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Abstract

Distinguishing true tumor progression (TP) from treatment induced abnormalities (e.g. 

pseudo-progression (PP) after radiotherapy) on conventional MRI scans remains challenging 

in patients with a glioblastoma. We aimed to establish brain MRI phenotypes of glioblastomas 

early after treatment by combined analysis of structural and perfusion tumor characteristics, 

and assessed the relation with recurrence rate and overall survival time. 

Structural and perfusion MR images of 67 patients at 3 months post-radiotherapy were visually 

scored by a neuroradiologist. In total 23 parameters were predefined and used for hierarchical 

clustering analysis. Progression status was assessed based on the clinical course of each 

patient 9 months after radiotherapy (or latest available). Multivariable Cox regression models 

were used to determine the association between the phenotypes, recurrence rate and overall 

survival.

We established 4 subgroups with significantly different tumor MRI characteristics, representing 

distinct MRI phenotypes of glioblastomas: TP and PP rates did not differ significantly between 

subgroups. Regression analysis showed that patients in subgroup 1 (characterized by having 

mostly small and ellipsoid nodular enhancing lesions with some hyper-perfusion) had a 

significant association with increased mortality at 9 months (HR:2.6 (CI:1.1–6.3); p=0.03) with a 

median survival time of 13 months (compared to 22 months of subgroup 2).

Our study suggests that distinct MRI phenotypes of glioblastomas at 3 months post-

radiotherapy can be indicative of overall survival, but does not aid in differentiating TP from PP. 

The early prognostic information our method provides might in the future be informative for 

prognostication of glioblastoma patients.

7.1
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Importance of the study

Determining brain MRI phenotypes of glioblastomas early after treatment can help in showing 

which combination of MRI markers is driving a lower survival chance 9 months after treatment. 

These distinct MRI phenotypes of glioblastomas could in the future guide complex clinical 

decision making based on patient prognosis early after treatment assessment.

Introduction

Glioblastoma is the most common and severe type of primary malignant brain tumor165. Current 

multimodal treatment after surgical resection includes radiotherapy and concomitant and 

adjuvant chemotherapy with temozolomide156. Despite this treatment, a high local recurrence 

rate is observed during the disease course (90%)166. MRI is the cornerstone for brain tumor 

surveillance, and aids clinicians in guiding management decisions. However, a challenge is 

that high dose radiotherapy may cause treatment induced abnormalities in the early stages 

after treatment (i.e. pseudo-progression (PP)), which can look similar to tumor progression on 

conventional MRI scans156,167. Therefore, distinguishing between true tumor progression (TP) 

and PP early after treatment can be challenging. Early differentiation could aid clinicians in 

accurately identifying patients who require an alternative treatment strategy to delay further 

disease progression, and at the same time spare responding patients the burden of additional 

tumor-targeted treatment.

Structural MRI markers have shown some added value for identifying TP, specifically when 

assessing the size and the morphology of the enhancing lesion on post contrast 3DT1 

images168–171. Furthermore, several studies have shown that perfusion MRI (with dynamic 

susceptibility contrast (DSC) and/or arterial spin labeling (ASL)) have added value in 

distinguishing between TP and PP in glioblastomas30,172–177. However, despite perfusion MRI 

techniques being promising in differentiating between TP and PP, individual MRI markers 

showed at best only a modest association with tumor progression and overall survival. This 

indicates the need to combine MRI markers to get a more reliable early assessment of TP in 

glioblastomas177. 

More recently, a number of studies have focused on the use of radiomics in glioblastomas to 

analyze MRI markers in a combined way. One previous study found that structural MRI markers 

Key points

Distinct MRI phenotypes of glioblastomas at 3 months post-radiotherapy are significantly 

associated with overall survival. 

The same MRI phenotypes at 3 months post-radiotherapy do not seem to aid in differentiating 

between true- and pseudo-progression at 9 months after radiotherapy.

7.2
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(gray level texture markers) were associated with TP178. Few previous studies have specifically 

applied radiomics models on perfusion MRI with the aim of developing models that could 

accurately predict TP179–181. Moreover, radiomics approaches such as deep learning models 

rely on MRI markers of higher order that are not directly clinically translatable, and it is not 

always completely clear how these markers drive the algorithms decision making (i.e., which 

combination of MRI markers). With this in mind we set out to explore an alternative approach, 

which includes grouping of patients with glioblastoma based on clinically scored structural 

and both ASL and DSC perfusion MRI markers182,183. We subsequently studied how these sub-

groups progressed over time. We have previously developed a method that was able to identify 

brain MRI phenotypes based on hierarchical clustering, which resulted in clinical meaningful 

sub-categories in other disease conditions. For example, we identified brain MRI phenotypes 

related to predisposition to post operative delirium (in preoperative patients) and brain MRI 

phenotypes related to an increased risk of stroke and mortality (in patients with manifest 

arterial disease)184. To date, it is unknown what specific MRI phenotypes exist in patients with 

a glioblastoma. 

We hypothesize that MRI phenotypes of glioblastomas based on both structural and perfusion 

tumor characteristics early after treatment could help in the risk assessment of glioblastoma 

recurrence rate and overall survival time. We therefore aimed to establish brain MRI phenotypes 

of glioblastomas early after treatment by combined analysis of radiological scores of structural 

and perfusion tumor characteristics, and to assess the relation of these phenotypes with tumor 

recurrence rate and overall survival time.
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Materials and methods

Patient population

Patient clinical data were retrospectively retrieved from the clinical archive of the Leiden 

University Medical Center between the period of January 2015 and February 2022 following 

local IRB regulations. The study population consisted of adult patients with a histologically 

confirmed grade IV glioblastoma IDH wild-type or diffuse astrocytoma IDH-mutant, following 

the most recent WHO guidelines at the time of diagnosis. Consecutive patients who received 

postoperative treatment consisting of radiotherapy (in combination with concomitant and 

adjuvant chemotherapy), with at least a 3 months post-radiotherapy follow-up MRI scan with 

both ASL and DSC scans, and confirmation of TP or PP were included.

Tumor progression and survival assessment

The diagnosis of TP or PP was based on the patients’ medical charts including clinical and 

radiological findings discussed in the multidisciplinary team meetings at either 3, 6 and/or 9 

months after radiotherapy. The diagnosis at each of the time points was scored on a 5-point 

Likert scale: 1) Definite PP; 2) probable PP; 3) no preference ; 4) probable TP; 5) definite TP. 

The conversion to a binary scale was done by assessing scores 1 and 2 as tumor progression 

and 4 and 5 as no progression. In this way, the binary score agrees with clinical practice, i.e., 

if there was doubt about the progression status (score of 3), treatment was continued (and 

assumed there was no progression). Updated molecular and pathological findings were leading 

regarding the diagnosis in case of a re-resection. At the latest timepoint available (maximum of 

9 months after radiotherapy), patients were only considered to have tumor progression if this 

was suggested by the clinical and radiological assessment, if the anti-tumor treatment regimen 

was changed or if the patient was deceased. 

Patient survival was calculated as the time between the start of tumor-targeted therapy (i.e. the 

day of tumor surgical resection or biopsy) and the date of death.

Type of surgical resection

All patients underwent surgery for either maximally safe tumor removal (i.e., total or partial 

resection of the enhancing part of the tumor) or a biopsy to obtain a histopathological 

diagnosis. Patients were considered to have had a total resection of the enhancing parts if 

no enhancing lesion was observed on the directly postoperative MRI scan (performed within 

48 hours after tumor resection). In contrast, if residual tumor enhancement was found on the 

directly postoperative MRI scan, it was considered a partial resection.

7.5
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MRI scans

Patients were scanned at approximately 3 months post-radiotherapy on a 3T MR scanner 

(Philips Ingenia or Achieva, Philips Healthcare, Best, The Netherlands). The MRI scans acquired 

followed the routine clinical guidelines for all scans collected, thus all imaging acquisition 

parameters reported are based on standard clinical practice. These included a post gadolinium 

contrast enhanced 3DT1 scan with 3D-TFE readout and T2-FLAIR scan, acquired with the 

following parameters: 3DT1: TR = 9.91ms, TE = 4.67ms, resolution = 1x1x1mm, field of view (FOV) 

= 220x175x156mm, 0.3 mL per kg bodyweight of gadolinium-based contrast agent (gadoterate 

meglumine) and T2-FLAIR: TR = 11000 ms, TE = 125ms, resolution = 0.4x0.4x5.5mm, FOV = 

220x175mm. During the period of data collection, changes to the ASL protocol were made, 

including transitioning from a 2D to 3D pCASL having changed the label duration (LD) and post-

label duration (PLD). For 2D pCASL, LD = 1650ms and PLD = 1525ms (first slice) & 2120ms (last 

slice). Whereas for the 3D pCASL both LD and PLD were 1800ms. The remainder of parameters 

included resolution (2D/3D) = 3x3mm/4x4mm, slice thickness (2D/3D) = 7mm/6mm, FOV = 

240x240mm. Finally the DSC scans were acquired with a SE-EPI sequence with the following 

parameters, TE = 75ms, TR = 1600ms, resolution = 2.6x2.3x5mm, FOV = 240x210mm; a third of 

the contrast agent was injected as pre-bolus. 

Radiological scoring of the brain MRI scans 

An independent neuroradiologist scored the structural brain scans, i.e. the contrast enhanced 

3D T1 and the T2-FLAIR scans of the 3 months post-radiotherapy visit (and in doubt consulted 

a second experienced neuroradiologist for consensus), to determine 1) whether the tumor 

contrast enhancing lesions were either nodular or patchy on the contrast enhanced 3D T1, 2) 

the presence of T2 hyperintense areas surrounding the enhancing lesion on the T2-FLAIR and 

3) the size of the tumor contrast enhancing and T2 hyperintense area in 3 orthogonal directions. 

The T2 hyperintense area was defined as the confluent hyperintense signal surrounding the 

contrast enhancing lesion, excluding any resection cavities. The measurements in 3 orthogonal 

directions were used to estimate the tumor volume for the contrast enhancing lesions and T2 

hyperintense areas individually, as well as to calculate the shape as the eccentricity factor (EF). 

The volume was calculated using an ellipse formula, as this has been shown to correlate well 

with the absolute tumor volume, using the following formula185:

Where D1, D2 and D3 correspond to the sagittal, coronal and axial measurements, respectively. 

The resulting volume was afterwards converted to milliliters for the final volume calculation. 

The EF was calculated according to the following formula:

Where MD is the maximal diameter (highest value in all 3 directions) and PPD is the largest 

perpendicular diameter, i.e. the largest diameter in the other two directions186.

7.5.4
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Tumor lesion perfusion was scored qualitatively using the contrast enhanced 3DT1 and the T2-

FLAIR as anatomical references. On the DSC relative cerebral blood volume (rCBV) maps were 

scored as either increased (hyper-perfusion), decreased (hypoperfusion) or no change (iso-

perfusion) compared to contralateral normal tissue. The ASL was scored as hyperperfusion 

or isoperfusion compared to the contralateral side, since hypoperfusion on ASL scans is 

especially difficult to identify187. Perfusion scores for both contrast enhancing lesions and 

T2 hyperintense areas were separately determined. For the clustering analysis, if there was 

more than one lesion in a patient, the most aggressive tumor contrast enhancing lesion and 

related T2 hyperintense area were included per patient. The lesion with the largest volume, 

increased perfusion and most nodularity was considered to be the most aggressive. In total, 23 

radiological tumor markers were included (see the supplementary methods). These markers 

were rigorously selected to be the most representative to avoid overfitting and selection bias 

of the model. 

Statistical analysis

Hierarchical clustering analysis

To identify different brain MRI phenotypes at 3 months post-radiotherapy, hierarchical 

clustering was performed on the available patient data consisting of the radiological structural 

and perfusion tumor characteristics. The visually scored markers were included in the model 

as either binary, categorical or continuous variables. Continuous markers that did not have a 

normal distribution, including the volume and eccentricity, were normalized by multiplying by 

100 and natural log-transforming, and thereafter normalized into z-scores. The normalization 

step allowed all markers to be equally scaled and then weighted by the analysis model. 

Hierarchical clustering was performed using the Ward’s method, Nbclust188, factoextra189, 

cluster190 and dendextend191 in R version 4.1.2 (R Core-Team 2021). Initially the model considers 

each patient as an individual cluster after which it tries to iteratively merge the two closest 

clusters while equally weighing each marker (i.e., merge the clusters that share the highest 

number of markers in common; the agglomerative approach). In this way the clustering analysis 

is performed in a hierarchical manner. Each time sub-clusters are merged into one cluster, the 

distance between the remaining clusters is subsequently updated in the model, and the next 

iteration starts. Ultimately, when all clusters have been merged only one cluster will remain. To 

determine the optimal number of clusters from the hierarchical clustering analysis, we used 

the heatmap and Dunn index. The Dunn index calculates the ratio of the smallest distance 

between markers within each cluster over the maximum distance between the clusters.

Differences between the subgroups with a different MRI phenotype of glioblastomas

Descriptive statistics were used to describe the patient population. Clinical characteristics 

between the subgroups identified with the hierarchical cluster analysis were compared as 

7.5.6
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Differences between the overall survival time of the subgroups

A log-rank test was performed to determine whether the median overall survival times were 

significantly different between the different subgroups. For this we compared the median 

overall survival times between subgroups 1, 3 and 4 and compared to the reference one, 

subgroup 2.

Data availability

Data will be made available upon reasonable request.

Association between different MRI phenotypes of glioblastomas and progression and 

survival

First, a multivariable logistic regression analysis was performed to assess the association 

between MRI phenotype subgroups and TP. The model was corrected for age, KPS score and 

surgical resection type. Whereas the first two variables were continuous, surgical resection 

type was categorized into three different groups (ie. biopsy, partial resection and total resection).

Secondly, an adjusted Cox proportional hazard model was used to determine the association 

between the MRI phenotype subgroups and overall survival time. The model was corrected for 

age, KPS score and surgical resection type. For sensitivity analysis, an unadjusted multivariable 

Cox proportional hazard model was performed to assess the influence of correcting for 

clinical variables on our results and thus to get more insight into the data. The subgroup 

chosen as reference for the regression analysis had the least aggressive MRI markers (i.e., 

subgroup 2). This subgroup with the least aggressive radiological markers was identified by an 

experienced neuroradiologist who assessed the structural and perfusion radiological markers 

of all subgroups (e.g. hyper-perfusion and increased nodular enhancement were considered 

aggressive markers). 

The threshold for significance was p≤0.05. All statistical analyses were performed using IBM 

SPSS version 25 (Chicago-IL).

7.5.6.3

7.5.7

7.5.6.4

follows: for categorical and binary variables, a chi-square test was used; continuous variables 

were compared using a one-way ANOVA or Kruskal Wallis test, depending on the distribution of 

the tested variable. In order to assess how the subgroups differed from each other considering 

the different variables, Bonferroni post-hoc analyses were performed for continuous variables 

and Bonferroni chi-square residual analyses for categorical variables.
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Results

Patient population

In total, 67 patients with a glioblastoma were eligible according to our inclusion criteria and 

were included in the analysis (Table 1). The majority (72%) had an Isocitrate Dehydrogenase 

(IDH)-wildtype tumor and most (61%) patients were male, with a mean age of 60 years (standard 

deviation 13 years). Most patients (79%) had undergone total or partial resection, radiotherapy 

as well as concomitant and adjuvant chemotherapy, and a small group of patients were only 

treated with radiotherapy (21%). See Table 1 for all sociodemographic and clinical variables.

Representative examples of the scored MRI markers can be found in Figure 1, which includes 

perfusion markers characterized in ASL and rCBV maps as well as structural markers such as 

enhancing lesion patterns on contrast enhanced 3DT1 and T2 hyperintense areas on T2-FLAIR. 

Identification of subgroups with a different MRI phenotype of glioblastomas

The hierarchical clustering analysis resulted in the heatmap displayed in Figure 2. Establishing 

the optimal number of subgroups was a multistep process. First, we considered that with our 

number of patients included, the number of subgroups should be relatively low. Second, we 

inspected the heatmap (Figure 2) and found a good between-subgroup separation with four 

subgroups. Lastly, we considered the Dunn index (DI), which also showed a relatively high 

value at four subgroups. The number of subgroups of patients with a different MRI phenotype 

of glioblastomas was therefore determined at four (with n= 12, 13, 17 and 25 patients in the 

subgroups respectively). 

Figure 1. Examples of some of the MRI markers scored by a neuroradiologist. 

A. Perfusion MRI markers retrieved from corresponding images, namely ASL and DSC-rCBV maps. On the upper and 

lower row examples of patients with increased and no change/decreased perfusion, for ASL and DSC respectively. In 

B. contrast enhanced (CE) 3DT1 and T2-FLAIR MRI scans from which the structural markers were assessed; it shows 

examples of nodular and patchy contrast enhancing areas, as well as T2 hyperintense areas. The scans on each row 

correspond to one patient. 

7.6
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Differences between the subgroups with a different MRI phenotype of glioblastomas

A summary of the clinical characteristics of these patient subgroups can be found in 

Supplementary Material Table S1. There were no significant differences between subgroups 

regarding KPS score, radiotherapy dose received, gender, IDH status, MGMT promotor 

status and receiving combined chemoradiotherapy (all p>0.05). However, there was a 

significant difference in age and type of surgery between the 4 subgroups (p=0.013 and 

p=0.001 respectively). From the Bonferroni post-hoc analyses it was evident that the overall 

significant difference in age was particularly observed because patients in subgroup 3 were 

significantly older than in subgroup 1 (68 versus 54 years, respectively, p=0.02). For surgery 

type, subgroup 1 had significantly more total resections compared to subgroup 3 (75% versus 

12%, respectively, p=0.003) and subgroup 4 (75% versus 12%, respectively, p=0.001), explaining 

the overall significant difference. Supplementary Table S2 shows the distribution of the MRI 

markers present in each subgroup. Regarding tumor location, the temporal tumor region was 

the only location that differed significantly between the subgroups, with more patients having 

a temporal lesion in subgroup 1 (50% versus 15%, 0% and 32% in groups 2, 3 and 4, p=0.02). 

As expected, the majority of all other MRI markers were significantly different between the 

resulting subgroups (all p<0.05) (Supplementary Table S2). The structural MRI markers that 

differed significantly between subgroups include the presence of a patchy enhancing lesions, 

the number of nodular and enhancing lesions, as well as the volume and eccentricity from 

both enhancing and T2 hyperintense tumor lesions (p<0.05) (Supplementary Material Table 

S2). Moreover, the perfusion markers differed significantly between subgroups, such as the 

7.6.3

Total number of patients included 67

Age 60 ± 13

Female 26 (39%)

Male 41 (61%)

Table 1. Baseline clinical characteristics of the patients with a glioblastoma.

IDH status

Wild-type: glioblastoma 48 (72%)

Mutant: diffuse astrocytoma grade IV 5 (7%)

Unknown / not determined* 14 (21%)

MGMT status

Methylated 18 (27%)

Unmethylated 49 (73%)

KPS median (range) 90 (60 - 100)

Surgery type

Total Resection 31 (46%)

Partial Resection 22 (33%)

Biopsy 14 (21%)

Radiotherapy (total dose)

40 Gy 10 (15%)

45 Gy 10 (15%)

60 Gy 47 (70%)

Temozolomide chemotherapy 53 (79%)

*Cases diagnosed prior to WHO 2016 classification. IDH: Isocitrate dehydrogenase; MGMT: O6-methylguanine-DNA methyltransferase; 

KPS: Karnofsky Performance Scale.
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DSC-rCBV for both nodular and patchy enhancing lesions, and the ASL-CBF of the nodular and 

patchy enhancing lesions and of the T2 hyperintense tumor areas (p<0.05) (Supplementary 

Material Table S2). 

Overall, subgroup 1 was characterized by relatively few, small and mostly nodular enhancing 

lesions with a more ellipsoid shape and some lesions showing hyper-perfusion. Subgroup 2 

was characterized by relatively few, small lesions with mostly patchy enhancing lesions, with 

a more ellipsoid shape and almost no lesions with hyper-perfusion. Subgroup 3 had the most 

lesions that also had the highest volume and highest amount of lesions with hyper-perfusion. 

Lastly, subgroup 4 was characterized by a relatively moderate amount of nodular and patchy 

enhancing lesions with a relatively high volume, ellipsoid shape and moderate amount of lesions 

with hyper-perfusion. A summary of the most relevant MRI markers of the MRI phenotypes of 

glioblastomas can be found in Figure 4.
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Differences between the overall survival time of the subgroups

A significant difference was found between the overall survival times of the reference subgroup 

(subgroup 2) and subgroup 3 (p=0.009), but not between the reference subgroup and subgroup 

1 (p=0.166) and 4 (p=0.191) (Supplementary Table S5, Supplementary Figure S3).

Association between different MRI phenotypes of glioblastomas and progression and 

survival

Out of the 67 patients, 49 showed a final diagnosis of TP at 9 months follow-up. Per subgroup 

this translated in 8/12 (67%) patients having TP in subgroup 1, 9/13 (69%) in subgroup 2, 14/17 

(82%) in subgroup 3 and 18/25 (72%) in subgroup 4. From the multivariable logistic regression 

analysis, we found that subgroups 1 (HR: 1.3 (95% CI: 0.2 – 6.8); p = 0.772), 3 (HR: 1.7 (95% CI: 0.3 

– 10.4); p = 0.570) and 4 (HR: 1.6 (95% CI: 0.3 – 8.4); p = 0.551) were not significantly associated 

with TP, compared to the reference subgroup 2 (Supplementary Table S6).

In total, 65 out of the 67 (97%) patients had passed away by the time the database was locked. 

The median survival in months per subgroup (with respective inter-quartile ranges) was: 

subgroup 1 = 13 (10 – 21) months, subgroup 2 = 22 (15 – 29) months, subgroup 3 = 11 (7 – 14) 

months, and subgroup 4 = 10 (8 – 18) months Figure 4 shows the results of the survival analyses 

where subgroup 2 was taken as the reference group. Our results show that subgroup 1 (HR: 2.6 

(95% CI: 1.1 – 6.3); p=0.03) is significantly associated with mortality (Figure 5, Supplementary 

Figure S2), but not subgroups 3 and 4, when correcting for clinical variables (model 2). On the 

other hand, our secondary analysis included in the uncorrected logistic regression analysis, 

showed that subgroup 3 had a significant association with mortality (HR: 2.4 (95% CI: 1.1 – 5.0; 

p = 0.03), but not subgroups 1 and 4.

7.6.4
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Figure 4. Forrest plot of the hazard ratios 

(95%-CI) per subgroup for survival.

Illustrated results of the cox proportional 

hazards survival analysis are shown 

(adjusted for age, KPS and surgery type). 

Subgroup 2 has been set as a reference and 

marked with the striped line in red. Hazard 

ratios are shown with a 95% confidence 

interval.

Discussion

We identified distinct brain MRI phenotypes of glioblastomas in patients early after radiotherapy 

(at 3 months). Based on these brain MRI phenotypes we were able to define 4 distinct subgroups 

that also differed in their overall median survival times, but showed no differences in TP and 

PP rates. 

In our current study, to establish different brain MRI phenotypes of glioblastomas, our 

clustering model hierarchically stratified the different patients based on the similarities 

between radiological MRI markers. Furthermore, we independently assessed the clinical 

outcomes. This approach, contrarily to most traditional machine learning models, is seen as a 

form of unsupervised learning. One of the advantages of our method includes the possibility of 

independently establishing new MRI marker combinations that in machine learning methods 

could otherwise not be determined.

The radiological MRI markers utilized in our study were based on radiological scoring of structural 

and perfusion images, and when combined, resulted in phenotypes of glioblastomas. Most of 

the MRI markers differed significantly between the 4 subgroups, and we identified subgroup 

1 to have a significant association with mortality at 9 months. This subgroup’s MRI phenotype 

of glioblastomas was characterized by relatively few, small and mostly nodular enhancing 

lesions with a more ellipsoid shape and some lesions showing hyper-perfusion, especially on 

ASL images, and the T2 hyperintense area on the DSC scans showed mainly hypo-perfusion. 

7.7
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Some individual MRI markers that drive the model and that could influence the lower chance 

of overall survival in subgroup 1 can be identified. For example, the morphology of the nodular 

enhancing lesions are thought to reflect a more malignant phenotype192. Furthermore, the more 

ellipsoid shape of the lesions in subgroup 1 could indicate a more aggressive pattern of tumor 

infiltration in the neighboring healthy brain tissue193. Given the complexity of glioblastomas, 

and the uncertainty of what exact combination of MRI markers drives its severe prognosis, MRI 

phenotypes of glioblastomas can give more prognostically meaningful information and maybe 

in the future could help in treatment decisions. 

Previous machine learning approaches have studied diagnostic performance using radiomics 

markers in brain gliomas182,183. For instance, a previous study utilized higher order texture and 

gray level intensity markers from ASL and DSC perfusion-weighted images and compared 

their quantitative patterns between high-grade and low-grade gliomas to assess diagnostic 

performance182. Radiomics in ASL and DSC was shown to be valuable, providing quantitative 

patterns to classify low and high grade gliomas with an area under the curve of 0.888 and 

0.962, respectively182. Similarly, another previous study also investigated if, among others, 

grey level intensity and texture markers retrieved from DSC perfusion images, could identify 

glioma grades and IDH status. This study demonstrated stratification of glioma grades and IDH 

mutations status based on the DSC perfusion markers in a radiomics model performed correctly 

in 71% and 53% of the cases, respectively183. Both of these previous studies showed that a 

machine learning approach with MRI perfusion markers showed potential to reliably classify 

gliomas grades and molecular genotypes. In traditional machine learning approaches, markers 

of interest were pre-determined and coupled to a known outcome for predictive modeling, 

where the markers of interest are mostly abstract and of higher-order, not directly representing 

clinical MRI markers. However, the main disadvantage of these machine learning approaches 

is that it is not always clear which exact marker (or combination of markers) is associated with 

a certain clinical outcome. Contrarily, in the current study we did not train a model to predict a 

certain outcome. Rather, we are utilizing MRI markers that are more representative of clinical 

radiological markers, and group the patients according to how similar these markers are. 

After this grouping, post-hoc analyses is performed to gain insight in which combination of 

these markers (MRI phenotypes of glioblastomas) are underlying specific clinical outcomes. 

Utilizing phenotypes (i.e. a combination of markers) instead of single markers can be more 

advantageous, because it allows identification of which group of characteristics could be 

prognostically more meaningful in a disease with a complex biology. In this way our approach 

is unique and also allows for a more comprehensive link between phenotype and outcome, as 

was also shown in previous studies of our group in other diseases184,194. 

Regarding recurrence and overall survival outcomes of the 4 subgroups with a distinct MRI 

phenotype of glioblastomas, we observed different overall median survival times and TP 

cases. Subgroup 2 had the longest overall median survival time (22 months) and 69% of TP 

incidences. We found subgroup 1 to have a significant association with mortality at 9 months, 

while the percentage of TP cases (67%) was similar. These results were somewhat unexpected. 
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The discrepancy between TP cases and overall survival time at 9 months follow-up could be 

explained by the large overall survival time range, a possible effect of a few outliers cases, and 

the small sample size for each subgroup. Moreover, subgroup 1 was shown to have a significant 

association with mortality at 9 months follow-up when correcting for confounding variables, 

including age195. This suggests that such significant association observed in subgroup 1 

is most likely a reflection of the tumor phenotype, not influenced by the age of the patients. 

When the model was not corrected for clinical variables, we found that only subgroup 3, with a 

considerably older median age (68 ± 11), had a significant association with mortality at 9 months. 

When comparing the median survival times, also not corrected for clinical confounders, a 

significant difference was also found for subgroup 3, as well as no significance difference for 

subgroups 1 and 4. The fact that clinical confounders are not weighted in most likely explains 

the non-significant findings, since both subgroups 1 and 4 have relatively short median survival 

times (compared to subgroup 2). An additional explanation for subgroup 4 could part from the 

crossing survival curves, which is probably due to a few outliers with longer survival times. 

Furthermore, we observed that patients with worse survival time in subgroups 3 and 4 (overall 

survival time of 11 and 10 months, respectively) not only had the lowest percentages of total 

resections (subgroup 3 and 4 = 12%), but also had the highest tumor volumes (subgroup 3 = 

enhancing lesion: 247.54 ml; T2 lesion: 1321.70 ml and subgroup 4 = enhancing lesion: 374.45 

ml; T2 lesion: 1375.43 ml). This makes us belief that the subgroups not only reflect different 

tumor phenotypes, but also the differences in surgical treatment. It is known that resection 

type is an important prognostic factor for survival, but does not correlate with the occurrence 

of TP or PP (similar to what we have observed in the present study). 

In clinical practice it is relevant to understand which demographic and disease specific 

characteristics play a role in prognosis of the patient’s disease. Since glioblastomas are known 

to recur, early assessment of tumor characteristics could better indicate patient prognosis 

on a more personal level early after treatment. Contrary to traditional machine learning 

approaches, rather than helping predict an outcome, our study helps to understand which 

combination of radiological MRI markers are the imaging correlates of clinical outcomes, such 

as overall survival196. The early prognostic information our method provides might in the future 

be beneficial for prognosis of patients with a glioblastoma. More specifically, when assessing 

a patient’s perfusion and structural tumor characteristics at 3 months, stratifying patients 

according to their MRI phenotype of glioblastomas could inform clinicians early on after 

treatment about the patient’s outcome at 9 months. In order to further investigate the clinical 

impact, a larger study would need to be conducted, but our method shows promising results to 

justify and power such a study. 

The strengths of our study include the well characterized radiological MRI markers of 

glioblastomas, including DSC as well as ASL perfusion markers in combination with the 

extensive follow-up availability of both clinical and MRI data197. This allowed us to determine the 

clinical outcome of all patients considering both survival and progression. Furthermore, since 

ASL is not widely implemented in clinical imaging guidelines of glioblastomas, this dataset is 
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unique for this patient population16.

Our study also has some limitations. A first limitation is that our sample size was limited to 67 

patients. A reason for this was that glioblastoma patients who were certain to have died from 

non-tumor related causes or did not have structural and perfusion MR data available because 

of MRI contraindications, were not included in our study. One of the evident consequences 

of our sample size is visible in the survival time ranges within subgroups. Our hierarchical 

clustering analysis approach could differentiate subgroups with primarily different radiological 

markers. These subgroups also showed to have different overall survival times. However, 

utilizing this approach for discriminating subgroups solely based on overall survival time is 

challenging. It could be interesting in the future to include a larger sample size and re-evaluate 

these findings. Although our selection procedure narrowed our patient population, it allowed 

us to be certain that the clinical outcome was related to their tumor diagnosis. Despite the 

relatively limited sample size we were able to find clinically meaningful associations. A second 

limitation of our study is that the IDH status for some patients was unknown, since some of 

the patients were diagnosed prior to 2016. This withheld us from including this variable in the 

survival and progression analyses, which would have been of added value since patients with 

an IDH mutation are known to have an overall better prognosis198. A third limitation is that over 

the years of data collection the parameters of the ASL MRI acquisition changed. However, 

these changes were only minimal (applied to only one patient), and were not expected to have 

affected the visual perfusion scoring by the neuroradiologist in a significant way. Since the 

data used was retrospectively collected, the ASL acquisition parameters were set according 

to clinical standards, only including one PLD. Although including more PLD could make the 

images less sensitive to ATT artifacts, this is not yet the standard in clinical practice. The goal 

of our study was to also investigate how perfusion markers in such a hierarchical clustering 

model could be used to establish glioblastoma phenotypes. We strived to utilize the maximum 

number of markers representative of clinical practice, without being redundant. However, a 

larger number of markers or a different selection of markers, which would also be representative 

of other biological processes in the tumor, could provide more complete phenotypes of this 

disease. This could also lead to overlapping markers and therefore pruning the model to these 

overlapping markers. It would be interesting to see the results of future studies which would, 

for instance, also include metabolic information derived from MR spectroscopy or chemical 

exchange saturation transfer. Lastly, the ratings of the MRI scans were performed by one 

experienced neuroradiologist who consulted a second experienced neuroradiologist when 

in doubt to obtain consensus. Using only limited raters could be perceived as a limitation. 

However, we chose to invest in the quality of the raters instead of the quantity of the raters to 

achieve high quality data. 

In conclusion, we were able to establish 4 subgroups based on distinct brain MRI phenotypes 

of glioblastomas at 3 months post-radiotherapy. Our study suggests that these distinct 

MRI phenotypes of glioblastomas can be indicative of overall survival. The early prognostic 

information our method provides might be informative for prognosis in patients with a 

glioblastoma.
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Supplementary information

Supplementary methods

Brain glioblastoma MRI markers were established from the visual scoring described in the 

methods section, resulting in the 23 markers described below. Markers 3 – 11, 14 and 17 were 

included in the model as binary variables; i.e. presence (1) or no presence (0) of the marker in 

the lesion being scored. Markers 1, 2, 15, 16, 18, 19, 22 and 23 were included as categorical 

variables; i.e. they were given a different number per classification (e.g. hypoperfusion -1, iso-

perfusion 0 and hyper-perfusion 1). The remaining markers 12, 13, 20 and 21 were used as 

continuous variables. Note that one representative tumor enhancing area was chosen per 

patient in case of multiple ones. The tumor area with the most aggressive MRI markers was 

chosen (e.g. hyper-perfusion) and with presentation of a T2 hyperintense area. The latter was 

the case to avoid having missing values in the model for variables considering T2 hyperintense 

areas. The non-normally distributed continuous variables were transformed by multiplying 

by 100 and natural log-transformed to approximately conform to a normal distribution, and 

thereafter have their values normalized with z-scores.

1.	 Number of patchy areas

2.	 Number of nodular areas

3.	 Frontal location

4.	 Temporal location 

5.	 Occipital location

6.	 Parietal location

7.	 Parieto-temporal location

8.	 Basal nuclei location

9.	 Corpus callosum location

10.	 Insula location

11.	 Pons location

12.	 Volume enhancing area

13.	 Eccentricity enhancing area

14.	 Presence of nodular enhancing area

15.	 ASL perfusion nodular area

16.	 DSC perfusion nodular area

17.	 Presence of patchy area 

18.	 ASL perfusion patchy area

7.9
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Supplementary results

As a results of the clustering analysis, we obtained 4 subgroups. Each subgroup has a unique 

brain MRI phenotype of glioblastomas which showed specific structural and perfusion MRI 

characteristics. An extended description of the subgroups shown in Figure 4 can be found 

below:

Subgroup 1

With regards to the structural MRI markers, subgroup 1 has the least number of patchy 

enhancing (PE) areas, the smallest volume of enhancing and T2 hyperintense areas and the 

most round shape of the enhancing and T2 areas. 

Considering DSC perfusion markers, subgroup 1 has the least amount of hyper-perfusion 

in nodular enhancing (NE) areas, shows mainly iso-perfusion in PE areas, and shows mostly 

hypo-perfusion in T2 hyperintense areas. 

Considering ASL perfusion markers, subgroup 1 has a relatively high amount of hyper-perfusion 

in NE areas, and only has areas with iso-perfusion in PE areas and in T2 hyperintense areas. 

Subgroup 2

With regards to the structural markers, subgroup 2 has the least number of NE areas, a high 

number of PE areas, a small volume of enhancing and T2 hyperintense area, the most ellipsoid 

shape of enhancing and T2 hyperintense areas.

Considering perfusion markers, subgroup 2 has mostly hypo-perfused DSC in PE areas and T2 

areas. Considering ASL perfusion, NE and PE areas are iso-perfused. 

Subgroup 3

With regards to structural markers, subgroup 3 has relatively high number of NE areas, relatively 

the highest number of PE areas, the largest volume of enhancing and T2 hyperintense areas 

and medium sized enhancing and T2 area and shape. Considering perfusion markers, subgroup 

3 has relatively high amount of DSC hyper-perfusion in NE areas, it has the highest amount 

of hyper-perfusion in PE areas and shows relatively the most hyper-perfused but mostly iso-

perfused T2 areas. Considering ASL perfusion, subgroup 3 has the highest amount of PE areas 

with hyper-perfusion and . Lastly, relatively highest amount of hyper-perfusion in T2 areas.

7.9.2

19.	 DSC perfusion patchy area

20.	 Eccentricity T2 hyperintense area

21.	 Volume T2 hyperintense area

22.	 ASL perfusion T2 hyperintense area

23.	 DSC perfusion T2 hyperintense area
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Subgroup 4

Considering structural markers, subgroup 4 has a high number of NE and PE areas, the largest 

volume of enhancing and T2 hyperintense areas and the most round shape of enhancing and 

T2 areas. Considering DSC perfusion markers, subgroup 4 has the highest amount of hyper-

perfused NE areas, has mostly hypo-perfused PE areas and shows mostly hypo-perfused 

T2 areas. Concerning ASL perfusion markers, subgroup 4 has the highest number of hyper-

perfused NE areas, a relatively high amount of PE areas with hyper-perfusion and some T2 

areas with hyper-perfusion.

As part of the survival analysis we performed Cox regression analysis and looked at the model 

when not corrected for clinical confounding variables. This allowed us to have a better insight 

of what the correction would do to our results. The results represent the association between 

different MRI phenotypes of glioblastomas and progression and survival.

In the uncorrected model, subgroup 3 has a significantly increased mortality risk (HR: 2.4 (CI: 

1.1 – 5.0); p=0.03) compared to subgroup 2 (Supplementary Table S3; Supplementary Figure 

S2).
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Subgroup 1 

(n=12)

Subgroup 2 

(n=13)

Subgroup 3 

(n=17)

Subgroup 4 

(n=25)

p-value

Age 54 ± 12 56 ± 15 68 ± 11 60 ± 12 0.013

Female 4 (33%) 4 (31%) 8 (47%) 10 (40%) 0.799

IDH

Wild-type 10 (83%) 6 (46%) 13 (76%) 19 (76%)

0.243Mutant 0 (0%) 3 (23%) 1 (6%) 1 (4%)

Not otherwise specified 2 (17%) 4 (31%) 3 (18%) 5 (20%)

Surgery type

Partial resection 2 (17%) 5 (38%) 9 (53%) 15 (60%)

<0.001Total resection 9 (75%) 8 (62%) 2 (12%) 3 (12%)

Biopsy 1 (8%) 0 (0%) 6 (35%) 7 (28%)

Radiotherapy (total dose (Gy))

40 1 (8%) 1 (8%) 4 (24%) 5 (20%)

0.45845 2 (17%) 1 (8%) 3 (18%) 3 (12%)

60 9 (75%) 11 (84%) 9 (53%) 17 (68%)

Temozolomide chemotherapy 11 (92%) 10 (77%) 13 (77%) 13 (77%) 0.705

KPS median 90 (30) 90 (40) 90 (30) 90 (40)

KPS 100 5 (42%) 2 (15%) 4 (24%) 7 (28%)

0.365

KPS 90 5 (42%) 5 (38%) 5 (29%) 8 (32%)

KPS 80 1 (8%) 3 (23%) 5 (29%) 4 (16%)

KPS 70 1 (8%) 2 (15%) 3 (18%) 3 (12%)

KPS ≤60 0 (0%) 1 (8%) 0 (0%) 3 (12%)

MGMT status

Positive 2 (17%) 4 (31%) 6 (35%) 7 (28%)
0.741

Negative 10 (83%) 9 (69%) 11 (65%) 18 (72%)

Supplementary Table S1. Clinical characteristics per subgroup. 

The data represents mean ± SD, n (percentage) or median (interquartile range). Statistical analyses were performed 

with chi-square tests.
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Supplementary Table S2. MRI markers of the glioblastomas per subgroup.

The data represents mean ± SD or n (percentage). Statistical analysis was performed with a chi-square test for 

categorical variables and a one-way ANOVA for the continuous variables. Most markers, except for most of the tumor 

location markers, and DSC perfusion in T2 areas, differed significantly between subgroups (p<0.05).

Ordinal variables Subgroup 1 

(n=12)

Subgroup 2 

(n=13)

Subgroup 3 

(n=17)

Subgroup 4 

(n=25)

p-value

Frontal (N(%)) 2 (17%) 6 (46%) 8 (32%) 8 (32%) 0.11

Temporal (N(%)) 6 (50%) 2 (15%) 0 (0%) 0 (0%) 0.01

Occipital (N(%)) 0 (0%) 3 (23%) 2 (12%) 3 (12%) 0.37

Parietal (N(%)) 2 (17%) 2 (15%) 2 (12%) 5 (20%) 0.92

Parieto-temporal (N(%)) 1 (8%) 0 (0%) 1 (4%) 1 (4%) 0.77

Basal-nuclei (N(%)) 0 (0%) 0 (0%) 1 (4%) 0 (0%) 0.40

Corpus-callosum (N(%)) 0 (0%) 0 (0%) 2 (12%) 1 (4%) 0.35

Insular (N(%)) 0 (0%) 0 (0%) 1 (4%) 1 (4%) 0.72

Pons (N(%)) 1 (8%) 0 (0%) 0 (0%) 0 (0%) 0.12

Number of nodular lesions

No lesions (N(%)) 1 (8%) 7 (54%) 1 (6%) 3 (12%)

0.008
One lesion (N(%)) 11 (92%) 6 (46%) 12 (71%) 16 (64%)

Two lesions (N(%)) 0 (0%) 0 (0%) 3 (18%) 6 (24%)

Three lesions (N(%)) 0 (0%) 0 (0%) 1 (6%) 0 (0%)

Number of patchy lesions

No lesions (N(%)) 8 (67%) 0 (0%) 0 (0%) 0 (0%)

<0.001
One lesion (N(%)) 4 (33%) 12 (92%) 13 (77%) 19 (76%)

Two lesions (N(%)) 0 (0%) 1 (8%) 2 (12%) 6 (24%)

Three lesions (N(%)) 0 (0%) 0 (0%) 2 (12%) 0 (0%)

DSC perfusion in nodular lesions

Hypoperfused (N(%)) 7 (58%) 1 (8%) 2 (12%) 4 (16%)

0.004Isoperfused (N(%)) 4 (33%) 11 (85%) 11 (65%) 11 (44%)

Hyperperfused (N(%)) 1 (8%) 1 (8%) 4 (24%) 10 (40%)

Presence of a nodular enhancing lesion 

(N(%))

11 (92%) 7 (54%) 15 (88%) 22 (88%)
0.03

Presence of a patchy enhancing lesion 

(N(%))

3 (25%) 12 (92%) 17 (100%) 24 (96%)
<0.001
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Supplementary Table S3. Regression analysis results for both adjusted and unadjusted models where the probability 

of survival of the subgroups is compared to subgroup 2, the subgroup with the least aggressive MRI markers.

Continuous markers Mean SD Mean SD Mean SD Mean SD p-value

Volume of enhancing lesions (ml) 19.49 29.37 7.14 5.21 247.54 249.60 374.45 282.52 <0.001

Volume of T2 lesions (ml) 329.44 338.37 181.19 148.76 1321.70 1094.77 1375.43 739.15 0.02

Eccentricity of enhancing lesions 0.65 0.22 0.80 0.15 0.68 0.13 0.60 0.18 <0.001

Eccentricity of T2 lesions 0.63 0.18 0.78 0.11 0.74 0.12 0.73 0.11 0.04

DSC perfusion in patchy lesions

Hypoperfused (N(%)) 0 (0%) 12 (92%) 3 (18%) 23 (92%)

<0.001Isoperfused (N(%)) 11 (92%) 1 (8%) 1 (6%) 2 (8%)

Hyperperfused (N(%)) 1 (8%) 0 (0%) 13 (77%) 0 (0%)

DSC perfusion in T2 lesions

Hypoperfused (N(%)) 1 (8%) 1 (8%) 1 (6%) 1 (4%)

0.73Isoperfused (N(%)) 11 (92%) 12 (92%) 14 (82%) 23 (92%)

Hyperperfused (N(%)) 0 (0%) 0 (0%) 2 (12%) 1 (4%)

ASL perfusion in nodular lesions

Isoperfused (N(%)) 10 (83%) 13 (100%) 11 (65%) 13 (52%)
0.01

Hyperperfused (N(%)) 2 (17%) 0 (0%) 6 (35%) 12 (48%)

ASL perfusion in patchy lesions

Isoperfused (N(%)) 12 (100%) 13 (100%) 1 (6%) 20 (80%)
<0.001

Hyperperfused (N(%)) 0 (0%) 0 (0%) 16 (94%) 5 (20%)

ASL perfusion in T2 lesions

Isoperfused (N(%)) 12 (100%) 13 (100%) 11 (65%) 23 (92%)
0.005

Hyperperfused (N(%)) 0 (0%) 0 (0%) 6 (35%) 2 (8%)

Model 1 Model 2

Survivala (median (range)) Hazard ratio (95%-CI) Hazard ratio (95%-CI)

Subgroup 1 13 (10 – 21) 1.7 (0.7 – 3.8) 2.6* (1.1 – 6.3)

Subgroup 2 22 (15 – 29) Reference group

Subgroup 3 11 (7 – 14) 2.4* (1.1 – 5.0) 1.4 (0.6 – 3.2)

Subgroup 4 10 (8 – 18) 1.5 (0.8 – 3.1) 0.995 (0.5 – 2.1)

a in months, * Significant (p-value < 0.05); CI: confidence interval.

The subgroup with the least aggressive MRI markers of glioblastomas (subgroup 2) was used as reference for the models. Model 1 

was unadjusted and model 2 adjusted as multivariable analysis correcting for age, KPS, and extent of tumor surgical resection.
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Supplementary Table S4. Regression analysis results for both adjusted and unadjusted models where the probability 

of progression of the subgroups is compared to subgroup 2, one of the subgroups with the least aggressive MRI 

markers.

Supplementary Table S5. Log-rank test results comparing the overall survival times between subgroups and the 

reference group, subgroup 2, the subgroups with the least aggressive MRI markers.

Supplementary Figure S1. The Dunn index of the 

hierarchical clustering model. The y-axis shows the Dunn 

Index (DI) and the x-axis the number of clusters (ks).

Model 1 Model 2

True progression (N(%)) Hazard ratio (95%-CI) Hazard ratio (95%-CI)

Subgroup 1 67% 1.8 (0.4 – 8.3) 1.3 (0.2 – 6.8)

Subgroup 2 69% Reference group

Subgroup 3 82% 0.8 (0.8 – 3.4) 1.7 (0.3 – 10.4)

Subgroup 4 72% 0.9 (0.2 – 3.8) 1.7 (0.3 – 8.4)

a in months, * Significant (p-value < 0.05); CI: confidence interval.

The subgroup with the least aggressive MRI markers of glioblastomas (subgroup 2) was used as reference for the models. Model 1 

was unadjusted and model 2 adjusted as multivariate analysis correcting for age, KPS, and extent of tumor surgical resection. 

Subgroups Medial survival time in 

months (range)

X2 p-value

Subgroup 1 13 (10 – 21) 1.919 0.166

Subgroup 2 11 (7 – 14) 6.906 0.009

Subgroup 3 10 (8 – 18) 1.710 0.191

Supplementary figures7.9.4
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Supplementary Figure S2. Forrest plot of the hazard ratios (95%-CI) per subgroup for survival.

Illustrated results of the cox proportional hazards survival analysis are shown unadjusted for confounding clinical 

variables. Subgroup 2 has been set as a reference and marked with the striped line in red. Hazard ratios are shown with 

a 95% confidence interval.
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