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Introduction

Pharmacogenomics (PGx) is a propulsive area of personalized medicine which inves-
tigates the impact of genetic variability on drug response. A prospective implementa-
tion study suggested that genotype-guided treatment significantly reduced the risk 
of adverse drug reactions with 30% [1]. Importantly, the rapid emergence of novel 
genome technologies, along with their significant reduction in price, has paved the 
way towards extensive studies. These studies focus on how genetic variability contrib-
utes to inter-individual differences in drug response. However, not all variabilities of 
drug response can be explained by currently used strategies in PGx. The gap between 
expected and known genetic contribution on drug response is referred to missing herit-
ability. In this thesis, new approaches were applied to illustrate and partially solve the 
potential causes for the missing heritability (Figure 7.1). Firstly, long-read sequencing 
can contribute to resolving complex pharmacogenes, as well as detecting novel and rare 
variants. Secondly, in silico algorithms are required for high-throughput interpretation 
of variants detected by sequencing. Thirdly, the intricate regulation of pharmacogenes 
expression, for instance, transcription regulation, has not been studied extensively and 
can contribute. Lastly, potential new drug-gene associations are explored by genome-
wide association study (GWAS).

Figure 7.1: Overview of the general discussion.
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Many pharmacogenes are highly complex due to the presence of tandem repeats and 
segmental duplications, for instance, CYP2D6 and CYP2B6 [2, 3]. Nowadays, these 
complex variants are used in clinics by assigning them to pre-defined *-alleles. Further-
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more, some pharmacogenes exhibit high sequence homology with neighboring genes. 
For example, the four coding genes and pseudogenes in the CYP3A locus (CYP3A4, 
CYP3A5, CYP3A7, CYP3A43) share over 90% of their sequence [4]. Long-read sequenc-
ing shows promising in resolving these complex regions in pharmacogenes. In Chapter 
3, we developed a capture-based approach to evaluate the performance of long-read 
sequencing in PGx. Our long-read approach aims to capture the full length of the locus, 
covering not only the protein-coding regions of the gene but also noncoding regions 
such as upstream and downstream regulatory regions and introns. This comprehensive 
coverage enables us to fully uncover the genetic makeup of the targeted pharmaco-
genes, facilitating the understanding of their roles in drug response. This approach 
showed good coverage of most target genes in the panel, including complex regions 
like CYP2D6 and the CYP3A locus. In 10 selected pharmacogenes (CYP2D6, CYP2C9, 
CYP2C19, CYP2B6, CYP3A4, CYP3A5, SLOC1B1, VKORC1, UGT1A1, TPMT), protein-coding 
variants account for only a small percentage (about 2%) of total genetic variations. Of 
these variants, 36% have been assigned to the star(*)-alleles, as they were typically 
considered deleterious because they lead to amino acid alterations or frameshifts [5]. 
The assignment from variants to *-allele is a key step for clinical use.

Genetic variants located in the non-coding sequences can play a critical role in gene 
function. Nonetheless, their clinical impact is still lacking behind [4]. In Chapter 
3, intronic variants and up-/downstream variants account for 65% and 25% of all 
variants detected in 10 selected pharmacogenes, respectively. However, less than 
2% of these variants are part of the *-allele nomenclature. The mechanisms of how 
these non-coding variants affect gene function are complex [4, 6]. Firstly, variants in 
promoters could affect the binding affinities of transcription factors, thereby altering 
the transcriptional activation. A clinically relevant example of this is seen in the 
UGT1A1 gene. The UGT1A1*28 (NC_000002.12:g.233760235TA[8]) and UGT1A1*36 
(NC_000002.12:g.233760235TA[6]) have different numbers of thymine adenine (TA) 
repeats in the TATA box region of the UGT1A1 promoter regulating the expression of 
UGT1A1 [7]. The effect of this is a decreased function of UGT1A1*28 and an increased 
function of UGT1A1*36. Secondly, non-coding variants are suggested to alter RNA pro-
cessing. For instance, rs12769205 (NC_000010.11:g.94775367A>C/G/T) located in the 
intron of CYP2C19, is one of the core variants of a loss-of-function allele, CYP2C19*2. 
This A>G alteration causes abnormal splicing, which is spliced mainly in the intron 
inclusion form rather than the normal form [8]. These examples warrant further inves-
tigations on how non-coding variants affect pharmacogenes function. 
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Notably, long-read sequencing not only detects the presence of variants, but also helps 
elucidate the mechanisms by which these variants influence enzyme activities. For 
instance, Ambrodji et al., sequenced the complete coding sequence (cDNA) of DPYD 
(4.4 kb) using Nanopore technology [9]. They found that 58% of reads in an individual 
carried the heterozygous c.1905+1G>A variant (rs3918290), a well-characterized risk 
variant, contained a 165 bp deletion in exon 14 [10]. In general, long-read sequencing 
is a useful tool to understand the mechanism of variants, especially genetic variants 
that cause splicing alterations.

Different types of long-read sequencing

In Chapter 3 and 4, we explored two strategies for implementing long-read sequenc-
ing: the capture-based approach and the amplicon-based approach, both using Pacific 
BioScience HiFi technology. The former improves sequencing efficiency compared to 
whole genome sequencing (WGS) by using capture probes to enrich targeted genes. 
With customized probes, captured genes can be adapted to research objectives, 
enabling the exploration of multiple genes or regions of interest. Yet, capture-based 
long-read sequencing panels remain costly due to the expenses for capture probes 
development and the larger size of the targeted sequence. Conversely, in Chapter 4, we 
developed a more specific amplicon-based approach for the CYP3A locus. This approach 
amplifies and enriches the target gene via PCR amplification. Multiple samples can be 
pooled in the same sequencing run by adding unique barcodes to amplified fragments, 
which substantially decreases the costs. Nonetheless, this method results in a smaller 
target, is relatively labor-intensive depending on the degree of PCR multiplexing and 
still costly if a large number of amplicons are needed. Both strategies offer flexibility 
in sequencing implementation, and the considerations for method selection should 
include objectives, budget, time and labor intensity.      

Phasing  

Haplotype phasing infers which variants are located on the same allele. It is crucial 
to construct haplotypes and link haplotypes to drug response. Phasing information is 
essential for evaluating the effect of novel impactful variants, especially in the inter-
mediate metabolizer (IM). IM carries one normal function allele and one allele with 
decreased or completely lost function (Figure 7.2A). The impact of a heterozygous 
variant differs depending on whether it is located on the normal function allele or 
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on the loss-of-function allele. In Chapter 3, a potentially impactful CYP2C19 variant 
NC_000010.11:g.94820597A>G (CADD score: 15.9) was detected in an intermediate 
metabolizer (*1/*2). This additional variant was assigned together with *2 based on 
haplotype phasing, resulting in a non-significant impact on CYP2C9 enzyme activity, as 
the *2 already has no residual activity. Should it have been located on the allele currently 
assigned a *1 call, this additional impactful variant will result in a decreased function allele.     
There are several methods for haplotype phasing. Firstly, computational phasing 
based on linkage disequilibrium is commonly used and correct on a population level. 
Population-based phasing algorithms determine the haplotype according to statistical 
linkage disequilibrium (LD) patterns. This approach depends on an assumption that 
the sequencing data are of the same or “similar” population to process the reliable LD 
information. But it could be problematic to process rare variants and novel variants 
which have not been observed previously [11]. Moreover, even for common variants, 
LD-based phasing is likely to be incorrect because phasing is processed based on a pre-
defined LD threshold such as r2 > 0.8 or r2 > 0.85, which does not guarantee complete 
linkage. An r2 close to 1 indicates a strong linkage where the variants are very likely to 
be inherited together, while an r2 closer to 0 suggests little or no association between 
them. The chosen r2 threshold (e.g., 0.8 or 0.85) acts as a cutoff to determine which 
pairs of variants are likely to be inherited together. Higher thresholds (like 0.85) imply a 
stronger correlation, which can lead to more accurate phasing when variants are closely 
linked. However, even with high r2, some variants that appear highly correlated in one 
population may not be as closely linked in another due to differences in recombination 
patterns or population history. For instance, CYP2B6*4 (NC_000019.10:g.41009358A>G) 
variant and CYP2B6*9 (NC_000019.10:g.41006936G>T) variant are in high LD, and 
are always assumed to be located on the same allele when both occur, resulting in 
a *6 annotation. However, in 1.5% of the patients carrying both variants, the two 
variants are on different alleles [12]. Even between variants assumed to have perfect 
LD (r2 = 1), they do not always occur together. For example, the DPYD HapB3 variant 
rs75017182 (NC_000001.11:g.97579893G>C) located in intron 10, which is the 
causal variant of HapB3, was regarded as having perfect linkage with rs56038477 
(NC_000001.11:g.97573863C>T). Nonetheless, individuals with rs56038477 but not 
rs75017182 have been reported in the Children’s Mercy Data Warehouse and the All 
of Us Research Program version 7 cohort [13], suggesting that testing rs56038477 only 
would generate false-positive genotype, resulting in underdose and a negative impact 
on the survival prospect. In their data, 0.223% of subjects with c.1236G>A lack c.1129-
5923G>A. Notably, the data of both the mother and the child carrying c.1236G>A but 
lacking c.1129-5923G>A suggested that this observed haplotype is heritable rather than 



145

General discussion and future perspectives

7

a de novo or somatic variation. This case highlights the importance of more accurate 
phasing on a patient level.

In contrast to computational phasing, direct phasing resolves haplotype blocks with 
neighboring heterozygous variants gathered from sequencing. As a result, long-read 
sequencing is needed, especially in complex regions [14–17]. With read lengths reaching 
~10 kb or longer, it is highly likely that sufficient heterozygous variants are included in a 
single read, and as a result, different variants can be phased together to their allele of 
origin without the need for computational approaches. In the 44 samples sequenced in 
Chapter 3, we achieved an overall on-target phasing of 62%. Notable, phasing perfor-
mance can be improved by long-read sequencing compared to short-read sequencing 
(~20% phased on average) and varies between genes. This different phasing outcome 
between genes could be attributed to the occurrence of heterozygous variants as het-
erozygous variants are needed for the successful construction of haploblocks. 

Moreover, phasing is of importance as it is more and more understood that enzyme 
function is affected by specific combinations on variants in one allele which interact 
together. The increased use of sequencing in PGx testing is expected to detect multiple 
variants, including impactful variants besides *-allele variants. If a patient is heterozy-
gous for two deleterious variants, it is important to know if they are located on the same 
allele, resulting in one active and one inactive allele, or on opposing alleles, resulting 
in two non-active alleles (Figure 7.2B).

Figure 7.2: The importance of phasing information over predicted phenotypes. 
(A) The effect of impactful variants on alleles with different function assigned by conventional PGx. (B) The 
effect of multiple heterozygous variants.
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While direct phasing offers benefits for novel variants, it is not yet standard practice 
in pharmacogenomics. Computational phasing is still predominantly used by star(*)-
allele tools. Most of these tools, including Stargazer [18], Aldy [19], StellarPGx [20] 
and PharmCAT [21], support a panel of pharmacogenes, while others are designed for 
a specific gene, such as Cyrius for the complex CYP2D6 calling [22]. Depending on the 
input data, most of the tools are able to process BAM files, except PharmCAT. Moreover, 
there are more differences between these which impact how they are applied, including 
reference genomes, working environments, sequencing technologies and output informa-
tion, which has been indicated by our study [23]. For instance, StellarPGx only supports 
short-read whole genome sequencing data. Of all the tools, Aldy is the only one which 
provides specific sequencing profiles, including long-read sequencing data [24]. Lastly, 
the type of output varies between tools. PharmCAT reports not only the diplotype but 
also the corresponding phenotype categorization based on the Clinical Pharmacogenetics 
Implementation Consortium (CPIC). Additionally, it shows the accompanying recom-
mendations from the CPIC guidelines, which are useful for clinical use. In contrast, other 
tools such as Aldy does not include clinical interpretation but it reports core *-alleles and 
minor *-alleles as well as all variants processed, which is valuable for research (Table 7.1). 

Table 7.1: Overview of star(*)-allele tools and their specifications

Stargazer Aldy StellarPGx PharmCat Cyrius

Input data BAM √ √ √ √
CRAM √ √ √
VCF √ √ √

Target genes Multiple √ √ √ √
Single CYP2D6

Software 
requirement

Linux OS √ √ Singularity √
Mac OS √ √ Docker Python
Windows √ Java

Sequencing data 
supported

NGS (WGS) √ √ √ √ √
LRS √
SNP array √

Reference database PharmVar √ √ √
PharmGKB √ √
CPIC and/or DPWG √

Abbreviations: NGS, next-generation sequencing; LRS, long-read sequencing; CPIC, Clinical Pharmacogenetics 
Implementation Consortium; DPWG, Dutch Pharmacogenetics Working Group.
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Several studies have evaluated the performance of these tools. Most discrepancies 
were observed in the CYP2D6 gene, in which the specifically designed Cyrius showed 
the most robust performance [25]. Importantly, sequencing depth plays a crucial role in 
the accuracy of *-allele calling. Lower depths, particularly < 5X lead to reduced accuracy. 
Whereas, increased depth higher than 20X results in only minor improvements in most 
genes [25]. The performance of *-allele calling tools is highly accurate in general if users 
are able to select proper *-allele calling tools according to the sequencing methods, 
usage and outcome needs. 

High-throughput variants interpretation

With the long-read sequencing approaches described in Chapters 3 and 4, a great 
number of variants were found across multiple pharmacogenes. Nonetheless, only a small 
number of pharmacogenetic variants (about 3%) have been assigned to star(*)-allele 
nomenclature (about 3%) in our data. The remaining 97% of variants detected is not 
included in the *-alleles. Conventionally, one of the gold standard strategies to address 
the functionality of variants is experimental functional assays, conducted by introducing 
novel variants into cell lines to quantitatively assess the gene expression. Subsequently, 
the clinical consequences can be evaluated by clinical studies which connect the presence 
of variants to the corresponding phenotypes in vivo. However, these approaches are 
not always feasible given the large number of variants detected via high-throughput 
sequencing technologies and the relatively low allele frequency of many variants in 
pharmacogenes [26–28]. This is a limitation for in vivo studies in particular, given the 
extremely high number of patients needed to access the clinical impact of rare variants.  

Currently, computational tools are emerging as a promising solution for the functional 
prediction of a large number of genetic variants. This approach is also less costly and 
time-consuming compared to experimental assays. To date, multiple algorithms based 
on diverse parameters, such as sequence conservation and structure features, have 
been developed to predict variant effect [27]. While some tools (e.g., CADD score) 
are designed for general types of variants, most of the tools were trained to predict a 
specific type of variants. For instance, SIFT and PolyPhen2 focus on missense variants 
and MMsplice is specific for splice variants [29]. Those tools were developed according 
to different features of different functional regions in the genome. For instance, for 
variants in the coding sequences, conservation and structure stability are of great 
importance for function prediction. By contrast, variants affecting transcription factor 
binding and polymerase loading are more relevant for predicting regulatory effects [27]. 
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The performance of 18 different functionality prediction tools, each based on diverse 
features, has been evaluated [30]. Notably, a large difference in the predictive specific-
ity and sensitivity between tools was observed when testing variants, indicating the 
importance of tool selection and careful evaluation of the prediction results. Moreover, 
it is common for these algorithms to perform poorly when tested on pharmacogenetic 
variants than variants related to the disease, as these models were trained based on 
disease traits, which have a great discrepancy with drug responses. In a study by Zhou et 
al., some algorithms performed less accurately on pharmacogenetic variants compared 
to their training data, as they were primarily designed to identify the pathogenicity 
of variants (disease related) rather than functional consequences. Moreover, many 
pharmacogenes are poorly conserved, which limits the effectiveness of algorithms 
based on evolutionary constraints [30]. In Chapter 3, the CADD score was used to 
predict the impact of variants found by our long-read panel as it was one of the tools 
with the best performance among 18 models assessed by Zhou et al. In our analysis 
of selected known function variants in pharmacogenes, the CADD score presented a 
sensitivity of 77% and specificity of 59%. 

Additionally, the performance of computational tools in non-coding variants is ques-
tionable, probably because of the complexity of their effects [29]. In our data (Chapter 
3), CADD score failed to identify rs12248560 (NC_000010.11:g.94761900C>T), a well-
known variant characterizing the increased function allele CYP2C19*17, as a high-impact 
variant. This issue also occurred with other non-coding variants associated with *-alleles 
with known non-normal activity such as CYP2C19*2 (rs12769205) and UGT1A1*28 
(rs3064744). These findings suggest that the in silico identification of impactful variants 
in non-coding regions remains challenging. To address this problem, several in silico 
tools were developed specifically for variants located in non-coding regions, which 
account for > 99% of the human genome [4, 29, 31]. Examples include DeepSEA [32] 
for regulatory variants and ImiRP [33] for variants in untranslated regions. However, the 
impact of these abundant variants is substantially under-studied compared to variants 
in protein-coding regions such as missense variants and frameshift variants [27]. 

Besides general and variant type-specific computational algorithms, a few computa-
tional methods were developed to predict the variant effect in specific genes. These 
tools are often assumed to have a better performance than the non-specific tools 
[29]. For instance, DPYD-Varifier which was applied in Chapter 6, has a prediction 
accuracy of over 85% [34]. However, the scope of such gene-specific tools should be 
considered. In Chapter 6, the DPYD-Varifier was used to predict the DPYD variants in 
the coding regions only, as the tool was trained based on the in vitro DPD activity of 
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156 missense variants. Conversely, the remaining splice site variants were interpreted 
using the MMsplice [35]. The features processed by computational tools for missense 
variants and splice site variants are different, which determines the application scope 
of different algorithms.  

In addition to the computational prediction, the in vitro experimental assays and clinical 
consequences are crucial to further confirm the effects of the variants predicted to be 
deleterious. In Chapter 6, the function of nine DPYD missense variants was estimated 
by the in vitro expression system and the outcome was highly consistent with the 
DPYD-Varifier prediction. Only one variant, c.2194G>T_p.Val732Phe, was predicted to 
be deleterious via DPYD-Varifier but in vitro assessment reported it as a neutral variant. 
While accurate, such an in vitro system is not feasible for studying a larger number of 
variants. Recently, deep mutational scanning [36] and massively parallel reporter assays 
[37] have been developed, allowing the simultaneous assessment of a large library of 
variants to overcome the low-throughput of conventional experimental assays. These 
assays have been applied to several pharmacogenes such as TPMT [38] and CYP2C9 [39], 
and are regarded as powerful methods to assess variant effects in vitro. Nonetheless, 
the clinical associations are difficult to determine, given the low occurrence of rare 
variants or the marginal effect size. Most studies are underpowered or irreproduc-
ible, resulting in low levels of clinical evidence, and therefore, they do not meet the 
prerequisites of clinical utilization or guidelines. The case-control approach has been 
applied in multiple studies, suggesting it as a solution for addressing the contribution 
of rare variants [40–42]. However, those studies typically enrolled a large number of 
cases and controls (thousands patients enrolled). As a result, most of studies heavily 
relied on data derived from national biobanks or large-scaled public databases. The 
detailed drug prescribing information and clinical outcomes needed for PGx studies are 
not widely available in those sources. Prospective data collection are more likely to get 
high quality data, for instance, the cohort in Chapter 6 (the ALPE-DPD study) formed 
a comprehensive and well-structured dataset. However, the sample size of the ALPE 
study was calculated based on the primary objective of identifying the influence of four 
deleterious DPYD variants, which might be insufficient to investigate rare variants. In 
Chapter 6, we therefore applied matched-pair methods to compromise the influence 
of several related factors on fluoropyrimidine-induced severe toxicity. After excluding 
the four main variants which are generally tested for, there were seven additional DPYD 
variants predicted to be deleterious based on in vitro expression system and MMSplice. 
However, these seven deleterious DPYD variants could not be linked to severe toxicity. 
Meanwhile, prospective clinical trials can be time-consuming and costly given the large 
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sample size required to detect variants with low frequency. In contrast, retrospective 
studies are less labor-intensive and more cost-effective, but they might be limited by 
the completeness and quality of data. 

Intricate regulation of pharmacogenes expression

In addition to variants within a gene that directly impact its function, gene function is 
also determined by its expression level. Furthermore, pharmacogenes, especially CYP 
genes, are characterized by dramatic inter-individual variability in expression according 
to the GTEx data (Figure 7.3). Theoretically, gene expression is intricately regulated by 
transcription factors (TFs). Functional variants in TFs can alter their binding affinity to 
promoters of downstream genes or result in up- or downregulation of TF expression. 
Yet, previous studies show contradictory results regarding the effects of some variants 
on the enzyme activity and substrate metabolism due to insufficient in vivo evidence. 
For instance, a variant might have no influence on the substrate metabolism in vivo, 
despite altering the expression of the transcription factor and the enzyme activity in 
vitro [43, 44], which highlights the importance of in vivo evaluation. Similarly, in Chapter 
5, although the effect of the variants in the transcription factors was validated in vitro, 
these effects are potentially compromised by confounding factors in vivo as we were 
unable to replicate the effect in vivo.

Figure 7.3: Expression level of CYP enzymes in liver and small intestine.
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Apart from transcription regulation, post-transcriptional and post-translational modi-
fication play a role in gene expression. Post-transcriptional regulation mainly refers to 
the microRNAs (miRNA). For example, miR-30c-1-3p, has been reported to alter the 
PXR expression by targeting the 3’-untranslated region (UTR) of the PXR transcripts, 
thereby, it decreases the mRNA level of PXR and CYP3A4 [45]. Numerous miRNAs have 
been implicated in the regulation of various pharmacogenes, and their regulatory effect 
on the drug metabolizing enzymes is also influenced by genetic variants, the presence 
of pseudogenes, and RNA editing [46]. Post-translational modifications, such as phos-
phorylation of CYP2D6 and ubiquitination of CYP3A4, are diverse and have not been 
widely studied in PGx [47]. Nonetheless, they hold promise for explaining the missing 
heritability of drug responses.

Beyond single drug-gene interaction

Given the complexity of the variant effect on the variability of drug response, it is 
apparent that the individual alterations in drug response cannot be fully explained by 
single variant interactions. This highlights the need to investigate the integrated effects 
of multiple genes and variants [48–51]. Some genes that are involved in the metabolic 
pathway can have their potential associations identified by analyzing functional variants 
in candidate genes. In contrast, for genes with an indirect relevance to drug response, 
in which their role is not yet clearly addressed, genome-wide association studies 
(GWASs) offer an option to screen the candidate genes and identify relevant loci/
genes. The use of GWAS improves the collective knowledge of the effect of genetics 
on drug response, by confirming findings from candidate gene studies and identifying 
novel drug-gene or drug-variant associations [52–54]. Despite those findings, PGx-
related GWAS has differences compared to disease GWAS (Table 7.2) and encounters 
several challenges. Firstly, most GWASs use a widely accepted p-value threshold of 5 
× 10-8 [55], suggesting that only common variants with large effect size are able to be 
identified as significant. However, variants with small-effect and moderate-effect also 
play a role in drug response. Muhammad et al. indicated that these variants explained 
more than half of the narrow-sense heritability in the given pharmacodynamic and 
pharmacokinetic phenotypes [50]. Moreover, most GWASs in PGx did not account for 
rare variants or even low-frequency variants (MAF ≤ 5%) due to the quality control or 
limitations in analytical power [56]. Nonetheless, the number of low allele frequency 
variants presents an enrichment in drug response signals rather than common diseases 
and other complex traits [57], highlighting the contribution of rare variants in drug 
response. Secondly, collecting a cohort with thorough drug exposure and phenotyping 
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data is challenging, even if a small sample size would be sufficient due to the large effect 
size of variants/genes involved in the drug metabolism pathway or drug target directly. 
Lastly, the increasing use of GWAS encourages the requirements of variant interpreta-
tion as aforementioned, and translating functional variants into clinically actionable 
recommendations is challenging, especially for the rare pharmacogenetic variants [58].

Table 7.2: Characteristics of pharmacogenomics (PGx) GWAS and disease GWAS

PGx GWAS Disease GWAS

Objective Identify genetic variants that related to 
inter-individual variability of drug-response

Identify genetic variants that 
associated with the risk of 
disease occurrence

Phenotype definition Drug response, including efficacy, adverse 
events, pharmacokinetics parameters et al.

A disease diagnosis, severity

Study design Case-control design and cohort design 
(following all treated patients)

Case-control design (Individuals 
with disease VS without disease)

Sample size Smaller samples size is possible depending 
on the effect size of variants

Larger population size required

Study cohort Challenging in finding well-characterized 
cohorts

Large-scaled population and 
biobank data

Polygenic Both monogenic and polygenic Highly polygenic

Important 
confounding factors

Patients adherence Environmental factors

To further gather the effect of multiple genetic variants on phenotypes, polygenic 
risk scores (PRS), originally derived from GWAS to predict the risk of human diseases 
or complex traits are considered. In PGx, the PRS could also be useful, when applied 
with drug response as the phenotype. A PRS aggregates multiple single nucleotide 
variants via weighting their effect size from an independent discovery GWAS. This 
approach provides a comprehensive measure of the total genetic contribution on a 
particular phenotype, including not only variants with large effects but also those with 
moderate or minor effects, which cannot reach the GWAS significant threshold [59, 
60]. Compared to *-allele nomenclature, which is able to contain multiple variants, 
PRS includes variants from different genes. The applications of PRSs in PGx have been 
reviewed [61–63], showing their promising utility. Nonetheless, over 80% of currently 
published studies that use PRS are based on disease GWAS, which use SNPs that are 
not directly implicated in drug response [60, 61]. For instance, in a large-scaled GWAS 
involving over 11,000 coronary artery disease cases, PRS was significantly associated 
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with the incidence of major adverse cardiovascular events (MACE) and the risk reduction 
of MACE after alirocumab treatment [64]. Moreover, PRSs derived from disease GWAS 
do not fully cover the heritability of drug response, despite the broader resources and 
typically larger sample sizes [60, 65]. So using data from the base cohort of disease 
GWASs (the cohort used to generate summary statistics to obtain variant effect sizes 
and p-values) results in about 20% failure prediction, which means no significant asso-
ciations between PRS and drug response. In contrast, the failure rate decreased to 6% 
with data from PGx GWAS [60]. Recently, Zhai et al. processed a PRS-PGx method that 
improves the prediction accuracy of PRS for drug response but it has not been widely 
used [65]. Briefly, their model was developed by giving not only the prognostic effect 
but also the predictive effects of variants to make the PRS shift to the PGx PRS approach.  

Future prospectives

With advancements in genome sequencing technologies and high-throughput data 
processing methods, PGx has a broad implamentation in predicting drug response. 
There are promising directions for future studies. 

Firstly, predicting drug response is a complex system involving multiple intermediate 
layers as Figure 7.4 shows [66]. Advances in biotechnology and bioinformatics are 
driving PGx studies to integrate multidimensional, large-scale omics data, including 
the genome, transcriptome, proteome, and epigenome. By leveraging multi-omics 
data, we are able to have comprehensive insights into the missing heritability and 
molecular mechanisms underlying complex drug response. For instance, epigenetic 
mechanisms modifying the gene expression without altering the DNA sequence, can 
help to clarify the missing heritability in PGx [67–71]. Multiple studies have indicated 
that the hypermethylation of the ADME gene promoters suppresses their expression, 
while the hypomethylation has the opposite effect [72]. However, to date, the con-
tribution of epigenetics on drug response has not been well-characterized due to the 
limited application of epigenetic testing and the complexity of epigenetic principles 
[73]. For instance, liver tissue might be needed for liver-specific expression assessment. 
Moreover, epigenetic modifications are diverse, including DNA methylation, histone 
modification, non-coding RNA-mediated regulation as well as the chromatin remod-
eling [73]. Notably, the epigenetic-mediated drug response is determined not only 
by basal epigenetic states but also by environment-induced modification, specifically, 
drug administration [74–76]. Some common drugs such as opioids and valproic could 
induce epigenetic alterations, resulting in wanted and unwanted drug effects [75]. 



Chapter 7

154

About 5% of all drugs are potentially related to human histone deacetylase according 
to in vitro experiments. Further investigations via fundamental or clinical experiments 
are expected to address drug-induced epigenetics changes and how epigenetic impacts 
drug response. 

Sample size determines the statistical power in PGx studies, which is of great 
importance to draw solid conclusions. Additionally, extremely large cohorts may be 
necessary to evaluate the contribution of rare variants, which can be costly. Zuk et 
al.’s study indicated that > 25,000 cases, should be involved in the discovery sets and 
the substantial replication set to have a well-powered rare variant association study 
[77]. Meanwhile, the increasing availability of population-based large-scale biobanks 
offers a more feasible and cost-effective approach by providing cohorts containing 
sufficient participants [66]. The use of biobank data has huge advantages, and it can 
be further strengthened by integrating phenotype information, for instance, from 
electronic health care records (EHRs). Tase et al.’s study identified novel loss-of-func-
tion variants and missense variants in 64 very important pharmacogenes (VIP) with 
EHRs-coupled biobank whole-genome sequencing data with over 2,000 participants 
[78]. In total, 41 loss-of-function and 567 missense variants were detected, and the 
frequency of most detected variants was below 0.05%. This study replicated several 
previously reported variant-drug associations and identified novel interactional signals, 
for instance, rs145259190 (NC_000006.12:g.160262532C>T), located in the promoter 

Figure 7.4: Layers for biology mechanisms of drug response.



155

General discussion and future perspectives

7

region of SLC22A2, was related to metformin toxicities [78]. However, studies based on 
biobank data could also be challenging. Firstly, the quality of the corresponding clinical 
data varies greatly and often contains unstructured, sparse and incomplete records, 
especially for some clinical outcomes that require manual evaluation and annotation. 
Secondly, new findings identified with biobank data are insufficient to prove causality, 
and further validation is needed before they could be deemed clinically actionable. 
Therefore, conventional approaches, such as randomized clinical trials (RCTs), are still 
considered to be a higher level of evidence over data-driven approaches.   

The growing availability of large-scale biobanks and the multi-omics data highlight the 
potential benefits of artificial intelligence (AI) modeling in PGx studies [79–81]. Machine-
learning (ML), as a subset of AI, is rapidly developing in medicine [82]. For instance, 
a study by Gottlieb et al., explained an additional 8–12% of the variation in warfarin 
pharmacokinetics (PK) by integrating the expression data of 116 genes related to 
warfarin PK and PD pathways [83]. Multiple ML-based algorithms have been developed 
to predict variant effects and an ensemble ML model has shown superior accuracy in 
predicting variants in ADME genes [30]. Notably, among techniques within ML, the 
neural network is more specifically implemented in managing genotype-phenotype 
analysis and mutation-gene-drug relations [84]. The prediction of CYP2D6-mediated 
tamoxifen metabolism can be improved by using a neural network based continuous 
scale phenotype instead of the conventional categorical phenotype [85].  

Solid evidence indicates that individuals from different ethnic groups exhibit varied 
responses to specific agents [86]. One explanation is the different frequencies of 
impact variants between ethnic groups, including common variants and rare variants 
[87, 88]. Despite these differences, PGx research and implementation have significant 
biases between populations, of which the outcomes are predominately focused on 
European ancestry [86, 89, 90]. These disparities in PGx testing prevalence and quality 
underscore broader healthcare inequalities. Therefore, conducting studies with more 
diverse populations is crucial to reduce bias and identify novel drug-gene associations 
by linking variations in drug response to genetic diversity.  

Current PGx studies investigated more factors implicated in pharmacokinetics (PK) 
than pharmacodynamics (PD). Moreover, current PGx guidelines primarily focus on 
PK-related dose adjustments, which address only one part of the overall picture. In 
contrast, pharmacodynamics, which examines interactions with the drug targets or 
the biological pathway, plays an important role in drug response, particularly drug 
efficacy. In contrast to PK measurement, examination of PD has multiple difficulties. 
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Firstly, identifying the treatment benefit can be difficult due to issues like the appro-
priate endpoint, accounting for the placebo effect and ensuring patient adherence 
[91]. Secondly, besides the interaction with dosing [92, 93], drug efficacy is intensively 
related to more specific factors, such as the drug target or the corresponding biological 
pathway that alters the sensitivity to the drug. To study how genetic variants affect PD, 
disease-specific, drug-specific and tissue-specific considerations are to be taken into 
account. Regarding drug targets and pathways, anticancer agents represent a special 
case in PGx, as responses to anticancer agents involves two genomes: the germline 
genome and the somatic genome. Notably, in most clinical settings, somatic variants 
provide identification of the malignancy types that are likely to respond to the anti-
cancer agents. Therefore, the corresponding agents are prescribed to patients carrying 
acquired variants, and the upfront genetic testing is performed in tumor tissue only 
[94]. As a result, germline testing remains underutilized in cancer treatment. Notably, 
with GWAS, only 15% of drugs or drug classes were identified to have robust genetic 
associations for efficacy [91]. But this observation could be underestimated due to 
the difficulties mentioned above, which implicates a higher demand for study design 
in future PGx research. 

Additionally, the mismatch between genotype and phenotype has been widely 
observed, which is referred to as phenoconversion. In some studies, phenoconversion 
has been regarded as an explanation for the lack of association between genotype 
and phenotype in CYP enzymes [95]. The reasons for the discordance are diverse, for 
instance, drug-drug interactions (DDI), special physiological and pathophysiological 
situations such as inflammation and other factors such as smoking [96]. Klomp et al.’s 
study found that higher C-reaction protein (CRP) level (an inflammatory biomarker) 
is related to lower CYP2C19 enzyme activity compared to the genetics-predicted 
phenotype, regardless of the genotype. Meanwhile, CYP2C19 activity showed a similar 
pattern of variation as the CRP fluctuation [97]. 

There are multiple methods for phenotype observation. Phenotypes like enzyme activity 
are not always possible to assess directly. Consequently, surrogate biomarkers have 
been widely used for the sake of feasibility and cost-effectiveness, with liquid biopsy 
showing particular advantages. Blood contains liver-released extracellular vesicles (EVs), 
which contain functional protein, mRNA and metabolites. Liquid biopsy isolates these 
EVs from blood to allow biomarker detection in a less invasive way than a tissue biopsy. 
Herein, testing the components in EVs could provide liver-specific enzyme activity 
data and gene expression data. Multiple CYP enzymes (both mRNAs and proteins) 
have been detected in plasma-derived exosomes [98]. Rowland et al. indicated that 



157

General discussion and future perspectives

7

CYP3A4 enzyme activity could be surrogated by CYP3A4 expression in exosome as the 
midazolam clearance was significantly associated with exosomal CYP3A4 protein levels 
(R2 = 0.91), and CYP3A4 mRNA levels (R2 = 0.79) [99]. These studies indicate a relatively 
high concordance between enzyme activities and surrogated biomarkers derived from 
liquid biopsy, suggesting a promising implementation in PGx.   

The human gut microbiome is one of the missing fields that might have more complex 
interactions with drug metabolism pathways than previously addressed [100]. Increas-
ing evidence shows that gut microbiome significantly influences pharmacokinetics by 
altering all four components of ADME [101, 102]. For instance, gut bacteria process 
β-glucuronidases, which are involved in the biotransformation of the inactive metabolite 
of irinotecan to an active metabolite (SN-38). This active component is the cause of 
diarrhea, occurring in up to 40% of patients [103]. Besides, gut microbiome is related 
to pharmacodynamics by interacting with metabolism and immunity, as seen in the 
response to immune checkpoint inhibitors [104, 105]. Notably, the role of the gut in 
drug response varies significantly due to microbiome composition, variations of the 
host genome, and environmental factors [106], and integrating gut into current PGx 
knowledge might improve the explanation of missing heritability.    

As all aspects aforementioned, predicting drug response with PGx is complex. It requires 
a comprehensive understanding of genome make-up of genes involved directly, net-
working of genes has indirect effects, and taking non-genetic factors into account. To 
investigate the complex interactions between the human genome and drug response, 
new technologies and large-scale data are necessary but lead to challenge of data 
processing and analysis. Nevertheless, advances in PGx and personalized medicine 
hold immense potential to revolutionize healthcare, enabling safer and more effective 
treatments tailored to each individual’s unique genetic profile.
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