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Abstract. In this work, we introduce the type and typeset invariants for equicontinuous
group actions on Cantor sets; that is, for generalized odometers. These invariants are
collections of equivalence classes of asymptotic Steinitz numbers associated to the action.
We show the type is an invariant of the return equivalence class of the action. We
introduce the notion of commensurable typesets and show that two actions which are return
equivalent have commensurable typesets. Examples are given to illustrate the properties
of the type and typeset invariants. The type and typeset invariants are used to define
homeomorphism invariants for solenoidal manifolds.
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1. Introduction

The odometer actions of Z are classified by an infinite sequence of positive integers, up to
a suitable notion of equivalence. The odometer actions of the abelian group Z”" forn > 1
cannot be classified by any set of invariants [44], but the works of Arnold [2, 3], Butler
[8], Fuchs [21], and Thomas [45], for example, have introduced invariants that can be used
for distinguishing Z"-odometers and classifying special subclasses of such actions. The
odometer actions of non-abelian groups are less well understood, as many interesting new
phenomena arise for such actions [24—27]. In this paper, we introduce the type and typeset
invariants for odometers, which are invariants by conjugation and return equivalence. We
give examples that show all possible types can be realized. In the last section of this work,
we apply our results to the classification, up to homeomorphism, of solenoidal manifolds.
We first introduce some basic notions.
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2 S. Hurder and O. Lukina

1.1. Types. Letm = {m; |1 <i < oo} be an infinite collection of positive integers. The
Steinitz; number (or sometimes called the supernatural number), defined by m, is the
infinite product

E(m) =lem{mimy - - -my | £ > 0}, (1.1

where Icm denotes the least common multiple of the collection of integers. A Steinitz
number £ can be uniquely written as the formal product over the set of primes [T,

s=T1] pe, (12)
pell
where the characteristic function xg: I1 — {0, 1, ..., oo} counts the multiplicity with

which a prime p appears in the infinite product £. Associated to a Steinitz number £ is its
prime spectrum.

Definition 1.1. Let IT = {2, 3, 5, . . .} denote the set of primes. Given £ = ]_[pen pX(P),
define:

w (&) ={pell| x(p) >0} theprime spectrum of &,
mr€)={pell|0< x(p) <oo} the finite prime spectrum of &;
To(§) ={p € I1 | x(p) = oo} the infinite prime spectrum of §.

Definition 1.2. Two Steinitz numbers & and &’ are said to be asymptotically equivalent if
there exists finite integers m, m’ > 1 such that m - € = m’ - £, and we then write £ ~ &'.
The asymptotic equivalence class of a Steinitz number £ is called its fype and is denoted

by T[£].

Note that if & ~ &', then oo (§) = 7o (€'). The property that 7 (&) is an infinite set is
also preserved by asymptotic equivalence of Steinitz numbers, so is an invariant of type.

The type of a Steinitz number was introduced by Baer in [5, §2], where the terminology
genus was used for the type. Baer used the type to analyze the classification problem for
rank n subgroups of Q", where the rank of a subgroup A C Q" is the maximum cardinality
of a linearly independent subset of .A. More detailed discussions can be found in the works
by Arnold [2, §1]), by Wilson [48, Ch. 2], by Ribes and Zalesskii [39, Ch. 2.3], and in §3.

1.2. Cantor actions. A Cantor action is a group action on a Cantor set by homeomor-
phisms. Let (X, ', @) denote a Cantor action ®: I' x X — X. We write g - x for ®(g)(x)
when appropriate. The action is minimal if for all x € X, its orbit O(x) = {g-x | g € '}
is dense in X. The action (X, I', ®) is equicontinuous with respect to a metric dx on
X, if for all &€ > 0, there exists § > 0, such that for all x,y € X and g € I', we have
that dx (x, y) < & implies dx(g - x, g - y) < &. The property of being equicontinuous is
independent of the choice of the metric on X, which is compatible with the topology of X.

Definition 1.3. [13, 14] A minimal equicontinuous action (X, I', ®) on a Cantor space X
is said to be a I"-odometer, or just an odometer when the group I' is clear from the context.

https://doi.org/10.1017/etds.2025.10211 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2025.10211

Type invariants for non-abelian odometers 3

A T'-odometer has an alternate description in terms of inverse limits of finite actions
of I', which is the algebraic model for the action. Section 2 discusses in further detail the
properties of I"'-odometers.

LetG={I'"=T9>TI1D>I2>---}beadescending chain of finite index subgroups.
Note that the subgroups I'y are not assumed to be normal in I'. Let Xy = I'/ Iy and note
that I" acts transitively on the left on the finite set X,. The inclusion I'y41 C I'¢ induces a
natural I"-invariant quotient map py41: X¢4+1 — X¢. Introduce the inverse limit

Xoo =lim {pey1: Xep1 — X | £ >0}
«—

= {(x0, X1, - - .) € Xoo | pe+1(x¢41) = xg forall ¢ >0} C l—[ Xy (1.3)
>0

Then, X is a Cantor space with the Tychonoff topology, where the left actions of I’
on the factors X, induce a minimal isometric action denoted by @ : I' X Xoo = X,
where X, is given the metric induced by the discrete I'-invariant metrics on factors Xy.
The following is a folklore result.

THEOREM 1.4. Let (X, T, ®) be an odometer, then there exists a group chain G and a
homeomorphism ¥V : X — X, conjugating the action ® with the action ® .

The choice of the odometer (X o, I', ) derived from a group chain G in Theorem 1.4
is called an algebraic model for (X, T', ®). The construction G uses an adapted neighbor-
hood basis for the odometer, as defined by Definition 2.2. The choice of the group chain
G is not unique, but two choices are related by a ‘tower equivalence’ of group chains as
described in §4.

1.3. Results. We associate to a group chain G a Steinitz number
£(G9) = lem{Index[" : T'y] = #(T'/Ty) | £ > 0}. (1.4)

Our first result is that £(G) is independent of the choice of the group chain G. In fact, more
is true, as the asymptotic equivalence class of &(G)—its typeset—is invariant under return
equivalence. As explained in §2, the notion of return equivalence is the condition that the
restrictions of the actions to adapted clopen subsets are isomorphic. It is the group action
counterpart of Morita equivalence for groupoids and is a natural equivalence relation that
arises in many contexts.

THEOREM 1.5. Let (X, ", ®) be an odometer. There is a well-defined Steinitz number
&(X, T, ®) associated to the action, called its Steinitz order. Moreover, if the T''-odometer
(X', TV, @) is return equivalent to (X, T, ®), then t[£(X, T, ®)] = t[£(X', T, ®')]; that
is, their types are equal.

The type of the action is defined to be 7[X, I", ®] = r[£(G)] for a choice of group
chain G.

The typeset invariants of an odometer are a more refined set of invariants that are used,
in particular, to distinguish actions of abelian groups of rank greater than 1. When I' is
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non-abelian, their definition requires we introduce the normal chain associated to a group
chain G.

Recall that given a subgroup H C G, the normal core C(H) C H is its largest normal
subgroup. If H has finite index, then C(H) also has finite index in G. We associate to G
the group chain G ={I' =Ty D> C; D Cy D - - - },where Cy = C(['y) C Iy isits normal
corein .

Let y € T" and let (y) C I' denote the subgroup it generates. For £ > 0, the intersection
(¥)e = (y) N Cy is a subgroup of finite index in (y) = Z. We thus obtain a group chain in
(y), denoted

C={)DWh DD -} (1.5)

Definition 1.6. Let G={I"=T¢9D>I'1 D2 D---} be a group chain. For y € I', the
type t[y] of y is the asymptotic equivalence class of the Steinitz order

§(y) =lem{#((y)/(v)e) | £ > 0}. (1.6)

The typeset of G is the collection
Blgl ={tlylly eT}. (L.7)

Note that we allow y € I" to be the identity above, where t[e] = {0}.
Here are our next two results.

THEOREM 1.7. Let (X, T, ®) be an odometer and let G be a group chain model. Then,
the typeset E[G] is independent of the choice of G. Thus, E[G] is an invariant under
isomorphism of the action.

The typeset of the action is defined to be E[X, ", ®] = E[JF] for a choice of G.

THEOREM 1.8. If the T-odometer (X,T, ®) and T'-odometer (X', T, ®') are return
equivalent, then their typesets E[X, T', ®] and E[X', T', ®'] are commensurable.

The notion of commensurable typesets is modeled on the notion of commensurable
groups and is given in Definition 3.9. The type of an individual y € I' need not be
preserved by return equivalence; rather, it is the collection of all these types—the
typeset—that is preserved.

Various classes of Cantor actions admit stronger results. For example, we have the
following corollary.

COROLLARY 1.9. Suppose that ' and T’ are abelian. If the odometers (X, T, ®) and
(X', T/, @) are return equivalent, then their typesets E[X, T, ®] and E[X', T, ®'] are
equal.

Example 5.3 shows that the typesets need not be equal for return equivalent odometers
if one of the groups is abelian and the other is only virtually abelian. Section 5 also gives a
selection of Z"-odometers to illustrate the definitions of types and typesets. In particular,
it is shown that all types can be realized for all n > 1.
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A finitely generated group I' is said to be renormalizable if there exists a proper
self-embedding ¢: I' — I' whose image has finite index [29]. Another name for this
property is that I is finitely non-co-Hopfian. The embedding ¢ defines a group chain in I
that gives rise to a I'-odometer (X, I', ®,). The properties of the odometers obtained this
way are studied in the work [29]. The classification problem for proper self-embeddings
@: 7" — 7" was related to the class field theory of number fields in the works of Sabitova
[41, 42].

THEOREM 1.10. Let ¢: ' — ' be a renormalization with associated T'-odometer
(Xg, ', ®y). Then, the action has a well-defined type t[X,, I, ®y] and typeset
E[Xy, ', ®yl. Let ¢': T' — T’ be a renormalization of a second group "', and assume
the odometers (X, I', @) and (X, I/, D) are return equivalent, then their types and
typesets are equal.

Many finitely generated nilpotent groups admit renormalizations, as well as some other
classes of groups, as discussed in [29]. Examples 5.4 and 5.5 give constructions using
renormalizable groups which illustrate the conclusions of Theorem 1.10. For a finitely
generated, torsion-free nilpotent group I', there are relations between type invariants and
the dynamics of I'-odometers [28].

Another source of examples arises from group actions on rooted trees, which induce
odometer actions on the Cantor sets of ends of the trees. Section 6.1 discusses d-regular
odometers, which are odometers that have faithful representations as actions on d-regular
trees.

THEOREM L.11. A TI'-odometer (X,I", ®) which is d-regular has finite typeset
E[Xoo, I, @). More precisely, suppose (X, ", @) is isomorphic to an action on a d-ary
rooted tree, for some d > 2. Let Py be the set of distinct prime divisors of the integers
{2,...,d}, and let Ng = | P;|. Then, the cardinality of the typeset satisfies

Ny Ny

N, Ny!
|E[Xeo, T, @] < > < kd> => de)vk' (1.8)

k=0 k=0

Moreover, each type T € E[X, I, @] is represented by a Steinitz number & with empty
finite prime spectrum 7 ¢ (§), and so 7w (§) = 7o (£).

Example 6.8 gives examples of d-regular odometers that realize the typesets in
Theorem 1.11.
Finally, we mention two open problems about the type invariants for odometers.

Problem 1.12. (Realization) Given a finitely generated, torsion-free group I', are there
restrictions on the types and typesets that can be realized by a I'-odometer?

The work of Arnold [2] implies that every typeset can be realized by a Z"-odometer. It

seems likely that this is also true when I' is a nilpotent group. The solution to Problem 1.12
for a general finitely generated group I' is unknown.
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Problem 1.13. (Classification) For an odometer (X, I", ®) with type t[X, ", ®] and
typeset E[X, I', @], classify the I'-odometers with the same type and typeset.

1.4. Solenoidal manifolds. The classification of minimal equicontinuous Cantor actions
is closely related to the classification problem of solenoidal manifolds, and the type
invariants defined above yield homeomorphism invariants for solenoidal manifolds. We
briefly recall their definition and state the applications, with details given in §7.

A presentation is a sequence of proper finite covering maps P = { q¢: My — My_1 |
£ > 1}, where each M, is a compact connected manifold without boundary of dimension
n. The inverse limit

Mp =lim {g¢: Me — Me—1) C [] Me (1.9)
£>0
is the weak solenoid, or solenoidal manifold, associated to P. The set Mp is given
the relative topology, induced from the product topology, so that Mp is compact and
connected. The initial factor My is called the base manifold of Mp.

McCord showed in [32] that a solenoidal manifold Mp is a foliated space with foliation
Fp,in the sense of [33], where the leaves of Fp are coverings of the base manifold M via
the projection map onto the first factor, go: Mp — Moy, restricted to the path-connected
components of M. Solenoidal manifolds are matchbox manifolds of dimension n in the
terminology of [9, 10, 24]. Solenoidal manifolds have been studied for their geometric
properties [43, 46, 47], for their analytic and index theory properties [11, 33], and from
various number-theoretic viewpoints [41, 42].

Here are two applications of the type invariants. Details and proofs are given in §7.

THEOREM 1.14. Associated to a presentation P is a well-defined Steinitz number & (P),
and the type t[E(P)] depends only on the homeomorphism class of Mp. We denote this
type by T[Mp].

For orientable one-dimensional solenoids, where each map g¢: S' — S! is orientable,
Bing observed in [7] that if T[Mp] = t[Mp/], then Mp and Mp, are homeomorphic.
McCord showed in [32, §2] the converse, that if Mp and M are homeomorphic, then
T[Mp] = t[Mpr]. (See also [1].) Together, these results yield the following well-known
classification.

THEOREM 1.15. For one-dimensional solenoidal manifolds, Mp and Mp' are homeo-
morphic if and only if t{[Mp] = t[Mp/].

For solenoidal manifolds of dimension n > 2, no such classification by invariants can
exist, even for the case when the base manifold My = T" (see [44].) The most one can hope
for is to define invariants that distinguish various homeomorphism classes. Associated to
a presentation P is a well-defined typeset E(P), which provides another invariant of the
homeomorphism class of Mp.

THEOREM 1.16. Assume that Mp and Mp are homeomorphic solenoidal manifolds,
then the typesets E[P] and E[P'] are commensurable.

https://doi.org/10.1017/etds.2025.10211 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2025.10211

Type invariants for non-abelian odometers 7

1.5. Structure. The remainder of this paper proceeds as follows. Section 2 discusses the
basic results about odometers required. Section 3 discusses the basic results about types
and typesets required. Section 4 gives the proofs of the results above about classifying
odometers. Section 5 gives some basic examples of odometers, and calculates their types
and typesets. Section 6 discusses d-regular odometers, and calculates their types and
typesets. Section 7 discusses solenoidal manifolds and their types and typesets.

2. Cantor actions

We recall some of the basic properties of Cantor actions, as required for the proofs of
the results in §1. More complete discussions of the properties of equicontinuous Cantor
actions are given in the text by Auslander [4], the papers by Cortez and Petite [14], Cortez
and Medynets [13], and the authors’ works, in particular [17, 18] and [26, §3].

2.1. Basic concepts. Assume that X is a Cantor space. Let CO(X) denote the collection
of all clopen (closed and open) subsets of X, which forms a basis for the topology of
X. For ¢ € Homeo(X) and U € CO(X), the image ¢ (U) € CO(X). Recall that the action
(X, T, @) is minimal if for all x € X, its orbit O(x) = {g - x | g € I'} is dense in X.

The following result is folklore and a proof is given in [25, Proposition 3.1].

PROPOSITION 2.1. For X a Cantor space, a minimal action ®: I' x X — X is equicon-
tinuous if and only if the T -orbit of every U € CO(X) is finite for the induced action
P,: ' x CO(X) - CO(%X).

That is, given a clopen set U € CO(X), I" acts on the orbits of U by finite permutations.
This justifies saying that a minimal equicontinuous Cantor action of I" is a (generalized)
odometer.

We say that U C X is adapted to the action (X, I', @) if U is a non-empty clopen subset,
and for any g € ', if ®(g)(U) NU # @ implies that ®(g)(U) = U. Given x € X and
clopen set x € W, there is an adapted clopen set U with x € U C W. (For example, see
the proof of [25, Proposition 3.1].)

For an adapted set U, the set of ‘return times’ to U,

Ty={gel|g-UNU # &}, @.1)

is a subgroup of T, called the stabilizer of U. Then, for g, g’ e T withg - U Ng' - U # @,
we have ¢g~! ¢/ - U = U, and hence g~ ! g’ € T'y. Thus, the translates {g-U | g € T’}
form a finite clopen partition of X and are in 1-1 correspondence with the quotient space
Xy =T'/T'y. Then, I' acts by permutations of the finite set Xy and so the stabilizer group
'y C G has finite index. Note that this implies that if V C U is a proper inclusion of
adapted sets, then the inclusion I'y C I'y is also proper.

Definition 2.2. Let (X, T", ®) be an odometer. A properly descending chain of clopen sets,
U ={U, C X | > 0},is said to be an adapted neighborhood basis at x € X for the action
@ if x € Ugy1 C Uy is a proper inclusion for all £ > 0, with (),., Ue¢ = {x}, and each U,
is adapted to the action ®.
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Given x € X and ¢ > 0, Proposition 2.1 implies there exists an adapted clopen set
U € CO(X) with x € U and diam(U) < ¢. Thus, one can choose a descending chain I/
of adapted sets in CO(X) whose intersection is x, from which we obtain the following
result.

PROPOSITION 2.3. Let (X, ', ®) be an odometer. Given x € X, there exists an adapted
neighborhood basis U at x for the action ®.

COROLLARY 2.4. Let (X, ", ®) be an odometer and U be an adapted neighborhood basis.
Set 'y =Ty, withT'g =T, then Gy ={I'o0 D I'1 D - -} is adescending chain of finite
index subgroups.

2.2. Equivalence of Cantor actions. We next recall the notions of equivalence of Cantor
actions used in this work. The first and strongest is that of isomorphism, which is a
generalization of the usual notion of conjugacy of topological actions. The definition below
agrees with the usage in the papers [13, 25, 31].

Definition 2.5. Cantor actions (X1, I'1, ®1) and (X,, ['2, ®») are said to be isomorphic if
there is a homeomorphism #: X; — X3 and group isomorphism ®: I'y — I'» so that

Di(g) = o ®,(®(g)) oh € Homeo(X;) forallg eI. 2.2)

The notion of return equivalence for odometers is weaker than the notion of isomor-
phism, and is natural when considering the odometers defined by the holonomy actions for
solenoidal manifolds, as considered in the works [24—26] and later in §4.

For an odometer (X, I', ®) and an adapted set U C X, by an abuse of notation, we
use @y to denote both the restricted action &y : 'y x U — U and the induced quotient
action &y : Hy x U — U, where Hy = ®(I'y) € Homeo(U). Then, (U, Hy, ®y) is
called the restricted holonomy action for ®, in analogy with the case where U is a
transversal to a solenoidal manifold, and Hy is the holonomy group for this transversal.
A technical issue that often arises though is that while I'yy C T has finite index, the action
map Py : 'y — Hy need not be injective, and can in fact can have a large kernel as is
the case, for example, for the actions of weakly branch groups (see Example 6.10).

Definition 2.6. Odometers (X, T", ®) and (X', T/, ®') are return equivalent if there exists
an adapted set U C X for the action ® and an adapted set U’ C X’ for the action &', such

that the restricted actions (U, Hy, ®y) and (U’ ’U/, CD’U,) are isomorphic.

Note that if we take U = X and U’ = X’ in Definition 2.6, then return equivalence
may still be weaker than isomorphism in Definition 2.5, unless the actions ® and @' are
topologically free [25, 31, 37].

2.3. Algebraic Cantor actions. There is a natural basepoint xo, € Xoo given by the
cosets of the identity element e € T', so xoo = (eI'¢). An adapted neighborhood basis of
Xoo 18 given by the clopen sets

U=x=U)eXo|xi=eli € X;,0<i <0} C Xeo. (2.3)

Then, there is the tautological identity I'y = I'y,.
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Suppose that we are given an odometer (X, I', &) and an adapted neighborhood basis
U. Define subgroups I'y = I'y,, with I'g = T, which form the group chain Gy = {I'g D
I'1 D - - - }. Then we have the following folklore result.

THEOREM 2.7. Let (X, T, ®) be an odometer and U an adapted neighborhood basis. The
action (X, T, ®) is isomorphic to the odometer (Xoo, I', ©oo) constructed from the group
chain Gy.

COROLLARY 2.8. Let (X, T, ®) be an odometer, and assume that G4 and QZ’/{, are adapted
neighborhood bases for the action. Then, the corresponding algebraic models of the
action, (X0, I', o) and (X(/)o, r, @go), are isomorphic in the sense of Definition 2.5
with ®: I' — T the identity map.

3. Type and typeset

The notion of type was introduced in 1937 by Baer in [5, §2] as part of the study of the
classification problem for rank n subgroups of Q". The work of Butler [8] introduced a
restricted class of subgroups in Q", now called Butler groups. The classification theory for
Butler groups was further developed by Richman [40] and Mutzbauer [34], and the works
of Arnold (see [2, §1]), and Arnold and Vinsonhaler [3]. For a comprehensive treatment
of these ideas, see the monograph by Fuchs [21]. Thomas applied the type invariants in
his analysis of the classification complexity of these groups in the work [45, §3]. The
applications of type invariants to profinite groups are discussed in the works by Ribes [38,
Ch. 1, §4], Wilson [48, Ch. 2], and Ribes and Zalesskii [39, Ch. 2.3]. In this section, we
recall basic notions and properties of Steinitz numbers and their types, and their definitions
for I'-odometers.

3.1. Types and typesets. Recall that a Steinitz number £ can be written uniquely as the
formal product over the set of primes,

e=1] p=?, (3.1)
pell
where the characteristic function xg: I1 — {0, 1, ..., oo} counts the multiplicity with

which a prime p appears in the infinite product &. Note that multiplication of Steinitz
numbers corresponds to the sum of their characteristic functions.

Recall from Definition 1.2 that two Steinitz numbers & and &’ are said to be asymp-
totically equivalent if there exists finite integers m, m’ > 1 such that m - § = m’ - §’, and
we then write £ ~ &’. Recall that the type T[£] associated to a Steinitz number & is the
asymptotic equivalence class of &.

LEMMA 3.1. & and &' satisfy € ~ &' if and only if their characteristic functions x1, x>
satisfy:

o x1(p) = x2(p) for all but finitely many primes p € Il; and

o x1(p) = ocoifand only if x2(p) = oo for all primes p € T1.
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Given two types T and 7/, we write T < 7’ if there exists representatives & € T and
&' € ©/ such that their characteristic functions satisfy xe(p) < xg (p) for all primes p €
I1. Then, two Steinitz numbers & and £’ are asymptotically equivalent if and only if xz <
xer and g < xe.

Definition 3.2. A typeset E is a collection of types.

There are three operations on types T and t’: product, join, and intersection. Let x
(respectively x’) be the characteristic function for a representative & € 7 (respectively
& € 1'), then

Product: 7 - 7’ type defined by x ' (p) = x(p) + x'(p);
Join: 7 v 7/ type defined by x ¥ (p) = max{x (p), x'(p)};
Intersection: T A T’ type defined by x"(p) = min{x (p), x'(p)}.

Note thatt AT/ < TV 1t/ < 7-7'. Atypeset E need not be closed under the operations
of product, join, or intersection. However, a typeset & always admits a partial ordering.

3.2. Type for profinite groups. A topological group & is said to be profinite if it is
isomorphic to the inverse limit of finite groups (see [48, Ch. 2] or [39, Ch. 2.3]).

The Steinitz order TI[®] of a profinite group & is defined by the supernatural number
associated to a presentation of &, defined as follows. For a profinite group &, an open
subgroup 4 C & has finite index [39, Lemma 2.1.2]. Let ©® C & be a closed subgroup and
I C & is an open normal subgroup, then 91 - D is an open subgroup of & and NN D is
an open normal subgroup of ®.

Definition 3.3. Let ® C & be a closed subgroup of the profinite group &. Define Steinitz
orders as follows:

(1) &(B) =lcm{# &/ | 9N C & open normal subgroup};

2) £®) =Ilem{#D/MND) | N C & open normal subgroup};

B) E&B:D)=Ilcm{# G/ - D) | N C & open normal subgroup}.

The Steinitz number £(® : D) is called the relative Steinitz order of the pair (6, D).
The Steinitz orders satisfy the Lagrange identity, where the multiplication is taken in
the sense of supernatural numbers (see [39, 48]), and we have

£(6) =£(6:9) (D). (3.2)
In particular, we always have £[D] < £[®].

Definition 3.4. The relative type E[® : D] is the type of £(& : D), where ©® C & is a
closed subgroup of the profinite group &.

3.3. Type for odometers. Let (X, ', P) be an odometer, defined by a group chain
G={'=ToDI D:---}. Recall that the normal core of 'y is the largest normal
subgroup Cy C I'y. The profinite group F(Q) associated to the action (X, I', ®o)
defined by G is given by the following definition.
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Definition 3.5. Let G be a group chain with associated normal core chain {C, | £ > 0},
then

T(G) = im{T'/Cey1 — T/Cy | €= 0}, (33)

The profinite group F(g) is a quotient of the full profinite completion of I', but it is
typically not equal to the profinite completion. The properties of the group T'(G) associated
to a Cantor action are studied extensively in the authors’ works [17, 18, 24, 26]. The Steinitz
order of T'(G) is well defined and given by

£(T(G)) = lem{#(T'/Cy) | £ > 0} (3.4)

The type r[f(g)] =rt[& (F(Q))] need not be an invariant of return equivalence of the
odometer (X, I', ®), as explained below.

Definition 3.6. Let (X0, I', @) be an odometer. The type 7[Xeo, ', Poo] of the action
is the equivalence class of the Steinitz number

£E(Xoo, T, ®oo) = lem{#X, = #(I'/Ty) | £ > 0). (3.5)

Recall that there is a transitive action 600: F(g) X Xoo = X induced by odometer
(Xoo, T', @og). The action (Xoo, [(G), Poo) is free precisely when the isotropy subgroup
D) C F(Q) of the action at the basepoint xo, € X is trivial. In this case, we have
a homeomorphism Xy, = F(g) that commutes with the action, and so X, inherits the
structure of a Cantor group from the action.

However, when the action (X, F(g), 500) is not free, then (G) is not trivial and we
have the following proposition.

PROPOSITION 3.7. Let (X0, I', @ o) be an odometer. Then, £ (X oo, I', Poo) = s(f(g) :
D(9)).

We omit the proof of this, as it is a direct consequence of the definitions, and the result
is not needed for the proofs of our main theorems. However, Proposition 3.7 provides some
insights on the properties of the type t[X o, I, Poo] of an odometer with respect to return
equivalence.

The Lagrange theorem for profinite groups, equation (3.2), implies that T[] =
T[Xoo, [y Dol - T[D(G)]. The type t[D(G)] need not be invariant under restriction to
adapted subsets, and so t[D(G)] need not be invariant under the relation of return
equivalence, and thus the same is true for r[f(g)]. However, the proof of Theorem 1.5
shows that the relative type r[f(g) :D(G)] = t[F] is invariant under restriction to
adapted subsets.

3.4. Typesets for odometers. We next consider the properties of typeset under restric-
tion, which leads to the notion of commensurable typesets. Let G ={[" =T¢ D | D
', D - -} beagroup chain and (X0, I', Poo) the associated odometer.
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Let H C I be a subgroup of finite index such that I'y C H for some £ > 0. By omitting
some initial terms, we can assume that I'; C H. Then, for each £ > 0, define

=) sres . (3.6)
seH

Then, C f C I'y is a subgroup of finite index, as I'¢ has finite index in I". In particular,
Cr=C { is the normal core of I'y and there is an inclusion C, C C f for any choice of H.
Also note that C£ | ¢ Cf forall £ > 0.

Given y €T, define C¥, =(y)NCf, and let Cf ={(y)NH = Cfo ) Cfl )
C;{z D - - - } denote the resulting subgroup chain in (y).

Definition 3.8. Given a group chain G and H C I" a subgroup with I'y C H for some
£ > 1, the H-restricted order of y € T is the Steinitz order with respect to the chain C 8

7 (y) =lemf#((y)/Cflp) | £ > O} 3.7)
The H-restricted typeset for the chain G is the collection
EnlG) = {rl§" (] |y €T} (3.8)

Note that when H = I', we recover the typeset E[G] in Definition 1.6.
We can now formulate the notion of commensurable typesets for group chains G and G'.

Definition 3.9. Let G ={I' =Ty DI DI D ---}and §={I"=Ty DI DT, D
- -+ } be group chains. We say that their typesets E[G] and E[G’] are commensurable if
there exists a finite index subgroup H C I' with I’y C H for some £ > 1, and H' C T’
with T'), C H' for some ¢’ > 1, such that E4[G] = E/[G'].

Finally, we give an elementary result about the types of elements y € I' that follows
from basic group theory. For all £ > 0, we have that (y), C Cy, so the order of the
subgroup (y)/(y)¢ divides the order of I'/C,; by Lagrange’s theorem. Thus, we have the
following proposition.

PROPOSITION 3.10. For a group chain G, t[G] < r[f(g)], and for each y €T,
[yl < z[[(9)].

4. Invariance of types
In this section, we give the proofs of the results in §1 on odometers. The discussion of
solenoidal manifolds and the proofs of Theorems 1.14 and 1.16 are given in §7.

The following notation is used. Let (X, ', ®) and (¥/, I/, ®') denote odometers, and
let U for (X, T', ®) be a choice of an adapted neighborhood basis for (X, I', ®) and U’ a
choice of an adapted neighborhood basis for (X', I/, ®’). In some cases, we have X = X'.

Let Gy be the group chain associated to U/, as in Corollary 2.4, and let (X0, I', @ o)
denote the algebraic model for (X, I', ®) that it determines, as in §1.2. Similarly, let QZ//[, be
the group chain associated to " and (X[, I/, @) the algebraic model for (X', T/, ®).
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4.1. Proof of Theorem 1.5. We must show that the Steinitz number £(X, I', @) of an
odometer (X, I', @) is well defined and that its type t[£(X, I, ®)] is an invariant under
return equivalence. The first claim is a special case of the proof of invariance under return
equivalence, as explained later.

Suppose that the odometers (X, T", ®) and (X', '/, ®’) are return equivalent. Then, by
Theorem 2.7, the odometers (X oo, I', Poo) and (X, I/, ) are return equivalent, as in
Definition 2.6.

Choose adapted sets U C X and U’ C X/ and a homeomorphism i: U — U’ so
that the induced homomorphism /4, : Homeo(U) — Homeo(U’) restricts to an isomor-
phism between the image Hy = ®(T'y) with the image H;,, = @'(I';,)).

Recall a standard construction of a diagram of maps between adapted sets [20],
[17, Theorem 3.3]:

Xo 2 U D 7-Uy D WUy D y2-Usp D Wy Up)Dee

Lh : I I I
X, DU D h(y1-Ug) D )/1’~Ulf,1 D h(ya-Up) D )/2’-Ulf/2 I
.1

The sets U, are defined in equation (2.3) and adapted to the action of I', and similarly for
the sets U;,, which are adapted to the action of I'’. The subscripts and intermediate adapted
sets are defined iteratively in the following. We adopt the ‘-* notation for the actions, as it
is clear from the context which action is being applied. Recall that the action of 'y on U is
minimal, as is the action of Iy, on U’. Denote eo, = (eI'y) € Xoo and e, = (eI'}) € X7,
where Iy is the isotropy subgroup of Uy and T, is the isotropy subgroup of U é,, for each
¢ > 0andeach ¢ > 0.

We define the maps and indices in diagram (4.1) recursively.

The set U is clopen, so there exists y; € I' such that y; - esc € U. Choose £1 > 0 such
that y; - Uy C U.

The image h(y;-Ug) C U’ is clopen, so choose y/ € I'' such that y|-e
h(y1 - Ug,). Choose £] > 0 such that y, - Uéi C h(y1 - Uy)).

The image h~! (v - Utf,) C y1 - Uy, is clopen, so choose y2 € T such that y; - e €
1
h_l(yl’ . Ué,) C ¥1 - Ug,. Choose €5 > £; such that y» - Uy, C h_l(yl’ . Ulf,).
1 1

/
oo €

The image h(yz - Ug,) C yf - Ué,l is clopen, so choose y, € I'" such that y; - e, €
h(y - Ug,). Choose £} > £} such that y; - Ué,z C h(yz - Uyy).
Continue this procedure recursively to obtain diagram (4.1), where we have:
e increasing sequences 0 < £ <€y < €3 <--- and0 <€) <€) <ff<---;
e asequence {y1, ¥2,¥3,...} CI';
e asequence {y], ¥, ¥3....} C T,
Observe that, by choice, we have y; 1 - Uy, C vi - Uy, and thus ygly@i 41 € Iy, for

all i > 1. This recursion relation implies that the sequence {y; | i > 0} converges in the
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profinite topology on I' induced by the subgroup chain {I'; | £ > 0}, and similarly for
{y/ |'i = 0} in the profinite topology on I'". If we denote the respective limits by {viteT

and {y/} € T, then we have
(it eco =h7" ¥/} - ele) and  {y]}- el = h([i] - eco)-

All of the sets appearing in diagram (4.1) are adapted for their respective actions, so the
set inclusions induce corresponding subgroup chains of their isotropy groups, and these
chains are interlaced:

> H=TIy D yll“g,yl_l D Fh—l(yl“Ué,) D) y2F22)/2_1 D Fh_'(V2/~Ué,) IDEEE
1 2
lh,ﬂ lh* B Lh* g
_ —1 —1
"> H =Ty, D F;l(yyUzl) D yl’l"é/l(yl/) D F;I(VZ'Uiz) D yz/l"z,/z(yz’) Do
4.2)
Conjugation does not change the index of a subgroup, so [I" : l"gj] =[T:y l"gj yj_l]
for all j > 1, and likewise we have [T/ : Fé,] =[I": y]sz, (y;)’l]. It then follows that
J J
[[:T¢,] =TTy ]Te, : Tyl =T TolnTe 7 sy @3)
[T : F;,_] =[I: r;,]][r;,] : F;,_] =[I: Fél][yl’l"é,] (yl/)*1 : y]{l";,_ (y]’-)fl]. 4.4)
J J J
We now show the key fact for the proof of Theorem 1.5.
LEMMA 4.1. Forall j >i > 0,
[Te, : Te;1 = Mhgu,) * Thoyy v 4.3)

Proof. The isotropy group I'y, acts minimally on the clopen set Uy, and its action
translates the clopen subset Uy ; C Uy, to give a partition of this set. The index [Iy; : F@J.]
equals the number of clopen subsets in this partition. It follows that the action of y; I, yl._l
on y; - Uy, partitions this set into [I; : ng] translates of the clopen subset y; - Ugj.

The homeomorphism h: U — U’ restricts to a homeomorphism h: y; - Uy, —

h(yi - Uy;), which induces a conjugacy of the action of I';,.y, with the action of F;;(yl-- )

on h(y; - Up) C U'. Thus, the translates of the clopen subset h(y; - Ugj) partition
h(y; - Ug,) into [Ty, : ng] clopen subsets, and so the identity in equation (4.5) follows. [

We now prove that 7[£(Xeo, I', Poo)] = T[E(X], I, PL)]. Recall that
§(Gy) =lem{[I" : T'¢] [ £ > 0} =lem{[I" : T'¢; ] | j > 0}, (4.6)
£(Gyy) =lem{[I" : Ty] | £ > 0} = lem{[I" : Fé’,] | j > 0}. 4.7)
J
Then, by equation (4.5), for j > 1, we have

[F:Te ] =10 To ] [Ty Dol = 0 Ted Thgy 0, Thgyu ) @8)
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Then calculate, recalling the inclusions U" D h(y; - Ug,) D yy - Ul’l D h(yj-Ug) D )/J/- .
U é,. from equation (4.1):
J

VARSIV

_ AN al / . / . / ./
= Fhgyv ) Whirve) * Ty, V0, Thiyv )V Thiyv ) 2 Ty, b
1 1 ; J

ARV / el / . ad
= Tagivp) Whinvey)  Thiy o) hiyy 00y * Ty, 1 (4.9)
’ J

Then, by equation (4.8), the last line of equation (4.9) yields

[[: T ][I : Fé,j] =[I: FI/T(V]'UKI)] [I": Tyl [F;l(J/j'UZ]-) : F;/_;Ué,_]' (4.10)

J
Thus, the index [I": ng] divides [I" : T'y,] [T : Fé,.] for all j > 1. In particular,

[T : T'¢;1divides [I" : Ty, ] &(P")forall j > 1, and so é(’P/) divides [T" : Iy, 1 £(P’); hence
[P] < t[P].

Next, repeat these calculations for j > 1, starting with

[F . FE_H—I] - [F . Fh_l(yl/'UIf,l)] [Fh_l(yl/.uﬁ/l) . Fh_l(}/;Ué,)] [Fh_l(]/;'Ué,.) . ij+lvUZj+l].
J J

4.11)
Lemma 4.1 can be applied to the inverse map h~': U’ — U as well, to obtain that for all
j>i>0,
[F;Zl’. : 29] = [Fh_1(yi/,U4) : Fh_](V_}'Ué//_)] (4.12)
and so |
[T : T, =1 Fhfl(y{»U(/l)] [l"’,1 : Fé}] [F,rl(yj(_Ué}) : F,,J.HAUKHI]. (4.13)

Thus, the index [F;, : Fé/] divides [T : I'; ] for all j > 1 and so [Fz/z/ : Fé,] divides
1 j ’ 1 J
E(G). It follows that s(gg/,,) divides £(Gyy); hence, I[QZ//{,] < t[Gy]. Reversing the roles
of the group chains Gy and G, ,, we obtain that 7[Gy] = 7[G,, ], and thus T[X, ', ®)] =
7[X', T/, ®']. This completes the proof that the types of return equivalent actions are equal.
Finally, to complete the proof of Theorem 1.5, we show that £(Gy) = g(g&,) for group
chains Gy and Q’Z’/,, associated with (X, I', ®). We proceed as in the above proof and note
that while I' = I'', the group chains define distinct inverse limit spaces X, and X/ .
In the above calculations, take U = X, and U’ = X, y1 = e € I' with ¢; =0, and
y; =€ €I with £] = 0. Then, the terms [I" : T'y;] =1 and [I": Fé,] = 1. Then, by
1
equation (4.10), we have [I" : ng] divides [T : Fé/.] and by equation (4.13), we have
J
[T : Fé,_] divides [I" : ¢, ]. It follows that & (Gy) = £(Gy,)- That is, the Steinitz order is

J
independent of the choice of a group associated to the action.

4.2. Proof of Theorem 1.8. We must show that the typesets of odometers are well
defined and invariant under return equivalence modulo the equivalence relation on typesets
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in Definition 3.9. As above, we show the result for return equivalence first, then deduce the
result for conjugation from the proof of this. The proof begins as in §4.1.

Suppose that the odometers (X, ', ®) and (X, T, ®') are return equivalent, then
the odometers (X0, I', Poo) and (X, IV, @) are return equivalent. Choose adapted
sets U C Xoo and U’ C X/, and a homeomorphism i: U — U’ so that the induced
homomorphism %, : Homeo(U) — Homeo(U’) restricts to an isomorphism between
the image Hy = ®(I'y) with the image H,, = ®'(I';;,) that induces an isomorphism
between the actions (U, Hy, ®y) and (U’ 2],, CD’U,).

Next, choose basepoints x € U and x” € U’. Choose an adapted neighborhood basis
U={U;CX|L>0} at x for the action ® as in Definition 2.2, and an adapted
neighborhood basis & = {U; C X" | £ > 0} at x’ for the action ®’. We can assume that
Uy cUandU; CU".

Form the group chain G ={I'o D I'1 D - - -}, where I'y = I'y, with I'p =T, and the
group chain G’ =Ty DT D .- -}, where ') = Fbé with ) =T,

Set H =Ty and H' = I'};,. We will show that the H-restricted typeset Ef[Xoo, ', @]
and the H'-restricted typeset E /[ X, I/, ®'] are equal.

Given y € I', for any positive integer m > 0, the group (y") is a subgroup of finite
index in (y). Thus, £ (y) = m&H (y™) and t[£H (y)] = t[EH (y™)]. Since H has finite
index in I, for any y € I, there exists m > 0 such that ™ € H. Thus, we have Ey[G] =
Ey[H N G], so it suffices to consider y € H, and likewise for y' € H'.

Let sequences {y; | i > 1}, {y/ |i =1}, {¢; | i > 1} and {¢; | i > 1} be chosen as in
§4.1, resulting in diagram (4.1) of adapted sets, and diagram (4.2) of group inclusions.
Note that as we assume e, € U, we can choose y| to be the identity, and likewise as
el € U’, we choose y| to be the identity. By choice, we have y; ;1 - Uy, C yi - Uy, and
thus )/Z]]/ei 41 € [y, forall i > 1. In particular, this implies that y; € H forall i > 1. The
analogous conclusion holds, that y/ € H' foralli > 1.

For notational convenience, set H; = Fy,--Ue,- =y Iy, yfl and Hi’ =T
Then, H C H; C H =Ty andH]/- CH{CH =Ty, forj>i>0.

Let {X : U} denote the set of translates of the adapted set U. Then, for H = 'y,
we have the set equality {Xo : U} =T'/H. Set m = #(I'/H)!, which is the order of the
group of permutations on the set {X, : U}. Then, for y € T', the action of y” on the set
{Xoo : U} is the identity. This implies that y"* € C Z the core of H.

Given a group chain G and H C I" a subgroup with I'y C H for some £ > 1, the
H-restricted order of y € T is the Steinitz order with respect to the chain C,

/

hi-Us,) fori > 0.

7 (y) =lemf#((y)/CJl) | £ > 0} (4.14)
The H-restricted typeset for the chain G is the collection
EnlGl = (r[" ()] |y €T} (4.15)

LEMMA 4.2. t[eH (y™)] = t[EH (1))

Proof. Let the cyclic group (y)/ C)f{ , have order m,. Then, y™ generates a subgroup
whose index is the greatest common divisor ny, = gcd(m, mg¢). We have my|m41; hence
ne < ngy1, and also that n, < m. Thus, the sequence {n, | £ > 1} has an upper bound
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Neo < m which is realized for £ sufficiently large. It follows that ns - €7 (y™) = £ (y);
hence t[£# (y™)] = T [ (y)]. -

So without loss of generality, it suffices to consider y € C 15 C H.

The homeomorphism 4: U — U’ induces an isomorphism h,: Hy — H’U,. Thus,
there exists y" € H' whose action ®,,(y’) on U’ equals the image d);, = hy(Dy(y)). We
show that the H'-restricted type of ¥’ equals the H-restricted type of y.

Let V C W C X be adapted subsets. The restricted action of I'yy on W is minimal,
and hence the translates of V define a clopen partition of W. Let {W : V} denote the set of
elements in this partition and let |W : V| = #{W : V} denote the cardinality of the set of
translates.

The action @ induces a map CD‘V,V : T'w — Aut({W : V}) into the permutations of the set
{W : V} of translates of V in W. The kernel of the map CDW is denoted by C‘V,V CTI'y and
equals the normal core of I'y as a subgroup of I'y. Thus, the index [['w : T'y] = |W : V|
and [Ty : C}/] = #Image(®}) (T'w)).

Now, apply this observation to the action of H = I'y on U. For each j > 1, the action
@ induces a map ﬁ;géj : H — Aut({U : y; - Ug;}), which permutes the elements of this

partition. The kernel of the action map 55{_ is the subgroup
J

H —1 ~1 -1

cl = ﬂ 8Ty,.0,,67" = ﬂ Gyl Gy~ = ﬂ 8Ty, 67" (4.16)
seH seH seH

Set Cﬁj =(y)n C]H, then the subgroup (y)/C}{{j C H/ C;i is mapped injectively into

Aut({U : Uy, }). Thus, #((y)/cfj) = #lmage(®y, ({y))), and so we have

’ j

£(y) = lemf{#((y)/CJl)) | j > O} = lem{#lmage(@(, () [j >0} @A17)

We next use the conjugation by £ to relate the order of a subgroup of Aut({U : V}) with
the order of a subgroup of Aut({U’ : V'}) for appropriate choices of adapted subsets V and
V'. This is analogous to the idea behind the proof of Lemma 4.1.

From diagram (4.1), for j > 1, we have

U/Dh(y1~Ugl)Dy1/~U/,l D---Dh(yj-Uy) Dy;-Uy D---. (4.18)
X J

Using that y]/. U, Ch(yj-Uy;), we have
J

I/ nN—1 _ 7 / _ ! /
ijgj ()~ = Fy]’»Ué, C I"h(Uzj) =H; CH, (4.19)
j
H _ ~H H'
and so Cj = CV]‘FZJ.(V})’I ccC ‘- Then,
) D> )NCh) > hne)=cli. (4.20)
J

The action of CD/U,()/’ ) on U’ translates the clopen set h(y; - U(j) within the clopen set
U’, and thus
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#((y)/C}j) = #mage(DY, ((y)) = #lmage(®fy, (")) = #(r)/(y') N CL).

(4.21)
Using that yjf -U, Ch(yj-Uy;), we have
J
YT, ()~ =T oy, © Py = Hi € H. (422)
and so CH = Chfr, (! C C We then have, using equation (4.20),
#((r)/CJL ) = #U) /() N CY - #(y Y N CD/CL
=#((y)/CL)) - #((y) mc”/)/« mcj’ ). (4.23)

Thus, we have that #((y)/C)f{j) divides #((y’)/Cﬁ/j) for all j > 1. It follows that

tyly]l = t[éH(y)] < ‘C[éH/()//)] = t/[y’]. Then, by reversing these calculations, start-
ing with ¥’ chosen as above, we obtain ty/[y'] < ty[y] and hence ty[y] = T/ [y'].

We have thus shown that for each y € T, there exists y’ € [’ with the same restricted
type. Reversing this process, we deduce that Ep[Xoo, I', @] = Epr[X,,, IV, @] Tt
follows that E[G] and E[G’] are commensurable as in Definition 3.9, which proves
Theorem 1.8.

4.3. Proof of Theorem 1.7. The claim of Theorem 1.7 is that for each y € I', there
is a well-defined type t[y]. In fact, we show the stronger result, that the Steinitz order
&(y) is independent of the choice of an adapted basis U for the odometer (X, I', ®).
Given two adapted bases U/ and U, the algebraic models they define, (X0, I', @oo) and
(X, T, @), are isomorphic.

In the above proof of Theorem 1.8, welet U = Xoo and U’ = X/ ,andso H =Ty =T
and H' =T';;, = I"". Then, observe that for £ > 0, the normal subgroups cH =Cy and
CEH/ = C,. It follows that for y € T and y’ € T chosen as in the proof of Theorem 1.8,
we have £ (y) = £(y) and £#'(y’) = £(y’), and the proof shows that &(y) = £(y"). It
follows that the set of orders {£(y) | y € I'} is independent of the choice of an algebraic
model for the action, and so is an invariant of the isomorphism class of the action
(%, T, ®), as was to be shown.

4.4. Proof of Corollary 1.9. Suppose that both I and I’ are abelian, and the actions are
return equivalent. Then, every group I'¢ in a subgroup chain G;; in I" is normal. Then, for
any subgroup H C I, the normal cores satisfy C[I = Cy = I'y. Thus, in equation (4.17),
the restricted type £7 () = &(y). Similarly, we have £7' (") = £(y') for ¥’ € I"'. Thus,
the above proof shows in this case that the typesets E[X, I, ®] and E[X’, I, ®'] are equal,
which is the claim of Corollary 1.9.

It is surprising perhaps that the conclusion of Corollary 1.9 need not hold if one of
the groups is virtually abelian, but not abelian, as illustrated in Example 5.3. The idea of
Example 5.3 is that we add to an abelian group a single element that normalizes it, does
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not commute with it, and destroys the equality C [] = Cy. Then, the types of elements are
no longer equal to their H-restricted types.

4.5. Proof of Theorem 1.10. Let ¢: I' — I' be a self-embedding with finite index
image. Define a group chain G, by setting I'o =T and then inductively define
Fey1 =@y) C Ty fored > 0.

Then, with H =T’y fork > 0 and £ > k,

ci= s'ts= ) s'o'Ms= (pk( N 8‘1#"‘(1")8) = " (Ce—p).

seH 5e¢k(r) sel’
4.24)

and so Fg/Cf = (pk(Fg_k/C[_k). Then, fory € H =T, sety = go_k(y), then we have
7 (y) =lem{#((y)/CLlp) | € > k} = lem{#((¥)/Cper) | £ —k > 0} =&(7).  (4.25)

Then, as I = (p_k(H), we have Eg[Xy, T, ®y] = E[Xy, [T, @y].

Let (X4, ', @) and (X, I/, ®,) be odometers associated to renormalizations
¢: T — T and ¢': I — T". Assume the actions are return equivalent by a homeomor-
phism A: U — U’. Then, choose § € I" with § - esoc € U and &' € I with &' - e/, € U’.
Then, ¢° = ®(8) o @ o ®(8~!) is a renormalization of I with group chain F? =881,
The group F? stabilizes the translate § - Uy. As § - eoo € U, there exists k > 0 such that
8 - U C U. Repeat this argument for the renormalization ¢’ to obtaina 8’ € T" and k' > 0
such that 8" - U;, C U’

Then, proceed as in the proof in §4.2 with H = 8146 ~! and H' = 8Ty, (8")~! to obtain
that

E[X(ﬂa F9 qD(p] = EH[X(p’ F’ q>(ﬂ] = EH/[X;/’ F,’ q>(p/] = :[X;H F/’ qD(p/]a
as claimed in Theorem 1.10. In particular, this implies that the typeset E[X,, I, ®,] is an

invariant of the isomorphism class of the renormalizable Cantor action (X, I', ®,).

5. Basic examples

5.1. Virtually abelian actions. A group I is virtually abelian if it admits a finite-index
subgroup A C I' which is abelian. It is straightforward to construct Z"-odometer actions
with prescribed spectra, and yet they illustrate several basic properties of the type and
typeset invariants.

Example 5.1. Consider the case n = 1. Choose two disjoint sets of distinct primes,

7Tf={q1,(125-~}, jfooz{Pl,pZ,---}a

where 7 ¢ and 7, can be chosen to be finite or infinite sets, and either 7 ¢ is infinite or 7
is non-empty. Choose multiplicities n(g;) > 1 for the primes in 7 7. For each £ > 0, define
a subgroup of I' = Z by

Te = (g} Vg5 @ - g} pipl - pt-ninen). (5.1)

https://doi.org/10.1017/etds.2025.10211 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2025.10211

20 S. Hurder and O. Lukina

If 7o is a finite set, then we use the convention that py = 1 in equation (5.1) when py is
not defined by the listing of m,. The completion I" of Z with respect to this group chain
admits a product decomposition into its Sylow p-subgroups

o0
=[] z4"z - [] Zop. (5.2)
i=1

VAL

where Zm denotes the p-adic completion of Z. Thus, w (¢ (f’\)) =my U As Z is
abelian, X, = I". The type of this action classifies it up to return equivalence.

Example 5.2. The diagonal Z"-odometer actions for n > 2 are direct extensions of Exam-
ple 5.1. Make n choices of prime spectra as in Example 5.1, then take the product action on
the individual factors. The type of the action no longer determines the isomorphism class
of the Z"-odometer actions obtained. The typeset is an invariant under return equivalence
by Corollary 1.9, but only in special cases does the typeset determine the isomorphism
class of the action. The interested reader can consult the works [2, 3, 8, 21, 34].

Example 5.3. We next give an example that illustrates that the commensurable relation on
typesets is optimal. We construct the simplest example which shows this, and it is clear
that many more similar constructions are possible.

Let I' = Z? x Z, be the semi-direct product of Z? with the order 2 group Z, = Z/27Z,
where the generator o € Z acts on Z? by permuting the summands. Let I = Z2, which
is abelian.

Choose distinct primes p, ¢ > 1. Define the subgroup chain in I" and I'” as follows:

Lo = {(p'k, q"m,id) | (h,m) € Z*}, T, ={(p‘k,q"m)| (k,m) € Z*.  (5.3)

Note that the resulting actions (Xoo, I', ®) and (X, I'/, ®') are return equivalent.
Observe that C ,é =T 2. However, I'y is not normal in I" and we have

Ce = (((p9)*k, (pq)m, id) | (h, m) € Z*} C Ty. (5.4)

The actions of ' and T’ have the same type, with characteristic functions
x(p) = x(g) = oo, and all other values are zero. However, we have the typesets

E[Xoo, I, @1 = {[(p)™]} and E[XL. T, 1= {[p™] [¢*]. [(pO™]}, (5.5

so the typeset is not invariant under return equivalence.

This example easily generalizes, where we take ' =Z @ - - - ® Z to be the direct
sum of n copies of Z, and replace Z; with any non-trivial subgroup A C Perm(n) of the
permutation group on n elements. Let I' = I’ x A be the semi-direct product of I with A.
Choose the subgroup chain {I'),} in I' as in Example 5.2 and use the chain {I'; = I, x id}
in I". Then, the resulting actions are return equivalent and one can obtain a wide variety of
finite typesets E[X/,, [/, ®'] for the abelian action. If the action of A is transitive, then
we have that E[ X, [', ®] consists of a single element. When A does not act transitively,
there is even more variation on the typesets of the two actions.
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5.2. Nilpotent odometers. The next examples use the actions associated to a renormal-
ization of a finitely generated group I". Many finitely generated nilpotent groups admit a
renormalization [12, 15, 16, 19, 30, 36], which yield many examples of odometer actions
with well-defined typesets by Theorem 1.10.

The integer Heisenberg group is the simplest non-abelian nilpotent group, and is
represented as the upper triangular matrices in GL(3, Z). That is,

1 a
I = 0 1 |a,b,ceZy . (5.6)
0 0

—_ S0

We denote a 3 x 3 matrix in I" by the coordinates as (a, b, c).

Example 5.4. For a prime p > 2, define the self-embedding ¢,: I' — I" by ¢(a, b, c) =
(pa, pb, p*c). Then, define a group chain in I" by setting

T = oy (T) = {(p'a, p'b, p**c) la,b,c € Z}, [ Te={e}.
£>0

For ¢ > 0, the normal core for I'; is given by Cy = core(I'y) = {(p%a, pzeb, pzec) |
a,b,c € Z}, and so the quotient group Q¢ =T/C; ={(@, b,¢) |a,b,c e Z/p*'7}.
The profinite group T is the inverse limit of the quotient groups Qg, so we have
T =1{@ 0,0 |a,bcec 2pz}. Thus, every non-trivial y € T has type t[y] = t[p°].

Example 5.5. For distinct primes p, g > 2, define the self-embedding ¢, ,: I' — I' by
o(a, b, c) = (pa, gb, pgc). Then, define a group chain in I" by setting

e = @b, () = {(p'a,q'b. (pg)‘c) |a,b.c € Z}), () Te = fe).
>0

For ¢ > 0, the normal core for I'; is given by C; = core(I'y) = {((pg)ta, (pq)eb
(pq)tc) | a, b, c € Z}, and so we obtain the quotient group Q; =I'/Cy = {(@, b, ) |
a,b,ceZ/( pq)gZ} The proﬁmte group Foo is the inverse limit of the quotlent groups
Q¢, so we have Too = {(a, 0,0 | a, b, Ce qu} Thus, every non-trivial y € T's has type

tly] = tl(pg)>].

Note that the typeset for the odometer defined by the ¢, 4-renormalization equals the
typeset for the abelian action in Example 5.3, but the two actions are clearly not return
equivalent.

A second source of examples for odometer actions of nilpotent groups uses the
decomposition of a profinite nilpotent group into its prime localizations, a technique that
is especially adapted to realizing a given collection of primes as the spectrum of such an
action. Moreover, these actions can be constructed to have special dynamical properties,
as in [27]. The construction is necessarily more complex than for renormalizable actions,
as there must be an infinite sequence of choices to make. These ideas were developed in
[24, §9] for actions of SL(n, Z), and the work [28] discusses this construction for nilpotent
groups.
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6. Examples: d-regular actions

It is well known that every odometer (X, I, ®) is isomorphic to an action of I' on the
boundary of a rooted tree. The study of actions on trees, especially the actions on d-ary
(or d-regular) trees satisfying an additional condition of self-similarity, is an active topic
in geometric group theory, see [23, 35] for surveys. The tree models for odometers are
especially useful for constructing actions which are not topologically free, and thus for
illustrating the commensurable relationship between types. In this section, we study the
typesets for odometers on boundaries of d-regular rooted trees.

6.1. Actions ontrees. A tree T is an infinite graph with the set of vertices V = | |,., V¢
and the set of edges E. Each Vy, £ > 0 is a finite set, called the set of vertices at level ¢.
Edges in E join pairs of vertices in consecutive level sets Vyy1 and Vi, £ > 0, so that a
vertex in Vy41 is connected to a single vertex in V; by a single edge. A tree is rooted if
Vol = 1.

Definition 6.1. A tree T is spherically homogeneous if there is a sequence n = (n1, na, . . .),
called the spherical index of T, such that for every £ > 1, a vertex in V;_; is joined by
edges to precisely ny vertices in V. In addition, T is d-ary, or d-regular, if its spherical
index n = (ny, na, . . .) is constant, that is, n, = d for some positive integer d.

We assume that ny > 2 for £ > 1. If d = 2, then a 2-ary tree T is also called a binary
tree.

Let (X, ', ®) be an odometer and let i/ = {U, C X | £ > 0} be a choice of an adapted
neighborhood basis. By Corollary 2.4, there is a group chain Gy = {I'¢ =I'y, | £ > 0}
such that, associated to Gy is an odometer (X, I', Po) Which is isomorphic to (X, [, P).
Here, X is the inverse limit space of finite sets Xy = I'/ 'y, given by equation (1.3), see
§2.3 for details.

A tree model for the action (X, I', ®) is constructed using the group chain G,. For
£>0,let V, = X¢, and join vy € Vp and vpy1 € Vy41 by an edge if and only if vy C v
as cosets. The tree so constructed is spherically homogeneous, with spherical index entries
neg = |I'¢g—1 : T'¢| for £ > 1. The boundary 0T of T is the collection of all infinite paths in
T, that is,

oT = {(W)lz>0 C 1_[ Ve | vey1 and vy are joined by an edge} = Xoos
>0

and the induced action of I" on 7', which we also denote by (X, I, ®).

Definition 6.2. An odometer (X, I', ®) is d-regular, or just regular, if there exists d > 2
such that (X, ', ®) is isomorphic to an action of I" on a rooted d-ary tree.

Remark 6.3. An odometer (X, ", ®) is d-regular if the group chain G;; above can be
chosen so that each subgroup index |y : ['y_1| =d for some d > 2 and all ¢ > 1.
Nilpotent actions given by a self-embedding ¢, : I' — I' in Example 5.4 are d-regular
with d = p*, and those in Example 5.5 are d-regular with d = p>¢>.
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6.2. Typesets of regular actions. We consider next the typeset of a d-regular odometer.

THEOREM 6.4. An d-regular odometer (X, ", ®) has finite typeset E[X, ', ®]. More
precisely, suppose (X, ", ®) is isomorphic to an action on a d-ary rooted tree for some
d > 2. Let Py be the set of distinct prime divisors of the elements in the collection
{2,3,...,d}andlet Ng = |Py|. Then,

Ny N

N, Ng!
|E[x’ F’ q>]| =< Z < kd) = Z (Nd——dk)'k‘ (6.1)

k=0 k=0

Moreover, each equivalence class T € E[X, ', @] is represented by a Steinitz number &
with empty finite prime spectrum, 7w y(§) =, and so w(§) = M (§).

Proof. Let Ny and P; be as in the statement of the theorem and let Ly = lem{ P,}.

LetUd = {U; C X | £ > 0} be a choice of an adapted neighborhood basis with associ-
ated group chain Gy = {I'y = I'y, | £ > 0} and I'-odometer (X, I', @) isomorphic to
an action of I" on the boundary 97 of a rooted tree T as constructed above.

LEMMA 6.5. Let y €T, let £(y) be the Steinitz order of y as defined in Definition 1.6,
and let p be such that x:(p) # 0. Then, p divides L.

Proof. 1If xs(p) # 0, then there exists the smallest £ > 1 such that p divides the order of
the group (y)/{(y)e. The group (y)/{y)e = (y)/{y) N C¢ is isomorphic to a subgroup of
I'/Cy, where Cy is the normal core of Iy, and acts on the coset space X by permutations.
Let A, ¢ be the permutation of Xy induced by y. Then, the order of (y)/(y)¢ is equal to the
order of A, ¢ and so equal to the least common multiple of the length of the cycles in A, ;.

Similarly, the order of (y)/(y)¢—1 is equal to the least common multiple of the length
of the cycles in the permutation A, ¢ of X, induced by the action of y. By the choice
of £, the order of {y)/{y)¢—1 is not divisible by p. Therefore, for any cycle cg—1 in Ay o1,
the length |c,—1]| is not divisible by p.

Consider the preimage S¢,_, of the set of elements in ¢,_; under the inclusion of cosets
X¢ — X¢—1. Then, [S;,_,| =d|ce—1] and y permutes the elements in S;,_,. Let c¢ be a
cycle in the permutation p., , of S¢,_, induced by y. Since the action of y commutes with
coset inclusions, |c¢| = a|ce—1| for some 1 < o < d. Then, p must divide such an o for
one of the cycles in p,_,, for some cycle ¢,y in A, ¢_1. It follows that p divides Ly. I

Let £(y) be the Steinitz order of y. Since every p for which 0 < x¢(p) < oo divides
L, by Lemma 6.5, then the finite prime spectrum 7 (£(y)) is finite, and the type t(y) has
a representative E, such that if xz(p) # 0, then xz(p) = oo. It follows that two types 7 (y)
and t(y’) with respective Steinitz orders & and &’ are distinct if and only if there exists a
prime p such that x:(p) = 0 and xg/(p) # 0. The bound in equation (6.1), which is the
number of distinct collections of prime divisors of L4, follows. O

Example 6.6. Letd = 2, then L, = 2 and N> = 1, and the upper bound on the cardinality
of the typeset for 2-regular odometers is 2, with possible types {[1], [2°°]}, where 1 denotes
the type of the identity element.
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Let d = 3, then L3 = 6 and N3 = 2. Then, the upper bound on the cardinality of the
typeset for 3-regular odometers is 4, with possible types {[1], [2*], [3°°], [(2 * 3)°°]}.

Let d =4, then Py =1{2,3}, L4 =6, and N4 =2. Then, the upper bound on
the cardinality of the typeset for 4-regular odometers is 4, with possible types
{[11, 271, [3%°L, [(2 % 3)*1}.

Example 6.7. Let p be an odd prime. The Gupta—Sidki p-group GS(p) [35, §1.8.1] is a
group acting on the rooted p-ary tree. The group is generated by a cyclic permutation of
the set of p elements 0 = (0, 1, ..., p — 1) and the recursively defined map

r:(a,o_l,l,...,r).

Every element in the Gupta—Sidki p-group has finite order and so E[X s, GS(p), Po] =
{[1]}, where [1] is the trivial type, that is, the type of the identity element.

Example 6.8. Let d =2 and let (X,I", ®) be a 2-regular odometer action. Then,
|E[X, T, ®]| <2, and either E[X, ", ®] = {[1]} or E[X, ', @] = {[1], [2*°]}.

An example of an action where the typeset E[X, I', ®] = {[1]} is the action of the
Grigorchuk group, see for instance [23]. This group is an example of a Burnside group,
which is an infinite group where every element has finite order, and so it has trivial typeset.

For the case E[X, ', ®] = {[1], [2*]}, we have two classes of examples. First, the
examples of odometers where t(y) = [2°°] for any non-trivial y € I are the actions of
iterated monodromy groups of quadratic polynomials for which the orbit of the critical
point is periodic. Such groups are torsion-free, see [6], and so they do not have any
finite-order element except the identity in I". Such actions include, but are not limited
to, the action of the odometer on the binary tree and the Basilica group.

Second, the action may have non-trivial elements that have trivial type, and also
non-trivial elements with type {[2°°]}. These are given by the actions of the iterated
monodromy groups of quadratic polynomials with strictly pre-periodic orbits of the critical
point, see [6] for details.

6.3. Typeset under the commensuration relation. We now show that H-restricted types
of a group element and of its conjugate need not coincide.
Given a tree T and a vertex v € V, denote by T, the subtree of 7 with root v.

Definition 6.9. [23] Let T be a spherically homogeneous tree and let I' C Aut(7"). The

action of I on 97T is weakly branch if the following conditions hold:

(1) the restriction of the action of I" to each vertex level set V,,, n > 1, is transitive;

(2) for every £ >1 and every v € Vy, there exists g € I' such that g-v = v, the
restriction of the action of g on the subtree T, is non-trivial, and the restriction of g
to the complement a7 — 9T, is the identity map.

Example 6.10. Let T be a spherically homogeneous tree and let I' C Aut(7") be so that
the action of I" on 07 is weakly branch. Choose a sequence (vy) of vertices in 7, and let
'y be the isotropy group (equivalently, the stabilizer) of v, € V,. Then, I'y fixes vy while
permuting other vertices in V.
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Choose n > 1. The normal core C,, of ', consists of elements of I';, that fix every vertex
in V. Let g € ', be an element given by Definition 6.9 of a weakly branch group, namely,
the restriction of y to Ty, is non-trivial, and y is trivial on the complement of 97}, in 97 .
In particular, this means that y € C,. However, since y acts non-trivially on a7, , then
there exists £ > n such that y ¢ Cy, and then the Steinitz order £(y) is non-trivial.

Now, let § € T be such that 6 - v, # v,. Then, the restriction of 8)/8_1 to 97y, is
the identity map. Since the Steinitz order is invariant under conjugation, £(8y38~") is
non-trivial.

Now, consider the I',-restricted Steinitz orders of y and of 8y8~'. The subgroup
C ; " is the normal core of I'y in I',, so it fixes every vertex in the set Vy N T;, and it
may permute the vertices of V; that are not in 7,,. In particular, for all £ > n, we have
8)/8_1 € C{", and the I, -restricted Steinitz order & Tu (s yS_l) is trivial. At the same time,
& 1“"(y) is non-trivial, since the action of y permutes the vertices in V; N T, for some
¢ > n. Depending on the group I', €' (y) may have the trivial or non-trivial type; it is
straightforward to construct examples of both situations.

n?’

7. Solenoidal manifolds
Solenoidal manifolds were introduced in §1.4. In this section, we discuss the relation
between the classification of solenoidal manifolds up to homeomorphism and the clas-
sification of odometers up to return equivalence. We then give the proof of Theorems 1.14
and 1.16.

Recall that a presentation is a sequence of proper finite covering maps P = { q;: My —
My_1 | £ > 1}, where each M, is a compact connected manifold without boundary of
dimension n. The inverse limit

Mp =1lim {q¢: Mg — Me—1) C [ Me (7.1)
>0

is the weak solenoid, or solenoidal manifold, associated to P.
By the definition of the inverse limit, for a sequence {x; € M, | £ > 0}, we have

x = (x0, X1,...) E Mp < q¢(x¢) = x¢—1 forallf > 1. (7.2)

For each £ > 0, there is a fibration g;: Mp — M, given by projection onto the £th
factor in equation (7.1). Also, there is a covering map denoted by g, = gr o ge—1 ©
--o0qi: My — My, such that gy = g, o g¢. Choose a basepoint xo € My and basepoint
Xoo € X = 2}0_1 (x0), the fiber over xg. Then, for each £ > 0, this defines the basepoint
xX¢ = qe(x0) € My. Let Ty = (q,)#(T9) denote the image 'y of the fundamental group
71 (Mg, x¢) in I' = 71 (Mo, x0).
Let Gp = {I'¢ | £ > 0} be the group chain determined by P and the choice of basepoint
x € Mp. Let (X0, I', @) denote the odometer defined in equation (1.3) which is
determined by Gp, which is called the monodromy action of the fibration go: Gp — M.
Note that we suppress the dependence on the choice of the basepoint x for convenience of
notation.
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The fiber ﬁzl (x0) C M, is identified with the quotient set X, = I'/ I'¢, which is a left
I'-space. In this way, the subspace X = Z]‘O—I (x0) of the inverse limit in equation (7.1) is
identified with the I"-space X,. We then have the following result.

THEOREM 7.1. [10, Theorem 1.1] Let Mp and Mp: be homeomorphic solenoidal
manifolds. Then, the corresponding odometers (Xoo, 'y @oo) and (X, IV, ®L) are
return equivalent.

Thus, an invariant of odometers modulo return equivalence is an invariant for solenoidal
manifolds modulo homeomorphism. There are various classes of solenoidal manifolds
where the converse statement can be shown, as discussed in [10]. Here is one example.

THEOREM 7.2. [10, Theorem 1.3] Let Mp and Mp: be toroidal solenoidal of the same
dimension; that is, both presentations P and P’ have base manifold the n-torus T". If
the monodromy actions (Xoo, I', ®oo) and (X, T, @) are return equivalent, then Mp
and Mp: are homeomorphic.

7.1. Type invariants for solenoidal manifolds. The covering degree m, of gq,: My —
M,_1 equals the index of the subgroup [[;—;:T'¢], and so the covering degree of
qe: My — My is given by

deg(qy) =mg-my—y---myp = [ : T (7.3)
The Steinitz order of a presentation P is
EP) =lem{mmy - - -my | £ > 0} =lem{[[" : (] | £ > 0} = £(Gp). (7.4)

The Steinitz number &(P’) can be thought of as the covering degree of the fibration
qo: Mp — M.

Given a second presentation P with solenoidal manifold M, and choice of basepoint
x, € M/, we similarly obtain subgroups I'; defining the group chain g&,, and we have
E(P") = &(G;,).

Suppose that the solenoidal manifolds Mp and ./\/l/p/ are homeomorphic, then by
Theorem 7.1, the corresponding odometers (Xoo, I', o) and (X, I/, PL) are return
equivalent, and hence they have the equal types 7[Xoo, I, @ool = T[XL, I, ] by
Theorem 1.5. We thus obtain the following theorem.

THEOREM 7.3. Associated to a presentation P is a well-defined Steinitz number £(P),
and the type t[£(P)] depends only on the homeomorphism class of M-p, which is denoted
by t[Mp].

We thus obtain the following well-defined homeomorphism invariants for solenoidal
manifolds.

COROLLARY 7.4. The infinite prime spectrum 7o (E(P)) of a solenoidal manifold Mp
depends only on the homeomorphism class of Mp, as does also the property that
7 (§(P)) is infinite.
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For orientable one-dimensional solenoids, where each map g, : S! — Sl is orientable,
Bing observed in [7] that if T[Mp] = t[Mp/], then Mp and Mp/ are homeomorphic.
McCord showed in [32, §2] the converse, that if Mp and Mp/ are homeomorphic, then
T[Mp] = t[Mp]. (See also [1].) Together, these results yield the following well-known
classification.

THEOREM 7.5. For orientable one-dimensional solenoidal manifolds, Mp and Mp: are
homeomorphic if and only if tT[Mp] = t[Mp].

For solenoidal manifolds of dimension n > 2, no such classification by invariants can
exist, even when the base manifold My = T". The most one can hope for is to define
invariants which distinguish various homeomorphism classes, such as the type and typeset
for a solenoidal manifold, invariants derived from the Cantor action associated to the
monodromy of the fibration map go: Mp — M.

Note that by Theorem 7.2, if two toroidal solenoids have return equivalent monodromy
odometers, then they are homeomorphic. Thus, in this special case, the classification prob-
lem for solenoidal manifolds is equivalent to the classification problem of Z"-odometers
modulo return equivalence. Giordano, Putnam, and Skau discuss in [22] this classification
problem.

7.2. Typeset invariants for solenoidal manifolds. The typeset invariants for solenoidal
manifolds provide more refined invariants of their homeomorphism class. Before stating
the precise definition, we give an intuitive definition.

Let My be the base manifold of a presentation P. Let xo, € M- be a choice of a base-
point, which determines the basepoint xog € My and fundamental group I' = 71 (M, x0).
Suppose that y € I is represented by a simple closed curve ¢, : S' — M. The projection
map qo: Mp — My restricts to a covering map on each leaf of the foliation Fp of Mp.
When the preimage M, = Z[O* ! (cy (S1Y) is connected, it is a one-dimensional solenoid
and so has a well-defined type by Theorem 7.3. Denote this type by t[y]. The collection
of these types is the ‘intuitive typeset’ of Mp.

The formal definition of the typeset proceeds as in §7.1. Associate to a presentation P
the monodromy odometer (X, I, @). Then, for each y € I, there is the type t[y] as
in Definition 1.6.

Definition 7.6. The typeset of P is the countable collection of types E[P] = {r[y] |
y € I'}l.

THEOREM 7.7. Suppose that the solenoidal manifolds Mp and Mp' are homeomorphic,
then their typesets T[P] and t[P'] are commensurable.

Proof. Suppose that Mp and Mp: are homeomorphic, then by Theorem 7.3, their
monodromy odometers (Xoo, I', o) and (X, I, @) are return equivalent. Then, by
Theorem 1.8, the typesets E[P] and E[P’] are commensurable. O]

The type and typeset invariants suggest numerous questions about their relation to the
analytic and geometric properties of solenoidal manifolds [43, 46, 47].
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