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Chapter 2: Theory and Methodology 

 

Molecular simulation methods rely on a broad array of approximations to 

efficiently describe the dynamics of nuclei and electrons. This chapter provides a 

brief outline of the methods relevant for this dissertation and discusses advantages 

and disadvantages of each method.  
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2.1 Introduction 

The work described in this dissertation hinges on a simple, yet powerful concept: 

that the complex behavior of a system of interest can be studied by applying the 

laws of physics on a representative model. This implies that the dynamical 

behavior and photochemical response of molecules and materials can be predicted 

from their elementary structure by applying the laws of quantum mechanics. 

Unfortunately, the quantum mechanical calculations resulting from those laws are 

associated with a numerical cost that scales exponentially with the system size. 

Quantum computers hold promise to crack this exponential scaling problem, but 

for now their hardware is insufficiently developed to be practically useful. 

Therefore, modern quantum chemistry still relies on a broad range of 

approximations, and the difficulty in this field often lies in finding a workable 

compromise between computational efficiency and accuracy.  

This chapter provides an introduction into the conceptual frameworks used in this 

dissertation for studying a range of molecular phenomena. Section 2.2 deals with 

the quantum-mechanical laws of physics that describe the behavior of electrons 

and atomic nuclei. Application of these laws results in a recipe to calculate 

interatomic forces, which can be used to study the dynamics of molecular systems 

as well as bond formation and breaking. Section 2.3 concentrates on how the 

equations of motion can be integrated over time, yielding a description of 

molecular dynamics in the ground state. In Section 2.4, the discourse extends to 

an electronic excited state situation, which is crucial for capturing the physics of 

light-induced processes. Section 2.5 deals with extracting thermodynamic 

properties from molecules in their minimum energy structure. The final section 

2.6 goes more in-depth on the electronic structure methods used in this work.  
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2.2 Electronic structure theory and the Born-Oppenheimer approximation 

In this chapter, we assume that the physics relevant for chemistry is described by 

the non-relativistic, time-dependent Schrödinger equation, which in atomic units 

(ℏ = 𝑚e = 4𝜋𝜖0 = 𝑒 = 1) takes the form: 

 
𝐻̂ 𝛷(𝒓, 𝑹, 𝑡) = 𝑖

𝜕

𝜕𝑡
𝛷(𝒓, 𝑹, 𝑡) 

 

(2.1) 

 where 𝑖 is the imaginary unit,  𝛷 represents a wavefunction that depends on time 

t and on both electronic coordinates 𝒓 and nuclear coordinates 𝑹, and 𝐻̂ is the 

Hamiltonian describing the system. Note that throughout this dissertation, vectors 

and matrices are written in bold, and operators are written with a circonflexe 

(“little hat”). 𝒓 and 𝑹 thus represent a column vector containing all electronic and 

nuclear positions, respectively. For chemical purposes, it is sufficient to model the 

atomic nucleus as a point charge 𝑍𝐼 located at the position 𝑹𝐼. The Hamiltonian 

for a chemical system with N nuclei and n electrons is thus given by: 

Here, 𝑀𝐼 and 𝑚𝑖 represent the nuclear and electronic masses, respectively. In this 

equation, we can identify in order, the kinetic energy operator for the nuclei, the 

kinetic energy operator for the electrons and the Coulomb operators for the 

electron-electron, electron-nuclei and nuclei-nuclei interactions. It is useful to 

regroup these terms into an electronic Hamiltonian, 𝐻̂e, and a nuclear 

Hamiltonian, 𝐻̂n. By convention, this separation is defined such that the nuclear 

Hamiltonian contains the nuclear kinetic energy operator, while the electronic 

Hamiltonian contains all the other terms: 

 

 𝐻̂ =  − ∑
1

2𝑀𝐼

𝑁

𝐼=1

∇𝑅𝐼

2 + 𝐻̂e 

 

(2.3) 

            𝐻̂ =  − ∑
1

2𝑀𝐼

𝑁

𝐼=1

∇𝑅𝐼

2 − ∑
1

2𝑚𝑖

𝑛

𝑖=1

∇r
2 

                    + [∑
1

|𝒓𝑖  −  𝒓𝑗|

𝑛

𝑖<𝑗

− ∑
𝑍𝐼

|𝑹𝐼  −  𝒓𝑖|

𝑁,𝑛

𝐼,𝑖

+  ∑
𝑍𝐼𝑍𝐽

|𝑹𝐼  −  𝑹𝐽|

 𝑁

𝐼<𝐽

] . 

 

 

 

(2.2) 
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Using the electronic Hamiltonian, we can also define the electronic wavefunctions 

𝛹𝑖(𝒓;  𝑹) as the set of functions that satisfy the following eigenvalue problem, 

also known as the time-independent electronic Schrödinger equation:  

 𝐻̂e𝛹𝑖(𝒓;  𝑹)  = 𝐸𝑖𝛹𝑖(𝒓;  𝑹) . (2.4) 

The eigenfunctions 𝛹𝑖(𝒓;  𝑹) form a complete and orthonormal basis, in which 

the nuclear dependence is included parametrically. This is convenient because 

most chemical calculations do not require a full quantum-mechanical description 

of both nuclei and electrons.  

In the work presented in this thesis, the electronic system is treated quantum 

mechanically, while the atomic nuclei are treated classically. This is generally 

justifiable, as quantum effects become less prominent for heavier particles. To 

show that a mixed quantum-classical description can be derived neatly from the 

above equations, we follow a route proposed by Doltsinis and Marx.[1] This route 

also sets up the framework of equations from which we can later derive the surface 

hopping algorithm proposed by Tully.[2] The following multiconfigurational 

ansatz for the wavefunction is proposed: 

 
𝛷(𝒓, 𝑹, 𝑡) = ∑ 𝛹𝑗(𝒓;  𝑹) 𝛸𝑗(𝑹, 𝑡) .

∞

𝑗

 
 

(2.5) 

This ansatz separates the total wavefunction 𝛷(𝒓, 𝑹, 𝑡) into an electronic part, 

𝛹𝑗(𝒓;  𝑹), and a nuclear part, 𝛸𝑗(𝑹, 𝑡). The subscript 𝑗 runs over the electronic 

basis functions, effectively associating to each electronic basis state a nuclear 

wavefunction. The solutions to equation (2.4) present a convenient basis for the 

electronic wavefunction. The nuclear wavefunctions do not need to be orthogonal 

or normalized. When equation (2.5) is inserted into equation (2.1) we can derive 

an expression for the time-evolution of 𝛸𝑖(𝑹, 𝑡). By inserting the ansatz, 

multiplying from the left with 𝛹𝑖
∗(𝒓; 𝑹), and subsequently integrating over r, the 

following equation is obtained for the time-evolution of the nuclei:  
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𝑖 
𝜕𝛸𝑗(𝑹, 𝑡)

𝜕𝑡
=  [− ∑

1

2𝑀𝐼

𝑁

𝐼=1

∇𝑅𝐼

2 +  𝐸𝑗  (𝑹)] 𝛸𝑗(𝑹, 𝑡)

+ ∑ [∑
1

2𝑀𝐼
𝐷𝑗𝑖

𝐼  

𝑁

𝐼

− ∑
1

𝑀𝐼

 𝑁

𝐼 

𝑑𝑗𝑖
𝐼 ∇𝑅𝐼

]

∞

𝑖

𝛸𝑖(𝑹, 𝑡) 

 

 

 

(2.6) 

Note that, subscript i and j run over the electronic state indexes, while I runs over 

the nuclear particle indexes. 𝐸𝑗 represents the matrix element 

⟨𝛹𝑗(𝒓;  𝑹)|𝐻̂e|𝛹𝑗(𝒓;  𝑹)⟩ while 𝑑𝑗𝑖
𝐼  and 𝐷𝑗𝑖

𝐼  represent the first and second order 

non-adiabatic coupling terms, given by:  

 𝑑𝑗𝑖
𝐼 =  ⟨𝛹𝑗(𝒓, 𝑹)|∇𝑅𝐼

|𝛹𝑖(𝒓, 𝑹)⟩ (2.7) 

and  

 𝐷𝑗𝑖
𝐼 =  ⟨𝛹𝑗(𝒓, 𝑹)|∇𝑅𝐼

2 |𝛹𝑖(𝒓, 𝑹)⟩ (2.8) 

The bra-ket notation signifies an integral over the space of all electronic 

coordinates.[3] We can simplify equation (2.6) considerably by invoking the 

adiabatic approximation, which neglects all the non-diagonal terms in 𝑑𝑗𝑖
𝐼  and all 

the second order terms 𝐷𝑗𝑖
𝐼 :  

 

𝑖 
𝜕𝛸𝑗(𝑹, 𝑡)

𝜕𝑡
= [− ∑

1

2𝑀𝐼

𝑁

𝐼=1

∇𝑅𝐼

2 +  𝐸𝑗  (𝑹) + ∑
1

2𝑀𝐼

𝑁

𝐼=1

𝑑𝑗𝑗
𝐼  ]  𝛸𝑗(𝑹, 𝑡) 

 

 

 

(2.9) 

The Born-Oppenheimer approximation is now recovered by neglecting also the 

diagonal terms 𝑑𝑗𝑗
𝐼 :  

 

𝑖 
𝜕𝛸𝑗(𝑹, 𝑡)

𝜕𝑡
= [− ∑

1

2𝑀𝐼

𝑁

𝐼=1

∇𝑅𝐼

2 +  𝐸𝑗  (𝑹)] 𝛸𝑗(𝑹, 𝑡) 

 

(2.10) 

This equation evolves the nuclear wavefunction in an average potential generated 

by the electronic sub-system, which is quenched to a specific eigenstate of the 

electronic Hamiltonian 𝐸𝑗. Despite invoking several approximations, equation 

(2.10) remains prohibitively expensive to solve numerically for most problems 
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encountered in chemistry. However, as stated before, in most cases it is reasonable 

to describe the nuclear motion classically. By assuming classical behavior of the 

atomic nuclei, equation (2.10) can be rewritten[1] to yield Newtons equations of 

motion for the classic nuclei evolving in a quantum mechanical potential 

generated by the electrons:  

 
𝑀𝐼

𝑑2

𝑑𝑡2
𝑹𝐼(𝑡) =  −∇𝐼𝐸𝑗(𝑹) = 𝑭𝐼(𝑡) 

 

(2.11) 

Here, 𝐸𝑗 is found by solving the eigenvalue equation (2.4). Typically, we are 

interested in the behavior of a system in the electronic ground state, where j=0. 

Equation (2.11) demonstrates that the time-evolution of the nuclear positions 𝑹𝐼 

can be computed using only the gradient of the electronic energy with respect to 

the nuclei ∇𝐼𝐸𝑗(𝑹). The next section will focus on integrating these equations of 

motion in an efficient manner. 

 

2.3 Molecular Dynamics and Thermodynamics 

One of the most popular algorithms to numerically integrate equations (2.11) is 

the Velocity Verlet algorithm.[4] Since the computation of equation (2.4) depends 

only on the nuclear positions and not on the velocities, the algorithm can be 

divided in an initation step followed by a 5 step cycle according to: 

1. Initiate the system at 𝑡0 by providing an initial set of nuclear positions 

𝑹𝐼(𝑡) and velocities 𝒗𝐼(𝑡), and calculate the accelerations 𝒂𝐼(𝑡) from 

equation (2.11) as 𝑭𝐼(𝑡)/𝑀𝐼.  

2. Calculate the new positions: 

 𝑹𝐼(𝑡 + ∆𝑡) = 𝑹𝐼(𝑡) + 𝒗𝐼(𝑡)∆𝑡 +
1

2
 𝒂𝐼(𝑡)∆𝑡2 

3. With the newly obtained set of positions compute the accelerations at the 

next time step 𝒂𝐼(𝑡 + ∆𝑡). 

4. Calculate the new velocities: 

 𝒗𝐼(𝑡 + ∆𝑡) = 𝒗𝐼(𝑡) +  
1

2
 (𝒂𝐼(𝑡) + 𝒂𝐼(𝑡 +  ∆𝑡)) ∆𝑡 
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5. Set the current time step 𝑡 to the new time step 𝑡 + ∆𝑡. 

6. If the simulation time exceeds the desired simulation time 𝑡final, terminate 

the simulation. Otherwise, go back to step 2.  

After initialization, this algorithm iteratively computes the nuclear positions 

𝑹𝐼(𝑡 + ∆𝑡) at the next time step, 𝑡 + ∆𝑡, from the nuclear velocities and 

accelerations at the current time 𝑡, until the total simulation time reaches a 

satisfactory length. Due to its third order numerical precision in t and low 

memory intensity, this algorithm has become the default molecular dynamics 

(MD) propagator in state-of-the-art computational chemistry codes. A critical 

parameter for any integration scheme is the time step ∆𝑡, which is chosen such 

that the total energy, i.e. the combination of the potential and the kinetic energy 

in the simulation is conserved. Typically, this means that the shortest oscillation 

period in the system of interest is described with ca. 10 time steps. For a molecular 

system in the ground state, these oscillations are the vibrations of C-H or O-H 

bonds, whose characteristic stretching frequencies are properly described with a 

time step of 0.5 fs. If the time-evolution of the electronic subsystem is considered 

explicitly, a much shorter time step of 0.01 fs is generally required.[5]  

Despite the numerical robustness of the Velocity Verlet Algorithm, tracing the 

exact trajectory of a molecular system on longer timescales is impossible. 

Fortunately, we are interested in the collective properties of a molecular ensemble 

rather than the precise dynamics of an individual molecule. The basic assumption 

underpinning all MD simulations is that the ensemble average of an observable in 

a macroscopic system is equivalent to the time average of this observable in a 

microscopic system.  

The most straightforward way to perform a MD simulation, is to initialize a 

predefined number of particles in a box with fixed dimensions and start integrating 

the equations (2.11). Such a simulation at constant volume (V), constant particle 

number (N), and constant total energy (E) of the system, reproduces the NVE 

ensemble or microcanonical ensemble. Often, one would like to sample an 
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ensemble at thermal equilibrium with an external heat bath, to mimic experimental 

conditions. This ensemble is referred to as the NVT or canonical ensemble. To 

achieve this desired phase space distribution, a range of different thermostats have 

been developed which all try to obey physical constraints such as microscopic 

reversibility and continuous trajectories without requiring a large computational 

overhead. Notable examples of commonly applied thermostats are the Nose-

Hoover Chain and the Canonical Sampling through Velocity Rescaling 

thermostats.[6–8] Besides temperature constraints, performing dynamics 

simulations at constant pressure by changing the box volume can often be useful. 

Such isoenthalpic-isobaric (NPH) or isothermal-isobaric (NPT) simulations can 

be used to achieve a realistic density of molecules in the simulation. Finally, for 

chemical purposes it is useful to define the grand canonical ensemble with 

constant chemical potential (μ), volume (V) and temperature (T).  

All statistical ensembles are associated with an intrinsic thermodynamic potential, 

which measures the internal energy change when the system evolves from one 

microstate to the other. For the NVT ensemble, this property is called the 

Helmholtz free energy, F, which is defined as:  

 𝐹 ≡ 𝑈 − 𝑇𝑆 (2.12) 

where 𝑈 is the internal energy of the system, 𝑇 is the temperature and 𝑆 is the 

entropy. The probability, p, assigned to a specific microstate in the canonical 

ensemble is subsequently given by: 

 
𝑝(𝒓𝑁𝒑𝑁) =  𝑒

(𝐹−𝐸)
𝑘B𝑇⁄

=  
1

𝑄
 𝑒

−𝐸
𝑘B𝑇⁄  ,

𝑄 =  𝑒
−𝐹

𝑘B𝑇⁄ =  ∑ 𝑒
−𝐸𝑖

𝑘B𝑇⁄

𝑖

 

 

 

(2.13) 

where 𝐸 is the energy associated with the specific microstate of interest, 𝑘B is the 

Boltzmann constant and 𝑄 is the canonical partition function. The index i in the 

summation runs over all possible microstates of the system within the canonical 

ensemble and each microstate is associated with a specific energy 𝐸𝑖 . These 

equations show that the Helmholtz free energy intrinsically carries information 
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about the probability distribution of accessible microstates, while taking entropy 

effects explicitly into account. This renders NVE ensemble simulations extremely 

useful for predicting the internal dynamics of (bio-) molecular systems and 

materials. Equation (2.13) also plays an integral role in enhanced sampling 

simulations such as Metadynamics, or Blue Moon sampling, which are 

extensively used in chapter 4 of this thesis.[9–12] However, going into the details of 

these enhanced sampling methods is beyond the scope of this introduction. 

Chemical experiments are typically performed at constant pressure rather than 

constant volume. Hence, the driving force for chemical reactions is the gradient 

of the so-called Gibbs Free energy, which is defined as 

 𝐺 ≡ 𝑈 + 𝑃𝑉 − 𝑇𝑆 = 𝐻 − 𝑇𝑆, (2.14) 

in which the pressure P and volume V term, together with the internal energy 𝑈 

sum to the enthalpy 𝐻. The main difference with the Helmholtz free energy is thus 

the inclusion of the 𝑃𝑉 term, which measures the work related to the volume 

change associated to the simulated phenomenon. Although this difference can be 

very important for studying phase transitions or other physical processes, the 

effect is rather small for most chemical conversions encountered in this thesis. As 

the critical MD simulations described in this dissertation are performed at constant 

volume, the terms Helmholtz and Gibbs free energies are used interchangeably.  

A final point to address in this section on MD is how to deal with the finite size 

effects introduced by the boundaries of the simulation box. An effective way of 

avoiding finite size effects is to impose periodic boundary conditions (PBC). The 

idea behind PBC is that a periodic image of the unit cell is projected at all edges 

of the simulation cell, subsequently allowing particles to move through the 

boundary and re-appear on the other side of the box. Invoking periodic boundary 

conditions is associated with a neglectable computational cost, since each particle 

interacts only with the nearest image of all other particles in the system. 
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2.4 Excited States and Non-Adiabatic Dynamics 

The previous discussion has focused on describing the nuclear dynamics of a 

molecular system in the electronic ground state. These simulations are interesting 

for a wide range of applications ranging from computation of thermodynamic 

quantities to probing the dynamics of ground state chemical reactions. However, 

in the context of solar-fuel production it is critical to investigate electronically 

excited states and explicitly calculate the coupling between nuclear and electronic 

degrees of freedom.  

To describe excited state phenomena, we need to follow the time-evolution of the 

wavefunction as dictated by equation (2.1). The time-evolution of the electronic 

wavefunction is typically computed in terms of time-dependent wavefunction 

coefficients 𝑐𝑖(𝑡), in a basis of adiabatic eigenstates of the electronic Hamiltonian: 

 𝛹(𝒓, 𝑹, 𝑡) =  ∑ 𝑐𝑖(𝑡)𝛹𝑖(𝒓; 𝑹; 𝑡)

𝑖

 ,  

(2.15) 

where 𝛹𝑖(𝒓; 𝑹; 𝑡) are the eigenfunctions obtained from solving equation (2.4), and 

include a parametric time-dependence to account for the changing nuclear 

positions.[13] By inserting equation (2.15) into equation (2.1) and multiplying from 

the left by 𝛹𝑗
∗(𝒓;  𝑹; 𝑡) we obtain: 

 𝜕

𝜕𝑡
𝑐𝑗(𝑡) =  − ∑[𝑖𝐻𝑗𝑖 +  𝑇𝑗𝑖]𝑐𝑖

𝑖

 , 
 

(2.16) 

where 𝑇𝑗𝑖 is the time-derivative coupling, calculated as 𝑇𝑗𝑖 = 𝒗 ∙ 𝒅𝑗𝑖, in which 𝒗 

collects all the nuclear velocities and 𝒅𝑗𝑖 is now a column vector containing the 

non-adiabatic coupling contributions for all nuclear coordinates (see equation (7)). 

In practice, the quantum chemistry method of choice can affect the nature of the 

basis states 𝛹𝑖(𝒓; 𝑹; 𝑡) and the computation of 𝒅𝑗𝑖. For Time-Dependent DFT 

based approaches (see section 2.6.2), the basis states are generally not adiabatic, 

and the non-adiabatic couplings are either numerically intensive or analytically 

difficult to obtain. Therefore, the work discussed in this dissertation relies on a 

propagation scheme in which the eigen basis is obtained by diagonalizing the 
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Hamiltonian matrix at each time step, and the wavefunction coefficients are 

propagated based on the overlap matrix between subsequent time steps.[14,15] 

 Now that we have established a practical approach to evolve the quantum 

mechanical wavefunction coefficients for the electronic subsystem, the classical 

propagation of the nuclear coordinates can be discussed. One of the easiest 

approaches is to completely ignore electronic structure effects on the nuclear 

motion and simply evolve the nuclei on a potential energy surface generated by a 

single electronic eigenstate as described by equation (2.11). This approach is 

justifiable if the electronic motion is very fast compared to the nuclear response 

or if the nuclear response is generally negligible. Such scenarios are often 

encountered when studying interfacial electron or hole transfer processes in dye-

semiconductor heterostructures. In Chapter 6 of this dissertation such a study is 

presented.  

In many cases the nuclear response to the electronic wavefunction change cannot 

be ignored and needs to be considered explicitly. The main assumption in the 

Born-Oppenheimer approximation is that the classical motion of the nuclear 

subsystem is subject exclusively to a single potential energy surface generated by 

a single quantum mechanical electronic eigenstate |𝑗⟩. The main challenge thus 

lies in addressing situations where multiple electronic eigenstates contribute to the 

electronic wavefunction simultaneously. Historically, two approaches have been 

proposed to solve this problem. In the first approach, an averaged potential energy 

surface is defined in which all considered electronic states contribute according to 

their electronic wavefunction coefficient. This mean-field approach is referred to 

as the Ehrenfest method and captures the coherent motion between the nuclei and 

electrons naturally, while preserving a normalized wavefunction.[16] However, the 

mean-field character of this approach renders it impossible to describe trajectory-

branching that occurs due to different trajectories being subject to different 

quantum states. This is specifically relevant when one is interested in a low 

probability channel that will never be accessed with the mean-field approach.[17] 
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With this issue in mind, John C. Tully developed an alternative method for 

simulating excited state molecular dynamics, which is now known as Fewest 

Switches Surface Hopping (FSSH).[2] The idea behind his approach is that instead 

of propagating a single trajectory on an averaged potential energy surface, an 

ensemble of trajectories is propagated on potential energy surfaces belonging to 

specific electronic eigenstates. The trick is to allow trajectories to “hop” between 

surfaces, based on a stochastic algorithm. In this way the population of trajectories 

subject to a specific quantum state remains approximately equal to the 

wavefunction amplitude associated with that state. Trajectories are allowed to 

switch to any coupled state at any point during the simulations, and the switching 

probability is governed by the quantum probabilities. The switching probability 

𝑔𝑖𝑗, for a trajectory to switch from state 𝑖 to state 𝑗 is calculated as: 

 
𝑔𝑖𝑗 =

∆𝜏 [2 Im (𝑐𝑗
∗𝑐𝑖 𝐻𝑗𝑖) − 2 Re(𝑐𝑗

∗𝑐𝑖 𝑹 ∙ 𝒅𝑗𝑖)] 

𝑐𝑗𝑐𝑗
∗  . 

 

(2.17) 

where ∆𝜏 is the time step at which the electronic subsystem is propagated. In most 

surface hopping implementations, the electronic subsystem is propagated with a 

time step at least one order of magnitude smaller than the classical time step ∆𝑡. 

For a trajectory in active state |𝜆⟩, the hopping probabilities 𝑔𝜆𝑗 are calculated at 

each quantum time step ∆𝜏. Transition probabilities lower than zero are set to zero. 

This minimizes the number of hops, hence Fewest Switches. Subsequently, a 

random number 𝜁 is drawn between 0 and 1. At each quantum time step, the 

following equation is evaluated for all states |𝑘⟩: 

 

∑ 𝑔𝜆𝑗 < 𝜁 <  ∑ 𝑔𝜆𝑗

𝑘

𝑗=1

 

𝑘−1

𝑗=1

 

 

(2.18) 

If the equation holds for any state |𝑘⟩, then a hop to potential energy surface 𝐸𝑘 is 

attempted at the next classical time step. Once a state is found for which equation 

(2.18) is satisfied, no further hopping attempts are undertaken until the new time 

step 𝑡 + ∆𝑡 is reached. Figure 2.1 presents a schematic overview of the FSSH 

algorithm.  
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Figure 2.1. Schematic overview of the typical FSSH algorithm.  

 

Analogous to ground state MD simulations, the first step in a FSSH simulation 

requires generating a set of initial positions and velocities. Additionally, FSSH 

also requires preparation of an initial electronic state vector. Here one may choose 

to initiate the wavefunction in a specific electronic eigenstate, or one can calculate 

explicitly the wavefunction coefficients based on the interaction of a molecule 

with an external electromagnetic field. Steps 2 and 3 in Figure 2.1 do not deviate 

from a normal MD scheme, except for the fact that the energies and gradients are 

not only calculated for the ground state but also for one or more excited states. 

The exact number of required gradients depends on the decoherence correction 

schemes.[18] In step 4, the newly obtained positions and velocities are used to 

evolve the electronic wavefunction. At each new sub-time step 𝜏 + ∆𝜏, the 

hopping probabilities to all states are evaluated using equation (2.17). Then, a 

random number 𝜁 is draw, and the label 𝑘 is saved for which equation (2.18) holds. 

A hop to the new state is invoked in step 6, after the electronic wavefunction 

propagation is finished. The change in potential energy in the system is adjusted 

for by scaling the nuclear velocities such that the sum of potential and kinetic 

energies remains constant. Finally, the trajectory is truncated after a desired 
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simulation time has been reached, or the algorithm goes back to step 2. 

One of the most prominent issues with the FSSH is that the coherences between 

different electronic eigenstates are insufficiently damped. Because the nuclear 

motion is subject only to a single electronic energy surface, wavefunction 

branching due to diverging nuclear trajectories is not captured. In the past three 

decades a range of hopping algorithms have been derived which try to address this 

issue.[18–20] Recently, a pedagogical paper on FSSH was published that discusses 

the issue of decoherence in an intuitive manner.[21] 

 

2.5 Obtaining Thermodynamic Properties from Static Calculations 

Although molecular dynamics is an elegant way of including solvent and entropy 

effects explicitly into the computational study of chemical reactions, the 

associated computational cost is often a limiting factor when high accuracy in the 

interatomic potentials is required. In such cases it is common practice to consider 

only the molecule of interest in its minimal potential energy structure without 

explicit solvent molecules. The assumption is that the potential energy minimum 

is representative for the average structure of the molecule, which in many cases is 

reasonable especially for relatively rigid systems. Solvent and thermodynamic 

effects can subsequently be added a posteriori using a few simple approximations. 

The internal energy 𝑈 can be approximated as the sum of the electronic energy 

𝐸scf and the nuclear internal energy 𝐸𝑁𝐼, which in turn is partitioned in 

translational, rotational and vibrational contributions. The first two contributions 

can easily be shown to amount to 
3

2
 𝑘B𝑇, where each translational and rotational 

degree of freedom contributes 
1

2
 𝑘B𝑇. The vibrational zero-point energy is  

 

𝐸ZP = 𝑅 ∑ 𝑣𝑗 (
1

2
+

1

(𝑒𝑣𝑗 𝑇⁄ − 1)
)

3𝑁−6

𝑗

 ,  
 

(2.19) 

where 𝑣𝑗 is the angular frequency of the j’th eigenmode, 3𝑁 − 6 is the number of 

vibrational modes for a non-linear molecule and 𝑅 is the gas constant.[22] The 
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internal vibrations are calculated as the eigenvectors of the Hessian within the 

harmonic approximation. The vibrational entropy is calculated as:  

 

𝑆𝑣 = 𝑅 ∑ [
𝑣𝑗/𝑇

(𝑒𝑣𝑗 𝑇⁄ − 1)
− ln(1 − 𝑒−𝑣𝑗 𝑇⁄ )]

3𝑁−6

𝑗

 , 
 

(2.20) 

where the low frequency modes are often scaled down to reduce numerical noise 

which may become large due to the first term on the right hand side of the 

equation.[23,24] In addition, small corrections might be imposed to account for 

thermal occupation of vibrational excited states. Finally, the 𝑃𝑉 contribution in 

equation (2.14) can be approximated by the ideal gas law, i.e. 𝑃𝑉 = 𝑁𝑅𝑇. Solvent 

corrections may be calculated completely a posteriori or may be considered during 

the geometry optimization and frequency calculations. However, the studies in 

this dissertation, and specifically chapter 5, use optimizations in the gas phase. 

Therefore, the solvation term, ∆𝐺solv
0 , covers the solvation energy associated with 

moving from the gas phase to the solution phase. This term is calculated with 

implicit continuous solvation models such as COSMO, or SMD.[25–27] The Gibbs 

free energy of a molecule in solution, 𝐺0(solv), is calculated as:  

𝐺0(solv) = 𝐸scf (gas) +  𝐸𝑁𝐼 (gas)  −  𝑇𝑆 (gas) 

+ ∆𝐺solv
0 + ∆𝐺0/∗ 

 

(2.21) 

Here, the 𝐸scf (gas) contribution is taken as the energy obtained from the 

electronic structure theory calculation and the 𝐸𝑁𝐼 (gas) variable is the sum of the 

𝐸ZP, translational and rotational internal energy contributions. The ∆𝐺0/∗ 

contribution quantifies the Gibbs free energy difference related to changing from 

standard state conditions (1 Atm in the gas phase) to the desired concentration in 

solution. For a chemical reaction in solution, this term is calculated as:  

 ∆𝐺0/∗ = 𝑅𝑇ln(24.46 ∗ [𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒]) (2.22) 

where [𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒] is the molecular concentration.[28] Having the flexibility to 

easily take into account concentration differences is a big advantage of this static 

approach, especially when dealing with reactions that are driven by Chatelier’s 

principle such as ligands that coordinate to metal complexes or protonation 
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reactions. However, disadvantages of the static approach arise when the solvent 

interactions need to be sampled explicitly or when anharmonic terms dominate 

the vibrational spectrum.  

 

2.6 Electronic Structure Methods 

2.6.1 Density Functional Theory  

The previous sections have focused on describing the mixed quantum-classical 

dynamics of atomic nuclei on the electronic potential energy surfaces, without 

explicitly addressing how the stationary Schrödinger equation is solved. We now 

shift our attention to finding solutions to the electronic structure problem stated in 

equation (2.4). In the past three decades, density functional theory (DFT) has 

established itself as the workhorse of quantum chemical calculations, because of 

its reasonable accuracy and limited numerical cost. Given the wealth of books and 

review papers available on the theory and application of DFT, we will focus here 

strictly on the fundamental concepts.[29–32]  

The foundation for DFT was laid in 1964 by Hohenberg and Kohn,[33] who showed 

that the ground state energy of an inhomogeneous interacting electron gas, subject 

to an external potential 𝑣(𝒓),  

 
𝐸[𝜌] =  ∫ 𝑑𝒓 𝑣(𝒓)𝜌(𝒓)

ℝ3
+ 

1

2
∫ 𝑑𝒓 𝑑𝒓′

𝜌(𝒓)𝜌(𝒓′)

|𝒓 − 𝒓′|ℝ3
+ 𝐺[𝜌], 

 

(2.23) 

is a unique functional of the electronic density 𝜌(𝒓). Here, ℝ3 signifies the integral 

over all real space. The first term in this equation covers the interaction of the 

electronic system with the external potential, while the second term represents the 

coulomb energy. The functional 𝐺[𝜌] is defined as the difference between the 

exact density functional and the first two terms. It is important to note that 𝐺[𝜌] 

depends uniquely on the density 𝜌 and not on the external potential 𝑣(𝒓). 

Hohenberg and Kohn demonstrated that inserting the true electron density 𝜌(𝒓) 

into equation (2.23) yields an absolute minimum for 𝐸[𝜌], corresponding to the 

system’s ground state. This implies that the ground state energy 𝐸GS can be found 
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by minimization of the energy functional with respect to the density  

 𝐸GS = min
𝜌

𝐸[𝜌] , (2.24) 

subject to the constraint that the total density integral is conserved, thus ensuring 

conservation of particle number. Soon after publication of the Hohenberg Kohn 

theorem, Kohn and Sham introduced a practical approximation to 𝐺[𝜌], which 

allowed them to derive a set of self-consistent equations that can be used to 

perform calculations on chemically relevant systems.[34] They first separated 𝐺[𝜌] 

into two parts: 

 𝐺[𝜌] ≡ 𝑇s[𝜌] + 𝐸xc[𝜌]  (2.25) 

where 𝑇s[𝜌] represents the electronic kinetic energy and 𝐸xc[𝜌] represents the so-

called exchange-correlation (XC) functional. The key insight now lies in 

recognizing that the true electron density of the system can be expressed in terms 

of a set of fictitious non-interacting electrons. The density of this fictitious system 

is described as a sum of squared single-particle wavefunctions according to 

 

𝜌 (𝒓) = 2 ∑|𝜑𝑖(𝒓)|2

𝑛/2

𝑖=1

 .  

  

(2.26) 

Here 𝑛 is the number of electrons and the factor 2 accounts for the double 

occupancy of each spatial orbital 𝜑𝑖(𝒓), assuming a closed shell spin 

configuration. The single-particle spatial orbitals are constrained to remain 

orthonormal. Equation (2.26) simplifies the evaluation of the electronic kinetic 

energy functional, allowing equation (2.23) to be written as 

 
𝐸[𝜌] =  ∫ 𝑑𝒓 𝑣(𝒓)𝜌(𝒓)

ℝ3
+ 

1

2
∫ 𝑑𝒓 𝑑𝒓′

𝜌(𝒓)𝜌(𝒓′)

|𝒓 − 𝒓′|ℝ3

+ 2 ∑ ⟨𝜑𝑖(𝒓)|−
1
2 ∇2|𝜑𝑖(𝒓)⟩

𝑁/2

𝑖=1

+  𝐸xc[𝜌] . 

 

 

 

(2.27) 

Kohn and Sham showed that, by minimizing this functional with respect to the 

density, one can obtain a set of single particle eigenvalue equations  
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{−

1

2
∇2 + 𝑣(𝒓) +  ∫

𝜌(𝒓′)

|𝒓 − 𝒓′|
𝑑𝒓′

ℝ3
+ 𝑣xc(𝒓)} 𝜑𝑖(𝒓) =  𝜀𝑖𝜑𝑖(𝒓) 

 

 

(2.28) 

that can be solved in a self-consistent manner. The 𝑣xc(𝑟) = 𝛿(𝐸xc(𝑟)) 𝛿𝜌⁄  is the 

XC potential, and the 𝜀𝑖 are the Kohn-Sham energy eigenvalues. In theory, 

equation (2.28) is exact within the Born-Oppenheimer approximation. However, 

in practice the exact XC potential for any practically useful system is unknown. 

Finding numerically tractable and physically accurate approximations to 𝑣xc(𝑟) is 

an active research area and a very large number of functionals have been 

proposed.[35]  

The first XC functional, introduced by Kohn and Sham in their seminal paper, is 

now known as the Local Density Approximation (LDA).[34] They derived the 

exact functional for the XC energy of a uniform electron gas (UEG) and used this 

functional to approximate the XC energy density of the inhomogeneous system 

under study. The XC energy with the LDA approximation is thus calculated as  

 
𝐸xc

LDA[𝜌] =  ∫ 𝑒xc
UEG

ℝ3
(𝜌(𝒓))𝜌(𝒓)𝑑𝒓 , 

 

(2.29) 

where 𝑒xc
UEG(𝜌) is a functional that returns for any given density the energy per 

particle of the UEG with that density.  

Although the LDA approximation yields reasonable results for specific problems 

in solid state physics, its generally not accurate enough to study properties of 

molecular systems. A considerable improvement over LDA-DFT can be achieved 

with generalized gradient approximations (GGA) that consider explicitly the local 

gradient of the electron density. Later, meta-GGA functionals have been proposed 

that account also for the Laplacian of the density and hybrid-functionals were 

developed that incorporate an empirically determined fraction of exact Hartree-

Fock exchange (HFX) into the XC potential. While GGA-functionals are 

generally effective at producing accurate bonding energies and molecular 

structures, they suffer from a large delocalization error due to self-interaction of 
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the electronic density.[36] Consequently, transition states and band gaps are 

underestimated and charge tends to be over-delocalized. Chapter 4 of this 

dissertation assesses how the inclusion of HFX affects the localization of spin 

densities in DFT-based MD simulations of a supramolecular water oxidation 

catalyst-dye complex.  

 

2.6.2 Time-Dependent Density Functional Theory 

The Hohenberg-Kohn theorem proves that the external potential 𝑣(𝒓) uniquely 

determines the ground state electron density distribution 𝜌 (𝒓) of a many-body 

system, and that the ground state wavefunction is a unique functional of 𝜌 (𝒓).[33] 

This implies that any ground state property of interest can be calculated as a 

functional of the ground state density. However, as mentioned before, we are also 

interested in properties of molecules in electronically excited states. In 1984, 

Runge and Gross demonstrated that a similar unique mapping exists between the 

time-dependent density of a many-body system subject to a time-dependent 

potential 𝑣(𝒓, 𝑡).[37] This theory provides a formal basis extending the application 

of DFT to the calculation of excited state properties, and nowadays, linear 

response time-dependent DFT (LR-TDDFT) has become one of the most popular 

methods of choice to calculate optical properties in molecules.[38] The main idea 

is to calculate the first order density response 𝛿𝜌 to a small change in 𝑣(𝒓, 𝑡) in a 

basis of fully converged ground state Kohn-Sham orbitals. A more elaborate 

derivation of LR-TDDFT can be found in literature.[39] As we are interested in 

excitation energies, the response function is calculated in the frequency (𝜔) 

domain:  

 
𝛿𝜌(𝒓, 𝜔) =  ∫ 𝜒(𝒓, 𝒓′;  𝜔)𝛿𝑣eff(𝒓′, 𝜔)

ℝ3
𝑑𝒓′. 

 

(2.30) 

Here, 𝜒(𝒓, 𝒓′;  𝜔) is the response function, which can be expressed in terms of 

occupied (𝜑𝑖) and virtual (𝜑𝑎) Kohn-Sham orbitals and energy eigenvalues:  
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𝜒(𝒓, 𝒓′;  𝜔) =  ∑ ∑ 2

𝑚
2

𝑎=1

𝑛
2

𝑖=1

𝜔𝑎𝑖

𝜔 − 𝜔𝑎𝑖
𝜑𝑖(𝒓)𝜑𝑗𝑎(𝒓)𝜑𝑖(𝒓′)𝜑𝑗𝑎(𝒓′),  

 

(2.31) 

where 𝑛 is the number of occupied spatial orbitals, 𝑚 the number of empty spatial 

orbitals, and 𝜔𝑎𝑖  ≡  𝜀𝑎 −  𝜀𝑖 is the difference of Kohn-Sham energies between 

state 𝑖 and 𝑎. The perturbation in the effective potential is  

 
𝛿𝑣eff(𝒓′, 𝜔) =  𝛿𝑣(𝒓, 𝜔) + ∫

𝛿𝜌(𝒓′, 𝜔)

|𝒓 − 𝒓′|
𝑑𝒓′ 

ℝ3

+ ∫ 𝛿𝑓xc(𝒓, 𝒓′;  𝜔)𝛿𝜌(𝒓, 𝜔)𝑑𝒓′

ℝ3
 . 

  

 

(2.32) 

The first and second term on the right-hand side of the equation represent the 

perturbation in the external potential and the electronic density, respectively. The 

third term contains the time-dependent XC kernel 

 
𝛿𝑓xc(𝒓, 𝒓′;  𝜔) =  

𝛿𝑣xc(𝒓, 𝜔)

𝛿𝜌(𝒓′, 𝜔) 
|

𝜌= 𝜌0

 . 
  

(2.33) 

Here the functional derivative is taken with respect to the ground state density. 

Analogous to the XC potential in ground state DFT, the XC kernel in linear 

response TDDFT needs to be approximated. In practice, the Adiabatic Local 

Density Approximation (ALDA) is commonly applied, and it is also the 

approximation of choice in this dissertation.[40] 
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