Variables and variable naming in introductory

programming education
Werf, V. van der

Citation

Werf, V. van der. (2025, September 2). Variables and variable naming in
introductory programming education. Retrieved from
https://hdl.handle.net/1887/4259393

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4259393

Note: To cite this publication please use the final published version (if
applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4259393

SUMMARY

Learning a programming language is challenging. Even one of the first —but crucial- concepts
to learn, variables, is hard to grasp. Variables can represent different roles and functions within
a code and need to be named appropriately to support code comprehension and debugging. Yet,
students can hold various misconceptions about variables that can be (unintentionally) encouraged
by the explanations and analogies used to introduce and explain the concept. Moreover, also names
can be (unintentionally) misleading, hindering the understanding of the concept and the code.

This dissertation approaches the teaching of a programming language from the reasoning that
(familiar) natural language, like the language used to name variables, serves as a bridge between
complex programming problems and the programming language itself. The dissertation first
investigates students’ code explanations in plain English, after which it delves deeper into the
teaching of variables and (variable) naming practices in introductory programming education
across educational levels. These include secondary education, vocational education, university
education, adult education, massive open online courses (MOOC:s), and programming textbooks
for children and novices.

Throughout the chapters, this dissertation aims (1) to open a scholarly discussion on how
naming practices can or should be implemented in programming education, and (2) to inform and
support educators and developers of educational materials in the fields of Computer Science and
Software Engineering who want to know how to address the topic in their courses and materials.
The performed research is mostly qualitative and exploratory: it involves an analysis of student
artifacts (chapter 2), open coding of in-depth interviews with teachers on their perceptions and
practices (chapter 3), and observations of educational courses and materials (chapters 4 and ).
However, the research ends with the design and implementation of interactive learning activities
to support the adoption of good naming practices among learners (chapter 6).

In short, the dissertation presents the following results. Novice programmers rely on natural
language elements that are present in code, to understand and explain it (chapter 2). Yet, students
are rarely taught how to name their variables and functions nor how names can interfere with code
comprehension (chapters 3, 4, 5). While educators believe that using good naming practices is an
important skill for professional programmers, they assume learning this skill is not difficult and
is generally done ‘naturally’ and ‘by example’ (chapter 3). As such, students are seldom required
to use appropriate names and receive little to no feedback on their naming practices (chapter
3), which limits their opportunities to learn from mistakes. Moreover, code examples used in
courses and textbooks do not always reflect what is described as good naming practices by teachers
and those same (course) materials (chapters 3, 4, 5). Finally, the introduction of the concept of
variables appears programming-language-dependent, and the used explanations and analogies show
a dominant focus on storing information; other functions or benefits of using variables are rarely
mentioned and potential misconceptions appear not addressed (chapters 4, s).

These results show that many students are expected to learn from conflicting information
without much support or guidance. Hence, the expectation that students learn by example could
be compromised and naming practices deserve more careful and explicit attention in programming
courses. The designed interactive activities (chapter 6) include whole-class dialogue based on
various naming examples which can raise awareness for the topic’s importance, allow students to
experience the effect of (unintentionally) misleading names, and provide opportunities for feedback
needed to develop one’s understanding of good naming practices. Moreover, such activities revealed
issues among students that may prevent the adoption of good naming practices, such as rejecting
the topic’s importance and cost-benefit-related issues (chapter 6).

135



For educators, the main takeaways are: (1) pay more explicit attention to the importance of
developing good naming practices; (2) use consistent naming examples in regular example codes;
(3) integrate interactive activities to discuss how and why names are appropriate or inappropriate;
(4) stimulate students’ critical thinking on the effect of naming choices; and (s5) provide regular
feedback on students’ naming choices. Furthermore, educators are encouraged to (6) expand the

g g
definitions and analogies they use for introducing the concept of a variable in their teaching to
g Y g P g
better reflect variables’ purpose and use in programming and address potential misconceptions.

Lastly, this dissertation challenges the academic community to further investigate the effect of
naming practices on students’ learning process and the adoption of (future) programming skills.
Ideally, such research should provide guidelines and contribute to a structured learning trajectory
with an appropriate focus on aspects of programming that go beyond problem-solving and code-
writing abilities and include more reading and (interactive) comprehension activities.

136



