
Variables and variable naming in introductory
programming education
Werf, V. van der

Citation
Werf, V. van der. (2025, September 2). Variables and variable naming in
introductory programming education. Retrieved from
https://hdl.handle.net/1887/4259393
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4259393
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4259393


58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 107PDF page: 107PDF page: 107PDF page: 107

103



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 108PDF page: 108PDF page: 108PDF page: 108

1042



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 109PDF page: 109PDF page: 109PDF page: 109

Chapter 7
Discussion and Conclusions

I started this dissertation with the quote: “Miss, if naming already is an issue, we
have a big probem!”. My work revealed that the way this topic is currently taught

in computer science education is inconsistent, and arguably, insufficient for the desired
outcome of (1) professional programmers, or (2) high-quality code. My research has shown
that addressing the topic of naming practices in education is important, and therefore, it
deserves appropriate attention from the community.

The current chapter aims to provide several openings to support scholarly discussion
within the community on how the topic can or should be addressed in the future. It also
provides an opportunity for educators to reflect on their current practices and aims to
support them in how they can address the topic in their courses to (better) match their
learning philosophy and objectives.

The chapter is structured as follows:

• A recap of the aim and the research questions addressed in this dissertation;

• A discussion of this dissertation’s key findings, organized by research question;

• A concluding summary which includes highlighted recommendations.

7.1 Recap of research aim and questions
This dissertation addressed programming education with the assumption that natural
language serves as a bridge between complex programming problems and the programming
language itself. Specifically, I aim to open a scholarly discussion on how naming practices
can or should be implemented in programming education. The contributions to these
objectives were laid out through the following chapters and research questions:

RQ1 What do novice programmers express in their answers when asked to explain given
code segments in their own words? (Chapter 2)

RQ2 How are variables and their naming practices introduced in beginner programming
education and materials? (Chapters 3, 4, 5)

RQ3 What are teachers’ beliefs and perceptions about naming practices and teaching them?
(Chapter 3)

RQ4 How can we incorporate activities that focus on naming in beginner programming
education? (Chapter 6)

7.2 Key findings in context
In this section, I answer the research questions by discussing my key findings in context.
Key findings are presented in line with the topics of the individual research questions.

105



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 110PDF page: 110PDF page: 110PDF page: 110

7.2.1 Natural language in code and code explanations
Chapter 2 explored students’ code explanations in plain English to answer: [RQ1]What
do novice programmers express in their answers when asked to explain given code
segments in their own words? This chapter provided insight into what novice students
express in their explanations after reading a piece of code, and what these insights tell us
about how the students comprehend code.

I found that novice programmers rely on the natural language present in the code
when they are asked to explain a given code snippet. This reliance helps them interpret
a code correctly but can also distract or misguide them into incorrect beliefs about the
code’s function, code constructs, or individual lines of code. My results also hint that some
of these mistakes are instruction-related, meaning that with a change in the educational
material, natural language-related mistakes and misconceptions could be avoided. On
the other hand, adding natural language also revealed students’ fragile understanding of
programming constructs, which can be used by educators to address misconceptions.

Key Finding 1 Natural language affects novices’ program comprehension
and potential learning. (Ch. 2)

With this key finding, I underpin the relevance of natural language in programming.
Often programming is associated with mathematics and problem-solving skills and it is
not to say that such skills are not important; they are undeniably relevant to program-
ming. However, the influence of natural language on code comprehension fits within a
wider research context focused on natural language skills and strategies within the domain
of programming education. Indeed, research that introduces natural language acquisi-
tion strategies in programming education appears promising. For example, reading code
aloud helps to remember syntax [Hermans et al., 2018a, Swidan and Hermans, 2019]
and vocabulary acquisition techniques help secondary education students in learning
programming [Veldthuis and Hermans, 2024]. Moreover, there are even indications that
training technical reading skills also improves programming skills [Endres et al., 2021a].

My findings also fit within a body of literature that advocates more structured pro-
gramming courses with an eye for skill progression. These works move away from teaching
programming skills through immediate code writing to solve mathematical problems and
instead move toward course materials that also (first) focus on reading and understanding
code structures [Xie et al., 2019,Sheard et al., 2014,Lopez et al., 2008,Venables et al., 2009].
As was highlighted in such works, skills such as code reading, code comprehension, and
code tracing are good predictors of code writing skills. Hence practicing code writing
before learning to read or trace code may increase the difficulty of becoming proficient in
programming. This highlights that code reading and comprehension skills, affected by
the natural language present in the code, are prerequisite skills and deserve more attention
in programming courses.

Additionally, according to Schulte’s BlockModel [Schulte, 2008], understanding a
programmeans being able to build a bridge from the lowest types of information and entity
size (text:atom) towards the higher categories of either dimension (goals:macro) (see Figure
2.1 in Chapter 2). In other words, the process of code comprehension entails translating

106



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 111PDF page: 111PDF page: 111PDF page: 111

7

the technical structures of a program to its social function. If indeed the natural language
that is present in the code mediates the ‘translation process’, as my findings suggest, the
academic community needs to further investigate how this finding can be used in educating
novices with different backgrounds, including non-native English speakers.

My claim that natural language mediates comprehension can also be placed within the
context that learning andmotivation are affected when the used words or topic do not con-
nect to the student’s background. Indeed, research from the mathematics field is already
familiar with the effect of language on so-called story problems. These are mathematical
problems that require students to extract the relevant information from the story to solve
a problem. Performance on such problems is affected by word choices and abstraction
skills [Schley and Fujita, 2014,Mattarella-Micke and Beilock, 2010], meaning that elements
such as names and objects (also known as incidentals) in the story can both help with
comprehension and hinder it.

Some form of sensitivity to the words that are used, as I found in my study, was
also found in computer science education research that opposed human-centered and
thing-centered exercises as programming assignments [Christensen et al., 2021,Marcher
et al., 2021]. These works found that problems focusing on humans rather than things are
generally better understood and preferred by both women andmen. Although my study
did not investigate different student groups, it does further advocate for educators to be
mindful regarding the topic and words they choose to use in example code. For example,
I expect the effect of language to be bigger in unrepresented groups such as women, as
objects can represent stereotypes of a group and deter those who do not identify with
that group [Cheryan et al., 2009]. Hence, I invite researchers to dive into the potential
differentiating effect of natural language in and around code on groups of minorities and
varying levels of expertise.

On the other hand, completely obfuscating any natural language from a code limits
the effect it has on comprehension. This could be especially useful to test how skilled a
student is or has become in understanding ‘pure’ code structures. However, rather than
testing programming skills, I am particularly questioning whether such obfuscation of any
natural language from code is the most suited strategy for teaching novice learners, not in
the least becausewithin the profession, the use of natural language in code is often required
to improve code quality and readability. Moreover, programming is hard to learn and
students are already overwhelmed by themany new aspects involvedwith learning this new
skill, so dismissing familiar elements likely increases difficulty for learning. Additionally,
like with the mathematical story problems, abstraction skills –indisputably important for
programmers– might be mediating the process. As such, training students to read code
that includes natural language could facilitate the development of abstraction skills, while
keeping unfamiliar elements to a minimum and the cognitive load limited. In this regard,
future research could experiment with introducing (meaningful) natural language in code
examples earlier or later on in the curriculum to investigate the effects on understanding
new programming concepts and constructs as well as on abstraction skills. In this light,
perhaps teaching students to structurally use comments, or introducing a more active
practice of using sub-goal labels [Morrison et al., 2015] might be interesting too. The
natural language that is already present in the code, through naming practices and input
or output statements, may indeed mimic the effect of comments and sub-goal labels.

107



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 112PDF page: 112PDF page: 112PDF page: 112

7.2.2 Variables and naming: current teaching practices
Chapter 3, Chapter 4, and Chapter 5 explore variable naming practices in particular
and investigated teachers’ perspectives, programming MOOCs, and programming books,
to answer: [RQ2] How are variables and their naming practices introduced in
beginner programming education and materials? These chapters painted a picture of
the current landscape of how naming practices are taught, which served as the foundation
for further investigation of how naming practices can and should be implemented. My
observations revealed that educational materials and teachers (1) always give attention to
the concept of variables relatively early in their course (materials) and (2) usually introduce
naming practices along with the concept. Below I discuss my findings, for both topics
separately.

Introducing the concept of variables
Generally, the concept of variables is introduced right after or just before data types

and operators, although the order of introduction appears language-dependent. The
concept is mostly described through the variable-as-a-box analogy, meaning that variables
are typically explained as a box (or place) to store information in, often together with a
visual representation. Python materials tend to include more diverse descriptions: they
also introduce variables as a reference, name, or label. We observed that all materials focus
their explanation on storing information, whereas other purposes such as keeping track of
information, supporting code writing, interacting with information, or flexibility in using
information, are rarely addressed. Only Scratch books mentioned that variables are called
that way because their value can change. The commonmisconception that variables can
store multiple values is rarely explicitly addressed.

Key Finding 2 The introduction of the concept of variables is programming
language-dependent. This is reflected by the chosen defini-
tions and analogies and the position within the course com-
pared to other programming constructs. (Ch. 4, 5)

Key Finding 3 The variable’s purpose of storing information is extensively
represented, whereas other functions or benefits of using vari-
ables are rarely mentioned, and potential misconceptions are
rarely explicitly addressed. (Ch. 4, 5)

Interpretations. These findings suggest that, while the concept of variables within the
programming domain in itself is consistent across programming languages, the specific
characteristics of these different languages may require a variety of approaches to teaching
the concept, presumably because the use of variables may differ and their purpose might
vary. However, while my findings give insights into current teaching practices, they cannot
lead to definite conclusions about why they occur and therefore I stress that educational
choices seem strongly influenced by the characteristics of the programming language
that is taught. Whether this is the result of historical developments or the educator’s
preferences, it remains up to the community to decide whether it is desirable to adjust the
teaching of general programming concepts to specific programming languages, especially

108



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 113PDF page: 113PDF page: 113PDF page: 113

7

considering the many different languages that are in use nowadays. Moreover, as of yet,
it remains untested if any of the approaches result in a stronger understanding of the
concept, compared to others, and if that result is indeed language-dependent.

Implications. Hence, our findings have implications for possible ‘universal’ learning
trajectories, and the effect of a programming language on understanding programming
concepts and constructs shouldbe further investigated. Much in the same line, our findings
also have implications for the transfer of knowledge across programming languages. Using
a variation of descriptions and including amultitude of purposes related to variables could
help the understanding of the concept. However, we need to be mindful of students’
cognitive load, hence more research is needed to understand which descriptions are most
helpful: just adding more or alternative descriptions to the curriculum is not appropriate.
Additionally, our results cannot exclude the effect of learner age and prior knowledge or
extended skills and vocabulary obtainedbefore their first programming lessons. Whilemost
adults might not need an explicit explanation of the ‘changing’ characteristic of variables,
younger students or students who lack knowledge of English vocabulary may not yet be
familiar with the word ‘variable’ in general, thus needing more explicit explanations. Yet,
such an explicit connection within an explanation could prevent misconceptions also
among adult learners as many programming languages use an equal sign (=) to assign
values to variables, which does not immediately suggest that such a value can change.

Limitations. Since relatively few courses and textbooks were analyzed compared to the
total offer of programming courses, my observations might not be complete. Nevertheless,
the systematic analysis was purposefully performed on a wide range of popular courses
and programming textbooks. Because similar results were obtained from these different
educational materials, I am confident that the findings are representative. Moreover, our
tip-of-the-iceberg overview now gives way for additional research to look into patterns
between student age groups, student backgrounds, or the taught programming languages.

Recommendations. Based on Key Findings 2 and 3, I recommend that educators
experiment with an extended range of definitions that include purposes beyond just
‘storing information’ and pay attention to the misconceptions that may arise from their
chosen analogies. As was already hinted in prior research [Hermans et al., 2018b], different
analogies have different effects on (young) learners and it is still unclear which type of
explanations are most useful for long-term learning and transfer to other languages.

Introducing naming practices
The investigated programming courses and educationalmaterials provide inconclusive,

inconsistent, or even conflicting information regarding naming practices, and also teachers
indicate that they do not pay attention to the topic. Materials predominantly focus on
specific syntax rules that prevent the code from breaking, and formatting styles such as
when to capitalize letters or use underscores. Materials and teachers also refer to various
community guidelines that are often specific to a programming language and not directly
provided to the students. Teachers and materials rarely discuss the topic more in-depth
or reflect on how to name appropriately, what it means to name “meaningfully”, or why
naming practices are important. There are indications that naming is taught through a

109



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 114PDF page: 114PDF page: 114PDF page: 114

constructivist pedagogical approach, in which students themselves discover by example
what is good naming.

Key Finding 4 Educators and teachingmaterials introduce naming practices
inconsistently and they rarely address which, when, and why
naming practices are (not) meaningful. (Ch. 3, 4, 5)

This finding tells us that students are possibly insufficiently prompted to learn about
the naming practices that are needed in their future careers. While a constructivist ped-
agogical teaching approach assumes that students learn from what they are confronted
with through experiences and social interactions, any inconsistencies and discrepancies in
(course) materials could prevent a coherent construction of knowledge. Indeed, the in-
consistent teaching examples as observed in the course materials, programming textbooks,
and as indicated by teachers, may (unwillingly) lead to the development of nonchalant
attitudes toward naming practices. Instead of assisting student learning, students’ current
experiences with educational materials could thus hinder the adoption of a professional
programmer’s attitude. My finding therefore suggests that better attention needs to be
paid to addressing and representing naming practices in programming education. It fur-
thermore leaves an opening for adding a more explicit focus on when and why naming
practices are important, which can be placed within the broader claim that programming
education materials need to take a more structured approach. I propose that this is true
whether or not a constructivist teaching philosophy is favored.

More implications and follow-up recommendations related to this key finding will
be addressed in the next section, which addresses the educator’s perspective. There I also
demonstrate how the introduction of naming practices in course materials is embedded in
the wider context of teachers’ beliefs and assumptions, and what this means for students,
teachers, and the academic community.

7.2.3 The educator’s perspective: beliefs and strategies
Chapter 3 zoomed in on variable naming practices in particular and interviewed educators
to answer: [RQ3]What are teachers’ beliefs and perceptions about naming practices
and teaching them? This chapter reveals several insights into how teachers think about
naming practices and why they teach them the way they do. These insights serve as
the foundation for further investigation of how naming practices can and should be
implemented, explored later in the dissertation.

Teachers believe that names should be simple, straightforward, and intuitive, but there
is no agreement on what this means in practice. As was already highlighted throughKey
Finding 4, this belief is not directly demonstrated in teaching approaches or materials.
During the interviews, teachers mainly indicated to not explicitly incorporate the topic
in their courses, nor encourage students to think critically about naming. They rarely
grade naming practices or provide feedback to support students’ self-reflection on their
practices. Instead, they prioritize whether the student’s code works and act from the
assumption that naming is not difficult. The dominant philosophy is that naming practices
are learned by example. At the same time, practical reasons prevent teachers from applying

110



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 115PDF page: 115PDF page: 115PDF page: 115

7

their conviction of good naming practices in the examples they use in their educational
materials, including exercises, slides, or live coding sessions. While this inconsistency
happens across educational levels, it is more prominent in university teaching than in
secondary education, where a more direct (instructive) approach is applied: some teachers
developed and adopted more active strategies to support their students, and reflection
on naming practices is repeatedly woven back into the curriculum through continuous
feedback, specific (naming) assignments, and dedicated attention discussing repeated
mistakes.

Key Finding 5 Educators express that naming practices are important and
that names should be ‘meaningful’. However, most indicate
not to pay explicit attention to the topic and do not require
good naming practices from their students. (Ch. 3)

Key Finding 6 Educators assume naming practices are not difficult and
are learned by example. However, they also indicate using
examples that are inconsistent with their belief, for example
out of practical reasons. (Ch. 3)

Key Finding 7 Educators do not require –nor wish to enforce– specific nam-
ing styles and they rarely encourage good naming practices
through feedback. (Ch. 3)

While all teachers stress the importance of naming practices for programming and that
students need to become proficient at naming, my findings show that these beliefs are not
evidenced in their teaching approaches. The lack of a persistent teaching approach is in
line with the observations presented inKey Finding 4. This means that it is unlikely for
educators to pay (much) explicit attention to naming practices, even though they consider
them relevant.

This inconsistency could be explained by that teachers overestimate how important
they find naming practices, especially when it is compared to other programming topics.
Indeed, some university teachers expressed that other programming topics are more diffi-
cult and deserve more time and attention, hence downplaying the relevance of naming
practices in programming education. It is also possible that educators wished to express
“socially acceptable” opinions. This is a common problem in research on attitudes and
opinions, although this is usually more prominent in research on socially sensitive or po-
litical topics such as discrimination or the protection of the environment. While I cannot
exclude that such an effect may have played a role, I can say that several teachers reported
that they realized their inconsistencies through their reflections during the interview and
expressed a desire to correct them. Some secondary education teachers also expressed that
they initially underestimated the complexity of the topic and learned to address the topic
more explicitly through experience.

Rather than overestimating the importance of naming practices in programming, I
argue that most educators perhaps underestimate the complexity or relevance of the topic
for (novice) students. The topic competes with other programming topics for the limited

111



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 116PDF page: 116PDF page: 116PDF page: 116

time in a curriculum and with teachers valuing these other topics as more important,
naming practices end up drawing the short straw and are therefore (unintentionally)
left out. My findings suggest that, even though naming practices are perceived as highly
relevant within the community, most educators do not deem it necessary that explicit
attention is given to the topic. However, my findings also suggest that this choice is usually
made unconsciously, and more attention is given to the topic when teachers becomemore
aware of the complexity of the topic for their students.

Nevertheless, the assumption that naming practices are not difficult and learned by
example (Key Finding 6) supports the idea that the naming practices perhaps do not
need explicit attention. However, to support learning when this assumption is true, the
given examples should be consistent and match the teacher’s philosophy on what is good
naming. Instead, our findings suggest a mismatch between what students are expected
to learn, and what educators are (unwillingly) teaching them. Rather than believing that
educators do not care about the naming practices they teach their students, I argue that
educators are generally not aware of the mismatch between their philosophy and practice.

Still, our finding that good naming practices are not required and rarely encouraged
through feedback (Key Finding 7) also hints at the downplay of naming practices in
programming education. Providing feedbackon the topicmight be consideredunnecessary
or too time-consuming, however, without any feedback, students lack the opportunity to
check whether their naming can (or should) be improved. As a consequence, they may be
led to believe that it is not important to use appropriate names in their code, let alone form
a solid understanding of what good naming practices entail. Even when teachers tell their
students that the topic is important, the lack of priority may suggest otherwise. Luckily,
there are already initiatives that develop rubrics or tools to provide (large-scale) feedback
on naming practices, and in a wider context, code quality. [Glassman et al., 2015,Börstler
et al., 2017, Stegeman et al., 2014, Stegeman et al., 2016, van den Aker and Rahimi, 2024].
These can guide or inform teachers on how to incorporate feedback into their curriculum.

Implications for students. Unfortunately, it is yet unknown if the assumption that
naming is learned by example is true. It is also unknown whether naming examples affect
students of different ages differently. My research points to that students indeed copy
examples they are shown in teaching materials and beyond, as teachers from secondary ed-
ucation especially highlight this. However, educators also warn that some of these students
lack the understanding of why such names are chosen and copy them in inappropriate
contexts. This begs the question of whether students should adopt a copy-paste strategy
in the first place.

Teachers also relate ‘bad names’with laziness or a lack of creativity on the student’s part,
rather than an inability to name appropriately. Based on my research findings (including
Key Finding 4), it is possible that students never learned to name appropriately or do not
care enough about it to pay attention to it themselves. This carelessness could reflect the
inconsistent examples they were shown, which might lead students to believe that naming
does not matter.

Implications for educators. Most importantly, educators and curriculum designers,
including developers of educational materials such as MOOCs and books, need to be

112



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 117PDF page: 117PDF page: 117PDF page: 117

7

aware of their philosophy about (teaching) naming practices and check if their practices
reflect what they wish students to take away from their teaching. When teaching time is
limited and the topic of naming practices competes with other programming concepts, it
is essential that the little information that is (indirectly) given conveys a consistent and
deliberate message to aid the student’s learning process.

Furthermore, to encourage students’ understanding of why certain names are (not)
appropriate in which context, it might be wise to incorporate reflection on given examples
as part of the teaching materials. This not only teaches them about naming practices and
their importance but also encourages students to think critically and use their creativity.
The lack of reflection and creativity, mentioned by teachers as holding students back from
adopting good naming practices, could reflect the struggle that students experience while
writing code. This may leave students (too) overwhelmed with other aspects of their
learning process, and as a consequence, it limits their reflection and creativity. In light
of this, I suggest training these skills outside of code writing activities. Instead, teachers
could incorporate reading and reflection activities before or after writing activities that
allow students to compare and reflect on written (example) code.

Implications for the academic community. Our findings furthermore mean that our
academic community needs to investigate how different examples influence the learning
process, and where in this process it is best to introduce more reflection on naming. For
example, we do not know if it is (more) beneficial for learning new programming concepts
and constructs if meaningful names are used in explanations and examples, or if random
names (foo) or letters (a, s, x) are used. We also do not know if it is useful for students to
spend (more) time reflecting on naming examples to improve their program comprehen-
sion skills. However, we do know that names influence program comprehension and that
students who show better programming skills generally use better naming practices and
vice versa. Moreover, code quality is considered important, therefore, even if naming skills
do not improve overall programming skills, they should be learned to become proficient
as a developer.

Limitations. We interviewed only a limited number of educators and deliberately in-
cluded teachers fromdifferent educational levels and countries. Thismeans that individual
teacher perceptions may not be entirely representative, and future research should follow
up with a large-scale (international) questionnaire to generalize and compare target audi-
ences, class sizes, and class duration. This is interesting because my work indicates that the
topic of naming is –and perhaps should be– addressed differently across educational levels
and we lack the empirical insights into what are appropriate ways to teach the topic. Since
we only interviewed teachers involved in Python programming courses, and there are indi-
cations that different programming languages are taught differently regarding the topic of
(variable) naming practices, such larger-scale quantitative research could also investigate
and compare a larger set of programming languages, which can reveal relevant results
regarding potential transfer with the acquisition of a second programming language.

113



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 118PDF page: 118PDF page: 118PDF page: 118

7.2.4 Implementing activities focused on naming
Chapter 6 aimed to inform educators on how to address naming practices in their course,
based on the findings that were obtained through Chapters Two, Three, and Four. This
foundation was used to design a set of interactive learning activities, addressing the re-
search question [RQ4]How can we incorporate activities that focus on naming in
beginner programming education? This chapter presented the value of discussions
and dialogue in teaching the topic and shed light on several student issues that prevent a
solid professional programmer’s attitude toward naming.

Teacher-ledwhole-classroomdiscussions, centralized around various naming examples
in presented code are useful in introducing the whats, hows, andwhys of naming practices.
Moreover, they can reveal issues among students that hinder the adoption of desired
naming practices, namely the concern that paying attention to the topic is too time-
consuming, inefficient, and even irrelevant. If we are to educate skilled professionals,
these issues need to be actively attended to, especially in a teaching context where teachers
believe that students will figure out naming by themselves.

The in-activity dialogues allowed for an increased awareness through repeated reflec-
tion on how chosen names can be (unintentionally) misleading to other readers. These
dialogues are supported by using a single code snippet for various activities with changed
variable names and by using a variety of codes to create repeated practice with a wider
range of examples. This flexibility makes the activities versatile for use in courses with
varying programming languages, levels, and other varying contexts. Moreover, the exam-
ples that were discussed provided opportunities for students to develop a sense of what
belongs to ‘good naming practices’ in different contexts, and they can serve as a form
of feedback on the topic. Because the activities were designed and implemented in the
context of vocational education classrooms with 16-year-old students, it might be challeng-
ing to implement them in a large-scale university setting. However, I see an opportunity
for scaling with the use of online tools and flipped classroom approaches as comparable
prior work on social annotation in introductory programming courses shows positive
results [De Oliveira Neto and Dobslaw, 2024].

Since naming practices are highly context-dependent and influence code comprehen-
sion in various ways, I recommend that educators focus their teaching on encouraging
students to develop a critical attitude towards naming practices through reading and
reflection exercises. This way, students learn to develop a grounded perspective on the
topic and recognize potential issues. This also prevents passive copy-pasting strategies
and moves away from teaching specific (language-dependent) styles that students might
need to unlearn later on in their careers. Future research should look into how interactive
teaching approaches (supporting critical thinking, reflection, and naming choices through
dialogue) influence the understanding of programming constructs and code writing. Re-
search should also investigate if such interactive activities can best be introduced early on
in courses or could have a place in later courses. This research could also further explore
why certain (unspecific) names such as ‘result’ and ‘outcome’ are favored by students and
how the use of different types of names affects other programming skills. This can further
inform the direction of in-class discussions.

114



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 119PDF page: 119PDF page: 119PDF page: 119

7

7.3 Concluding summary
This dissertation focused on natural language (elements) in programming educa-

tion and skills. I found that natural language can serve as a bridge between complex
programming problems and the programming language itself (RQ1; Chapter 2). Yet,
programming education rarely teaches students how to use and interpret any natural
language that is present in a code: specifically, my research found that students are rarely
taught how to name their variables and functions and how such names can interfere with
their code comprehension (RQ2; Chapter 3, 4, 5). Educators believe that using good
naming practices is an important skill for professional programmers, but assume learning
this skill is not difficult and is generally done naturally by example (RQ3: Chapter 3).
Students are therefore not required to use good names and receive little to no feedback
on their naming practices. Nevertheless, code examples used in courses and textbooks
do not always reflect what teachers describe as good naming practices (RQ2; Chapter
3, 4, 5), hence, the expectation that students learn by example might be compromised.
Interactive activities that include whole-class dialogue based on various naming examples
can raise awareness for the topic’s importance, allow students to experience the effect of
(unintentionally) misleading names, and provide opportunities for feedback needed to
develop one’s understanding of good naming practices (RQ4; Chapter 6). Moreover,
such activities revealed issues among students that may prevent the adoption of good
naming practices.

Based on these results I make the following recommendations:

• More awareness of the complexity of naming practices and their effect on learning
programming skills is needed among educators and computing education researchers.
While educators and professionals agree on the importance of naming practices for
professional developers and high-quality code, the topic seems to be overlooked in
teaching programming skills.

• Morework and reflection is needed onwhether andhowprogramming educationneeds
to actively teach skills on naming practices.We already know that these practices are
important for code comprehension, code quality, overall programming skills, and
professional expectations, but know little about how these practices are acquired
and how they may affect the adoption of other programming skills.

• Academics need to further investigate the effect of naming practices –and in a wider
context also natural language, code quality, and readability– on the adoption of
programming skills. This should ideally also contribute to a structured learning
trajectory with an appropriate focus on other aspects of programming beyond
problem-solving and code-writing abilities.

• Educators need to be(come) aware of their philosophy on how they assume their stu-
dents learn and adopt new skills and appropriately align their teaching approach.
Currently, there seem to be worrying inconsistencies between what is intended
to be taught and what is taught in practice. If naming practices can be taught by
example, examples should be consistent throughout educational material.

• I encourage the adoption of interactive activities to explicitly address student issues,
naming difficulties, and professional expectations. These activities can be easily

115



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 120PDF page: 120PDF page: 120PDF page: 120

adapted to varying contexts, programming languages, and presumably also class-
room sizes, hence requiring relatively little effort for teachers, while providing
authentic and repeated moments of reflection for students. Moreover, the focus
on discussion and reflection opens up space for teaching naming practices beyond
specific (language-specific) guidelines.

116


