],

𝐵𝑞± = 2−3/2(𝐾−1/2 + 𝐾1/2) (𝑏𝑞↑ ∓ 𝑏𝑞↓) ± 2−3/2(𝐾−1/2 − 𝐾1/2) (𝑏†
𝑞↑ ∓ 𝑏

†
𝑞↓),
(2.54)

with 𝐾 =
√

1 − 𝜅/
√

1 + 𝜅, resulting in

𝐻 =
2𝜋𝑣F

𝐿

[√︁
1 − 𝜅2

∞∑︁
𝑛𝑞=1

𝑛𝑞 (𝐵†
𝑞+𝐵𝑞+ + 𝐵†

𝑞−𝐵𝑞−)

+ 1
2𝑁↑ (𝑁↑ + 1) + 1

2𝑁↓ (𝑁↓ + 1) + 𝜅𝑁↑𝑁↓

]
. (2.55)

2.C.2 Spin correlator in terms of the bosonic fields

We wish to compute the (equal-time) spin correlator

𝑅𝑥 (𝑥) = 1
4 ⟨𝝍

†(𝑥)𝝈𝑥𝝍(𝑥)𝝍†(0)𝝈𝑥𝝍(0)⟩ − 1
2 Re ⟨𝜓†

↑ (𝑥)𝜓↑ (0)𝜓†
↓ (0)𝜓↓ (𝑥)⟩.

(2.56)

In the second equality we used spin conservation symmetry (2.47) and transla-
tional symmetry,

⟨𝜓†
↑ (𝑥)𝜓↓ (𝑥)𝜓†

↓ (0)𝜓↑ (0)⟩ = ⟨𝜓†
↑ (0)𝜓↓ (0)𝜓†

↓ (−𝑥)𝜓↑ (−𝑥)⟩

= ⟨𝜓†
↑ (0)𝜓↓ (0)𝜓†

↓ (𝑥)𝜓↑ (𝑥)⟩∗. (2.57)



36 Chapter 2. Helical Luttinger liquid on a space-time lattice

The correlator diverges when 𝑥 → 0, we regularize this ultraviolet divergence
with cutoff length 𝑎0.

The fermion field is related to the bosonic operators by the “refermionization”
relation [14]

𝜓𝜎 (𝑥) =
1

√
2𝜋𝑎0

𝐹𝜎𝑒
−𝑖𝜎2𝜋𝑁𝜎 𝑥/𝐿𝑒−𝑖𝜙𝜎 (𝑥 ) , (2.58)

where 𝐹𝜎 is a Klein factor and

𝜙𝜎 (𝑥) = −
∞∑︁
𝑛𝑞=1

1
√
𝑛𝑞
𝑒−𝜋𝑛𝑞𝑎0/𝐿

(
𝑒−𝑖𝑞𝑥𝑏𝑞𝜎 + 𝑒𝑖𝑞𝑥𝑏†𝑞𝜎

)
. (2.59)

The correlator then takes the form

𝑅𝑥 (𝑥) = − 1
2 Re

1
(2𝜋𝑎0)2 ⟨𝑒

𝑖𝜙↑ (𝑥 )𝑒𝑖2𝜋𝑁↑𝑥/𝐿𝐹†
↑𝐹↑𝑒

−𝑖𝜙↑ (0)𝑒𝑖𝜙↓ (0)𝐹†
↓𝐹↓𝑒

𝑖2𝜋𝑁↓𝑥/𝐿𝑒−𝑖𝜙↓ (𝑥 )⟩

= −1
2 Re

1
(2𝜋𝑎0)2 ⟨𝑒

𝑖2𝜋 (𝑁↓+𝑁↑ )𝑥/𝐿⟩⟨𝑒𝑖𝜙↑ (𝑥 )𝑒−𝑖𝜙↑ (0)𝑒𝑖𝜙↓ (0)𝑒−𝑖𝜙↓ (𝑥 )⟩,

(2.60)

where we used the identity 𝐹†
𝜎𝐹𝜎′ = 𝛿𝜎𝜎′ . In the second equality the expectation

value has been factored into a product of two expectation values, which is allowed
because every state can be completely and uniquely described by the number of
fermions 𝑁𝜎 and bosonic excitations 𝑏†𝑞𝜎𝑏𝑞𝜎 , implying the independence of
their expectation values.

The next step is to transform to the eigenbasis of the 𝐵-operators,

Φ𝜎 (𝑥) = −
∞∑︁
𝑛𝑞=1

1
√
𝑛𝑞
𝑒−𝜋𝑛𝑞𝑎0/𝐿

(
𝑒−𝑖𝑞𝑥𝐵𝑞𝜎 + 𝑒𝑖𝑞𝑥𝐵†

𝑞𝜎

)
, (2.61)

by means of the relations

𝜙↑ = − 2−3/2(𝐾−1/2 + 𝐾1/2) [Φ+(𝑥) +Φ− (−𝑥)]
− 2−3/2(𝐾−1/2 − 𝐾1/2) [Φ+(−𝑥) −Φ− (𝑥)], (2.62a)

𝜙↓ = − 2−3/2(𝐾−1/2 + 𝐾1/2) [Φ− (𝑥) −Φ+(−𝑥)]
+ 2−3/2(𝐾−1/2 − 𝐾1/2) [Φ− (−𝑥) +Φ+(𝑥)] . (2.62b)
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We thus evaluate the expectation value

⟨𝑒𝑖𝜙↑ (𝑥 )𝑒−𝑖𝜙↑ (0)𝑒𝑖𝜙↓ (0)𝑒−𝑖𝜙↓ (𝑥 )⟩

=
〈
𝑒−𝑖

√
𝐾
2 (Φ+ (𝑥 )+Φ+ (−𝑥 )−2Φ+ (0) ) 〉〈𝑒−𝑖√𝐾

2 (Φ− (𝑥 )−Φ− (−𝑥 ) ) 〉
× 𝑒 [Φ+ (𝑥 ) ,Φ+ (0) ]𝑒−

1
4 [Φ+ (𝑥 ) ,Φ+ (−𝑥 ) ]𝑒−

1
4 [Φ− (𝑥 ) ,Φ− (−𝑥 ) ] , (2.63)

where we used the Baker-Campbell-Hausdorff formula and the fact that the
commutator [Φ𝜎 (𝑥),Φ𝜎 (𝑦)] is a 𝑐-number.

Because of inversion symmetry,

[Φ+(𝑥),Φ+(−𝑥)] = [Φ− (−𝑥),Φ− (𝑥)] = −[Φ− (𝑥),Φ− (−𝑥)], (2.64)

the last two exponentials in Eq. (2.63) cancel each other. The identity for the
thermal average ⟨𝑒𝐵⟩ = 𝑒⟨𝐵

2 ⟩/2 of an operator 𝐵 that is linear in free bosonic
operators then gives〈
𝑒−𝑖

√
𝐾
2 (Φ+ (𝑥 )+Φ+ (−𝑥 )−2Φ+ (0) ) 〉 = 𝑒− 𝐾4 ⟨6Φ2

+ (0)+{Φ+ (𝑥 ) ,Φ+ (−𝑥 ) }−4{Φ+ (𝑥 ) ,Φ+ (0) }⟩ ,
(2.65a)〈

𝑒−𝑖
√
𝐾
2 (Φ− (𝑥 )−Φ− (−𝑥 ) ) 〉 = 𝑒− 𝐾4 ⟨2Φ2

− (0)−{Φ− (𝑥 ) ,Φ− (−𝑥 ) }⟩ , (2.65b)

where we also used the translational symmetry ⟨Φ+(0)Φ+(𝑥)⟩ = ⟨Φ+(−𝑥)Φ+(0)⟩.
We need one more identity,

𝑒⟨{Φ− (𝑥 ) ,Φ− (−𝑥 ) }⟩−⟨{Φ+ (𝑥 ) ,Φ+ (−𝑥 ) }⟩ = 1, (2.66)

again because of inversion symmetry, to finally arrive at

𝑅𝑥 (𝑥) = − 1
2 Re

1
(2𝜋𝑎0)2 ⟨𝑒

𝑖2𝜋𝑁tot𝑥/𝐿⟩𝑒𝐾 ⟨{Φ+ (𝑥 ) ,Φ+ (0) }−2Φ2
+ (0) ⟩𝑒 [Φ+ (𝑥 ) ,Φ+ (0) ] ,

(2.67)
with 𝑁tot = 𝑁↑ + 𝑁↓.

2.C.3 Evaluation of the thermal averages

It remains to thermally average the bosonic field correlators and the exponential
of the fermionic number operators. We do the latter average first.

The number operators 𝑁↑, 𝑁↓ commute with each other and with the bosonic
fields, so the average is a classical ensemble average with the Gibbs measure at
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inverse temperature 𝛽 and chemical potential 𝜇,

𝐺𝑁 (𝑥) ≡ ⟨𝑒𝑖2𝜋𝑁tot𝑥/𝐿⟩ =
∑∞
𝑁↑ ,𝑁↓=−∞ 𝑒

𝑖2𝜋𝑁tot𝑥/𝐿𝑒−𝛽𝐸+𝛽𝜇𝑁tot∑∞
𝑁↑ ,𝑁↓=−∞ 𝑒

−𝛽𝐸+𝛽𝜇𝑁tot
, (2.68a)

𝐸 =
2𝜋𝑣F

𝐿

[
1
2𝑁↑ (𝑁↑ + 1) + 1

2𝑁↓ (𝑁↓ + 1) + 𝜅𝑁↑𝑁↓

]
. (2.68b)

The chemical potential 𝜇 = 0 without interactions, corresponding to a half-
filled band at zero temperature. To keep the half-filled band also for nonzero 𝜅
we adjust

𝜇 = −1
2 𝜅

2𝜋𝑣F

𝐿
. (2.69)

Then lim𝛽→∞⟨𝑁𝜎⟩ = −1/2 independent of the interaction strength 𝜅 ∈ (−1, 1),
as required by Eq. (2.53).

We next turn to the average of the bosonic field correlators:

⟨Φ𝜎 (𝑥)Φ𝜎 (0)⟩ =
∞∑︁

𝑛𝑞 ,𝑛
′
𝑞=1

1√︁
𝑛𝑞𝑛

′
𝑞

𝑒−2𝜋𝑛𝑞𝑎0/𝐿 ⟨
(
𝑒−𝑖𝑞𝑥𝐵𝑞𝜎+𝑒𝑖𝑞𝑥𝐵†

𝑞𝜎

) (
𝐵𝑞′𝜎+𝐵†

𝑞′𝜎

)
⟩

=

∞∑︁
𝑛𝑞=1

1
𝑛𝑞
𝑒−2𝜋𝑛𝑞𝑎0/𝐿 ⟨𝑒−𝑖𝑞𝑥𝐵𝑞𝜎𝐵†

𝑞𝜎 + 𝑒𝑖𝑞𝑥𝐵†
𝑞𝜎𝐵𝑞𝜎⟩

=

∞∑︁
𝑛𝑞=1

1
𝑛𝑞
𝑒−2𝜋𝑛𝑞𝑎0/𝐿

(
𝑒−𝑖𝜎2𝜋𝑛𝑞 𝑥/𝐿

1 − 𝑒−𝑛𝑞2𝜋𝑣𝛽/𝐿 + 𝑒𝑖𝜎2𝜋𝑛𝑞 𝑥/𝐿

𝑒𝑛𝑞2𝜋𝑣𝛽/𝐿 − 1

)
=

∞∑︁
𝑛𝑞=1

1
𝑛𝑞
𝑒−𝑛𝑞 (2𝜋/𝐿) (𝑎0+𝑖𝜎𝑥 ) +

∞∑︁
𝑛𝑞=1

1
𝑛𝑞
𝑒−2𝜋𝑛𝑞𝑎0/𝐿 2 cos

(
2𝜋𝑛𝑞𝑥/𝐿

)
𝑒𝑛𝑞2𝜋𝑣𝛽/𝐿 − 1

= − ln
(
1 − 𝑒−(2𝜋/𝐿) (𝑎0+𝑖𝜎𝑥 )

)
+

∞∑︁
𝑛𝑞=1

1
𝑛𝑞
𝑒−2𝜋𝑛𝑞𝑎0/𝐿 2 cos

(
2𝜋𝑛𝑞𝑥/𝐿

)
𝑒𝑛𝑞2𝜋𝑣𝛽/𝐿 − 1

. (2.70)

We subtract ⟨Φ2
𝜎 (0)⟩ and expand to first order in the cutoff length 𝑎0,

⟨Φ𝜎 (𝑥)Φ𝜎 (0) −Φ2
𝜎 (0)⟩ = 𝐺𝜎 (𝑥) + ln(2𝜋𝑎0/𝐿) + O(𝑎0),

𝐺𝜎 (𝑥) = − ln
(
1 − 𝑒−𝑖𝜎2𝜋𝑥/𝐿

)
+

∞∑︁
𝑛𝑞=1

4
𝑛𝑞

sin2(𝜋𝑛𝑞𝑥/𝐿)
𝑒𝑛𝑞2𝜋𝑣𝛽/𝐿 − 1

.
(2.71)

With the help of two further identities,

⟨{Φ+(𝑥),Φ+(0)} − 2Φ2
+(0)⟩ = 2 Re⟨Φ+(𝑥)Φ+(0) −Φ2

+(0)⟩, (2.72a)

[Φ+(𝑥),Φ+(0)] = 2𝑖 Im⟨Φ+(𝑥)Φ+(0) −Φ2
+(0)⟩ = 2𝜋𝑖(𝑥/𝐿 − 1/2), (2.72b)
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we conclude that

𝑅𝑥 (𝑥) =
𝑒2𝐾 Re𝐺+ (𝑥 ) Re

[
𝑒𝑖2𝜋𝑥/𝐿𝐺𝑁 (𝑥)

]
2𝐿2(2𝜋𝑎0/𝐿)2−2𝐾 . (2.73)

The two functions 𝐺𝑁 (𝑥) and 𝐺+(𝑥) can be computed efficiently from Eqs.
(2.68) and (2.71). For the comparison with the lattice theory we identify the
cutoff length 𝑎0 with the lattice constant 𝑎.

2.C.4 Propagator

For reference we also give the finite-size bosonization result for the propagator:

𝐶𝜎 (𝑥) = ⟨𝜓†
𝜎 (𝑥, 0)𝜓𝜎 (0, 0)⟩ =

1
2𝜋𝑎0

⟨𝑒𝑖𝜎2𝜋𝑁𝜎 𝑥/𝐿⟩⟨𝑒𝑖𝜙𝜎 (𝑥 )𝑒−𝑖𝜙𝜎 (0)⟩

=
𝜎

2𝜋𝑖𝑎0

(
2𝜋𝑎0

𝐿

) (1/2) (𝐾+1/𝐾 )
⟨𝑒𝑖𝜎𝜋 (2𝑁𝜎+1)𝑥/𝐿⟩𝑒 (1/2) (𝐾+1/𝐾 ) Re𝐺𝜎 (𝑥 ) .

(2.74)
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Chapter 3

Luttinger liquid tensor network:
sine versus tangent dispersion of
massless Dirac fermions

3.1 Introduction

The linear energy-momentum relation, 𝐸 = ±ℏ𝑣𝑘 , of massless Dirac fermions
remains gapless in the presence of disorder, provided that a pair of fundamental
symmetries, chiral symmetry and time reversal symmetry, are not both broken
[54]. To preserve this so-called topological protection on a lattice one needs to
work around the fermion doubling obstruction [5]: if the Brillouin zone contains
multiple Dirac cones they can hybridize and open a gap at 𝐸 = 0. The nearest-
neighbor finite difference discretization suffers from this problem: The resulting
sine dispersion, 𝐸 = (ℏ𝑣/𝑎) sin 𝑎𝑘 , has a spurious second Dirac cone at the edge
𝑘 = 𝜋/𝑎 of the Brillouin zone.

It was shown recently [45, 17] that an alternative discretization of the differ-
ential operator, introduced in the 1980’s by Stacey [16], preserves a gapless Dirac
cone in a disordered system. The dispersion is a tangent, 𝐸 = (2ℏ𝑣/𝑎) tan(𝑎𝑘/2),
with a pole rather than a zero at the Brillouin zone edge. No other discretiza-
tion scheme (staggered fermions, Wilson fermions, slac fermions [18]) has this
topological protection. One fundamental consequence is that the Casimir effect
for lattice fermions requires the tangent discretization [51].

All of this is for non-interacting particles. Interacting models of massless
Dirac fermions need a lattice formulation for numerical studies [55, 56, 57, 58],
which use methods such as quantum Monte Carlo or DMRG (density matrix renor-
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malization group). The Luttinger liquid with Hubbard interaction, a paradig-
matic non-Fermi liquid [13, 21], can be solved analytically in the continuum via
bosonization [3, 20], providing a testing ground for lattice calculations. Such a
test was reported for quantum Monte Carlo in Ref. [59]. Here we consider the
DMRG implementation.

The two techniques require a different approach, each with its own challenges.
For quantum Monte Carlo the discretization is at the level of the Lagrangian, and
the challenge is to ensure a positive action determinant (avoiding the so-called
sign problem). For DMRG the discretization involves the representation of the
second quantized Hamiltonian by a tensor network [60, 61]: a product of matrices
of operators acting locally on each site. The challenge is to ensure that the rank
of each matrix (the bond dimension) is small and does not grow with the number
of sites.

Tangent fermions have a hidden locality originating from the fact that —
although the tangent discretization produces a Hamiltonian with a highly non-
local, non-decaying, coupling of distant sites [16] — the ground state can be
obtained from a local generalized eigenproblem [44]. Our key finding is that this
allows for an exact matrix-product-operator (MPO) representation of low bond
dimension. In an independent study [52], Haegeman et al. reached the same
conclusion.

In what follows we will compare the sine and tangent discretizations of the
Luttinger Hamiltonian, and test the correlators against the continuum results. We
first construct the MPO explicitly in Sec. 3.2. The correlators are calculated via
the DMRG approach and compared with bosonization in Sec. 3.3. We conclude
in Sec. 3.4. Appendix 3.A contains the connection between a local generalized
eigenproblem and a scale-independent MPO.

3.2 Matrix product operator

The starting point of a tensor network DMRG calculation [57] is the representation
of the Hamiltonian by a matrix product operator (MPO), to ensure that the
variational ground state energy can be computed efficiently for a matrix product
state.

In this section we construct the MPO representation of the one-dimensional
(1D) Dirac Hamiltonian

𝐻 = −𝑖ℏ𝑣
(
𝜕/𝜕𝑥 0

0 −𝜕/𝜕𝑥

)
, (3.1)
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discretized on a lattice. (The matrix structure refers to the spin degree of freedom.)
Once we have done that we will compute the correlators via DMRG in the presence
of a Hubbard interaction (Luttinger model).

3.2.1 Free fermions

Consider noninteracting, spinless chiral fermions on a chain of 𝑁 sites (unit
spacing), with hopping matrix elements 𝑡𝑛𝑚 (𝑛 > 𝑚 ≥ 1). (We will include the
spin degree of freedom and the electron-electron interaction later on.) For an
infinite translationally invariant lattice, 𝑡𝑛𝑚 = 𝑡 (𝑛 −𝑚) is a Fourier coefficient of
the dispersion relation,

𝐸 (𝑘) = 2 Re
∞∑︁
𝑛=1

𝑡 (𝑛)𝑒𝑖𝑛𝑘 . (3.2)

The second quantized Hamiltonian

𝐻 =

𝑁∑︁
𝑛>𝑚=1

(
𝑡𝑛𝑚𝑐

†
𝑛𝑐𝑚 + 𝑡∗𝑛𝑚𝑐†𝑚𝑐𝑛

)
(3.3)

can be rewritten as a product of matrices 𝑀 (𝑛) that act only on site 𝑛, but the
dimension of each matrix (the bond dimension) will typically grow linearly with
𝑁 .

An exact MPO representation with scale-independent bond dimension is
possible in two cases [62, 63, 64, 65]: for a short-range hopping (𝑡𝑛𝑚 ≡ 0 for
𝑛 − 𝑚 > 𝑟) and for a long-range hopping with a polynomial-times-exponential
distance dependence:

𝑡𝑛𝑚 = 2𝑡0𝑒𝑖𝜙 (𝑛 − 𝑚) 𝑝𝑒𝛽 (𝑛−𝑚) , 𝛽 ∈ C, 𝑝 ∈ N, (3.4)

and linear combinations of this functional form. While the exponent 𝛽 = 𝛽1+ 𝑖𝛽2
can be an arbitrary complex number, the power 𝑝 must be a non-negative integer
[65]. A decaying 𝑡𝑛𝑚 ∝ 1/(𝑛 − 𝑚) 𝑝 does not qualify.

The sine dispersion corresponds to a short-range, nearest-neighbor hopping,

𝑡𝑛𝑚 = (𝑡0/2𝑖)𝛿𝑛−𝑚,1 ⇔ 𝐸 (𝑘) = 𝑡0 sin 𝑘. (3.5)
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The MPO Hamiltonian has bond dimension 4,

𝐻sine =
1
2 𝑖𝑡0 [𝑀

(1)𝑀 (2) · · ·𝑀 (𝑁 ) ]1,4, (3.6a)

𝑀 (𝑛) =
©­­­«
1 𝑐𝑛 𝑐

†
𝑛 0

0 0 0 𝑐
†
𝑛

0 0 0 𝑐𝑛
0 0 0 1

ª®®®¬ . (3.6b)

A no-go theorem [5] forbids short-range hopping if one wishes to avoid
fermion doubling and preserve chiral symmetry. If we also require a scale-
independent bond dimension we need the hopping (3.4). In the simplest case
𝑝 = 0 of a purely exponential distance dependence1, one has the dispersion

𝐸 (𝑘) = 2𝑡0
𝑒𝛽1 cos 𝜙 − cos(𝛽2 + 𝑘 + 𝜙)

cos(𝛽2 + 𝑘) − cosh 𝛽1
. (3.7)

This should be a continuous function in the interval (−𝜋, 𝜋), crossing 𝐸 = 0
at 𝑘 = 0 but not at any other point in this interval. The only parameter choice
consistent with these requirements is 𝜙 = 𝜋/2, 𝛽1 = 0, 𝛽2 = 𝜋, when

𝑡𝑛𝑚 = 2𝑖𝑡0(−1)𝑛−𝑚 ⇔ 𝐸 (𝑘) = 2𝑡0 tan(𝑘/2). (3.8)

This is Stacey’s tangent dispersion2 [16].
The corresponding MPO Hamiltonian is

𝐻tangent = 2𝑖𝑡0 [𝑀 (1)𝑀 (2) · · ·𝑀 (𝑁 ) ]1,4, (3.9a)

𝑀 (𝑛) =
©­­­«
1 𝑐𝑛 𝑐

†
𝑛 0

0 −1 0 𝑐
†
𝑛

0 0 −1 𝑐𝑛
0 0 0 1

ª®®®¬ , (3.9b)

again with bond dimension 4, differing from the sine MPO (3.6) by the −1’s on
the diagonal.

1The tangent discretization (3.8) corresponds to Eq. (3.4) with 𝑝 = 0 (purely exponential
distance dependence). More generally, one can take 𝑝 = 1, 2, . . . (polynomial-times-exponential
distance dependence), in which case the dispersion contains terms ∝ tan(𝑘/2) (1 + cos 𝑘)−𝑝 .
The MPO representation of the discretized Hamiltonian remains scale independent, but the bond
dimension is larger than for 𝑝 = 0.

2The Fourier series tan(𝑘/2) = −2
∑∞
𝑛=1 (−1)𝑛 sin 𝑛𝑘 implied by the identification

(3.8) should be understood in the sense of a distribution:
∫ 𝜋

0 tan(𝑘/2) 𝑓 (𝑘) 𝑑𝑘 =

−2
∑∞
𝑛=1 (−1)𝑛

∫ 𝜋

0 𝑓 (𝑘) sin 𝑛𝑘 𝑑𝑘 , with 𝑓 (𝑘) a test function that vanishes at 𝜋.
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3.2.2 Helical Luttinger liquid

We next include the spin degree of freedom and consider helical instead of chiral
fermions,

𝐻 =

𝑁∑︁
𝑛>𝑚=1

[
𝑡𝑛𝑚

(
𝑐
†
𝑛↑𝑐𝑚↑ − 𝑐

†
𝑛↓𝑐𝑚↓

)
+ H.c.

]
+

𝑁∑︁
𝑛=1

𝑈𝑛. (3.10)

(H.c. denotes the Hermitian conjugate.) We have added an on-site Hubbard
interaction,

𝑈𝑖 = 𝑈 (𝑛𝑖↑ − 1
2 ) (𝑛𝑖↓ −

1
2 ), 𝑛𝑖𝜎 = 𝑐

†
𝑖𝜎
𝑐
𝑖𝜎
. (3.11)

The MPO representation for the tangent discretization (3.8) is

𝐻tangent = 2𝑖𝑡0 [𝑀 (1)𝑀 (2) · · ·𝑀 (𝑁 ) ]1,6, (3.12a)

𝑀 (𝑛) =

©­­­­­­­­­«

1 𝑐𝑛↑ 𝑐
†
𝑛↑ 𝑐𝑛↓ 𝑐

†
𝑛↓ (2𝑖𝑡0)−1𝑈𝑛

0 −1 0 0 0 𝑐
†
𝑛↑

0 0 −1 0 0 𝑐𝑛↑
0 0 0 −1 0 −𝑐†

𝑛↓
0 0 0 0 −1 −𝑐𝑛↓
0 0 0 0 0 1

ª®®®®®®®®®¬
, (3.12b)

with bond dimension 6. For the sine discretization the −1’s on the diagonal are
replaced by 0’s,

𝐻sine =
1
2 𝑖𝑡0 [𝑀

(1)𝑀 (2) · · ·𝑀 (𝑁 ) ]1,6, (3.13a)

𝑀 (𝑛) =

©­­­­­­­­­«

1 𝑐𝑛↑ 𝑐
†
𝑛↑ 𝑐𝑛↓ 𝑐

†
𝑛↓ ( 1

2 𝑖𝑡0)
−1𝑈𝑛

0 0 0 0 0 𝑐
†
𝑛↑

0 0 0 0 0 𝑐𝑛↑
0 0 0 0 0 −𝑐†

𝑛↓
0 0 0 0 0 −𝑐𝑛↓
0 0 0 0 0 1

ª®®®®®®®®®¬
. (3.13b)

To deal with fermionic statistics, we apply the Jordan-Wigner transformation
to the MPOs (see App. 3.B).

The MPOs written down so far refer to an open chain of 𝑁 sites. To minimize
finite-size effects periodic boundary conditions are preferrable: the chain is
wrapped around a circle, and sites 𝑛 and 𝑛 + 𝑁 are identified. A translationally
invariant hopping, 𝑡𝑛𝑚 = 𝑡 (𝑛 − 𝑚), then requires

𝑡 (𝑁 − 𝑛) = 𝑡 (𝑛)∗, 1 ≤ 𝑛 ≤ 𝑁 − 1. (3.14)
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For 𝑁 odd the Hamiltonian in the tangent discretization (3.8) satisfies this
condition without further modification: because of the all-to-all hopping a closing
of the chain on a circle makes no difference. (For 𝑁 even one would have
antiperiodic boundary conditions3.) We can therefore still use the MPO (3.12).

The sine discretization (3.5) requires an additional hopping term between
sites 1 and 𝑁 . We construct this MPO explicitly in App. 3.C.

3.3 Correlators

3.3.1 Free fermions

The propagator

𝐶𝜎 (𝑥, 𝑥′) = ⟨𝑐†𝜎 (𝑥)𝑐𝜎 (𝑥′)⟩, 𝜎 ∈ {↑, ↓} ↔ {1,−1}, (3.15)

of a non-interacting 1D Dirac fermion with dispersion 𝐸 (𝑘) = ±ℏ𝑣𝑘 can be
readily evaluated:

𝐶𝜎 (𝑥, 𝑥′) =
1
𝑍

Tr 𝑒−𝛽𝐻𝑐†𝜎 (𝑥)𝑐𝜎 (𝑥′) =
∫ ∞

−∞

𝑑𝑘

2𝜋
𝑒𝑖𝑘 (𝑥−𝑥

′ )

1 + 𝑒𝛽𝐸 (𝑘 )

=
𝜎ℏ𝑣

2𝑖𝛽 sinh[𝜋(ℏ𝑣/𝛽) (𝑥 − 𝑥′)] , (3.16)

for 𝑥 ≠ 𝑥′, with 𝑍 = Tr 𝑒−𝛽𝐻 the partition function at inverse temperature
𝛽 = 1/𝑘B𝑇 . This reduces to

lim
𝛽→∞

𝐶𝜎 (𝑥, 𝑥′) =
𝜎

2𝜋𝑖(𝑥 − 𝑥′) (3.17)

in the zero-temperature limit.
On a lattice (𝑥/𝑎 = 𝑛 ∈ Z, 𝑐𝜎 (𝑥 = 𝑛𝑎) ≡ 𝑐𝜎 (𝑛)) the integration range of

𝑘 is restricted to the interval (−𝜋/𝑎, 𝜋/𝑎). In the zero-temperature limit, with
𝜎𝐸 (𝑘) < 0 for −𝜋/𝑎 < 𝑘 < 0, one then finds

𝐶𝜎 (𝑛, 𝑚) = 𝜎
∫ 0

−𝜋/𝑎

𝑑𝑘

2𝜋
𝑒𝑖𝑘𝑎 (𝑛−𝑚) =

{
2𝜎

2𝜋𝑖𝑎 (𝑛−𝑚) if 𝑛 − 𝑚 is odd,
0 if 𝑛 − 𝑚 is even,

(3.18)

3As a consistency check, we note that in real space the fact that an odd (even) number 𝑁 of lattice
sites corresponds to periodic (antiperiodic) boundary conditions, ensures in momentum space that
the discrete wave numbers avoid the pole of the tangent dispersion relation at the Brillouin zone
boundary.
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irrespective of the functional form of the dispersion relation𝐸 (𝑘). The continuum
result (3.17) is only recovered if one averages over even and odd lattice sites.

The even-odd oscillation also appears in the transverse spin correlator,

𝑅(𝑥, 𝑥′) = 1
4 ⟨𝒄

†(𝑥)𝜎𝑥𝒄(𝑥) 𝒄†(𝑥′)𝜎𝑥𝒄(𝑥′)⟩, (3.19)

defined in terms of the spinor 𝒄 = (𝑐↑, 𝑐↓) and Pauli matrix 𝜎𝑥 .
For free fermions Wick’s theorem gives

𝑅(𝑥, 𝑥′) = −1
4

(
𝐶↑ (𝑥, 𝑥′)𝐶↓ (𝑥′, 𝑥) + 𝐶↓ (𝑥, 𝑥′)𝐶↑ (𝑥′, 𝑥)

)
, (3.20)

which at zero temperature results in

𝑅(𝑥, 𝑥′) = 1
2
[2𝜋(𝑥 − 𝑥′)]−2, (3.21)

in the continuum and

𝑅(𝑛, 𝑚) =
{

2[2𝜋𝑎(𝑛 − 𝑚)]−2 if 𝑛 − 𝑚 is odd,
0 if 𝑛 − 𝑚 is even.

(3.22)

The even-odd oscillation [15] can be removed in a path integral formulation,
by discretizing the Lagrangian in both space and (imaginary) time [59], but in
the Hamiltonian formulation considered here it is unavoidable. In what follows
we will consider smoothed lattice correlators, defined by averaging the fermionic
operators 𝑐𝜎 (𝑛) over nearby lattice sites. The precise form of the smoothing
profile will not matter in the continuum limit 𝑎 → 0, we take the simple form

𝑐𝑛𝜎 = 1
2𝑐𝑛𝜎 + 1

2𝑐𝑛+1𝜎 , (3.23)

so an equal-weight average over adjacent sites. The smoothed correlators are
then defined by

𝐶̄𝜎 (𝑛, 𝑚) = ⟨𝑐†𝑛𝜎𝑐𝑚𝜎⟩, (3.24a)

𝑅̄(𝑛, 𝑚) = 1
4 ⟨𝒄

†
𝑛𝜎𝑥𝒄𝑛 𝒄†𝑚𝜎𝑥𝒄𝑚⟩. (3.24b)

3.3.2 DMRG calculation with Hubbard interaction

We represent the ground state wave functionΨ of the Luttinger liquid Hamiltonian
(3.10) by a matrix product state (MPS) and carry out the tensor network DMRG
algorithm [57] to variationally minimize ⟨Ψ|𝐻 |Ψ⟩/⟨Ψ|Ψ⟩. (We used the TeNPy
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Library [66] for these calculations.) We compare the results for tangent and
sine discretization. The MPOs for both are exact with small bond dimension
(given explicitly in App. 3.B and App. 3.C). The bond dimension 𝜒 of the MPS
is increased until convergence is reached (see App. 3.D).

The Luttinger liquid is simulated at zero temperature (𝛽 → ∞) and at fixed
particle number N = N↑ + N↓ (canonical ensemble). We take 𝑁 = 51 an
odd integer, with periodic boundary conditions for the MPO. The periodicity of
the MPS is not prescribed a priori, to simplify the DMRG code. By setting
N↑ = (𝑁 + 1)/2 and N↓ = (𝑁 − 1)/2 we model a half-filled band.

The bosonization theory of an infinite Luttinger liquid gives a power law
decay of the zero-temperature, zero-chemical-potential correlators [13],

𝐶𝜎 (𝑥, 𝑥′) ∝ |𝑥 − 𝑥′ |−(1/2) (𝐾+1/𝐾 ) , (3.25a)

𝑅(𝑥, 𝑥′) ∝ |𝑥 − 𝑥′ |−2𝐾 , (3.25b)

𝐾 =
√︁
(1 − 𝜅)/(1 + 𝜅), 𝜅 =

𝑈

2𝜋𝑡0
∈ (−1, 1). (3.25c)

For repulsive interactions, 𝑈 > 0 ⇒ 𝐾 < 1, the transverse spin correlator 𝑅
decays more slowly than the 1/𝑥2 decay expected from a Fermi liquid.

The numerical results are shown in Figs. 3.1 and 3.2 (data points). The curves
are the continuum bosonization formulas (including finite-size corrections, see
App. 3.E). The lattice calculations with the tangent dispersion (crosses) agree
nicely with the continuum formulas, without any adjustable parameter. The sine
dispersion (plusses), in contrast, only agrees for free fermions. With interactions
the sine dispersion gives an exponential decay of the propagator, indicative of the
opening of an excitation gap.

3.4 Conclusion

We have constructed a Hamiltonian-based tensor network formulation of a Lut-
tinger liquid on a 1D lattice, complementing the Lagrangian-based path integral
formulation of Ref. [59]. The key step is the Hermitian discretization of the mo-
mentum operator −𝑖ℏ𝑑/𝑑𝑥 in a way that preserves the fundamental symmetries
(chiral symmetry and time reversal symmetry) of massless Dirac fermions. We
have compared two discretizations, both allowing for a tensor network of low,
scale-independent bond dimension. In this concluding section we also discuss a
third.
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Figure 3.1. Data points: absolute value of the propagator 𝐶̄𝜎 (𝑛, 𝑚), defined in Eq.
(3.24a) for 𝜎 =↑, 𝑛 = 𝑥/𝑎 and 𝑚 = 0, calculated in the tensor network of 𝐿/𝑎 = 51
sites and bond dimension 𝜒 = 4096 of the matrix-product state. Results are shown for
the tangent and sine discretization of the Luttinger Hamiltonian, for free fermions and
for a repulsive Hubbard interaction of strength 𝜅 = 𝑈/2𝜋𝑡0 = 0.3. The curves are the
analytical results in the continuum.

The three discretizations of the differential operator on a 1D lattice (unit
lattice constant 𝑎) are the following:

𝑑𝑓

𝑑𝑥
↦→ 1

2 [ 𝑓 (𝑥 + 1) − 𝑓 (𝑥 − 1)] (sine dispersion), (3.26a)

𝑑𝑓

𝑑𝑥
↦→ 2

∞∑︁
𝑛=1

(−1)𝑛 [ 𝑓 (𝑥 − 𝑛) − 𝑓 (𝑥 + 𝑛)]

(tangent dispersion), (3.26b)

𝑑𝑓

𝑑𝑥
↦→

∞∑︁
𝑛=1

(−1)𝑛 1
𝑛
[ 𝑓 (𝑥 − 𝑛) − 𝑓 (𝑥 + 𝑛)]

(sawtooth dispersion). (3.26c)

The corresponding dispersion relations are shown in Fig. 3.3. The energy-
momentum relation is a sine for the nearest-neighbor difference and a tangent for
the long-range Stacey derivative [16]. The third dispersion is a (piecewise linear)
sawtooth, produced by a nonlocal discretization known as the slac derivative in
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Figure 3.2. Same as Fig. 3.1, but now for the transverse spin correlator 𝑅̄(𝑛, 𝑚) defined
in Eq. (3.24b).

the particle physics literature [35].
The sine dispersion suffers from fermion doubling [18] — a second species of

low-energy excitations appears at the Brillouin zone boundary. The tangent and
sawtooth dispersion describe an unpaired chiral fermion, they rely on nonlocality
to work around the theorem [5] that requires chiral fermions to come in pairs in
any local theory on a lattice.

Both the Stacey derivative and the slac derivative couple arbitarily distant
sites 𝑛, 𝑚, the former ∝ (−1)𝑛−𝑚 and the latter ∝ (−1)𝑛−𝑚× (𝑛−𝑚)−1. From the
perspective of a tensor network there is an essential difference between the two:
Because the MPO condition (3.4) allows for an exponential distance dependence
but excludes a coupling that decays as a power law with distance, only the
tangent dispersion has an exact MPO representation with scale-independent bond
dimension — the sawtooth dispersion does not. Tangent fermions have a hidden
locality, their spectrum is governed by a local generalized eigenproblem [44],
which is at the origin of the efficient tensor network (see App. 3.A).

The method we developed here enables simulations of systems with various
filling factors and scalar potentials, including those with disorder. By focusing
on the impurity-free Luttinger liquid we could in this work test the numerical
approach against analytical formulas. The close agreement gives us confidence
that tangent fermion DMRG is a reliable method, which at least in 1D is highly
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Figure 3.3. The three ways to discretize the derivative operator in Eq. (3.26) produce
three different dispersion relations: sine (blue), tangent (red), and sawtooth (black). The
energy-momentum relation of a chiral fermion is obtained from the discretized derivative
by substituting 𝑓 (𝑥 + 𝑛𝑎) = 𝑒𝑖𝑛𝑘𝑎 𝑓 (𝑥) and equating −𝑖ℏ𝑣𝑑𝑓 /𝑑𝑥 = 𝐸 𝑓 . The tangent and
sawtooth dispersions are discontinuous at the Brillouin zone boundaries (𝑘 = ±𝜋/𝑎),
where the sine dispersion has a second root (fermion doubling). The three dispersion
relations coincide near 𝑘 = 0, so the corresponding discretized derivatives are equivalent
if applied to functions that vary smoothly on the scale of the lattice spacing.

efficient.
The next step is to apply it to problems where no analytics exists, condensed

matter and particle physics provide a variety of such problems. One class of
applications is the stability of gapless chiral modes to the combination of disorder
and interactions. Existing DMRG studies [67] work around the fermion doubling
obstruction by studying a strip geometry with two edges — tangent fermions
would allow for a single-edge implementation.

For such applications it would of interest to proceed from 1D to 2D. It is known
that in two spatial dimensions the tangent discretization of 𝜎𝑥𝑑𝑓 /𝑑𝑥 + 𝜎𝑦𝑑𝑓 /𝑑𝑦
still allows for a reformulation of H𝜓 = 𝐸𝜓 as a generalized eigenvalue problem
[44]:

Q𝜓 = 𝐸P𝜓, P = 1
4 (1 + cos 𝑘𝑥) (1 + cos 𝑘𝑦), (3.27)

Q = 1
2𝜎𝑥 (1 + cos 𝑘𝑦) sin 𝑘𝑥 + 1

2𝜎𝑦 (1 + cos 𝑘𝑥) sin 𝑘𝑦 .

Therefore, we expect that an efficient 2D tensor network representation of the 2D
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tangent Hamiltonian in the form of Projected Entangled Pair Operators (PEPO)
[58] can be constructed similarly to the 1D MPO approach.

Appendices

3.A Local generalized eigenproblem allows for a scale-
independent MPO

The DMRG approach described in the main text works because the tangent
fermion Hamiltonian, while having a highly nonlocal long-range coupling, can
still be described by an MPO with a low and scale-independent bond dimension.
Ref. [44] attributes the “hidden locality” of tangent fermions to the fact that their
spectrum is obtained from a local generalized eigenproblem. Here we make the
connection to the scale-independent MPO explicit.

Consider 1D lattice fermions with a dispersion relation 𝐸 (𝑘) = 𝑃(𝑘)/𝑄(𝑘)
such that both 𝑃(𝑘) and 𝑄(𝑘) are polynomials of finite degree in 𝑒𝑖𝑘 ,

𝑃(𝑘) =
𝑁𝑃∑︁
𝑛=0

𝑝𝑛𝑒
𝑖𝑛𝑘 , 𝑄(𝑘) =

𝑁𝑄∑︁
𝑛=0

𝑞𝑛𝑒
𝑖𝑛𝑘 . (3.28)

For example, the tangent dispersion 𝐸 (𝑘) = 2 tan(𝑘/2) corresponds to 𝑃(𝑘) =
2𝑖(1 − 𝑒𝑖𝑘), 𝑄(𝑘) = 1 + 𝑒𝑖𝑘 . In real space the operators 𝑃 and 𝑄 couple sites
separated by at most 𝑁𝑃 or 𝑁𝑄 lattice spacings. The generalized eigenproblem
𝑃Ψ = 𝐸𝑄Ψ is therefore local.

Consider first the case that

𝑄(𝑘) =
𝑁𝑄∏
𝑛=1

(𝛼𝑛 − 𝑒𝑖𝑘) (3.29)

has distinct roots 𝛼𝑛. The partial fraction decomposition is

𝑃(𝑘)
𝑄(𝑘) = 𝐷 (𝑘) +

𝑁𝑄∑︁
𝑛=1

𝛽𝑛

𝛼𝑛 − 𝑒𝑖𝑘
(3.30)

with 𝐷 (𝑘) a polynomial of degree 𝑁𝑃 − 𝑁𝑄 (vanishing if 𝑁𝑃 < 𝑁𝑄). The
sum over 𝑛 corresponds in real space to a sum over coupling terms 𝑡𝑖 𝑗 with
an exponential spacing dependence ∝ (1/𝛼𝑛)𝑖− 𝑗 for 𝑖 > 𝑗 . So in this case
of distinct roots we are guaranteed to have an exact MPO representation with
scale-independent bond dimension.
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The situation is slightly more complicated if 𝑄(𝑘) has repeated roots,

𝑄(𝑘) =
𝐿∏
𝑛=1

(𝛼𝑛 − 𝑒𝑖𝑘)ℓ𝑛 ,
𝐿∑︁
𝑛=1

ℓ𝑛 = 𝑁𝑄 . (3.31)

The partial fraction decomposition now reads

𝑃(𝑘)
𝑄(𝑘) = 𝐷 (𝑘) +

𝐿∑︁
𝑛=1

ℓ𝑛∑︁
𝑚=1

𝛽𝑛𝑚

(𝛼𝑛 − 𝑒𝑖𝑘)𝑚
. (3.32)

A term 1/(𝛼𝑛 − 𝑒𝑖𝑘)𝑚 corresponds in real space to a coupling 𝑡𝑖 𝑗 ∝ (1/𝛼𝑛)𝑖− 𝑗 ×
𝑍 (𝑖 − 𝑗) that is an exponential times a polynomial 𝑍 in the spacing of degree
𝑚 − 1. This is still of the form (3.4) that allows for a scale-independent MPO
[65].

3.B Jordan-Wigner transformation

To enable the DMRG calculation, we need to convert the fermionic operators
𝑐𝑛𝜎 into bosonic operators 𝑎𝑛𝜎 (hard-core bosons, excluding double occupancy
of a state). This is achieved by the Jordan-Wigner transformation,

𝑐𝑛↑ = 𝐹1𝐹2 · · · 𝐹𝑛−1𝑎𝑛↑,

𝑐𝑛↓ = 𝐹1𝐹2 · · · 𝐹𝑛−1𝐹𝑛𝑎𝑛↓,
(3.33)

with fermion parity operator

𝐹𝑖 = (1 − 2𝑛𝑖↑) (1 − 2𝑛𝑖↓) = (−1)𝑛𝑖↑+𝑛𝑖↓ . (3.34)

The transformation does not increase the bond dimension of the MPO, instead
of Eq. (3.12) one now has

𝐻tangent = 2𝑖𝑡0 [𝑀 (1)𝑀 (2) · · ·𝑀 (𝑁 ) ]1,6, (3.35a)

𝑀 (𝑛) =

©­­­­­­­­­«

1 𝑎𝑛↑𝐹𝑛 𝑎
†
𝑛↑𝐹𝑛 𝑎𝑛↓ 𝑎

†
𝑛↓ (2𝑖𝑡0)−1𝑈𝑛

0 −𝐹𝑛 0 0 0 𝑎
†
𝑛↑

0 0 −𝐹𝑛 0 0 𝑎𝑛↑
0 0 0 −𝐹𝑛 0 −𝐹𝑛𝑎†𝑛↓
0 0 0 0 −𝐹𝑛 −𝐹𝑛𝑎𝑛↓
0 0 0 0 0 1

ª®®®®®®®®®¬
. (3.35b)
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This is for the tangent discretization. For the sine discretization the −𝐹𝑛 on the
diagonal are replaced by 0,

𝐻sine =
1
2 𝑖𝑡0 [𝑀

(1)𝑀 (2) · · ·𝑀 (𝑁 ) ]1,6, (3.36a)

𝑀 (𝑛) =

©­­­­­­­­­«

1 𝑎𝑛↑𝐹𝑛 𝑎
†
𝑛↑𝐹𝑛 𝑎𝑛↓ 𝑎

†
𝑛↓ ( 1

2 𝑖𝑡0)
−1𝑈𝑛

0 0 0 0 0 𝑎
†
𝑛↑

0 0 0 0 0 𝑎𝑛↑
0 0 0 0 0 −𝐹𝑛𝑎†𝑛↓
0 0 0 0 0 −𝐹𝑛𝑎𝑛↓
0 0 0 0 0 1

ª®®®®®®®®®¬
. (3.36b)

3.C Periodic boundary condition for MPO with sine dis-
cretization

The sine discretization (3.5) requires an additional hopping term between sites 1
and 𝑁 . The modified MPO has bond dimension 10,

𝐻sine =
1
2 𝑖𝑡0 [𝑀̃

(1) 𝑀̃ (2) · · · 𝑀̃ (𝑁 ) ]1,6, (3.37a)

𝑀̃ (𝑛) =

(
𝑀 (𝑛) 𝛿𝑛,1𝑊

(𝑛)

𝛿𝑛,𝑁𝑊
(𝑛) (1 − 𝛿𝑛,1 − 𝛿𝑛,𝑁 )𝑊 (𝑛)

)
, (3.37b)

with 𝑀 (𝑛) as in Eq. (3.36) and

𝑊 (1) =

©­­­­­­­­«

𝑎1↑𝐹1 𝑎
†
1↑𝐹1 𝑎1↓ 𝑎

†
1↓

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

ª®®®®®®®®¬
, (3.37c)

𝑊 (1<𝑛<𝑁 ) =
©­­­«
𝐹𝑛 0 0 0
0 𝐹𝑛 0 0
0 0 𝐹𝑛 0
0 0 0 𝐹𝑛

ª®®®¬ , (3.37d)

𝑊 (𝑁 ) =

©­­­­«
0 0 0 0 0 𝑎

†
𝑁↑

0 0 0 0 0 𝑎𝑁↑
0 0 0 0 0 −𝐹𝑁𝑎†𝑁↓
0 0 0 0 0 −𝐹𝑁𝑎𝑁↓

ª®®®®¬
(3.37e)
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Figure 3.4. Log-linear plot of the Schmidt coefficients 𝜆𝑛 of the ground state wave
function of the Luttinger liquid Hamiltonian (3.10) (𝑈 = 𝑡0, 𝑁 = 11 partitioned into
𝑁1 = 5 and 𝑁2 = 6), for the sine and tangent dispersions (3.5) and (3.8). The exponential
decay allows for an MPS with bond dimension 𝜒 ≪ 4𝑁/2.

3.D Convergence of the DMRG calculations

The tensor network formulation of the Luttinger liquid on an 𝑁-site chain is based
on two matrix-product representations: of the operator 𝐻 (MPO) and of the state
Ψ (MPS). The MPO is exact, in terms of an 𝑁-fold product of 6 × 6 matrices of
creation and annihilation operators.

The MPS is approximate: defined on 𝑁 sites with physical dimensional 𝑑,
it is an 𝑁-fold product of 𝜒 × 𝜒 × 𝑑 tensors that introduces an error of order
𝑁

∑
𝑛>𝜒 𝜆

2
𝑛, with 1 ≥ 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑑𝑁/2 ≥ 0 the coefficients in the Schmidt

decomposition of Ψ ∈ H1 ⊗ H2 (describing the entanglement between the first
and second half of the chain, with Hilbert spaces H1 and H2) [68].

The MPS is efficient at bond dimension 𝜒 ≪ 𝑑𝑁/2 if the Schmidt coefficients
𝜆𝑛 decrease exponentially with 𝑛. In Fig. 3.4 we check this for both the sine
and tangent dispersions. In Fig. 3.5 we show the convergence of the DMRG
calculation with increasing 𝜒. We conclude that 𝜒 = 46 ≪ 425 (in our case
𝑑 = 4) is sufficient for the results to converge to the expected behavior.
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Figure 3.5. Dependence of the propagator on the bond dimension 𝜒 of the MPS in
the tangent fermion Luttinger liquid (𝐿/𝑎 = 51, 𝜅 = 0.3). The data in Fig. 3.1 (black
crosses) corresponds to 𝜒 = 4096.

3.E Bosonization results with finite-size effects

The power law correlators (3.25) follow from bosonization of the helical Luttinger
liquid in the limit of an infinite system [13]. To reliably compare with the
numerical results on a lattice of length 𝐿 we need to include finite size effects [14].
In Ref. [59] such a calculation was reported for the grand canonical ensemble
(fixed chemical potential) at finite temperature, appropriate for quantum Monte
Carlo. For the DMRG calculations we need the results at zero temperature in the
canonical ensemble (fixed particle number N = N↑ + N↓).

The Hamiltonian of a helical Luttinger liquid with Hubbard interaction on a
ring of length 𝐿 (periodic boundary conditions) is given by

𝐻 =

𝐿/2∫
−𝐿/2

𝑑𝑥

(
𝑣𝜓

†
↑ (𝑥)𝑝𝑥𝜓↑ (𝑥) − 𝑣𝜓†

↓ (𝑥)𝑝𝑥𝜓↓ (𝑥) +𝑈𝑎𝜌↑ (𝑥)𝜌↓ (𝑥)
)
. (3.38)

The density 𝜌𝜎 = : 𝜓†
𝜎𝜓𝜎 : is normal ordered — the Fermi sea of a half-filled

band (𝑁 particles) is subtracted.
The bosonization results in the canonical ensemble at zero temperature are
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[59]

𝐶𝜎 (𝑥, 0) =
𝜎𝑒𝑖 𝜋 (2N𝜎−𝑁 )𝑥/𝐿

2𝜋𝑖𝑎∗ | (𝐿/𝜋𝑎∗) sin(𝜋𝑥/𝐿) | (1/2) (𝐾+1/𝐾 ) , (3.39a)

𝑅(𝑥, 0) =
cos

(
2𝜋(N − 𝑁)𝑥/𝐿

)
2(2𝜋𝑎∗)2 | (𝐿/𝜋𝑎∗) sin(𝜋𝑥/𝐿) |2𝐾

, (3.39b)

𝐾 =
√︁
(1 − 𝜅)/(1 + 𝜅), 𝜅 =

𝑈

2𝜋𝑡0
∈ (−1, 1). (3.39c)

The hopping energy is 𝑡0 and 𝑎∗ is a short-distance (UV) regularization constant.
For the comparison with a lattice calculation we identify 𝑡0 = ℏ𝑣/𝑎 and take
𝐿/𝑎 = 𝑁 an odd integer. The half-filled band corresponds to N𝜎 = (𝑁 + 𝜎)/2.
To relate the lattice constant 𝑎 to the continuum regularization constant 𝑎∗ we
argue as follows.

In the continuum theory [14] large momentum transfers 𝑞 are cut-off by the
substitution

𝑐
†
𝜎,𝑞/2𝑐−𝑞/2 ↦→ 𝑒−𝑞𝑎∗/2𝑐†

𝜎,𝑞/2𝑐−𝑞/2. (3.40)
On the lattice the averaging (3.23) takes care of the UV regularization,

𝑐
†
𝜎,𝑞/2𝑐−𝑞/2 ↦→ 𝑐

†
𝜎,𝑞/2𝑐𝜎,−𝑞/2 = 𝑓 (𝑞)𝑐†

𝜎,𝑞/2𝑐𝜎,−𝑞/2,

𝑓 (𝑞) = 1
4 (1 + 𝑒−𝑖𝑞𝑎/2)2, | 𝑓 (𝑞) | = cos2(𝑞𝑎/4).

(3.41)

We fix the ratio 𝑎/𝑎∗ by equating the integrated weight factors,∫ 2𝜋/𝑎

0
𝑒−𝑞𝑎∗/2 𝑑𝑞 =

∫ 2𝜋/𝑎

0
| 𝑓 (𝑞) | 𝑑𝑞 ⇒ 𝑎/𝑎∗ ≈ 2. (3.42)

The resulting correlators are plotted in Figs. 3.1 and 3.2.

3.F Alternative tensor network representation of Ref.
[52]

An alternative tensor network representation of the problem has been developed
in Ref. [52], starting from the transformations

𝒂 = 𝐷†𝒄, 𝒃 = 𝐷−1𝒄, 𝐷𝑛𝑚 = 1
2 (𝛿𝑛,𝑚 + 𝛿𝑛,𝑚−1), (3.43)

of the free fermion operators 𝑐𝑛. These are not canonical transformations, as a
consequence the commutation relations of the 𝑎- and 𝑏-operators are nontrivial:

{𝑎𝑛, 𝑎†𝑚} = (𝐷†𝐷)𝑛𝑚, {𝑏𝑛, 𝑏†𝑚} = (𝐷†𝐷)−1
𝑛𝑚,

{𝑐𝑛, 𝑐†𝑚} = 𝛿𝑛𝑚, {𝑏𝑛, 𝑎†𝑚} = 𝛿𝑛𝑚.
(3.44)
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The corresponding 𝑁-fermion bases in Fock space are

|𝜓⟩ =
∑︁
𝑛𝑖=0,1

𝜓𝛼𝑛1,...,𝑛𝑁
|𝑛1, ..., 𝑛𝑁 ⟩𝛼,

|𝑛1, ..., 𝑛𝑁 ⟩𝛼 = (𝛼†1)
𝑛1 ...(𝛼†

𝑁
)𝑛𝑁 ,

(3.45)

with 𝛼 ∈ {𝑎, 𝑏, 𝑐}. Only the 𝑐-basis is orthonormal, the two other bases produce
non-diagonal norm matrices 𝑁̃ ,

𝑎⟨𝑚1, ..., 𝑚𝑁 |𝑛1, ..., 𝑛𝑁 ⟩𝑎 = 𝑁̃𝑚1,...,𝑚𝑁
𝑛1,...,𝑛𝑁

,

𝑏⟨𝑚1, ..., 𝑚𝑁 |𝑛1, ..., 𝑛𝑁 ⟩𝑏 = (𝑁̃−1)𝑚1,...,𝑚𝑁
𝑛1,...,𝑛𝑁

,

𝑐⟨𝑚1, ..., 𝑚𝑁 |𝑛1, ..., 𝑛𝑁 ⟩𝑐 = 𝛿𝑚1𝑛1 · · · 𝛿𝑚𝑁𝑛𝑁 . (3.46)

The 𝑎 and 𝑏 bases are bi-orthogonal,

𝑎⟨𝑚1, ..., 𝑚𝑁 |𝑛1, ..., 𝑛𝑁 ⟩𝑏 = 𝛿𝑚1𝑛1 · · · 𝛿𝑚𝑁𝑛𝑁 . (3.47)

The motivation for these transformations is that the tangent fermion Hamil-
tonian becomes local in terms of the 𝑏-operators,

𝐻tangent = 2𝑖𝑡0
𝑁∑︁

𝑛>𝑚=1
(−1)𝑛−𝑚

(
𝑐†𝑛𝑐𝑚 − 𝑐†𝑚𝑐𝑛

)
(3.48a)

=
𝑡0

2𝑖

𝑁∑︁
𝑛=1

(
𝑏
†
𝑛+1𝑏𝑛 − 𝑏

†
𝑛𝑏𝑛+1

)
. (3.48b)

Matrix elements of𝐻tangent in the 𝑎-basis, orthogonal to the 𝑏-basis, can therefore
be evaluated efficiently.

The key step of Ref. [52] is to derive a scale-independent MPO representation
of the norm matrix 𝑁̃ in the 𝑎-basis. We have followed a different route, we stay
with the orthonormal 𝑐-basis and a nonlocal Hamiltonian, but we have found that
it does not stand in the way of a scale-independent MPO representation.



Chapter 4

Majorana-metal transition in a
disordered superconductor:
percolation in a landscape of
topological domain walls

4.1 Introduction

While a superconductor is a perfect conductor of electricity, it generally conducts
heat poorly. Adding disorder is not expected to improve this, but in a two-
dimensional (2D) superconductor with chiral p-wave pairing [69] the unexpected
happens: If sufficiently many defects are added the thermal insulator becomes
a thermal metal [70, 71, 72]. This unusual state is known as a Majorana metal,
because the quasiparticles that conduct the heat are Majorana fermions (equal-
weight superpositions of electrons and holes). Although the transition from a
thermal insulator to a thermal metal has not yet been observed in experiments, it
has been demonstrated in computer simulations [73, 74, 75, 76, 77, 78, 79, 80].

The Majorana-metal transition is well understood if the defects consist of the
Abrikosov vortices that appear when a perpendicular magnetic field is applied to a
type-II superconductor. A vortex can bind sub-gap quasiparticles [81], but bound
states in nearby vortices will not typically be aligned in energy, making them
inefficient for heat transport. A special property of a chiral p-wave superconductor
is that its vortices have a bound state exactly in the middle of the gap (𝐸 = 0, the
Fermi level), a socalled Majorana zero-mode [82, 83, 84, 85, 86]. The energetic
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alignment of Majorana zero-modes allows for resonant heat conduction when the
density of Abrikosov vortices crosses a critical threshold [73, 74].

Electrostatic disorder in zero magnetic field can also produce a thermal metal
phase [75]. The phase transition falls in the same universality class D as for vortex
disorder [80], and one would expect the mechanism to be related in the same way
to the appearance of Majorana zero-modes — even without any vortices to bind
them. Can we demonstrate that in a computer simulation?

To address this question we use the spectral localizer approach pioneered by
Loring and Schulz-Baldes [87, 88, 89, 90, 91, 92, 93, 94]. The spectral localizer
embeds the Hamiltonian ±𝐻 on the diagonal of a 2 × 2 matrix, with the position
operator 𝑥 ± 𝑖𝑦 on the off-diagonal. Its spectrum quantifies whether Hamiltonian
and position can be made commuting by a deformation that does not close the
excitation gap [95, 96].

In a class D system the matrix signature of the spectral localizer (number of
positive minus number of negative eigenvalues) identifies domains of different
Chern number [90, 94]. As discussed by Volovik [97], the domain walls support
low-lying states at energy 𝐸 ≃ ℏ𝑣F/ℓ for a domain of linear dimension ℓ. These
states become Majorana zero-modes in the limit ℓ → ∞ of a percolating domain
wall. By identifying the metal-insulator transition with the percolation transition
of the domain walls we construct the phase diagram in a closed system, and
compare with calculations based on the thermal conduction in an open system
[75, 80].

4.2 Topological landscape function

4.2.1 Lattice Hamiltonian

The Bogoliubov-De Gennes Hamiltonian for a chiral p-wave superconductor is

𝐻BdG =

(
𝑝2/2𝑚 − 𝐸F 𝑣Δ(𝑝𝑥 − 𝑖𝑝𝑦)
𝑣Δ(𝑝𝑥 + 𝑖𝑝𝑦) 𝐸F − 𝑝2/2𝑚

)
. (4.1)

It acts on a two-component wave function Ψ = (𝜓e, 𝜓h), the pair potential ∝ 𝑣Δ
couples the electron and hole components (filled states above the Fermi level 𝐸F,
respectively, empty states below 𝐸F, with 𝐸F = 1

2𝑚𝑣
2
F in terms of the effective

mass 𝑚 and Fermi velocity 𝑣F). Because this is equal-spin pairing, we can omit
the spin degree of freedom.

The particle-hole symmetry relation,

𝜎𝑥𝐻
∗
BdG𝜎𝑥 = −𝐻BdG, (4.2)



4.2 Topological landscape function 61

Figure 4.1. Panels a) and b) show the topological landscape function [Chern number
C(𝑥, 𝑦) and localizer gap 𝛿(𝑥, 𝑦)] in a disordered chiral p-wave superconductor (Hamilto-
nian (4.3), parameters Δ = 4𝑡, 𝜇̄ = 𝑡, 𝛿𝜇 = 4 𝑡, 𝐿 = 32𝑎, periodic boundary conditions).
At these parameters the superconductor is in the thermal metal phase. Panel c) shows
that the network of domain walls leaves no trace in the local density of states (integrated
over the energy interval |𝐸 | < 0.2 𝑡).

places the system in symmetry class D [98]. Here 𝜎𝑥 is a Pauli matrix that acts
on the electron-hole degree of freedom and the complex conjugation operation
is taken in the real-space basis (so the momentum 𝒑 = ℏ𝒌 = −𝑖ℏ𝜕/𝜕𝒓 changes
sign).

We discretize the Hamiltonian on a 2D square lattice (lattice constant 𝑎),

𝐻 =

(
𝜀𝑘 − 𝜇 Δ(sin 𝑎𝑘𝑥 − 𝑖 sin 𝑎𝑘𝑦)

Δ(sin 𝑎𝑘𝑥 + 𝑖 sin 𝑎𝑘𝑦) 𝜇 − 𝜀𝑘

)
,

𝜀𝑘 = −𝑡 (cos 𝑎𝑘𝑥 + cos 𝑎𝑘𝑦), (4.3)

with the definitions Δ = (ℏ/𝑎)𝑣Δ, 𝑡 = ℏ2/𝑚𝑎2, 𝜇 = 𝐸F − 2𝑡.

We introduce electrostatic disorder by letting the chemical potential 𝜇(𝑥, 𝑦)
fluctuate randomly, uniformly distributed in the interval ( 𝜇̄ − 𝛿𝜇, 𝜇̄ + 𝛿𝜇). Our
approach requires some degree of smoothness of the fluctuating potential on the
scale of the lattice constant, in what follows we choose the same 𝜇 on the four
neighboring sites (2𝑛, 2𝑚), (2𝑛 + 1, 2𝑚), (2𝑛, 2𝑚 + 1), and (2𝑛 + 1, 2𝑚 + 1).
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4.2.2 Spectral localizer: open boundary conditions

The spectral localizer for a two-dimensional class D Hamiltonian with open
boundary conditions is [90]

L(𝑥0, 𝑦0) =
(
𝐻 0
0 −𝐻

)
+ 𝜅Ω(𝑥 − 𝑥0, 𝑦 − 𝑦0), (4.4a)

Ω(𝑥, 𝑦) =
(

0 𝜎0(𝑥 − 𝑖𝑦)
𝜎0(𝑥 + 𝑖𝑦) 0

)
. (4.4b)

The Hermitian operators L and Ω are both 4 × 4 matrices, we have introduced
the 2× 2 unit matrix 𝜎0 to indicate that Ω is diagonal in the electron-hole degree
of freedom. Note also that 𝑥 and 𝑦 are operators (which do not commute with
𝐻), while 𝑥0 and 𝑦0 are parameters. Our choice 𝜅 = 2.5 𝑡 for the scale parameter
𝜅 is explained in App. 4.A.

The operator Ω breaks the ±𝐸 symmetry of the spectrum of L, allowing for a
nonzero matrix signature: SigL = number of positive eigenvalues minus number
of negative eigenvalues. This even integer determines a topological invariant, the
Chern number [90],

C(𝑥0, 𝑦0) = 1
2 SigL(𝑥0, 𝑦0), (4.5)

of a domain containing the point (𝑥0, 𝑦0). Domain walls, contours across which
C(𝑥0, 𝑦0) changes by ±1, are contours along which det{L}(𝑥0, 𝑦0) vanishes.
These can be visualized by plotting the localizer gap

𝛿(𝑥0, 𝑦0) = min
𝑛

|𝜆𝑛 |, 𝜆𝑛 eigenvalue of L(𝑥0, 𝑦0), (4.6)

which vanishes along the domain walls.

4.2.3 Spectral localizer: periodic boundary conditions

Our system is a square of size 𝐿 × 𝐿 in the 𝑥- and 𝑦-directions. To avoid edge
states and focus on bulk properties, we prefer to work with periodic boundary
conditions, rather than open boundary conditions. For that purpose, following
Ref. [94], the term 𝑥 ± 𝑖𝑦 on the off-diagonal of Ω is replaced by the periodic
combination sin(2𝜋𝑥/𝐿)±𝑖 sin(2𝜋𝑦/𝐿). The eigenvalues ofΩ(𝑥−𝑥0, 𝑦−𝑦0) then
cannot distinguish between points 𝑥0 and 𝑥0 + 𝐿/2, or between 𝑦0 and 𝑦0 + 𝐿/2.
To remove this doubling, cosine terms are added on the diagonal of Ω [94],
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Figure 4.2. Topological landscape function (Chern number on top row, localizer gap
on bottom row) for five different disorder strengths 𝛿𝜇 at fixed 𝜇̄ = 1.05 𝑡 (and Δ = 4𝑡,
𝐿 = 24𝑎), to show the appearance of a percolating domain wall when 𝛿𝜇 ≳ 3.1 𝑡. These
are results for a single realization of the random potential 𝜇(𝑥, 𝑦), only the amplitude is
rescaled.

L(𝑥0, 𝑦0) =
(
𝐻 0
0 −𝐻

)
+ 𝜅Ω(𝑥 − 𝑥0, 𝑦 − 𝑦0), (4.7a)

Ω(𝑥, 𝑦) =
(
𝜎0 [cos(2𝜋𝑥/𝐿) + cos(2𝜋𝑦/𝐿) − 2] 𝜎0 [sin(2𝜋𝑥/𝐿) − 𝑖 sin(2𝜋𝑦/𝐿)]
𝜎0 [sin(2𝜋𝑥/𝐿) + 𝑖 sin(2𝜋𝑦/𝐿)] −𝜎0 [cos(2𝜋𝑥/𝐿) + cos(2𝜋𝑦/𝐿) − 2]

)
.

(4.7b)

For |𝑥 |, |𝑦 | ≪ 𝐿 the localizers (4.4) and (4.7) coincide.
In Fig. 4.1 we show the resulting network of domain walls for a particular

disorder realization (panels a and b). The topological information contained in
the spectral localizer is essential: as shown in panel c, the domain walls do not
show up in the local density of states near 𝐸 = 0.

4.3 Phase diagram from percolation transition

4.3.1 Percolating domain walls

The clean system (without disorder, 𝛿𝜇 = 0) is a topologically trivial thermal
insulator (C = 0) for | 𝜇̄ | > 2𝑡 and a topologically nontrivial thermal insulator
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Figure 4.3. Same as Fig. 4.1b), but now the domain walls are highlighted in yellow,
according to the criterion of localizer gap 𝛿(𝒓) < 0.1 𝑡. The location of the average
𝒓 (“center of mass”) for each connected domain wall is indicated by a red dot. The
extension ℓ of a domain wall is defined by ℓ2 = 4|𝒓 − 𝒓 |2. The red dot marked with a
cross identifies the center of mass of a percolating domain wall (ℓ > 𝐿).

(C = ±1) for | 𝜇̄ | < 2𝑡. At 𝜇̄ = 0 there is an insulator-to-insulator transition
at which C changes sign [80]. Disorder introduces minority domains with a
different Chern number than these clean values Cclean. See for example Fig. 4.1,
where 𝜇̄ = 𝑡 and Cclean = +1.

The domain walls that separate regions of different Chern number support
states close to the Fermi level, at energy 𝐸 ≃ ℏ𝑣F/ℓ dictated by the requirement
that the kinematic phase upon traveling once around the domain wall cancels
the 𝜋 Berry phase. When the extension ℓ of the largest domain wall reaches the
system size 𝐿 thermal conduction becomes possible near the Fermi level and the
thermal insulator becomes a thermal metal. In Fig. 4.2 we show this percolation
transition of topological domain walls for a single disorder realization, upon
increasing the amplitude 𝛿𝜇 of the potential fluctuations at fixed average 𝜇̄.

To identify the percolation transition we need a computationally efficient way
to measure the extension ℓ of a domain wall. We take localizer gap 𝛿(𝑥0, 𝑦0) <
0.1 𝑡 as the criterion for a domain wall. All points 𝒓 = (𝑥0, 𝑦0) satisfying this
criterion in a connected region belong to a single domain wall D. We then
compute the domain wall extension ℓ from the variance 𝜎2 of these points,

ℓ = 2𝜎, 𝜎2 = |𝒓 − 𝒓 |2, (4.8)
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Figure 4.4. Left panel: Color scale plot of the average number ⟨N⟩ of percolating
domain walls, averaged over 100 disorder realizations in the chiral p-wave superconductor
(parameters Δ = 4𝑡, 𝐿 = 24𝑎). The value of the Chern number C in the clean system
(𝛿𝜇 = 0) is indicated. Right panel: Dimensionless thermal conductance for the same
system. The uniformly yellow bar at 𝜇̄ = 0 indicates 𝐺/𝐺0 > 1.

where 𝑓 (𝒓) averages a function 𝑓 (𝒓) over all 𝒓 ∈ D. The procedure is illustrated
in Fig. 4.3. Our criterion for a percolating domain wall is ℓ > 𝐿.

4.3.2 Phase diagram

The number N of percolating domain walls (with ℓ > 𝐿) for a given disorder
realization is averaged over the disorder. The resulting dependence of ⟨N⟩ on the
parameters 𝜇̄ and 𝛿𝜇 is shown in Fig. 4.4 (left panel). The region N ≈ 1 where
the domain walls percolate is clearly distinguished.

The data in Fig. 4.4 is for a relatively small system (𝐿/𝑎 = 24), in Fig. 4.5 we
compare with a larger system. The critical disorder strength for the percolation
transition is approximately scale invariant.
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Figure 4.5. Comparison of the disorder strength dependence of the average number ⟨N⟩
of percolating domain walls for different system sizes 𝐿. The data points are averaged
over 200 disorder realizations (parameters Δ = 4𝑡, 𝜇̄ = 𝑡).

4.3.3 Comparison with thermal conductance

So far we have considered a closed system. If we connect leads at the two ends
we can study the thermal conductance,

𝐺 = 𝐺0 Tr 𝒕 𝒕†, 𝐺0 = 𝜋2𝑘2
B𝑇/6ℎ, (4.9)

at temperature 𝑇 , with 𝒕 the transmission matrix at the Fermi level. The result of
such a calculation, using the kwant code [99], is also shown in Fig. 4.4 (right
panel).

If we compare with the percolation transition (left panel), we see a good
quantitative agreement on the low-disorder side of the phase boundary. The
high-disorder side misses a feature in the region near 𝜇̄ = 0, 𝛿𝜇 = 4𝑡, where the
thermal conductance localizes more quickly than inferred from the percolating
domain walls. We are unsure about the origin of this difference. Apart from this
region the agreement is quite satisfactory, without any adjustable parameters.
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4.4 Conclusion

We have shown that the thermal metal phase in a model of a chiral p-wave super-
conductor with electrostatic disorder has a precursor in the thermally insulating
phase: The disorder produces domain walls that separate topologically distinct
regions (different Chern number). The thermal metal–insulator transition is ac-
companied by a percolation of the domain walls across the system, providing a
transport channel for Majorana fermions (charge-neutral, low-energy excitations).

To reveal the network of domains walls we have used the matrix signature of
the spectral localizer [90, 94]. We turned to this topological invariant after we
were not able to identify localized Majorana fermions using a variation [100, 101]
of the landscape function approach that has been so succesful in the study of
Anderson localization [102, 103, 104, 105]. In a sense, the matrix signature of
the spectral localizer functions as a topological landscape function, sensitive to
topological electronic properties that remain hidden in the local density of states.

It would be interesting to study the critical exponent 𝜈 for the percolation tran-
sition of the topological domain walls (the exponent that governs the divergence
of the largest domain size). Classical 2D percolation has 𝜈classical = 4/3. It is
suggestive that a recent numerical study [80] of the divergence of the localization
length at the thermal metal–insulator transition found 𝜈 ≈ 1.35, but the proximity
to 𝜈classical may well be accidental.

Data and code availability

Our computer codes are provided in a Zenodo repository [106].

Appendices

4.A Spectral localizer in a clean system

We have tested the ability of the spectral localizer (4.7) to identify the Chern num-
ber domains in a clean system, with a smoothly varying 𝜇, where the boundaries
are known analytically [80]:

C =


0 if 𝜇 < −2𝑡,
−1 if − 2𝑡 < 𝜇 < 0,
+1 if 0 < 𝜇 < 2𝑡,
0 if 𝜇 > 2𝑡.

(4.10)
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Figure 4.6. Top panel: linearly varying 𝜇(𝑥) (at constant Δ = 4𝑡), producing a central
domain of Chern number C = 0, flanked by domains of C = +1. The domain walls
are at 𝑥/𝑎 = 6 and 𝑥/𝑎 = 12. Bottom panels: Chern number domains produced by the
spectral localizer, via Eq. (4.5), for different values of the scale parameter 𝜅. We need
𝜅 ≳ 2𝑡 for reliable results.

This test allows us to find a suitable value of the scale parameter 𝜅.
Refs. [90, 94] argue that 𝜅 should be of the order of the norm of the Hamil-

tonian, which in our case is below 10−2 𝑡. We find a poor performance for such
small 𝜅, see Fig. 4.6, we need 𝜅 ≳ 2𝑡 to reliably identify the domain walls. The
results in the main text are for 𝜅 = 2.5 𝑡.



Chapter 5

Landau quantization near
generalized Van Hove
singularities: Magnetic
breakdown and orbit networks

5.1 Introduction

Magnetic breakdown (MB) in a single Bloch band occurs when two semiclassical
trajectories of quasiparticles come close to each other and quantum tunneling
between them becomes possible. This situation naturally appears near usual
saddle points that give rise to logarithmic van Hove singularities in the density of
states [107]. In novel atomically-thin 2D materials a new family of saddle points
arises, around which the dispersion is flatter than in the usual case. This leads
to power-law divergences in the density of states known as high-order van Hove
singularities [108, 109, 110]. In some cases, more than two trajectories approach
the saddle point, creating a MB structure with a larger s-matrix size proportional
to the number of trajectories. In this chapter, we present a method to calculate
the precise MB s-matrix for any type of saddle point. It is based on rewriting the
effective Hamiltonian in the Landau level basis, mapping the resulting algebraic
problem to the 1D scattering in the quantum chain, and calculating the MB
s-matrix by properly fixing semiclassical modes in the far-away region.

As was found in the 1960s in pioneering works by Pippard [111, 112, 113],
and Chambers [114, 115, 116, 117], and summarized in Ref. [118], MB can
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(c)

Figure 5.1. (a): Effective dispersion around Monkey saddle point in momentum space
given by Eq. (5.3) with three trajectories on a single energy level coming close at the
MB region (shown as blue lines). (b): Tight-binding dispersion of triangular lattice with
imaginary hoppings (5.18) in which monkey saddle points connect cyclotron orbits into
network. (c) Planar orbit network for dispersion (b) in rotated coordinate frame with
semiclassical regions labeled by weight coefficients 𝛼 [see Eq. (5.14)], and MB regions
with s-matrix (red circles). Reciprocal lattice vectors 𝒃𝑖 and highly-symmetric lines are
shown.

lead to formation of coherent orbit networks composed of localized Landau
level states (LLs) connected via tunneling between them. For 2D materials, the
orbit network occurs in the vicinity of energy levels where the Bloch band in
momentum space has saddle points located at the boundaries of the Brillouin
zone (BZ). Then, tunneling between orbits in different cells of the extended BZ



5.1 Introduction 71

scheme forms a network (see Fig.5.1). In the real space, this corresponds to
a network of semiclassical cyclotron orbits, which makes LLs to be extended
[111, 119, 118]. The discovery of novel 2D materials [120, 121, 122, 123]
dramatically increased the number of lattice geometries in which orbit networks
can be formed. Below we calculate the detailed structure of these states as well
as their band dispersion. In addition, we show that such extended LLs allow for
longitudinal bulk conductance in the quantum Hall bar, which strongly exceeds
the standard edge conductance [124].

There are two regimes of transport that orbit networks can govern: coherent
regime with quantum phase that is accumulated along the cyclotron orbits and
defines the exact energy spectrum, and incoherent regime with quantum phase
averaged by the presence of disorder. Below, we describe the coherent regime
and corresponding observable signatures that allow us to distinguish between
different types of MB that happens at saddle points that connect cyclotron orbits.
In addition, we note that the mini band structure appearing due to coherent orbit
networks can be linked with the topological Hall effect of electrons in skyrmion
crystals [128].

Recent studies of coherent orbit networks in 1D geometry predicted a number
of interesting effects such as magic zeros in Landau level spectra [129] and
broadening of the Landau levels by the coupling of Fermi arcs on opposite
surfaces in Kramers-Weyl semimetals [130]. Also, the predicted spectrum by 2D
incoherent orbit network shows relatively good agreement with the Hofstadter
butterfly for twisted bilayer graphene [131]. The scaling of miniband width
appearing from orbit networks with magnetic field was obtained for square lattice
[132, 133] and graphene [134].

The semiclassical equations of motion for the electron in crystal under exter-
nal weak magnetic field are given by the Lorentz force [135, 136]

ℏ𝜕𝑡 𝒌 = −𝑐−1𝑒(𝒗𝑘 × 𝑩). (5.1)

with usual velocity replaced by group velocity found from the dispersion law
𝒗𝑘 = 1

ℏ𝜕𝒌𝐸 (𝒌) that depends on wave vector 𝒌. Here, we consider 2D crys-
tals placed in perpendicular magnetic field along the 𝑧-direction 𝑩 = (0, 0, 𝐵).
Equation (5.1) restricts quasiparticles to move only along the lines of constant

1For the Hamiltonian written in gauge-invariant coordinates 𝐻 = 𝐴Π𝑛𝑥 + 𝐵Π𝑠𝑥Π𝑚𝑦 = 𝐴𝑘𝑛𝑥 +

𝐵𝑘𝑠𝑥

(
− 𝑖

𝑙2
𝐵

𝜕
𝜕𝑘𝑥

)𝑚
it is possible to introduce a change of variables 𝑞𝑥 = 𝑘𝑥 𝑙

2𝑚
𝑚+𝑛−𝑠
𝐵

, that would

convert it to 𝑙𝐵 = 1 Hamiltonian with additional factor 𝐻 = 𝑙
2𝑚𝑛
𝑚+𝑛−𝑠
𝐵

[
𝐴𝑞𝑛𝑥 + 𝐵𝑞𝑠𝑥

(
−𝑖 𝜕
𝜕𝑞𝑥

)𝑚]
. This

factor should be used to obtain energy dependence of S-matrix for any magnetic field value.
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Figure 5.2. (a) The geometry of usual, Monkey and 𝐴3 saddle points with equi-energy
contours in 𝑘−space. (b): The corresponding 1D chains after mapping. The cut-off
region with plane wave approximation is shown as a set of red sites with equal hopping
parameters. (c) The absolute value of s-matrix elements (reflection - R𝑖 and transmission
- T ). (d): The basis-independent scattering phase calculated as arg(det[𝑆]). For the
usual saddle point (top panels in (c), (d)) we also show the comparison with exact analytic
solution [125, 126, 127] marked by dots that perfectly agrees with the results obtained
with our approach. In (c), (d) we set 𝑙𝐵 = 1 and for any other magnetic field the results
can be obtained by proper rescaling of energy.1



5.2 Magnetic breakdown at generalized Van Hove singularity 73

energy in momentum space. In Fig. 5.1 such lines are shown in the vicinity of the
monkey saddle point and in the dispersion of the tight-binding model introduced
below in Eq.(5.18). Before proceeding to MB, we note that after integration over
time in Eq. (5.1) one finds that the trajectory in real space is rotated by angle 𝜋/2
compared to the 𝐸 (𝒌) = const line in 𝑘-space and its size is rescaled by squared
magnetic length [136, 137]:

𝑘𝑥 = − 𝑦 − 𝑦0

𝑙2
𝐵

, 𝑘𝑦 =
𝑥 − 𝑥0

𝑙2
𝐵

, 𝑙𝐵 =

√︂
ℏ𝑐
𝑒𝐵
. (5.2)

In what follows, we set ℏ = 𝑐 = 1. Magnetic field is considered as weak if
magnetic length is much larger than the lattice constant of the crystal, 𝑙𝑏 ≫ 𝑎.

5.2 Magnetic breakdown at generalized Van Hove sin-
gularity

We now focus on the detailed description of tunneling that takes place in the
vicinity saddle point in dispersion due to magnetic breakdown. The saddle points
are defined as points where the gradient of dispersion vanishes, ∇𝒌𝐸 (𝒌) = 0.
As was shown in Ref. [108], they can be further classified as usual or high-order
depending on the “flatness” of dispersion around that point. More formally, the
usual type corresponds to non-vanishing determinant of Hessian matrix D𝑖 𝑗 =

𝜕𝑘𝑖𝜕𝑘 𝑗𝐸 (𝒌) for dispersion, while the high-order ones have zero determinant and
optionally zero Hessian itself. They could be further classified into many types
depending on the underlying symmetry point group, see Refs. [109, 110]. Below,
we show that our approach works for all possible saddle points. The magnetic
breakdown happens because several constant energy lines in 𝑘-space come close
to each other near the saddle point, see Fig. 5.1(a). Thus, the tunneling probability
between them becomes of order of one, and therefore we have to properly solve
the scattering problem in the corresponding region. The complication arises due
to the fact that typical dispersion around the saddle point has high powers of
polynomials in 𝒌, for example

𝐸𝑀 (𝒌) = −𝑡𝑎3(𝑘3
𝑥 − 3𝑘𝑥𝑘2

𝑦) (5.3)

for the monkey saddle. Here 𝑡 is a constant with dimension of energy. Generally, it
is not possible to solve a Schrödinger equation for such a Hamiltonian analytically
to match it with plane-wave solutions away from the MB region. The only
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available closed form solution of such kind exists for the usual saddle point
[125, 127], a partial case of 𝐴2𝑛−1 points,

𝐸𝑙𝑜𝑔 (𝒌) = 𝑡𝑎2(𝑘2
𝑥 − 𝑘2

𝑦), 𝐸𝐴2𝑛−1 (𝒌) = 𝑡 (𝑎2𝑘2
𝑥 − (𝑎𝑘𝑦)2𝑛), (5.4)

with 𝑛 = 1, 2, .... But we show that our semi-numerical method efficiently solves
the Schrödinger equation up to any precision and enables us to find the s-matrix.

To introduce our method, we use the cylindrical gauge for vector potential
𝑨 = 𝐵

2 (−𝑦, 𝑥, 0) and make use of the oscillator-type basis for Landau levels |𝑛⟩,
with their coordinate representation given by:

𝜓𝑛 (𝑥, 𝑦) =
(
𝜕

𝜕𝑤
− 𝑤∗

4𝑙2
𝐵

)𝑛
𝑤𝑛𝑒−|𝑤 |2/4𝑙2

𝐵 , 𝑤 = 𝑥 + 𝑖𝑦. (5.5)

Using Landau level basis2, the effective Hamiltonian of the saddle point in
magnetic field that is written in terms of canonical momenta Π𝑖 = 𝑘𝑖 + 𝑒𝐴𝑖 can
be expressed in terms of ladder operators by using the replacement:

𝑘𝑥 → Π𝑥 =
𝑎̂ + 𝑎̂†
√

2𝑙𝐵
, 𝑘𝑦 → Π𝑦 =

𝑖(𝑎̂ − 𝑎̂†)
√

2𝑙𝐵
, (5.6)

with standard commutation relation
[
𝑎̂, 𝑎̂†

]
= 1. In the simplest case of the usual

saddle point, we find

𝐻log = 𝑡𝑎2𝑙−2
𝐵 [𝑎̂2 +

(
𝑎̂†

)2
] . (5.7)

Here, we rescaled energy by 𝑡 and set 𝑙𝐵 = 𝑎 = 1, which can be later restored
by rescaling energy dependence of the s-matrix. The more complicated example
of monkey saddle (5.3) with mixed 𝑘𝑥𝑘

2
𝑦 product requires a symmetrization

procedure to make the Hamiltonian Hermitian in terms of ladder operators. In
the general case, different symmetrizations of particular polynomial Hamiltonian
give different results for the lower order terms due to non-trivial commutation
relations. To uniquely fix the symmetrization procedure, we expand the tight-
binding Hamiltonian of the underlying lattice with assumption that momenta
operators do not commute. For the Monkey saddle after simplification this reads
[see Appx.5.A]

𝐻𝑀 = −
𝑡𝑎3𝑙−3

𝐵

2
√

2

[(
𝑎̂ + 𝑎̂†

)3
+ 3

(
𝑎̂ − 𝑎̂†

) (
𝑎̂ + 𝑎̂†

) (
𝑎̂ − 𝑎̂†

)]
. (5.8)

2We note that we take Landau basis with 𝑚𝑧 = 0. For the problems in empty space different
𝑚𝑧 states are trivially degenerate. The problem at hand does not mix different 𝑚𝑧 states.
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We note that in more general case of higher polynomial Hamiltonians one might
find different symmetrization results depending on the lattice. If the tight-binding
Hamiltonian is not known exactly, all possible symmetrizations that give different
expressions in terms of ladder operators should be analyzed.

Next, we explain how to obtain the scattering matrix that describes magnetic
breakdown around a saddle point. We start by noting that the exact solution of the
Schödinger equation 𝐻Ψ = 𝐸Ψ with Ψ =

∑∞
𝑛=0 𝜙𝑛 |𝑛⟩ yields a set of recursive

equations. For a usual van Hove singularity, we find

𝐸𝜑0 −
√

2𝜙2 = 0, 𝐸𝜙1 −
√

6𝜙3 = 0,

𝐸𝜙𝑛 −
√︁
𝑛(𝑛 − 1)𝜙𝑛−2 −

√︁
(𝑛 + 1) (𝑛 + 2)𝜙𝑛+2 = 0. (5.9)

Recursive equations for other saddle points are derived in the Appendix 5.A. We
note that a set of recursive equations can be mapped onto a 1D tight-binding
problem: the term multiplying 𝜑𝑛 corresponds to an on-site potential for the
site with index 𝑛, while the terms involving 𝜑𝑚 with 𝑚 ≠ 𝑛 represent the tight-
binding hopping parameters that connect the 𝑛-th site to the 𝑚-th site. By
imposing truncation at large index 𝑛 = 𝑁𝑐 and replacing all remaining equation
with those where 𝑛 = 𝑁𝑐, we obtain a natural mapping to 𝑁𝑐-site 1D chain
of atoms connected to a translationally invariant semi-infinite lead, shown in
Fig.5.2(b). Then, we obtain the s-matrix using the propagating modes of the lead
at energy 𝐸 , with the number of scattering states corresponding to the number of
semiclassical orbits coming close at the MB region.

However, the obtained s-matrix is in the LL basis. To transform the s-matrix
into basis of modes with a definite angle in momentum space, we use the creation
ladder operator

𝑎† ∼ 𝑘𝑥 + 𝑖𝑘𝑦 ≡ 𝑘𝑒𝑖𝜙𝑘 , (5.10)

where 𝜙𝑘 is the angle in momentum space. Hence, performing a basis transfor-
mation on the propagating modes in semi-infinite leads to a basis where 𝑎† is
diagonal converts the obtained s-matrix into a physical one. The technical details
of this procedure for the usual and Monkey saddle are discussed in the Appendix
5.A. The chirality and consequent absence of backscattering of the states with
definite angle, that are spatially separated, ensures the unique definition of the
physical s-matrix.

For some saddle points the asymptotic modes at large momenta are indistin-
guishable by their angle in momentum space. In this case, we cannot apply our
procedure of transforming the s-matrix into a physical basis. An example of such
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a saddle point is 𝐴2𝑛−1 described by Eq. (5.4). For this saddle point, the angle
of trajectory in momentum space with respect to the 𝑥-axis tends to zero as the
wave number tends to infinity, see the bottom panel of Fig.5.2(a). We resolve
this by introducing angle-fixing regularization, achieved through the inclusion of
sufficient amount of sub-leading terms in the effective Hamiltonian

𝐸 ′
𝐴2𝑛−1

(𝒌) = 𝑡
(
𝑎2𝑘2

𝑥 − 𝑎2𝑛 (𝑘2𝑛
𝑦 − 𝛽𝑘2𝑛

𝑥 )
)
, 𝑛 ≥ 2, (5.11)

where we use the 𝛽 > 0 constant as a regularization parameter and this parameter
defines angles far away from the scattering region, not playing a role in the vicinity
of the saddle point. We choose the truncation number 𝑁𝑐 such that the leading
terms strongly dominate in effective 1D tight-binding equations and the mode
separation into the angle basis can be done with good precision: 𝑡𝑚𝑎𝑥

𝑁𝑐+1 ≫ 𝐸, ....
Physically, this corresponds to taking the region where the scattering between
modes with different angles is absent.

To demonstrate our method, we numerically solve for the scattering matrix
using Kwant code [99, 138]. We show our results for the absolute values of
the transmission and reflection elements of the s-matrix and scattering phases in
panels (c) and (d) of Fig.5.2. All these elements are gauge-invariant and inde-
pendent of incoming and outgoing basis modes selection. In the case of usual
van Hove singularity, it demonstrates perfect agreement with analytic expressions
[see [127], Appx. 5.B]. For the 𝐴3 saddle point, we find a nontrivial behavior
of transmission coefficients shown in bottom row in Fig.5.2(c). The presence of
zeros in the transmission coefficient signifies the complete reflection of a quasi-
particle moving along a cyclotron trajectory at that specific energy. Consequently,
this phenomenon results in the effective reduction of orbit network to a single
cell. The manifestation of this effect is demonstrated below by the narrowing
of the mini-band width in the spectrum and the corresponding reduction in bulk
conductance.

5.3 Coherent orbit network

With the complete description of MB at hand, we now propose a transport setup
which would probe the features of the high-order saddle points. Since our goal is
to distinguish energy dependence of both scattering amplitude and phase of MB
at different saddle points, we use the coherent orbit networks that appear when
the saddle points are placed at the edge of the BZ. Such coherent orbit networks
were widely discussed in literature in the late 1960s [111, 119, 118], but the
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Figure 5.3. Comparison of Landau mini-band spectrum with longitudinal conductance in
the quantum Hall bar for three systems: (a), (b) square lattice with usual (hopping 𝑡2 = 0
in Eq. (5.16)) and 𝐴3 (𝑡2 = 𝑡/4) saddle points, and (c) triangular lattice with imaginary
hoppings that contain Monkey saddles. LL mini-bands (orange solid lines) obtained from
tight-binding simulations are compared with solutions of spectral equations (5.17),(5.19)
for a set of 𝑞𝑦𝑎 (blue dashed lines). The flux value per unit cell was taken equal to
Φ = 1/40Φ0 and the width of the Hall bar was𝑊 = 320𝑎. For the spectrum calculation
a periodic boundary condition was imposed. A single period of Landau mini-band
oscillation is shown and corresponds to

√︁
Φ/Φ0 part of BZ. The width of conductance

peaks measures the Landau mini-band broadening. In panel (b) the miniband around
𝐸 ≈ −0.8𝑡 is wider than the one at 𝐸 ≈ −0.9𝑡 due to the first zero of transmission
coefficient at the 𝐴3 saddle point (see Fig. 5.2(c)).
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absence of experiments with 2D atomically-thin crystals limited discussion to
the simplest geometries, such as weak perturbative potential with square lattice
geometry. Here, we use the same approach of magnetic translation symmetry
groups and describe the orbit networks that are connected via usual as well
as high-order saddle points. As it is clear from the constant energy curves in
the spectrum in the extended BZ scheme (see Fig. 5.1(b)), the orbits networks
in 𝑘 space have perfect periodicity and thus should be periodic in 𝑟 space.
However, in the presence of external magnetic field, the translation operators of
the lattice 𝑇𝑹𝑖 = exp{∇𝑟𝑹𝑖}, with 𝑹𝑖 being a basis vector, should be replaced
by magnetic translation operators [118], which up to phase factor are equal to
𝑇𝑀𝑹𝑖

= exp{(∇𝑟 + 𝑖𝑒(𝑨(𝑹𝑖) + 𝑹𝑖 × 𝑩)) 𝑹𝑖}. The corresponding operators define
a magnetic unit cell. To obtain a closed set of equations for the orbit network,
we should restrict the value of magnetic flux per unit cell of the lattice to be a
rational number

Φ = 𝐵 |R1 × R2 | = 𝐵
(2𝜋)2

|b1 × b2 |
=
𝑞

𝑝
Φ0, Φ0 =

ℎ

𝑒
. (5.12)

Here, 𝒃𝑖 are the basis vectors of reciprocal lattice. In the further calculations,
we restrict ourselves to the case of 𝑞 = 1. This relation is equivalent to setting
magnetic unit cell to the integer number 𝑝 of lattice unit cells. Now we are ready
to proceed with defining a basis of semi-classical wave functions on the links of
networks. These are Zilberman-Fischbeck (ZF) wave functions [139, 118, 127],
written using the WKB-type approximation far from scattering region. The ZF
functions are expressed in a gauge-invariant coordinate space with replacement
Π𝑥 → 𝑘𝑥 and Π𝑦 → −𝑖𝑙−2

𝐵
𝜕𝑘𝑥 . Since the scope of this chapter is limited by the

linear effects in magnetic field, we use the first order expansion of ZF functions
with 𝑎2/𝑙2

𝐵
≪ 1:

Ψ𝑍𝐹 (𝑘𝑥) =
���� 𝜕𝐸 (𝒌)𝜕𝑘𝑦 (𝑘𝑥)

����− 1
2

exp
[
−𝑖𝑙2𝐵

∫ 𝑘𝑥

𝑘𝑥,0

𝑘𝐸𝑦 (𝑘𝑥) 𝑑𝑘𝑥
]
. (5.13)

Here 𝑘𝐸𝑦 (𝑘𝑥) stands for the solution of constant energy contour equation𝐸 (𝑘𝑥 , 𝑘𝐸𝑦 (𝑘𝑥)) =
𝐸 . The full wave function of the orbit network state is composed as a weighted
superposition of the Ψ𝑍𝐹 wave functions in different unit cells:

Ψ(𝑘𝑥) =
∞∑︁
𝑘,𝑙

𝑒𝑖𝑙
2
𝐵
[𝑘𝑥 𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]

∑︁
𝑗

𝛼
(𝑙,𝑘 )
𝑗

Ψ
𝑗

𝑍𝐹

(
𝑘𝑥 − 𝑘𝑏1,𝑥 − 𝑙𝑏2,𝑥

)
.

(5.14)
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In this expression, each weight coefficient 𝛼 (𝑙,𝑘 )
𝑗

contains two cell indices 𝑙, 𝑘 as
well as a unique index 𝑗 corresponding to the different parts of the orbit between
scattering points inside single cell of the network. The example of this notation is
shown in Fig. 5.1. Due to periodicity of the network, the solutions have the form
of Bloch waves 𝛼 (𝑙,𝑘 )

𝑗
= 𝛼 𝑗𝑒

𝑖 (𝑝𝑘𝑘+𝑝𝑙𝑙) . The magnetic translation group restricts
the allowed values of 𝑝𝑙,𝑘 to particular dependence on translation operator 𝑇𝑀𝑹𝑖
eigenvalues 𝒒: 𝑝𝑙 = −𝑙2

𝐵

(
𝑞𝑥𝑏2,𝑦 − 𝑞𝑦𝑏2,𝑥

)
, 𝑝𝑘 = 𝑙2

𝐵
𝑞𝑦𝐾1,𝑥 [see Appx. 5.B].

Next, we use the S-matrices obtained above to couple the ZF solutions in the
neighboring cells. By noting that ZF functions from Eq. (5.13) correspond to
the modes with proper angles, we can straightforwardly insert parameters of the
s-matrix into the system of equations, and write it in the form of a Ho-Chalker
operator [140]:

𝑆𝐻𝐶 (𝐸, 𝒒)𝜶 = 0. (5.15)

While substituting the s-matrix, we subtracted the difference in dynamical phases
of modes with defined angles and ZF functions (5.13) at given energy. Such a
difference appears due to the fact that in geometry of the scattering problem one
assumes semiclassical ZF solutions with the phase fixed at infinity, while in the
orbit network ZF function phase is fixed at particular point inside the network
unit cell.

5.4 Landau minibands

The nonlinear eigenvalue problem for the Ho-Chalker operator (5.15) can be
rewritten in the form of spectral equation det 𝑆𝐻𝑆 (𝐸, q) = 0 for a given lattice
model [see Appx. 5.B]. Below we demonstrate this for square and triangular
lattice, and show that the MB s-matrix calculated above plays a key role in
definition of the properties of coherent orbit network. In the case of square
lattice with only first and third NN hoppings taken into account,

𝐻𝑠𝑞 (𝒌) = −2
∑︁
𝑖=𝑥,𝑦

(𝑡 cos 𝑘𝑖𝑎 + 𝑡3 cos 2𝑘𝑖𝑎) , (5.16)

the spectral equation is:

cos

(
𝑙2
𝐵
A(𝐸)

2
− 𝜑𝑠𝑐

)
= ±TR

[
cos

(
𝑙2𝐵𝑞1𝑏2,𝑦

)
+ cos

(
𝑙2𝐵𝑞2𝑏1,𝑥

)]
. (5.17)
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Here, A(𝐸) is the area enclosed by the constant energy curve in momentum
space. The elements of the s-matrix, denoted asR-reflection, T -transmission and
𝜑𝑠𝑐 = arg(det 𝑆) is the scattering phase, are shown in Fig. 5.2. For such a lattice
Hamiltonian, the connection of orbits happens via usual van Hove singularity at
the X-point of BZ for 𝑡3 = 0 or via high-order van Hove singularity of 𝐴3 type
for 𝑡3 = 𝑡/4. In the case of the triangular lattice with imaginary hoppings, the
dispersion is

𝐻𝑡𝑟 (k) = 2𝑡

(
sin 𝑘𝑥𝑎 − sin

𝑘𝑥 −
√

3𝑘𝑦
2

𝑎 − sin
𝑘𝑥 +

√
3𝑘𝑦

2
𝑎

)
. (5.18)

The monkey saddle (see Fig. 5.1) connects orbits from different cells into a
network. The corresponding spectral equation is

cos

(
𝑙2
𝐵
A(𝐸) − 𝜑𝑠𝑐

2

)
= T

[
cos

(
𝑙2𝐵

[
𝑞1𝑏2,𝑦 + 𝑞2

(
𝑏1,𝑥 − 𝑏2,𝑥

) ]
− 𝜋𝑝

2

)
+ cos

(
𝑙2𝐵𝑞2𝑏1,𝑥 −

𝜋𝑝

2

)
+ cos

(
𝑙2𝐵

[
𝑞1𝑏2,𝑦 − 𝑞2𝑏2,𝑥

]
− 𝜋𝑝

2

)]
. (5.19)

The left-hand side of each spectral equation, as defined in (5.17) and (5.19),
yields the conventional flat Landau levels when equated to zero. On the other
hand, the nonzero right-hand side converts Landau levels into minibands. The
width of these minibands is determined by the van Hove singularity, the s-
matrix transmission coefficient, and the lattice-specific dispersion. To explore this
behavior, we numerically solve [138] the spectral equations for different values
of 𝑞𝑥 and for a small set of 𝑞𝑦 . The resulting miniband structures are depicted by
the blue dashed lines in Fig. 5.3, showing both the width and internal structure of
analytic spectrum of a mini-bands. The spectrum obtained from a tight-binding
simulations [138, 99] is shown as orange lines filling the corresponding regions
and demonstrates excellent agreement with the semi-classical predictions. For
our analysis, we utilized a narrow Hall bar geometry with periodic boundary
conditions, having a width several times larger than the magnetic unit cell. That
width is already enough to have many bulk conducting states inside the orbit
network.

5.5 Conclusion

The appearance of oscillating dispersion and broadening of Landau levels due
to orbit networks is expected to be manifested in the transport experiments such
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as Shubnikov-de-Haas oscillations or high-frequency magnetic breakdown os-
cillations [141, 142, 143, 144, 145, 130]. As the most pronounced signature,
we present a calculation of longitudinal conductance in two-terminal Hall bar
geometry. Typically, such conductance is governed by edge states [124] and is
strongly suppressed. As it is shown in the right part of each panel in Fig. 5.3, the
dispersive Landau mini-bands induce bulk conductance that is much larger than
background edge conductance. We compared the spectrum for the lattices with
periodic boundary condition with the conductance shape in finite size systems
for the same values of magnetic field. The width of the peaks in the conductance
agrees with the broadening of Landau mini-bands, thus providing a tool for es-
timation of the tunneling probabilities T for MB s-matrix at the saddle point.
In addition, we note that the specific property of the 𝐴3 saddle point with zero
transmission coefficient [see Fig.5.2(c)] leads to a much smaller conductance
peak at corresponding chemical potential comparing to other peaks, shown in
Fig.5.3(b).

To give an estimate of magnetic field required for the experiment, we use an
estimate of magnetic length 𝑙𝐵 ≈ 26 nm/

√︁
𝐵[T] with typical experimental values

of magnetic field 𝐵 ∼ 10𝑇 [146], which gives 𝑙𝐵 ≈ 10 nm. The broadening
of Landau miniband becomes significant compared to the hopping parameter
(see Fig. 5.3) and larger than disorder broadening for magnetic fluxes around
Φ = 10−2Φ0 per lattice unit cell. Thus, it requires lattice constant to be of the
order of 𝑎 ∼ 𝑙𝐵

√︁
2𝜋Φ/Φ0 ∼ 2.5nm. Such an estimate shows that one requires

extremely high magnetic field to measure such effects in conventional systems,
such as highly doped monolayer graphene [147]. But, such lattice constants
are typical for the modern artificial lattices [148] as well as for Moiré materials
such as twisted bilayer graphene [149, 150, 151]. In addition, we point out
that the method of solving the MB problem developed above can be applied
for the systems with spin-orbit coupling such as Moiré bilayer transition-metal
dichalcogenides [152]. The structure of the orbit network might be visualized by
injecting the current at proper chemical potential level into the system via narrow
lead. The picture of current density distribution is expected to follow the pattern
of orbit network shown in Fig. 5.1 and might be probed by STM-type microscopy
techniques [153, 154].
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Appendices

5.A Magnetic breakdown near usual and high-order
saddle points

In this section, we describe in detail the way how we obtain the scattering matrix
for the quasiclassical wave functions of WKB type that approach the saddle point
of any topology in 2D dispersion. After introducing the key notation of Landau
level basis in axial gauge and oscillator basis, we describe the full algorithm
on example of usual saddle point that leads to logarithmic van Hove singularity
(vHs). For such vHs the analytic S-matrix is known from exact solution of
Schrödinger equation [125, 126, 127] and can be compared with the results of
our calculation. Next, we extend this algorithm to a number of high-order saddle
points that were discussed in classifications in Refs. [109, 110]. In addition
to comparing technical subtleties of realizations and related physical effects, we
also compare the results with the simplest quasiclassical calculations of tunneling
probability.

5.A.1 Oscillator basis of Landau levels and formulation of problem
in terms of ladder operators

We use the axial gauge for vector potential 𝑨 = 𝐵
2 (−𝑦, 𝑥, 0) and insert this into

the effective model of quasiparticle with dispersion 𝜀(𝑘𝑥 , 𝑘𝑦), which is expressed
in terms of canonical momenta with standard commutation relation

𝐻 = 𝜀(Π𝑥 ,Π𝑦), Π𝑖 = 𝑘𝑖 + 𝑒𝐴𝑖 , [Π𝑥 ,Π𝑦] = −𝑖𝑙−2
𝐵 . (5.20)

Next, we introduce the ladder operators,

Π𝑥 =
1

√
2𝑙𝐵

(
𝑎̂ + 𝑎̂†

)
, Π𝑦 =

𝑖
√

2𝑙𝐵

(
𝑎̂ − 𝑎̂†

)
,

[
𝑎̂, 𝑎̂†

]
= 1, (5.21)

with 𝑙𝐵 =

√︃
ℏ
𝑒𝐵

being the magnetic length. These operators are analogous to the
ladder operators for the quantum harmonic oscillator. The basis of corresponding
number operator 𝑎†𝑎 |𝑛⟩ = 𝑛|𝑛⟩ with integer Landau level index 𝑛 ≥ 0 can be
used to represent any polynomial Hamiltonian 𝐻 = 𝜀(Π𝑥 ,Π𝑦) as a matrix. The
eigenstates |𝑛⟩ in the coordinate basis are given by

|𝑛⟩ = 𝜓𝑛 (𝑥, 𝑦) =
(
𝜕

𝜕𝑤
− 𝑤∗

4𝑙2
𝐵

)𝑛
𝑤𝑛𝑒−|𝑤 |2/4𝑙2

𝐵 , 𝑤 = 𝑥 + 𝑖𝑦, (5.22)
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and the matrix elements of ladder operators are

⟨𝑛|𝑎̂ |𝑚⟩ =
√
𝑚𝛿𝑛,𝑚−1,

〈
𝑛
��𝑎̂†��𝑚〉

=
√
𝑚 + 1𝛿𝑛,𝑚+1. (5.23)

Next, we use this notation to obtain matrix representation of the effective Hamil-
tonians near different saddle points.

5.A.2 Magnetic breakdown S-matrix for the usual saddle point

The effective Hamiltonian in the vicinity of the usual saddle point in 𝑘-space of
2D band is given by

𝐻log = 𝛼𝑘2
𝑥 − 𝛽𝑘2

𝑦 . (5.24)

Below, we set 𝛼 = 𝛽 = 1 for simplicity. Using the notation of ladder operators
and oscillator basis, we rewrite this Hamiltonian in magnetic field as follows

𝐻log =
1

2𝑙2
𝐵

[(
𝑎̂ + 𝑎̂†

)2
+

(
𝑎̂ − 𝑎̂†

)2
]
=
𝑎̂2 +

(
𝑎̂†

)2

𝑙2
𝐵

. (5.25)

In the oscillator basis, this Hamiltonian is represented by the following matrix:

𝐻𝑙𝑜𝑔 =
1
𝑙2
𝐵

©­­­­­­­­­­­­­«

0 0
√

2 0 0 0 0 . . .

0 0 0
√

6 0 0 0 · · ·√
2 0 0 0 2

√
3 0 0 . . .

0
√

6 0 0 0 2
√

5 0 . . .

0 0 2
√

3 0 0 0
√

30 . . .

0 0 0 2
√

5 0 0 0
√︁
𝑁 (𝑁 + 1)

0 0 0 0
√

30 0 0 . . .

. . . . . . . . . . . . . . .
√︁
𝑁 (𝑁 + 1) . . . . . .

ª®®®®®®®®®®®®®¬
.

(5.26)

As a result, we transformed the problem into an eigenvalue equation, where the
eigenstates are superpositions of oscillator basis states:

𝐻Ψ = 𝐸Ψ, Ψ =

∞∑︁
𝑛=0

𝜙𝑛 |𝑛⟩. (5.27)
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Nc

0 1 2 3 Nc Nc + 1

t0 t1 tN tNc tNc tNc

Figure 5.4. Effective 1D tight-binding model that represents the system of equations
(5.28) with asymptotic truncation after Landau level index 𝑛 > 𝑁𝑐.

We then reformulate this eigenvalue equation as a coupled set of recursive alge-
braic equations:

𝐸𝜙0 −
√

2𝜙2 = 0,

𝐸𝜙1 −
√

6𝜙3 = 0,

𝐸𝜙2 −
√

2𝜙0 − 2
√

3𝜙4 = 0,

𝐸𝜙3 −
√

6𝜙1 − 2
√

5𝜙5 = 0,
· · ·

𝐸𝜙𝑛 −
√︁
𝑛(𝑛 − 1)𝜙𝑛−2 −

√︁
(𝑛 + 1) (𝑛 + 2)𝜙𝑛+2 = 0. (5.28)

The exact iterative solution of (5.28) quickly becomes very cumbersome because
of the complexity of coefficients in the recursive relation. Thus, to solve this sys-
tem of equations and those that shall appear for more complicated saddle points,
we introduce a truncation scheme. After the large value of index 𝑛 > 𝑁𝑐 we
replace the index 𝑛 by 𝑁𝑐 in the coefficients of recursive relation. This procedure
can be schematically illustrated by Fig. 5.4, where we represent solution coeffi-
cients 𝜑𝑛 as sites, coefficients of Hamiltonian that appear in recursive relations
as hopping terms and onsite potentials, respectively. This correspondence allow
us to solve the system of equations as an effective 1D tight-binding model of a
chain. The introduced cut-off at large 𝑁𝑐 separates the scattering region from the
translationally-invariant region with simplified coefficients. We note that there
are two disconnected sets of equations, and this fact manifests the presence of
two linearly-independent solutions in the original problem.

After setting up the correspondence between effective Hamiltonian in the
saddle point and 1D tight-binding model with two decoupled chains, we proceed
with finding the S-matrix of magnetic breakdown. The procedure of truncation
described above allows us to match the asymptotic solutions at high Landau level



5.A Magnetic breakdown near usual and high-order saddle points 85

indices 𝑛 > 𝑁𝑐 with exact solution at lower indices 𝑛 ≤ 𝑁𝑐. We solve the scatter-
ing problem numerically using the Kwant package for tight-binding simulations
[99]. However, the scattering modes, matched solutions and S-matrix obtained
from numerical simulation are given in the oscillator basis. Thus, we perform an
additonal procedure to link them with quasiclassical wave functions of cyclotron
trajectories and corresponding magnetic breakdown S-matrix. To establish this
link, we solve the problem analytically in the translationally-invariant region with
𝑛 > 𝑁𝑐.

The eigenmodes of the infinite lead composed of two identical chains are
given by two Bloch wave functions with identical degenerate band dispersions.
These eigenmodes and their eigenenergies are given by the following expressions
in the basis of two atoms per unit cells:

Ψ1(𝑙) =
1
𝑀

∞∑︁
𝑛=𝑁𝑐+1

𝑒−2𝑖𝑙𝑛 |2𝑛⟩, Ψ2(𝑙) =
1
𝑀

∞∑︁
𝑛=𝑁𝑐+1

𝑒−2𝑖𝑙𝑛 |2𝑛 + 1⟩,

𝜀1,2(𝑙) = −𝐸 + 2𝑡𝑁𝑐 cos 2𝑙. (5.29)

Here, the length of the unit cell is 2 because the coupling is between second
neighbor oscillator basis states only. The normalization constant 𝑀 can be
omitted in next calculations as it does not alter the final result. We note that
the modes defined above are in the basis of oscillator states, with corresponding
indices depicted as sites, and the momentum 𝑙 is defined in the corresponding
reciprocal space. To obtain the S-matrix of physical modes, we have to establish
connection between these modes and asymptotic modes far from the saddle point
in 𝑘-space in the quasiclassical region (see Fig. 2(a) in the main text). To establish
this connection, we notice that the modes in quasiclassical region are classified
by their corresponding angle in momentum space: incoming modes correspond
to angles 𝜋/4 and 5𝜋/4 for energies 𝐸 > 0, while outgoin modes are at 3𝜋/4
and 7𝜋/4 angles. We find the modes in angle basis by diagonalizing the creation
ladder operator by noting that

𝑎̂† =
𝑙𝐵√

2
(Π𝑥 + 𝑖Π𝑦) →

𝐵→0
𝑘𝑥 + 𝑖𝑘𝑦 = 𝑘𝑒𝑖𝜙𝑘 . (5.30)

The limit of zero magnetic field is used only to point out that the ladder operator
𝑎̂† allows one to classify propagating modes in lead according to the asymptotic
angles of scattering modes in MB region that follow constant energy curves in
saddle point dispersion. In other words, in the basis of eigenmodes of 𝑎† operator,
the phase of eigenvalue of 𝑎† gives the angle of direction of propagation for
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incoming wave. Using the modes for the infinite lead defined in Eq. (5.29) as a
basis and taking into account that action of 𝑎† on oscillator state shifts this state
(see Eq. (5.23)), we obtain another form of the operator 𝑎̂†:

𝑎
†
Ψ,𝑖𝑛

=

(
0 𝑒2𝑖𝑙

1 0

)
. (5.31)

This form of creation operator can be checked by direct action on basis states:

𝑎̂†Ψ1(𝑙) =
√
𝑁𝑐 + 1
𝑀

∞∑︁
𝑁=𝑁𝑐+1

𝑒−2𝑖𝑙𝑁 |2𝑁 + 1⟩ ∼ Ψ2(𝑙),

𝑎̂†Ψ2(𝑙) =
√
𝑁𝑐 + 1
𝑀

∞∑︁
𝑁=𝑁𝑐+1

𝑒−2𝑖𝑙𝑁 |2𝑁 + 2⟩ ∼ 𝑒2𝑖𝑘𝑙Ψ1(𝑙). (5.32)

The eigenvalues and eigenvectors of 𝑎†
Ψ

operator are given by

𝜆1,2 = ±𝑒𝑖𝑙 , 𝜒1 =
1
√

2

(
1
𝑒−𝑖𝑙

)
, 𝜒2 =

1
√

2

(
−𝑒𝑖𝑙

1

)
. (5.33)

Notably, for momenta 𝑙 of the propagating modes close to Brillouin zone edge
𝑙 = ±𝜋/4, we uncover the correspondence with asymptotic angles of the constant
energy curves at large momenta that correspond to directions of incoming and
outgoing modes in MB region. Now we have to convert the 𝑆Ψ-matrix from the
basis of the modes (5.29) to the modes with definite angle. The S-matrix itself
has the form

𝑆Ψ =

(
𝑒𝑖𝛼1 0

0 𝑒𝑖𝛼2

)
(5.34)

with two phases calculated numerically by matching using Kwant code. The
transformation is performed via rotation defined by eigenvectors in Eq. (5.33),
while taking into account that outgoing modes have opposite momenta −𝑙 and
the sign of momenta changes in 𝑎†

Ψ,𝑜𝑢𝑡
. For example, 𝑎†

Ψ,𝑜𝑢𝑡
(𝑙) = 𝑎

†
Ψ,𝑖𝑛

(−𝑙) in
this system because of dispersion relation (5.29). Then, the rotation to new basis
of the S-matrix gives:

𝑆 = 𝑈𝑜𝑢𝑡𝑆Ψ𝑈
†
𝑖𝑛
, 𝑈𝑜𝑢𝑡 =

1
√

2

(
1 −𝑒−𝑖𝑙
𝑒𝑖𝑙 1

)
, 𝑈𝑖𝑛 =

1
√

2

(
1 −𝑒𝑖𝑙
𝑒−𝑖𝑙 1

)
,

(5.35)



5.A Magnetic breakdown near usual and high-order saddle points 87

which results in

𝑆 =
1
2

(
𝑒𝑖𝛼1 + 𝑒𝑖𝛼2−2𝑖𝑙 𝑒𝑖 (𝛼1+𝑙) − 𝑒−𝑖 (𝑙−𝛼2 )

𝑒𝑖 (𝛼1+𝑙) − 𝑒−𝑖 (𝑙−𝛼2 ) 𝑒𝑖𝛼2 + 𝑒𝑖 (𝛼1+2𝑙)

)
, 𝑙 =

1
2

arccos
𝐸

2𝑡
.

(5.36)

This is the final form of S-matrix, which describes the magnetic breakdown
near usual saddle point. By making the cut-off parameter 𝑁𝑐 large enough, we
calculate the S-matrix with arbitrary precision. The results of the calculation in
comparison with exact expression as a function of energy are presented in Fig.2
of the main text. The figure demonstrates excellent agreement between exact
analytic expression given by and numerical calculations with 𝑁𝑐 = 2000.

5.A.3 Monkey saddle point

In this section, we extend the algorithm described above to the more complicated
case of Monkey saddle point. The main complication arises due to the fact that
the Hamiltonian is now third-order and we have to define 3× 3 S-matrix between
3 incoming and 3 outgoing trajectories. Typically, the effective Hamiltonian in
the vicinity of Monkey saddle point has the form [109, 110]:

𝐻𝑀 =

(
𝑘3
𝑥 − 3𝑘𝑥𝑘2

𝑦

)
, (5.37)

where we omit constants for simplicity. To obtain this operator in terms in ladder
operators for a system under magnetic field, we perform symmetrization of the
second term that makes the Hamiltonian Hermitian. The direct calculation shows
that possible choices Π𝑦Π𝑥Π𝑦 and 1

2

(
Π𝑥Π

2
𝑦 + Π2

𝑦Π𝑥

)
give the same result. In

other words, we find in terms of ladder operators that the following expressions
are identical:

− 2
√

2Π𝑦Π𝑥Π𝑦 =
(
𝑎̂ − 𝑎̂†

) (
𝑎̂ + 𝑎̂†

) (
𝑎 − 𝑎†

)
= 𝑎̂3 − 𝑎̂2𝑎̂† + 𝑎̂𝑎̂†𝑎̂ − 𝑎̂𝑎̂†,2 − 𝑎̂†𝑎̂2 + 𝑎̂†𝑎̂𝑎̂† − 𝑎̂†,2𝑎̂ + 𝑎̂†,3

(we use commutation relation [𝑎̂, 𝑎̂†] = 1 and find

− 𝑎̂2𝑎̂† − 𝑎̂†𝑎̂2 = −2𝑎̂𝑎̂†𝑎̂, −𝑎̂†,2𝑎̂ − 𝑎̂𝑎̂†,2 = −2𝑎̂†𝑎̂𝑎̂†)
= 𝑎̂3 − 𝑎̂𝑎̂†𝑎̂ − 𝑎̂†𝑎̂𝑎̂† + 𝑎̂†,3, (5.38)

−
√

2
(
Π𝑥Π

2
𝑦 + Π2

𝑦Π𝑥

)
= 𝑎̂3 − 𝑎̂𝑎̂†𝑎̂ − 𝑎̂†𝑎̂𝑎̂† + 𝑎̂†,3. (5.39)

However, the ambiguity of choice of symmetrization should be formally resolved
to apply the procedure for more complicated saddle point Hamiltonians. We do
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this by starting from the tight-binding Hamiltonian, that has such saddle point,
and introducing canonical momenta there. Using Eq.(18) from the main text, we
find the following third-order term in expansion

𝐻𝑡𝑟 (k) = 2𝑡

(
sinΠ𝑥𝑎 − sin

Π𝑥 −
√

3Π𝑦
2

𝑎 − sin
Π𝑥 +

√
3Π𝑦

2
𝑎

)
∼ − 𝑡

4

(
Π3
𝑥 − Π𝑥Π𝑦Π𝑦 − Π𝑦Π𝑥Π𝑦 − Π𝑦Π𝑦Π𝑥

)
𝑎3 +𝑂 (𝑎5). (5.40)

Using above-written two relations, we simplified the symmetrized expression
to Eq.(8) in the main text. However, in the general case one should keep full
expression of symmetrized Hamiltonian for a particular lattice. Converting into
matrix form, we find for Monkey saddle:

𝐻𝑀 = − 1
2
√

2
[
(
𝑎̂ + 𝑎̂†

)3
+ 3

(
𝑎̂ − 𝑎̂†

) (
𝑎̂ + 𝑎̂†

) (
𝑎 − 𝑎†

)
]

=
1

2
√

2

©­­­­­­­­­­­«

0 0 0 4
√

6 0 0 . . .

0 0 0 0 8
√

6 0 . . .

0 0 0 0 0 8
√

15 . . .

4
√

6 0 0 0 0 0 . . .

0 8
√

6 0 0 0 0 4
√︁
𝑛(𝑛 + 1) (𝑛 + 2)

0 0 8
√

15 0 0 0 . . .

. . . . . . . . . . . . 4
√︁
𝑛(𝑛 + 1) (𝑛 + 2) . . . . . .

ª®®®®®®®®®®®¬
.

(5.41)

Searching the solution in the form (5.27) of decomposition of wave function in
oscillator basis states, we find the following system of coupled equations:

2
√

2𝐸𝜙0 − 4
√

6𝜙3 = 0,

2
√

2𝐸𝜙1 − 8
√

6𝜙4 = 0,

2
√

2𝐸𝜙2 − 8
√

15𝜙5 = 0,

2
√

2𝐸𝜙3 − 4
√

6𝜙0 − 8
√

30𝜙6 = 0,
. . .

2
√

2𝐸𝜙𝑛 − 4
√︁
𝑛(𝑛 − 1) (𝑛 − 2)𝜙𝑛−3 − 4

√︁
(𝑛 + 1) (𝑛 + 2) (𝑛 + 3)𝜙𝑛+3 = 0.

(5.42)

Following the procedure of mapping on 1D tight-binding model, we find that this
system in turn converts into three decoupled chains with only nearest neighbor
hoppings in each (see Fig. 5.5 and Fig. 2 from the main text).
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Nc

0 1 2 3 4 Nc Nc + 1

t0 t1 t2 tN tNc tNc

Figure 5.5. Effective 1D tight-binding model that represents the system of equations
(5.42) for Monkey saddle with asymptotic truncation after Landau level index 𝑛 > 𝑁𝑐.

Next steps require the introduction of the cut-off parameter 𝑁𝑐 and classifica-
tion of the modes appearing for higher indices 𝑛 > 𝑁𝑐. In the case of the model
with three decoupled chains the Bloch eigenstates are

Ψ 𝑗 (𝑙) =
1
𝑀

∞∑︁
𝑛=𝑁𝑐+1

𝑒−3𝑖𝑙𝑛 |3𝑛 + 𝑖⟩, 𝜀 𝑗 (𝑙) = −𝐸 + 2𝑡𝑁𝑐 cos 3𝑙, 𝑗 = 0, 1, 2.

(5.43)

In this case, the size of the unit cell is 3𝑙. Acting with the creation operator 𝑎̂†,
we find the following expression for the matrix in the basis of these states:

𝑎
†
Ψ,𝑖𝑛

=
©­«

0 0 𝑒3𝑖𝑙

1 0 0
0 1 0

ª®¬ . (5.44)

Comparing to the matrix representation of 𝑎†
Ψ,𝑖𝑛

for usual van Hove singularity
(5.31), we see that it has similar structure with shift of nodes by one index in
the unit cell until the period reached. The eigenvalues and eigenvectors of this
matrix are

𝜆1,2,3 = 𝑒𝑖𝑙 , 𝑒𝑖𝑙±2𝜋𝑖/3, 𝜒1 =
1
√

3
©­«

1
𝑒−𝑖𝑙

𝑒−2𝑖𝑙

ª®¬ ,
𝜒2 =

1
√

3
©­«
𝑒𝑖𝑙+2𝜋𝑖/3

1
𝑒−𝑖𝑙−2𝜋𝑖/3

ª®¬ 𝜒3 =
1
√

3
©­«
𝑒2𝑖𝑙+2𝜋𝑖/3

𝑒𝑖𝑙−2𝜋𝑖/3)

1

ª®¬ (5.45)

In the limit of 𝐸 ≪ 2𝑡𝑁𝑐 , we find that momenta of the modes are approximately
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Nc

0 1 2 3 4 Nc Nc + 1

t0 t1 tN tNc tNc tNc

t ′0 t ′1 t ′Nc

Figure 5.6. Effective 1D tight-binding model that represents the system of equations
(5.51) for 𝐴3 saddle with asymptotic truncation after Landau level index 𝑛 > 𝑁𝑐. Note
that now next nearest neighbor hoppings are added in each chain.

at the effective Brillouin zone edge,

𝑙 =
1
3

arccos
𝐸

2𝑡𝑁𝑐
≈ 𝜋

6
, (5.46)

and the phases of eigenvalues 𝜆1,2,3 correspond to the angles at which scattering
states come from the quasiclassical regions for a Monkey saddle (see Fig. 2(a) in
the main text).

The eigenvectors in Eq. (5.45) define the rotation to the basis with definite
angles. Combining these eigenvectors into unitary transformation matrix, we
then apply the basis transformation to the diagonal scattering matrix obtained
from the numerical calculation,

𝑆Ψ = diag(𝑒𝑖𝛼1 , 𝑒𝑖𝛼2 , 𝑒𝑖𝛼3). (5.47)

The diagonal structure of this matrix is a result of chain decoupling in the effective
tight-binding model. We present the result of numerical calculation in Fig. 2 of
the main text.

5.A.4 High-order saddle points with different powers in effective
dispersion: 𝐴3 saddle point and regularization

Finally, we discuss the case of 𝐴3 saddle point, which has two trajectories coming
close in the magnetic breakdown region, but the effective Hamiltonian has dif-
ferent powers in leading order for 𝑘𝑥 and 𝑘𝑦 . The analysis of this point requires
several additional steps, that can be used together with algorithm from previous
section to analyze every other saddle point. There are two complications that
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appear for such system comparing to usual saddle point discussed in Sec. 5.A.2.
The effective Hamiltonian of the model is given by

𝐻𝐴3 = 𝛼𝑘
2
𝑥𝑎

2 − 𝑘4
𝑦𝑎

4. (5.48)

As we see, larger the deviation of momenta is from the center of saddle point,
𝑘𝑥 = 𝑘𝑦 = 0, the closer trajectory angles are to zero. In other words, the constant
energy curve solution 𝑘𝑦 (𝑘𝑥 , 𝐸) behaves asymptotically as

√
𝑘𝑥 and never reaches

the 𝑘𝑥-independent derivative. This introduces a problem of classification of
modes by angle of incoming quasiclassical particle, the central ingredient used in
previous cases. In fact, such problem may lead to unexpected numerical artifacts
appearing in the final scattering matrix. We resolve this problem by introducing
sub-leading terms into the Hamiltonian to make the highest polynomial powers
for 𝑘𝑥 and 𝑘𝑦 identical. In our case this would lead to the following modification
of original Hamiltonian:

𝐻̃𝐴3 = 𝛼𝑘
2
𝑥𝑎

2 + 𝛽𝑘4
𝑥𝑎

4 − 𝑘4
𝑦𝑎

4, 𝛽 > 0. (5.49)

Here, the condition 𝛽 > 0 enforces the trajectories to have different asymp-
totic angles, that are found from the equation tan4 𝜙𝑘 = 𝛽, and are equal to
± arctan 𝛽1/4, 𝜋 ± arctan 𝛽1/4. The ladder operator version of this Hamiltonian
is

𝐻̃𝐴3 = 𝛼

(
𝑎̂ + 𝑎̂†

)2
+ 𝛽

(
𝑎̂ + 𝑎̂†

)4
−

(
𝑎̂ − 𝑎̂†

)4
. (5.50)

The main difference comparing to the previously discussed cases is that this
Hamiltonian contains both second and fourth order terms, which implies the
existence of two kinds of hopping terms. The system of recursive equations in
this case is

𝐸𝜙0 − (𝜙0(𝛼 + 3𝛽 − 3) +
√

2𝜙2(𝛼 + 6𝛽 + 6) + 2
√

6(𝛽 − 1)𝜙4) = 0,

𝐸𝜙1 − (3𝜙1(𝛼 + 5𝛽 − 5) +
√

6𝜙3(𝛼 + 10𝛽 + 10) + 2
√

30(𝛽 − 1)𝜙5) = 0,
. . .

𝐸𝜙𝑛 −
(√︁

(𝑛 − 1)𝑛𝜙𝑛−2(𝛼 + 2(𝛽 + 1) (2𝑛 − 1))

+ 𝜙𝑛 (2𝛼𝑛 + 𝛼 + 3(𝛽 − 1) (2𝑛(𝑛 + 1) + 1))

+
√︁
(𝑛 + 1) (𝑛 + 2)𝜙𝑛+2(𝛽 + 2(𝛽 + 1) (2𝑛 + 3))

+ (𝛽 − 1)

√√√ 3∏
𝑗=0

(𝑛 − 𝑗)𝜙𝑛−4 + (𝛽 − 1)

√√√ 4∏
𝑗=1

(𝑛 + 𝑗)𝜙𝑛+4
ª®¬ = 0 (5.51)
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After mapping we obtain the system with two decoupled chains, see Fig. 5.6. Now
each of these chains contains both nearest neighbor 𝑡𝑖 and next nearest neighbor
𝑡′
𝑖

hopping terms as well as index-dependent on-site terms 𝜀𝑛. In the case of
more general saddle points one might obtain even more far-distanced next-next-
...-nearest hoppings according to polynomial powers in the Hamiltonian. The
basis of plane waves in the truncated region is built in the same way as before,
thus rotation to the basis with proper angles is done via the same procedure of
diagonalization of ladder operator 𝑎̂† acting on propagating modes. However, the
dispersion relation of plane wave modes is more complicated, in this particular
case it has the form:

𝜀1,2(𝑙) = −𝐸 + 𝐸𝑁𝑐 + 2𝑡𝑁𝑐 cos 2𝑙 + 2𝑡′𝑁𝑐 cos 4𝑙. (5.52)

Expressing momentum from this equation for 𝜀(𝑙) = 0 condition, we obtain
proper angles of the modes from 𝑎

†
Ψ

operator given by Eq. (5.33).
As a result of the regularization procedure, we have to introduce an additional

parameter 𝛽 into the lowest-order effective Hamiltonian. We check this by taking
this parameter small enough the convergence of results is reachable. We compare
the results for absolute value of the scattering matrix elements fixing 𝐴 = 1 and
taking different 𝛽 ≪ 1 in Eq. (5.49) The values of scattering matrix elements are
shown in Fig. 5.7. For small enough 𝛽 the results converge rapidly.

5.B Magnetic translation operators and spectral equa-
tions for coherent networks

In this section of Supplemental material, we present the main technical steps
that are required to describe the problem of two-dimensional Bloch electrons in
presence of magnetic field applied perpendicularly to the system at energies in
the vicinity of van Hove singularity, when a coherent orbit network is formed.
We demonstrate our approach in cases of square and triangular lattices that
exhibit three different types of van Hove singularities. Before proceeding to
the derivation of spectral equations for particular systems, we briefly recall the
translation symmetry group in the presence of magnetic field.

5.B.1 Magnetic translation group

The general aspects of the translation symmetry group theory in the presence of
magnetic field were discussed in Ref. [118]. Here, we recall the key definitions
and properties of Bloch electrons in the presence of magnetic field.
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Figure 5.7. Convergence of absolute values of S-matrix elements (𝑡-transmission, 𝑟-
reflection) for 𝐴3 saddle point with different values of regularization parameter 𝛽 in
Eq. (5.49). The coefficients 𝑎 = 1 and 𝛼 = 1 are taken for simplicity. Two panels
demonstrate convergence with different (a) 𝑁𝑐 cutoff parameters as function of 𝛽, (b) 𝛽
regularizing coefficients as function of 𝑁𝑐.

The key operator that commutes with a Hamiltonian and therefore identifies
the eigenstates and corresponding eigenvalues is the magnetic translation operator

𝑇𝑀𝑹 = exp{ 𝑖
ℏ

(
𝒑 + 𝑒

𝑐
𝑨(𝑹)

)
𝑹}, 𝑨(𝑹) = 𝑨(𝑹) + 𝑹 × 𝑩, (5.53)

with 𝒑 being a momenta operator. To find an analytical solution of the problem,
commensurability between lattice and magnetic translation periods is required.
This condition, expressed in terms of the magnetic translation operators, reads
𝑇𝑀
𝑁𝑹Ψ = Ψ, where 𝑁 is large integer and 𝑹 an arbitrary lattice vector. The

periodic condition implies [𝑇𝑀
𝑁𝑅
, 𝑇𝑀
𝑅′ ] = 0 and can be equally written as a

rationality condition on magnetic field flux through the elementary unit cell

Φ = 𝐵|𝑹1 × 𝑹2 | = 𝐵
(2𝜋)2

|𝒃1 × 𝒃2 |
=
𝑞

𝑝

2𝜋ℏ𝑐
𝑒

=
𝑞

𝑝
Φ0, (5.54)

where numbers 𝑞, 𝑝 are co-prime integers, 𝑝 is divisor of 𝑁 , and Φ0 = 2𝜋𝑒
𝑐

is
a flux quantum. Later on we shall concentrate on the case of 𝑞 = 1 for which
magnetic field values form a dense set for large 𝑝 and small magnetic fields.
Other values of 𝑞 can be analyzed in a similar manner.

For the set of magnetic translation operator to form a group, we need to adjust
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its definition by adding a phase factor [118]

𝑇𝑀𝑚,𝑹 = 𝑒𝑖 𝜋 (2𝑚− 𝑗𝑘 )/𝑝𝑇𝑀𝑹 ; 𝑹 = 𝑗𝑹1 + 𝑘𝑹2, (5.55)

where 𝑅1, 𝑅2 are elementary unit vectors. This group has 𝑁2 𝑝-dimensional irre-
ducible representations, classified by quasimomenta eigenvalues 𝒒 = 1

𝑁
(𝑛1𝒃1 +

𝑛2𝒃2), 𝑛1, 𝑛2 = 0, ..., 𝑁
𝑝
− 1 and corresponding eigenstates Ψ𝛼𝒒𝑠 as follows [118]

𝐻Ψ𝛼𝒒𝑠 = E𝛼 (𝒒)Ψ𝛼𝒒𝑠; 𝑇𝑀𝑚,𝑹Ψ𝛼𝒒𝑠 = 𝑒
𝑖 (𝒒+ 𝑠

𝑝
𝒃1 )𝑹Ψ𝛼𝒒𝑠; 𝑠 = 0, ..., 𝑝 − 1

(5.56)

This relation defines the translational symmetry of the problem and may be
considered as an analogy of Bloch’s theorem.

5.B.2 The wave function dependence on eigenvalues of the magnetic
translation operator

As described in the main text a general structure of the wave function expressed
in the gauge invariant space reads [139, 118, 127]

Ψ(𝑘𝑥) =
∞∑︁
𝑙,𝑘, 𝑗

𝛼 𝑗𝑒
𝑖 (𝑝𝑙𝑙+𝑝𝑘𝑘 )𝑒𝑖𝑙

2
𝐵
[𝑘𝑥 𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]Ψ 𝑗

𝑍𝐹
(𝑘𝑥 − 𝑘𝑏1,𝑥 − 𝑙𝑏2,𝑥),

(5.57)

where indices (𝑙, 𝑘) enumerate cells in the extended Brillouin zone scheme, 𝑗
identifies different branches of the wave function in the single cell, and Ψ

𝐸, 𝑗

𝑍𝐹
(𝑘𝑥)

stands for ZF function, defined in the (0, 0)-cell.
Phase factor 𝑒𝑖 (𝑝𝑙𝑙+𝑝𝑘𝑘 ) defines the translational symmetry of the system and

therefore must be expressed in terms of quasimomenta eigenvalues of magnetic
translational operator 𝒒. To find the connection between 𝑝𝑙, 𝑝𝑘 and 𝒒 we project
the solution on the representation space of magnetic translation group using a
projection operator 𝑃𝒒 [118]:

Ψq(𝑘𝑥) = 𝑃qΨ(𝑘𝑥), 𝑃q = 𝐶𝒒

∞∑︁
𝑘′ ,𝑙′=−∞

𝑒−𝑖𝒒 · (𝒃×𝝀 )𝑒𝑖 𝜋 𝑝𝑘
′𝑙′+𝑖 (𝒌− 𝑒

𝑐
𝑨) · (𝒃×𝝀 ) ,

𝒃 = 𝑘 ′𝒃1 + 𝑙′𝒃2
(5.58)

where 𝐶𝒒 is a normalization constant and 𝝀 = (0, 0, 𝑙2
𝐵
) is a vector oriented

along magnetic field . It is convenient to choose a system of coordinates where
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𝒃1 = (𝑏1,𝑥 , 0, 0) and 𝒃2 = (𝑏2,𝑥 , 𝑏2,𝑦 , 0) where the projection operator expressed
in the gauge invariant space 𝑘𝑥 = ( 𝒑 + 𝑒

𝑐
𝑨)𝑥 ,− 𝑖

𝑙2
𝐵

𝜕𝑘𝑥 = ( 𝒑 + 𝑒
𝑐
𝑨)𝑦 reads

𝑃q = 𝐶𝒒

∑︁
𝑘′ ,𝑙′

𝑒−𝑖𝑙
2
𝐵
𝑙′ (𝑞1𝑏2,𝑦−𝑞2𝑏2,𝑥 )𝑒

𝑖𝑙2
𝐵
𝑙′ (𝑏2,𝑦𝑘𝑥+𝑖

𝑏2,𝑥
𝑙2
𝐵

𝜕𝑘𝑥 )
𝑒𝑖𝑙

2
𝐵
𝑘′𝑞2𝑏1,𝑥 𝑒−𝑘

′𝑏1,𝑥𝜕𝑘𝑥

(5.59)

First, we calculate the projection part depending on 𝑘 ′

𝑒𝑖𝑙
2
𝐵
𝑘′𝑞2𝑏1,𝑥 𝑒−𝑘

′𝑏1,𝑥𝜕𝑘𝑥

∞∑︁
𝑙,𝑘, 𝑗

𝛼 𝑗𝑒
𝑖 (𝑝𝑙𝑙+𝑝𝑘𝑘 )𝑒𝑖𝑙

2
𝐵
[𝑘𝑥 𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]

×Ψ 𝑗

𝑍𝐹
(𝑘𝑥 − 𝑘𝑏1,𝑥 − 𝑙𝑏2,𝑥)

= 𝑒𝑖𝑙
2
𝐵
𝑘′𝑞2𝑏1,𝑥

∞∑︁
𝑙,𝑘, 𝑗

𝛼 𝑗𝑒
𝑖 (𝑝𝑙𝑙+𝑝𝑘𝑘 )𝑒𝑖𝑙

2
𝐵
[ (𝑘𝑥−𝑘′𝑏1,𝑥 )𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]

×Ψ 𝑗

𝑍𝐹
(𝑘𝑥 − (𝑘 + 𝑘 ′)𝑏1,𝑥 − 𝑙𝑏2,𝑥)

= 𝑒𝑖𝑘
′ [𝑙2
𝐵
𝑞2𝑏1,𝑥−𝑝𝑘 ]

∞∑︁
𝑙,𝑘, 𝑗

𝛼 𝑗𝑒
𝑖 (𝑝𝑙𝑙+𝑝𝑘𝑘 )𝑒𝑖𝑙

2
𝐵
[𝑘𝑥 𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]

×Ψ 𝑗

𝑍𝐹
(𝑘𝑥 − 𝑘𝑏1,𝑥 − 𝑙𝑏2,𝑥), (5.60)

where in the second line we used 𝑒𝑎𝜕𝑘𝑥 𝑓 (𝑘𝑥) = 𝑓 (𝑘𝑥 + 𝑎) and in the last line we
renamed 𝑘 → 𝑘 + 𝑘 ′ and used 𝑒𝑖𝑙2𝐵𝑏1,𝑥𝑏2,𝑦 = 𝑒𝑖𝑙

2
𝐵
|𝒃1×𝒃2 | = 𝑒𝑖2𝜋𝑝 = 1. Now, we
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calculate the second part of projection depending on 𝑙′

𝑒−𝑖𝑙
2
𝐵
𝑙′ (𝑞1𝑏2,𝑦−𝑞2𝑏2,𝑥 )𝑒

𝑖𝑙2
𝐵
𝑙′ (𝑏2,𝑦𝑘𝑥+𝑖

𝑏2,𝑥
𝑙2
𝐵

𝜕𝑘𝑥 )

×
∞∑︁
𝑙,𝑘, 𝑗

𝛼 𝑗𝑒
𝑖 (𝑝𝑙𝑙+𝑝𝑘𝑘 )𝑒𝑖𝑙

2
𝐵
[𝑘𝑥 𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]Ψ 𝑗

𝑍𝐹
(𝑘𝑥 − 𝑘𝑏1,𝑥 − 𝑙𝑏2,𝑥)

= 𝑒−𝑖𝑙
2
𝐵
(𝑙′ (𝑞1𝑏2,𝑦−𝑞2𝑏2,𝑥 )+ 𝑙

′2
2 𝑏2,𝑥𝑏2,𝑦−𝑙′𝑏2,𝑦𝑘𝑥 )𝑒−𝑙

′𝑏2,𝑥𝜕𝑘𝑥

×
∞∑︁
𝑙,𝑘, 𝑗

𝛼 𝑗𝑒
𝑖 (𝑝𝑙𝑙+𝑝𝑘𝑘 )𝑒𝑖𝑙

2
𝐵
[𝑘𝑥 𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]Ψ 𝑗

𝑍𝐹
(𝑘𝑥 − 𝑘𝑏1,𝑥 − 𝑙𝑏2,𝑥)

= 𝑒𝑖𝑙
2
𝐵
(𝑙′𝑏2,𝑦𝑘𝑥−𝑙′ (𝑞1𝑏2,𝑦−𝑞2𝑏2,𝑥 )− 𝑙

′2
2 𝑏2,𝑥𝑏2,𝑦 )

×
∞∑︁
𝑙,𝑘, 𝑗

𝛼 𝑗𝑒
𝑖 (𝑝𝑙𝑙+𝑝𝑘𝑘 )𝑒𝑖𝑙

2
𝐵
[ (𝑘𝑥−𝑙′𝑏2,𝑥 )𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]Ψ 𝑗

𝑍𝐹
(𝑘𝑥 − 𝑘𝑏1,𝑥 − (𝑙 + 𝑙′)𝑏2,𝑥)

= 𝑒−𝑖𝑙
′ [𝑙2
𝐵
(𝑞1𝑏2,𝑦−𝑞2𝑏2,𝑥 )−𝑝𝑙 ]

×
∞∑︁
𝑙,𝑘, 𝑗

𝛼 𝑗𝑒
𝑖 (𝑝𝑙𝑙+𝑝𝑘𝑘 )𝑒𝑖𝑙

2
𝐵
[𝑘𝑥 𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]Ψ 𝑗

𝑍𝐹
(𝑘𝑥 − 𝑘𝑏1,𝑥 − 𝑙𝑏2,𝑥)

(5.61)

Finally we see that the projecting results in

Ψq(𝑘𝑥) = 𝐶𝒒

∞∑︁
𝑘′ ,𝑙′=−∞

𝑒−𝑖𝑙
′ [𝑙2
𝐵
(𝑞1𝑏2,𝑦−𝑞2𝑏2,𝑥 )+𝑝𝑙 ]𝑒𝑖𝑘

′ [𝑙2
𝐵
𝑞2𝑏1,𝑥−𝑝𝑘 ]Ψ(𝑘𝑥). (5.62)

The summation over 𝑘 ′, 𝑙′ establishes the connection between 𝑝𝑘 , 𝑝𝑙 and 𝒒 as
𝑝𝑘 = 𝑙2

𝐵
𝑞2𝑏1,𝑥 and 𝑝𝑙 = 𝑙2

𝐵
(𝑞2𝑏2,𝑥 − 𝑞1𝑏2,𝑦). Utilizing this relation, we find a

general form of the wave function as a eigenfunction of the magnetic translation
operator

Ψ𝒒 (𝑘𝑥) =
∞∑︁
𝑙,𝑘, 𝑗

𝛼 𝑗𝑒
𝑖𝑙2
𝐵
( [𝑞2𝑏2,𝑥−𝑞1𝑏2,𝑦 ]𝑙+𝑞2𝑏1,𝑥𝑘 )𝑒𝑖𝑙

2
𝐵
[𝑘𝑥 𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]

×Ψ 𝑗

𝑍𝐹
(𝑘𝑥 − 𝑘𝑏1,𝑥 − 𝑙𝑏2,𝑥) (5.63)

To define 𝛼𝑖 coefficients and allowed energy values, we need to connect pieces
of the wave function in neighbouring cells of the Brillouin zone as well as pieces
corresponding to the different parts of the orbit in the single cell. In the following
sections, we perform this for the cases of square and triangular lattices by solving
a scattering problem near the van Hove singularities.
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(a)

Figure 5.8. Panel (a): schematic geometry of the orbit network from Eq.5.68 in the
square lattice. Panel (b): tight binding energy dispersion of the square lattice with
only nearest neighbor hoppings 𝑡 involved; constant energy contours and schematicly
represented orbits at a particular fixed energy (blue lines) are highlighted. Panel (c):
spectrum of the same square lattice as in (b) but with third nearest neighbor hoppings
𝑡3 = 1/4𝑡 taken into account.

5.B.3 Square lattice: derivation of spectral equation for orbit net-
work

In this section, we present the technical details of derivation of the orbit network
spectral equation for the simplest case of square lattice. The Brillouin zone
of the square lattice contains saddle points at the X-points. The tight-binding
Hamiltonian in the case where only nearest neighbor hopping is taken into account
reads

𝐻𝑠𝑞 = −2𝑡 (cos(𝑘𝑥𝑎) + cos
(
𝑘𝑦𝑎

)
), (5.64)

with 𝑎 being a lattice constant and 𝑡 is hopping parameter. This Hamiltonian
exhibits the saddle points at 𝑋-points in Brillouin zone

𝐸𝜋/𝑎,0(𝒌) ≈ −𝑎2𝑡 [(𝑘𝑥 − 𝜋/𝑎)2 − 𝑘2
𝑦], 𝐸0, 𝜋/𝑎 (𝒌) ≈ 𝑎2𝑡 [𝑘2

𝑥 − (𝑘𝑦 − 𝜋/𝑎)2] .
(5.65)
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They result in usual logarithmic van Hove singularities in the density of states.
One can modify Eq. (5.64) by taking hopping 𝑡3 to the third nearest neighbor into
account

𝐻𝑠𝑞,2 = −2𝑡
(
cos 𝑘𝑥𝑎 + cos 𝑘𝑦𝑎

)
− 2𝑡3

(
cos 2𝑘𝑥𝑎 + cos 2𝑘𝑦𝑎

)
, (5.66)

and obtain high-order saddle points of cusp type 𝐴3 [109] at each X-point for
𝑡3 = 1/4𝑡:

𝐸𝜋/𝑎,0 ≈ −1
4
𝑎4𝑡𝑞4

𝑥 −
5
12
𝑎4𝑡𝑞4

𝑦 + 2𝑎2𝑡𝑞2
𝑦 − 𝑡,

𝐸0, 𝜋/𝑎 ≈ − 5
12
𝑎4𝑡𝑞4

𝑥 + 2𝑎2𝑡𝑞2
𝑥 −

1
4
𝑎4𝑡𝑞4

𝑦 − 𝑡. (5.67)

Such saddle points result in high-order van Hove singularities with divergence
exponent 1/4. Recently, a slightly different version of this model with nearest-
neighbor (NN), next NN and third NN hoppings was analyzed in Ref. [155] with
relation to enhanced nematicity effects.

While we keep the hopping parameters isotropic (equal along x- and y-
directions), the qualitative geometry of the coherent orbit network does not
change due to saddle point type. It is schematically shown in Fig. 5.8 together
with tight-binding dispersion plots with highlighted equi-energy contours.

To derive a solution for the orbit network, we note that each unit cell of the
network in Fig. 5.8 can be separated into four quasiclassical regions which can
be described by WKB-type Zilberman-Fischbeck (ZF) wave functions, and four
scattering regions of magnetic breakdown with corresponding scattering matrices
𝑆1,2.

Ψ𝒒 (𝑘𝑥) =
∞∑︁

𝑙,𝑘=−∞
𝑒𝑖 (𝑝𝑘𝑘+𝑝𝑙𝑙)𝑒𝑖𝑙

2
𝐵
𝑙𝑏2,𝑦𝑘𝑥

×



𝛼1ℎ1(𝑘𝑥)𝑒
𝑖𝑙2
𝐵

𝑘𝑥∫
𝑘𝑏1,𝑥

𝑑𝑘𝑥𝑘
𝐸,𝑏
𝑦 (𝑘𝑥 )

+ 𝛼2ℎ2(𝑘𝑥)𝑒
𝑖𝑙2
𝐵

𝑘𝑥∫
𝑘𝑏1,𝑥

𝑑𝑘𝑥𝑘
𝐸,𝑡
𝑦 (𝑘𝑥 )

,

when 𝑘𝑏1,𝑥 < 𝑘𝑥 < (𝑘 + 1
2 )𝑏1,𝑥 ,

𝛼3ℎ3(𝑘𝑥)𝑒
𝑖𝑙2
𝐵

𝑘𝑦∫
𝑘𝑏1,𝑥

𝑑𝑘𝑥𝑘
𝐸,𝑡
𝑦 (𝑘𝑥 )

+ 𝛼4ℎ4(𝑘𝑥)𝑒
𝑖𝑙2
𝐵

𝑘𝑥∫
𝑘𝑏1,𝑥

𝑑𝑘𝑥𝑘
𝐸,𝑏
𝑦 (𝑘𝑥 )

,

when (𝑘 − 1
2 )𝑏1,𝑥 < 𝑘𝑥 < 𝑘𝑏1,𝑥 ,

(5.68)

where ℎ𝑖 (𝑘𝑥) =

(
| 𝜕𝐸 (𝒌 )
𝜕𝑘𝑦

|
)− 1

2 . We choose zero of 𝑘𝑥 as point in the middle of
single Brillouin zone. In each cell of reciprocal lattice, we have two solutions for
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𝑘𝐸𝑦 (𝑘𝑥) at constant energy which we call "top" 𝑘𝐸,𝑡𝑦 (𝑘𝑥) and "bottom" 𝑘𝐸,𝑏𝑦 (𝑘𝑥).
The functional dependence 𝑘𝐸,𝑡 (𝑏)𝑦 (𝑘𝑥) is found directly from exact dispersion
relation at a given energy. For example, in the case of Eq. (5.64), we find

𝑘
𝐸,𝑡 (𝑏)
𝑦 (𝑘𝑥 , 𝐸) = ±1

𝑎
arccos

[
−
𝐸 + 2𝑡 cos

(
𝑘𝑦𝑎

)
2𝑡

]
, (5.69)

while in most other cases the numerical evaluation has to be used.
To build the closed system of equations for coefficients 𝛼 𝑗 , we use the mag-

netic breakdown S-matrix that couples two neighboring cells of the network.
For the case of isotropic square lattice all S-matrices are identical, so the only
difference comes from the geometric arrangement of cyclotron orbits coming to
each magnetic breakdown region. We thus write the corresponding equations as
‘horizontal’ scattering with 𝑆1 matrix and ‘vertical’ scattering with 𝑆2 referring
to the notation from Fig. 5.8(a). For the ‘horizontal’ MB region we obtain:

©­­­­­­«
𝛼2𝑒

𝑖

(𝑘+ 1
2 )𝑏1,𝑥∫

𝑘𝑏1,𝑥

𝑑𝑘𝑥𝑘
𝐸,𝑡
𝑦 (𝑘𝑥 )

𝛼4𝑒

𝑖 𝑝𝑘−𝑖
(𝑘+ 1

2 )𝑏1,𝑥∫
𝑘𝑏1,𝑥

𝑑𝑘𝑥𝑘
𝐸,𝑏
𝑦 (𝑘𝑥 )

ª®®®®®®¬
= 𝑆1

©­­­­­­«
𝛼1𝑒

𝑖

(𝑘+ 1
2 )𝑏1,𝑥∫

𝑘𝑏1,𝑥

𝑑𝑘𝑥𝑘
𝐸,𝑏
𝑦 (𝑘𝑥 )

𝛼3𝑒

𝑖 𝑝𝑘−𝑖
(𝑘+ 1

2 )𝑏1,𝑥∫
𝑘𝑏1,𝑥

𝑑𝑘𝑥𝑘
𝐸,𝑡
𝑦 (𝑘𝑥 )

ª®®®®®®¬
, (5.70)

where we used that ℎ𝑖 (𝑘𝑥) are equal for all 𝑖 at scattering points. Similarly for
the ‘vertical’ MB region we write:(

𝛼1𝑒
𝑖 𝑝𝑙

𝛼3

)
= 𝑆2

(
𝛼2

𝛼4𝑒
𝑖 𝑝𝑙

)
. (5.71)

Note that here, we used the relation 𝑙2
𝐵
𝑏1,𝑥𝑏2,𝑦 = 2𝜋𝑝.

Now, taking into account the series decomposition of dispersion around
saddle point in the case of isotropic square lattice (e.g. Eq. (5.65) or Eq. (5.67))
and the geometry of the orbits in Fig. 5.8, we obtain the rotation rules for the
S-matrix (R and T are absolute values of reflection and transmission coefficients
along the 𝑘𝑥 direction for 𝑆1):

𝑆1 =

(
−𝑖R𝑒𝑖𝜑𝑟 T 𝑒𝑖𝜑𝑡
T 𝑒𝑖𝜑𝑡 −𝑖R𝑒𝑖𝜑𝑟

)
, 𝑆2 =

(
𝑖T 𝑒𝑖𝜑𝑡 R𝑒𝑖𝜑𝑟
R𝑒𝑖𝜑𝑟 𝑖T 𝑒𝑖𝜑𝑡

)
. (5.72)

These relations are obtained by noting that absolute values of transitions between
part of trajectories 1 → 2 and 3 → 4 at point 𝑆1 should be equal to 2 → 3 and
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4 → 1 at point 𝑆2. The unitarity of S-matrix implies the following restrictions
on S-matrix:

R2 + T 2 = 1, 𝑖RT 𝑒−𝑖 (𝜑𝑟−𝜑𝑡 ) − 𝑖RT 𝑒−𝑖 (𝜑𝑡−𝜑𝑟 ) = 2RT sin(𝜑𝑟 − 𝜑𝑡 ) = 0.
(5.73)

The second relation implies that either 𝜑𝑟 = 𝜑𝑡 + 0, 𝜋, . . . or one of 𝑟 or 𝑡 is
equal to zero. Indeed, we find that both cases are realized for the 𝐴3 saddle
point, which is an example of perfect transmission along the semiclassical orbit.
We note that the relation det(𝑆) = 𝑒𝑖𝜑𝑠𝑐 = 𝑒2𝑖𝜑𝑟 = 𝑒2𝑖𝜑𝑟 also follows from the
unitarity.

Combining (5.70) and (5.71) into system of equations for 𝛼𝑙,𝑘1,...4 parameters,
we find

©­­­«
−𝑖R𝑒𝑖𝜑𝑟 𝑒𝑖Φ𝑏 −𝑒𝑖Φ𝑡 T 𝑒𝑖𝜑𝑡 𝑒𝑖 (𝑝𝑘−Φ𝑡 ) 0
T 𝑒𝑖𝜑𝑡 𝑒𝑖Φ𝑏 0 −𝑖R𝑒𝑖𝜑𝑟 𝑒𝑖 (𝑝𝑘−Φ𝑡 ) −𝑒𝑖 (𝑝𝑘−Φ𝑏 )

−𝑒𝑖 𝑝𝑙 𝑖T 𝑒𝑖𝜑𝑡 0 R𝑒𝑖𝜑𝑟 𝑒𝑖 𝑝𝑙
0 R𝑒𝑖𝜑𝑟 −1 𝑖T 𝑒𝑖𝜑𝑡 𝑒𝑖 𝑝𝑙

ª®®®¬𝜶 = 0, (5.74)

where we used the short-hand notation

Φ𝑏 (𝑡 ) = 𝑙
2
𝐵

∫ (𝑘+ 1
2 )𝑏1,𝑥

𝑘𝑏1,𝑥

𝑑𝑘𝑥𝑘
𝐸,𝑏 (𝑡 )
𝑦 (𝑘𝑥) . (5.75)

The condition of existence of nontrivial solution gives the spectral equation:

( [R𝑒𝑖𝜑𝑟 ]2 + [T 𝑒𝑖𝜑𝑡 ]2)2𝑒𝑖 (Φ𝑏−Φ𝑡 ) + 𝑒−𝑖 (Φ𝑏−Φ𝑡 )

−R𝑒𝑖𝜑𝑟T 𝑒𝑖𝜑𝑡
(
𝑒𝑖 𝑝𝑙 + 𝑒−𝑖 𝑝𝑙 + 𝑒𝑖 (𝑝𝑘−Φ𝑏−Φ𝑡 )𝑒−𝑖 𝑝𝑙 + 𝑒−𝑖 (𝑝𝑘−Φ𝑏−Φ𝑡 )

)
= 0 (5.76)

Using that ( [R𝑒𝑖𝜑𝑟 ]2 + [T 𝑒𝑖𝜑𝑡 ]2)2 = det 𝑆2
1 = 𝑒2𝑖𝜑𝑠𝑐 , Φ𝑏 = 𝑙2

𝐵
𝑏1,𝑥𝑏2,𝑦 − Φ𝑡 =

2𝑝𝜋 − Φ𝑒 (see Fig. 5.8) and the area inside the orbit is 𝑙2
𝐵
A(𝐸) = 2(Φ𝑡 − Φ𝑏),

and obtain:

cos

(
𝑙2
𝐵
A(𝐸)

2
− 𝜑𝑠𝑐

)
= 𝑒𝑖 (𝜑𝑟−𝜑𝑡 )RT (cos (𝑝𝑘) + cos (𝑝𝑙))

= ±RT (cos (𝑝𝑘) + cos (𝑝𝑙)) , (5.77)

where the sign depends on whether 𝜑𝑟 = 𝜑𝑡 or 𝜑𝑟 = 𝜑𝑡 + 𝜋. Rewriting this
equation in terms of magnetic translation operators eigenvalues, we find:

cos

(
𝑙2
𝐵
A(𝐸)

2
− 𝜑𝑠𝑐

)
= ±RT

(
cos

(
𝑙2𝐵𝑞1𝑏2,𝑦

)
+ cos

(
𝑙2𝐵𝑞2𝑏1,𝑥

))
. (5.78)
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The cosine on the left defines the standard Lifshitz-Onsager quantization rule
with slightly shifted Landau levels in the vicinity of the energy of van Hove
singularity due to nonzero scattering phase. The right-hand side defines mini-
band broadening and leads to oscillatory behavior.

5.B.4 Triangular lattice with imaginary hoppings: orbit network
connected via Monkey saddle points

In this section, we analyze a case with a more complicated geometry of a trian-
gular lattice with imaginary hopping parameters. The tight-binding Hamiltonian
in the nearest neighbor approximation is given by Eq. (18) in the main text.
Similar structure of dispersion with Monkey saddle might effectively appear
in Moiré materials [152]. We apply a 𝜋/2 clockwise rotation of coordinates
𝑘𝑦 → 𝑘𝑥 , 𝑘𝑥 → −𝑘𝑦 to the system in order to have 𝒃1 = (𝑏1,𝑥 , 0, 0) as described
in the previous sections. A schematic picture of the orbits that constitute a net-
work is shown in Fig. 5.9. The general structure of a solution is described in the
main text, in the particular case of triangular lattice the wave function has three
different ZF-type terms in each unit cell and for 𝐸 > 0 reads:

Ψ𝒒 (𝑘𝑥) =
∑︁
𝑙,𝑘

𝑒𝑖 (𝑝𝑘𝑘+𝑝𝑙𝑙)𝑒𝑖𝑙
2
𝐵
[𝑘𝑥 𝑙𝑏2,𝑦− 𝑙

2
2 𝑏2,𝑥𝑏2,𝑦 ]

×
[
𝛼3ℎ3(𝑘𝑥)𝑒

𝑖𝑙2
𝐵

𝑘𝑥∫
𝑘𝑏1,𝑥+𝑙𝑏2,𝑥

𝑑𝑘𝑥𝑘
𝐸,3
𝑦 (𝑘𝑥 )

,when 𝑘𝑏1,𝑥 + 𝑙𝑏2,𝑥 < 𝑘𝑥 < (𝑘 + 1)𝑏1,𝑥 + 𝑙𝑏2,𝑥

+



𝛼2ℎ2(𝑘𝑥) 𝑒

𝑖𝑙2
𝐵

𝑘𝑥∫
𝑘𝑏1,𝑥+(𝑙+1)𝑏2,𝑥

𝑑𝑘𝑥𝑘
𝐸,2
𝑦 (𝑘𝑥 )

,

when 𝑘𝑏1,𝑥 + 𝑙𝑏2,𝑥 < 𝑘𝑥 < 𝑘𝑏1,𝑥 + (𝑙 + 1)𝑏2,𝑥

𝛼1ℎ1(𝑘𝑥) 𝑒

𝑖𝑙2
𝐵

𝑘𝑥∫
𝑘𝑏1,𝑥+(𝑙+1)𝑏2,𝑥

𝑑𝑘𝑥𝑘
𝐸,1
𝑦 (𝑘𝑥 )

,

when 𝑘𝑏1,𝑥 + (𝑙 + 1)𝑏2,𝑥 < 𝑘𝑥 < (𝑘 + 1)𝑏1,𝑥 + 𝑙𝑏2,𝑥

]
.

(5.79)

The positions of scattering point are 𝑘 (𝑙,𝑘 )𝑥,𝑠𝑐𝑎𝑡𝑡 = 𝑘𝑏1,𝑥 + 𝑙𝑏2,𝑥 . The case of 𝐸 < 0
can be analyzed in the same way as 𝐸 > 0 by making use of a symmetry property
of the dispersion (3) that stays the same for 𝐸 → −𝐸 and 𝒌 → −𝒌 replacement.
Therefore, later on we concentrate on the case of 𝐸 > 0.

Now, we perform a derivation of spectral equation from the scattering equa-
tions that couple neighboring cells. The scattering equation at point 𝑘 (𝑙,𝑘 )𝑥,𝑠𝑐𝑎𝑡𝑡 has
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Figure 5.9. Schematic structure of the orbit network for triangular lattice with imaginary
hoppings. The 𝒃𝑖 vectors denote the basis in reciprocal space, red S circles label the
positions of scattering regions with Monkey saddle. The black lines with arrows show
example orbits with coefficients 𝛼𝑙,𝑘

𝑖
that appear in decomposition of the wave function

into Zilberman-Fischbeck wave functions between scattering regions. Indices 𝑙 and 𝑘
label the elementary unit cell in 𝑘-space with its position according to 𝒃1 and 𝒃2 vectors.
Only the case of positive energies is shown as the negative energies can be obtain by
using the symmetry of the model 𝐸 → −𝐸 with 𝒌 → −𝒌.
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the form:

©­­«
𝛼1𝑒

−𝑖 𝑝𝑘𝑒𝑖Φ1

𝛼2𝑒
−𝑖 𝑝𝑙𝑒−𝑖𝑙

2
𝐵

𝑏2,𝑥𝑏2,𝑦
2

𝛼3

ª®®¬ = 𝑆
©­­«
𝛼1𝑒

−𝑖 𝑝𝑙𝑒−𝑖𝑙
2
𝐵

𝑏2,𝑥𝑏2,𝑦
2

𝛼2𝑒
−𝑖Φ2

𝛼3𝑒
−𝑖 𝑝𝑘𝑒𝑖Φ3 ,

ª®®¬ , (5.80)

where we used the relation 𝑙2
𝐵
𝑏1,𝑥𝑏2,𝑦 = 2𝜋𝑝 and equality of ℎ𝑖 (𝑘𝑥) at the

scattering point as well as the short-hand notation for Φ𝑖 introduced in the
previous section.

Before we insert the numerically calculated S-matrix, there is one subtlety
that should be taken into account: the scattering basis of incoming and outgoing
modes in numerical approach (5.45) is different from the one used in the orbit
network (5.79). The difference between two pictures arises due to the fact that the
numerical approach couples the incoming and outgoing modes in quasiclassical
region at infinity |𝒌 | → ∞, while in the orbital network the modes are coupled
at the scattering point itself

Orbit network:
©­­«
Ψ
𝑜𝑢𝑡,1
𝑍𝐹

(𝑘 = 0)
Ψ
𝑜𝑢𝑡,2
𝑍𝐹

(𝑘 = 0)
Ψ
𝑜𝑢𝑡,3
𝑍𝐹

(𝑘 = 0)

ª®®¬ = 𝑆
©­­«
Ψ
𝑖𝑛,1
𝑍𝐹

(𝑘 = 0)
Ψ
𝑖𝑛,2
𝑍𝐹

(𝑘 = 0)
Ψ
𝑖𝑛,3
𝑍𝐹

(𝑘 = 0)

ª®®¬ ,
Numerical approach:

©­­«
Ψ
𝑜𝑢𝑡,1
𝑍𝐹

(𝑘 → ∞)
Ψ
𝑜𝑢𝑡,2
𝑍𝐹

(𝑘 → ∞)
Ψ
𝑜𝑢𝑡,3
𝑍𝐹

(𝑘 → ∞)

ª®®¬
′

= 𝑆′
©­­«
Ψ
𝑖𝑛,1
𝑍𝐹

(𝑘 → ∞)
Ψ
𝑖𝑛,2
𝑍𝐹

(𝑘 → ∞)
Ψ
𝑖𝑛,3
𝑍𝐹

(𝑘 → ∞)

ª®®¬
′

. (5.81)

Here,Ψ𝑖
𝑍𝐹

and the primedΨ𝑖,′
𝑍𝐹

wave functions correspond to the different choices
of normalization constant in the bases. Thus we continue with connecting the
two types of scattering states in these problems by introducing dynamical phases
as well as constant phase shifts that account for selected convention in basis
definitions:

Ψ
𝑖𝑛,𝑖

𝑍𝐹
(𝑘𝑥) = 𝑒𝑖 𝛿

𝑖𝑛
𝑖 Ψ

′𝑖𝑛,𝑖
𝑍𝐹

(𝑘𝑥) , Ψ
𝑖𝑛,𝑖

𝑍𝐹
(𝑘𝑥 → ±∞) = 𝑒𝑖𝜙

𝑖𝑛,𝑖

𝑑𝑦𝑛Ψ
𝑖𝑛,𝑖

𝑍𝐹
(0) (5.82)

Ψ
𝑜𝑢𝑡,𝑖

𝑍𝐹
(𝑘𝑥) = 𝑒𝑖 𝛿

𝑜𝑢𝑡
𝑖 Ψ

′𝑜𝑢𝑡,𝑖
𝑍𝐹

(𝑘𝑥) , Ψ
𝑜𝑢𝑡,𝑖

𝑍𝐹
(𝑘𝑥 → ±∞) = 𝑒𝑖𝜙

𝑜𝑢𝑡,𝑖

𝑑𝑦𝑛 Ψ
𝑖𝑛,𝑖

𝑍𝐹
(0).
(5.83)

The phase factors 𝑒𝑖 𝛿𝑖𝑛𝑖 , 𝑒𝑖 𝛿𝑜𝑢𝑡𝑖 do not depend on energy and represent differences
of the basis definitions, while 𝜙𝑖𝑛,𝑖

𝑑𝑦𝑛
, 𝜙
𝑜𝑢𝑡,𝑖

𝑑𝑦𝑛
are dynamical phases that correspond

to covered areas in momentum space of ZF wave functions 𝜓𝑖𝑛
𝑖

- see Fig. 5.10.
There, solid lines represent the real roots of equation

𝑘3
𝑦 + 3𝑘𝑦𝑘2

𝑥 = −𝐸, (5.84)
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defining semiclassical trajectory 𝑘𝐸𝑦 (𝑘𝑥), while the dashed lines correspond to
real parts of the complex roots in the intervals of 𝑘𝑥 with only one allowed
semiclassical trajectory. The relation between phases and the shaded areas is the
following: 

𝜙
𝑖𝑛,3
𝑑𝑦𝑛

= −𝐹1

𝜙
𝑖𝑛,1
𝑑𝑦𝑛

= −𝐹3 − 𝐹4

𝜙
𝑖𝑛,2
𝑑𝑦𝑛

= 𝐹1 + 𝐹2

,


𝜙
𝑜𝑢𝑡,3
𝑑𝑦𝑛

= 𝐹1

𝜙
𝑜𝑢𝑡,1
𝑑𝑦𝑛

= −𝐹1 − 𝐹2

𝜙
𝑜𝑢𝑡,2
𝑑𝑦𝑛

= 𝐹3 + 𝐹4

(5.85)

By using the symmetry of Monkey saddle dispersion 𝐸 → −𝐸 together with
𝒌 → −𝒌, we notice that Ψ𝑜𝑢𝑡,𝑖

𝑍𝐹
(𝑘𝑥 , 𝐸) = Ψ

𝑖𝑛,𝑖

𝑍𝐹
(−𝑘𝑥 ,−𝐸) and Ψ

′𝑜𝑢𝑡,𝑖
𝑍𝐹

(𝑘𝑥 , 𝐸) =
Ψ
𝑖𝑛,𝑖

𝑍𝐹
(−𝑘𝑥 ,−𝐸), which gives 𝑒𝑖 𝛿𝑖𝑛𝑖 = 𝑒𝑖 𝛿

𝑜𝑢𝑡
𝑖 = 𝑒𝑖 𝛿𝑖 . Hence,

𝑆 =

©­­­­«
𝑒
−𝑖

[
𝜙𝑜𝑢𝑡
𝑑𝑦𝑛,1−𝛿1

]
0 0

0 𝑒
−𝑖

[
𝜙𝑜𝑢𝑡
𝑑𝑦𝑛,2−𝛿2

]
0

0 0 𝑒
−𝑖

[
𝜙𝑜𝑢𝑡
𝑑𝑦𝑛,3−𝛿3

]
ª®®®®¬
𝑆num

×
©­­­­«
𝑒
𝑖

[
𝜙𝑖𝑛
𝑑𝑦𝑛,1−𝛿1

]
0 0

0 𝑒
𝑖

[
𝜙𝑖𝑛
𝑑𝑦𝑛,2−𝛿2

]
0

0 0 𝑒
𝑖

[
𝜙𝑖𝑛
𝑑𝑦𝑛,3−𝛿3

]
ª®®®®¬
. (5.86)

By calculating the areas shown in Fig. 5.10 we find the following relations:

𝐹4 = const , 𝐹3 =
2
3
𝐹1, 𝐹2 + 2𝐹3 = 𝐹4. (5.87)

Next, we change the notation to 𝜙0 = 𝐹1/3, and obtain
𝜙𝑖𝑛
𝑑𝑦𝑛,3 = −3𝜙0

𝜙𝑖𝑛
𝑑𝑦𝑛,1 = −𝐹4 − 2𝜙0

𝜙𝑖𝑛
𝑑𝑦𝑛,2 = 𝐹4 − 𝜙0

,


𝜙𝑜𝑢𝑡
𝑑𝑦𝑛,3 = 3𝜙0

𝜙𝑜𝑢𝑡
𝑑𝑦𝑛,1 = −𝐹4 + 𝜙0

𝜙𝑜𝑢𝑡
𝑑𝑦𝑛,2 = 𝐹4 + 2𝜙0

. (5.88)

At the same time following the numerical procedure described in above section,
we find S-matrix:

𝑆num =
©­«

T 𝑒𝑖𝜑𝑡 𝑒𝑖6𝜙0 (𝐸 ) R2𝑒
𝑖𝜑2𝑒−𝑖

𝜋
3 +𝑖2𝜙0 (𝐸 ) R1𝑒

𝑖𝜑1𝑒𝑖
𝜋
3 +𝑖4𝜙0 (𝐸 )

R1𝑒
𝑖𝜑1𝑒𝑖

𝜋
3 +𝑖4𝜙0 (𝐸 ) T 𝑒𝑖𝜑𝑡 𝑒𝑖6𝜙0 (𝐸 ) R2𝑒

𝑖𝜑2𝑒−𝑖
𝜋
3 +𝑖2𝜙0 (𝐸 )

R2𝑒
𝑖𝜑2𝑒−𝑖

𝜋
3 +𝑖2𝜙0 (𝐸 ) R1𝑒

𝑖𝜑1𝑒𝑖
𝜋
3 +𝑖4𝜙0 (𝐸 ) T 𝑒𝑖𝜑𝑡 𝑒𝑖6𝜙0 (𝐸 )

ª®¬ .
(5.89)
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Figure 5.10. Definition of different phases according to the integration in momentum
space for the scattering problem geometry around Monkey saddle point. Solid lines
represent semiclassical trajectories at fixed energy near Monkey saddle, whereas dashed
line depicts the real part of complex roots of Eq. (5.84) and dotted lines correspond
to 𝐸 = 0 regime. The shaded areas are related to the constant and dynamical phases
according to Eq. (5.85).

Here, T ,R1,R2 are real values. The presence of 𝑒𝑖
𝜋
3 and 𝑒𝑖𝐹4 phase factors is

a consequence uncertainty of the dynamical phases, that are defined only up to
an offset parameter. This arbitrariness is controlled by 𝑒𝑖 𝛿𝑖 phase factors which
transform the numerical basis to the basis of the network model. Phases 𝑒𝜑𝑡 , 𝑒𝜑1

and 𝑒𝜑2 are scattering phases that decay to zero with 𝐸 → ∞. Therefore, we
have

𝑆 =
©­­«

T 𝑒𝑖𝜑𝑡 𝑒𝑖3𝜙0 (𝐸 ) R2𝑒
𝑖𝜑2𝑒𝑖( 𝛿1−𝛿2+2𝐹4− 𝜋3 ) R1𝑒

𝑖𝜑1𝑒𝑖( 𝛿1−𝛿3+𝐹4+ 𝜋3 )
R1𝑒

𝑖𝜑1𝑒𝑖( 𝛿2−𝛿1−2𝐹4+ 𝜋3 ) T 𝑒𝑖𝜑𝑡 𝑒𝑖3𝜙0 (𝐸 ) R2𝑒
𝑖𝜑2𝑒𝑖( 𝛿2−𝛿3−𝐹4− 𝜋3 )−𝑖3𝜙0 (𝐸 )

R2𝑒
𝑖𝜑2𝑒𝑖( 𝛿3−𝛿1−𝐹4− 𝜋3 )−𝑖3𝜙0 (𝐸 ) R1𝑒

𝑖𝜑1𝑒𝑖( 𝛿3−𝛿2+𝐹4+ 𝜋3 ) T 𝑒𝑖𝜑𝑡

ª®®¬ .
(5.90)

To determine the connection between 𝛿𝑖 and 𝐹4, we may use the limiting cases
of big energies where the 𝑆-matrix written in the network basis must take the
form of full reflection scattering matrix for each of the three trajectories with
additional factor −𝑖 appearing at turning point [127] (see Fig. 5.9):

𝑆(𝐸 ≫ 0) = ©­«
0 0 −𝑖
1 0 0
0 −𝑖 0

ª®¬ . (5.91)

From this condition and previously obtained expression (5.90), we find a set of
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conditions, which in turn yield{
𝑒𝑖 (𝛿2−𝛿1−2𝐹4+𝜋/3) = 1
𝑒𝑖 (𝛿3−𝛿2+𝐹4+𝜋/3) = −𝑖 ⇒ 𝑒𝑖 (𝛿1−𝛿3+𝐹4+𝜋/3)

= 𝑒𝑖 𝜋𝑒−𝑖 (𝛿2−𝛿1−2𝐹4+𝜋/3)𝑒−𝑖 (𝛿3−𝛿2+𝐹4+𝜋/3) = −𝑖. (5.92)

In such a way we settle all additional constants and obtained the exact form of
the network model 𝑆-matrix from numerical 𝑆num-matrix:

𝑆 =
©­«
T 𝑒𝑖𝜑𝑡 𝑒𝑖3𝜙0 (𝐸 ) R2𝑒

𝑖𝜑2 −𝑖R1𝑒
𝑖𝜑1

R1𝑒
𝑖𝜑1 T 𝑒𝑖𝜑𝑡 𝑒𝑖3𝜙0 (𝐸 ) 𝑖R2𝑒

𝑖𝜑2𝑒−𝑖3𝜙0 (𝐸 )

R2𝑒
𝑖𝜑2𝑒−𝑖3𝜙0 (𝐸 ) −𝑖R1𝑒

𝑖𝜑1 T 𝑒𝑖𝜑𝑡
ª®¬ . (5.93)

Substituting it to (5.80) that couples solutions on neighboring orbits, we find:

©­«
𝛼1
𝛼2
𝛼3

ª®¬ =

©­­­«
𝑒𝑖 (𝑝𝑘−Φ1 ) 0 0

0 𝑒
𝑖

(
𝑝𝑙+𝑙2𝐵

𝑏2,𝑥𝑏2,𝑦
2

)
0

0 0 1

ª®®®¬
× ©­«

T 𝑒𝑖𝜑𝑡 𝑒𝑖3𝜙0 (𝐸 ) R2𝑒
𝑖𝜑2 −𝑖R1𝑒

𝑖𝜑1

R1𝑒
𝑖𝜑1 T 𝑒𝑖𝜑𝑡 𝑒𝑖3𝜙0 (𝐸 ) 𝑖R2𝑒

𝑖𝜑2𝑒−𝑖3𝜙0 (𝐸 )

R2𝑒
𝑖𝜑2𝑒−𝑖3𝜙0 (𝐸 ) −𝑖R1𝑒

𝑖𝜑1 T 𝑒𝑖𝜑𝑡
ª®¬

×
©­­­«
𝑒
−𝑖

(
𝑝𝑙+𝑙2𝐵

𝑏2,𝑥𝑏2,𝑦
2

)
0 0

0 𝑒−𝑖Φ2 0
0 0 𝑒𝑖 (Φ3−𝑝𝑘 )

ª®®®¬
©­«
𝛼1
𝛼2
𝛼3

ª®¬ . (5.94)

The condition for the existence of nontrivial solution, also known as non-linear
eigenvalue problem of the Ho-Chalker operator [140], gives the spectral equation

det 𝑆𝑒−𝑖 (Φ1+Φ2−Φ3 )/2 + 𝑒𝑖 (Φ1+Φ2−Φ3 )/2 − ((T 𝑒𝑖𝜑𝑡 )2𝑒𝑖6𝜙0 − R1𝑒
𝑖𝜑1R2𝑒

𝑖𝜑2)

×
[
𝑒−𝑖 𝑝𝑙−𝑖3𝜙0−𝑖 (Φ1−Φ2−Φ3+𝑙2𝐵𝑏2,𝑥𝑏2,𝑦 )/2 + 𝑒−𝑖 (𝑝𝑘−𝑝𝑙 )−𝑖3𝜙0−𝑖 (Φ2−Φ1−Φ3−𝑙2𝐵𝑏2,𝑥𝑏2,𝑦 )/2

+ 𝑒𝑖 𝑝𝑘−𝑖 (Φ2+Φ1+Φ3 )/2]
−T 𝑒𝑖𝜑𝑡

[
𝑒𝑖 𝑝𝑙+𝑖3𝜙0+𝑖 (Φ1−Φ2−Φ3+𝑙2𝐵𝑏2,𝑥𝑏2,𝑦 )/2 + 𝑒𝑖 (𝑝𝑘−𝑝𝑙 )+𝑖3𝜙0+𝑖 (Φ2−Φ1−Φ3−𝑙2𝐵𝑏2,𝑥𝑏2,𝑦 )/2

+ 𝑒−𝑖 𝑝𝑘+𝑖 (Φ2+Φ1+Φ3 )/2] = 0.
(5.95)

Note that for this kind of problems the spectral equations are a convenient tool
to solve eigenvalue problem of Ho-Chalker operator as it reduces to the well-
known Lifshitz-Onsager quantization condition in crystals with small corrections
coming from nonzero tunneling probabilities.
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We note that from unitarity of 𝑆-matrix,

T = | (T 𝑒𝑖𝜑𝑡 )2𝑒𝑖6𝜙0 − R1𝑒
𝑖𝜑1R2𝑒

𝑖𝜑2 |,
arg((T 𝑒𝑖𝜑𝑡 )2𝑒𝑖6𝜙0 − R1𝑒

𝑖𝜑1R2𝑒
𝑖𝜑2) = 𝜑𝑠𝑐 − 𝜑𝑡 , (5.96)

where det 𝑆 = 𝑒𝑖𝜑𝑠𝑐 . Therefore, we have

𝑒𝑖𝜑𝑠𝑐/2−𝑖 (Φ1+Φ2−Φ3 )/2 + 𝑒𝑖 (Φ1+Φ2−Φ3 )/2−𝑖𝜑𝑠𝑐/2

+T 𝑒𝑖 (𝜑𝑠𝑐/2−𝜑𝑡 )
[
𝑒−𝑖 𝑝𝑙−𝑖3𝜑0−𝑖 (Φ1−Φ2−Φ3+𝑙2𝐵𝑏2,𝑥𝑏2,𝑦 )/2

+ 𝑒−𝑖 (𝑝𝑘−𝑝𝑙 )−𝑖3𝜑0−𝑖 (Φ2−Φ1−Φ3−𝑙2𝐵𝑏2,𝑥𝑏2,𝑦 )/2 + 𝑒𝑖 𝑝𝑘−𝑖 (Φ2+Φ1+Φ3 )/2
]

+T 𝑒𝑖 (𝜑𝑡−𝜑𝑠𝑐/2)
[
𝑒𝑖 𝑝𝑙+𝑖3𝜑0+𝑖 (Φ1−Φ2−Φ3+𝑙2𝐵𝑏2,𝑥𝑏2,𝑦 )/2

+ 𝑒𝑖 (𝑝𝑘−𝑝𝑙 )+𝑖3𝜑0+𝑖 (Φ2−Φ1−Φ3−𝑙2𝐵𝑏2,𝑥𝑏2,𝑦 )/2 + 𝑒−𝑖 𝑝𝑘+𝑖 (Φ2+Φ1+Φ3 )/2
]
= 0. (5.97)

Numerical calculations show that for the particular case of Monkey saddle point
𝜑𝑠𝑐 = 2𝜑𝑡 . Using geometry of the problem (see Fig. 5.10), we note that the
particular combinations of phases can be expressed via area enclosed by the
orbit, Φ1 + Φ2 − Φ3 = 𝑙2

𝐵
A(𝐸) = 𝜋𝑝 − 2Φ3 and Φ3 = 2𝐹1 = 6𝜙0. In addition,

we note that 𝑙2
𝐵
𝑏1,𝑥𝑏2,𝑦 = 𝜋𝑝. Thus, we obtain a final form of spectral equation:

cos
(
𝑙2𝐵A(𝐸)/2 − 𝜑𝑠𝑐/2

)
= T

[
cos

(
𝑙2𝐵 [𝑞1𝑏2,𝑦 − 𝑞2𝑏2,𝑥] −

𝜋𝑝

2

)
+ cos

(
𝑙2𝐵 [𝑞1𝑏2,𝑦 + 𝑞2(𝑏1,𝑥 − 𝑏2,𝑥)] −

𝜋𝑝

2

)
+ cos

(
𝑙2𝐵𝑞2𝑏1,𝑥 −

𝜋𝑝

2

) ]
. (5.98)

These spectral equations appears in the main text. For the sake of completeness,
we present a difference in spectral structure with even and odd flux denominator
values 𝑝 in Fig. 5.11. As seen from the plots, for even 𝑝 = 200 spectrum is
symmetric, while for odd 𝑝 = 201 spectrum is antisymmetric with momentum.
The analytic predictions and numerical tight binding simulations demonstrate
excellent agreement.
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Figure 5.11. Two panels demonstrate comparison of analytic predictions (blue dashed
lines) and numerical tight-binding simulations (orange solid lines merging into shaded
areas) for the flux Φ = 1
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Summary

Understanding interactions in quantum many-body systems remains one of the
most profound and difficult challenges in condensed matter physics. While
free particle systems can be solved through single-particle techniques, the in-
troduction of interactions turns the problem essentially many-body and quickly
intractable. The Hilbert space grows exponentially, and traditional approaches
become useless.

To deal with this, one typically turns to numerical methods by discretizing the
system on a lattice. This approach generally works well for many 1D problems,
including those described by Schrödinger equation. However, when it comes
to massless Dirac fermions with protected chirality, the situation becomes more
complicated. Any naive discretization inevitably runs into the fermion dou-
bling problem, formalized by the Nielsen–Ninomiya theorem, which forbids a
straightforward lattice realization of a single chiral mode without either breaking
symmetry or introducing unphysical degrees of freedom.

My thesis is motivated by this problem: the need to describe 1D interacting
systems, and the difficulty of doing so numerically due to these fundamental
obstacles. The main focus of this work is to develop and explore lattice-based
numerical methods for strongly correlated chiral fermions in one dimension, with
the Luttinger liquid as a central case study.

The first part of the thesis introduces and validates a novel numerical approach
based on tangent fermions. In Chapter 2 we use its local action formulation in
the discretized space-time, allowing for simulations via quantum Monte Carlo
that are sign-problem-free at half-filling. It successfully reproduces continuum
results for the helical Luttinger liquid without adjustable parameters, marking the
first faithful lattice simulation of this system.

Building on that, Chapter 3 extends the tangent fermion approach to tensor
network methods, particularly DMRG. This allows us to move beyond the limita-
tions of QMC and investigate broader settings, inclusive of static potentials and
non-trivial interactions, away of half-filling. We show that tangent fermions sup-
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port a compact and efficient tensor network representation, accurately matching
the bosonization results of the Luttinger liquid. This confirms the versatility and
consistency of the method.

The second half of the thesis shifts focus to two-dimensional single-particle
physics, tackling two distinct problems. Chapter 4 concerns Majorana thermal
metals in disordered chiral superconductors. We use the spectral localizer, as
real-space topological tools landscape function, to show that the metal–insulator
transition proceeds through percolation of topological domain walls.

Finally, Chapter 5 investigates Landau quantization in systems with gener-
alized Van Hove singularities. We develop a general method for computing
magnetic breakdown in these materials, uncovering how coherent orbit networks
can form minibands that enable bulk conductance under a magnetic field — po-
tentially exceeding edge channel transport. These features offer experimentally
testable signatures linked to the underlying saddle-point structure.



Samenvatting

Het begrijpen van wisselwerkingen in quantum-veeldeeltjessystemen blijft een
van de diepgaandste en moeilijkste uitdagingen in de theorie van de geconden-
seerde materie. Terwijl systemen zonder wisselwerkingen met één-deeltjesmethodes
exact kunnen worden opgelost, maakt de introductie van interacties het probleem
snel onhandelbaar. De Hilbertruimte groeit exponentieel, buiten het bereik van
exacte methodes.

Om dit aan te pakken, grijpt men meestal naar numerieke methodes door het
systeem op een rooster te discretiseren. Deze aanpak werkt over het algemeen
goed voor één-dimensionale problemen, waaronder de problemen die worden
beschreven door de Schrödinger-vergelijking. De Dirac-vergelijking voor relati-
vistische, massaloze deeltjes is ingewikkelder. Een naïeve discretisatie stuit op
het probleem van fermion-duplicatie, geformaliseerd in de Nielsen-Ninomiya-
stelling, die in de weg staat van een discretisatie die de fundamentele symmetrie
van het probleem behoudt.

Het eerste deel van mijn proefschrift is gemotiveerd door dit probleem: de
noodzaak om één-dimensionale, sterk wisselwerkende systemen numeriek te
beschrijven en de moeilijkheid om dit op een rooster te doen in het geval van
massaloze relativistische deeltjes. Het Luttinger-model is een paradigma voor
dit probleem en staat centraal in het proefschrift.

We introduceren en valideren een nieuwe numerieke aanpak gebaseerd op
tangens-fermionen (zo genaamd omdat de dispersie-relatie door een tangens
beschreven wordt). In Hoofdstuk 2 discretiseren we ruimte en tijd in het quantum
Monte Carlo algorithme. Voor het eerst slagen we er zo in om het Luttinger-
model op een rooster uit te rekenen, met resultaten die goed overeenkomen met
de bestaande bosonisatie theorie in het continuum.

In Hoofdstuk 3 wordt de tangens-fermion aanpak uitgebreid naar tensor-
netwerk-methoden. Dit stelt ons in staat de beperkingen van quantum Monte
Carlo te overstijgen en meer algemene situaties te onderzoeken. We tonen aan
dat tangens-fermionen een compacte en efficiënte tensor-netwerkrepresentatie
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ondersteunen, die de bosonisatie-resultaten van de Luttinger-model nauwkeurig
benaderen. Dit bevestigt de veelzijdigheid en consistentie van de methode.

Het tweede deel van het proefschrift heeft een ander thema, het richt zich
op twee-dimensionale systemen zonder sterke wisselwerkingen. Hoofdstuk 4
behandelt de metaal-isolator overgang in supergeleiders met Majorana deeltjes.
We tonen aan dat deze overgang verloopt via de percolatie van topologische
domeinwanden.

Tenslotte onderzoekt hoofdstuk 5 de Landau-quantisatie in systemen met
generaliseerde Van Hove-singulariteiten. We ontwikkelen een algemene methode
om magnetische breakdown in deze materialen te berekenen en ontdekken hoe
coherente netwerken minibanden kunnen vormen die bulkgeleiding onder een
magnetisch veld mogelijk maken — soms zelfs sterker dan de randgeleiding.
Deze kenmerken bieden experimenteel toetsbare effecten die gekoppeld zijn aan
de onderliggende zadelpuntenstructuur.



Резюме

Описание взаимодействий в квантовых многочастичных системах оста-
ётся одной из самых глубоких и сложных задач физики конденсиро-
ванного состояния. Если проблему системы свободных частиц мож-
но решить с помощью одночастичных методов, то добавление взаимо-
действий делает задачу поистине многочастичной и быстро неразре-
шимой. Размер гильбертова пространства растёт экспоненциально, и
стандартные подходы становятся неприменимыми.

Обычно, для решение таких задач, прибегают к численным мето-
дам, дискретизируя систему на решётке. Такой подход хорошо рабо-
тает для многих одномерных задач, в том числе описываемых уравне-
нием Шрёдингера. Однако, при рассмотрении проблемы безмассовых
фермионов Дирака с защищённой хиральностью, ситуация усложняет-
ся. Любой прямолиный метод дискретизации неизбежно сталкивается
с проблемой удвоения фермионов, которая была формально описанна
теоремой Нильсена—Ниномии, запрещающей локальную реализацию
одного хирального фермиона на пространственной решётке без нару-
шения симметрии или введения нефизических степеней свободы.

Главная мотивация моей дисертации заключается в необходимости
описания одномерных сильно коррелированных систем и сложности
реализации численного подхода, вызванной фундаментальными огра-
ничениями. Основной фокус этой работы – это разработка и исследо-
вание численных методов на решётке для сильно взаимодействующих
одномерных хиральных фермионов, с жидкостью Латтинджера, вы-
ступающей в качестве основного примера.

В первой части диссертации выдвигается и валидируется новый
численный подход, основанный на тангенсных фермионах. Во второй
главе мы используем его в форме локального евклидова действия на
дискретном пространстве-времени, что позволяет нам применить ме-
тод квантового Монте-Карло (QMC) без проблемы знака при усло-
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вии наполовину заполненной зоны. Этот метод точно воспроизводит
результаты континуальной теории для геликальной жидкости Латт-
инджера без подгоночных параметров и представляет собой первую
успешную численную реализацию этой системы на решетке.

В третьей главе мы расшираем подход тангенсных фермионов на
методы тензорных сетей, в частности DMRG. Что позволяет нам пре-
одолеть ограничения QMC и исследовать более общие ситуации, с на-
личием потенциального поля и нестандартных взаимодействий, в том
числе вне половинного заполнения. Продемонстрированно, что тан-
генсные фермионы допускают компактное и эффективное представле-
ние в терминах тензорных сетей, и хорошо согласуются с результатами
бозонизации жидкости Латтинджера. Это подтверждает универсаль-
ность и согласованность нашего метода.

Во второй части диссертации фокус иследовательской работы сме-
щается на двумерную одночастичную физику, охватывая два различ-
ных направления. Глава 4 посвящена тепловым Майорана-металлам
в беспорядочных хиральных сверхпроводниках. Мы применяем спек-
тральный локализатор как инструмент топологического ландшафта в
координатном пространстве и показываем, что переход в металл из
изолятора происходит в следствие перколяции границ топологических
доменов.

Наконец, Глава 5 исследует квантование Ландау в системах с обоб-
щёнными особенностями Ван Хова. Мы разрабатываем общий метод
расчёта магнитного пробоя в таких материалах и показываем, как ко-
герентные орбитальные сети формируют минизоны, которые обеспе-
чивают объёмную проводимость в магнитном поле — порой даже пре-
вышающую краевую. Эти особенности позволяют установить экспери-
ментально различимые сигналы, связанные со структурой седловых
точек в зоне Бриллюэна.
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