Variables and variable naming in introductory

programming education
Werf, V. van der

Citation

Werf, V. van der. (2025, September 2). Variables and variable naming in
introductory programming education. Retrieved from
https://hdl.handle.net/1887/4259393

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4259393

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4259393

CHAPTER 6
PrRoMOTING DELIBERATE NAMING

PrAcTICES IN PROGRAMMING EDUCATION: A /

SET OF INTERACTIVE EDUCATIONAL
ACTIVITIES

Vivian van der Werf
Felienne Hermans
Marcus Specht
Efthimia Aivaloglou

ABSTRACT

Despite extensive studies from the software engineering community on how naming practices
influence programming bebavior, the topic receives little attention in education. Prior work
indicated little agreement on good naming because it depends on many factors. Students
are told that “naming is important” and “should be meaningful,” yet its practical imple-
mentation is rarely discussed and feedback is lacking. The current work presents a dialogic
teaching approach focused on teaching a critical reflection on naming practices through
five activity types: (4) perceptions and experiences, (B) create names, (C) evaluate through
ranking, (D) compare codes, and (E) locate a mistake. We developed, ran, and analyzed a
one-hour workshop, that we present here and share our experiences, leading to recommenda-
tions for teachers. Our contribution is twofold: (1) we provide a set of (adaptable) activities
and exercises for supporting deliberate naming practices, thereby assisting teachers interested
in adopting naming practices into their curriculums (2) we provide insights regarding the
student perspective on naming practices, derived from the activities, revealin g potmtz’al issues
and opportunities in teaching the topic. '

KEYWORDS

programming education
naming practices

course design

dialogic teaching
reflection

critical thinking

student perceptions

"Published as: van der Werf, V., F. Hermans, M. Specht, and E. Aivaloglou (2024). Promoting Deliberate
Naming Practices in Programming Education: A Set of Interactive Educational Activities. In Proceedings
of the 2024 ACM Virtual Global Computing Education Conference V. 1, SIGCSE Virtual 2024, page
235—241, New York, NY, USA. Association for Computing Machinery. doi: 10.1145/3649165.3690115

6.0 INTRODUCTION

From prior work, we know that variable naming practices are considered important by
teachers, yet findings from introductory programming MOOC:s, textbooks, and interviews
with teachers [van der Werfetal., 2023,van der Werf'et al., 2024c] (Chapter 3, 4, 5) indicate
that many inconsistencies remain in teaching the subject matter. These inconsistencies are
often due to variations in beliefs, goals, and intentions among teachers and designers of
educational materials [van der Werf et al., 2024c] (Chapter 3). Therefore it seems critical
that the Computer Science Education community provides guidelines or approaches to
teachers on handling naming practices.

However, any teaching approaches also need to consider the perspectives and attitudes
of students regarding the topic. Such student perspectives largely remain unexplored
and teachers seem to handle the topic based on personal experience: prior work showed
teachers indicating that their students do not find naming a problem because they never
receive questions about it [van der Werf et al., 2024¢] (Chapter 3). However, this could
be a result of course design decisions or reflect factors such as the teacher’s own beliefs or
possible disinterest in the topic.

Since naming practices influence a programmer’s code comprehension both positively
and negatively [Hofmeister et al., 2017, Beniamini et al., 2017, Lawrie et al., 2007b, Lawrie
et al., 2006, Feitelson, 2023, Schankin et al., 2018], we believe that software developers
must have a thorough understanding of what makes a good name and be able to reflect
critically on different naming practices. Our work presents a dialogic teaching approach to
teaching a critical reflection on naming practices. We developed five types of activities that
we ran and analyzed during a one-hour workshop given to a specialist vocational education
program on software development. Through this workshop we were also able to explore
students’ perspectives and experiences on any barriers to adopting ‘good naming practices’,
in this research denoted as names that carry the content or intent of the named object.

After presenting background on the topic of naming practices, we present our activities
and their design (section 3), the workshop and its settings (section 4), and our experiences
with the different activities (section s). Finally, we reflect on our experiences and provide
practical implications for the activity types.

6.2 BACKGROUND

That (variable) naming is important for comprehension and code quality is indisputable
from the existing literature focusing on the effect of naming on program comprehension,
code quality, and coding skills. Most importantly, programmers rely on names for their
understanding of code [Avidan and Feitelson, 2017, Hofmeister et al., 2017, Teasley, 1994,
Takang et al., 1996, Lawrie et al., 2007b, Lawrie et al., 2006], and names often serve as
beacons during code comprehension [Gellenbeck and Cook, 1991]. Moreover, bugs are
easier to find when words are used [Hofmeister et al., 2017]. Additionally, names that are
not descriptive enough, for example, single letters or abbreviations from which meaning
is not directly clear, interfere with code comprehension [Lawrie et al., 2007b, Lawrie et al.,
2006, Hofmeister et al., 2017, Beniamini et al., 2017]. The same holds true for too long
names that can be difficult to remember [Binkley et al., 2009]. Additionally, names can

o1

be unintentionally misleading and should therefore be chosen cautiously [Avidan and
Feitelson, 2017, Arnaoudova et al., 2016, Feitelson, 2023, Feitelson et al., 2022]. Especially
general, non-specific names, such as ‘length’ [Feitelson, 2023] or ‘result’ [Schankin et al.,
2018], appear problematic. Finally, novices can wrongly believe that computers interpret
or assign values based on the semantic meaning of variables’ names, and thus incorrectly
apply semantic assumptions to syntax [Kaczmarczyk et al., 2010].

Consequently, thinking about teaching variable naming in introductory programming
courses becomes relevant. Thirty years ago, Keller [Keller, 1990] indicated that variable
naming was rarely included in programming textbooks. Since then, little research observed
teaching practices on this topic. Recently, Van der Werf et al. [van der Werf et al., 2023,
van der Werf'etal., 2024c] (Chapter 3, 4, 5) found that teachers addressed naming practices
in their learning materials, but inconsistently: variable naming practices are not always
taught explicitly, taught practices are sometimes conflicting, and given examples codes
do not always match the provided rules and recommendations. About a decade ago,
Glassman et al. [Glassman et al., 2015] developed a tool and a quiz for their online course
(MOOC) to assess naming on length and vagueness. By evaluating the tool, they found
that feedback on naming practices, as well as both good and bad examples, was highly
valued by students. Unfortunately, no follow-up has been published since. Research
investigating code quality perceptions among students and teachers [Borstler et al., 2017]
confirmed students’ desire for ‘more and more specific feedback about what was good
and bad in their code’. Other studies on variable naming in education found that novice
programmers often fail to name variables correctly [Gobil et al., 2009] and that Scratch
students are misled by variables named with a letter, probably because of prior knowledge
from their mathematics education [Grover and Basu, 2017].

6.3 ACTIVITIES - DESIGN & EXPECTATIONS

Since good naming practices depend on several factors, such as the context, programming
language, purpose, and naming conventions, we argue that practitioners should focus on
fostering a critical but adaptive attitude towards naming. Rather than teaching specific
naming styles, our activities are designed to (1) strengthen students’ reasoning about ‘good’
and ‘bad’ naming practices by encouraging them to reflect on names and (2) support an
understanding of how names can influence code comprehension. To further support
these objectives, we also focus on (3) creating awareness through personal experience
by letting students explore their perceptions on the topic and making them experience
various advantages, drawbacks, and limitations of different names for themselves. This,
in turn, highlights the effects of naming choices. Finally, we aim to (4) train deliberate
naming choices by building critical thinking skills applied to naming. This is crucial for
in-depth reflection, especially knowing that students are expected to figure out naming
‘by themselves’ while feedback on naming is often missing [van der Werf et al., 202.4c]

(Chapter 3).

Critical thinking, defined as ‘reasonable reflective thinking focused on deciding what
to believe or do’ [Ennis, 2018], is often most effectively taught by combining (crztical)
dialogue with authentic instruction [Abrami et al., 2015]. Dialogue in this context covers
learning through discussion, specifically including teacher-posed questions and teacher-led

92

whole-class discussion. Authentic instruction covers genuine and engaging problems such
as applied problem-solving, case studies, simulations, games, and role-play. We maintain
open-minded dialogue by applying the pedagogy of dialogic teaching, which is defined
as ‘a general pedagogical approach that embodies the strategic use of different types of
talk, ranging from rote repetition to discussion, to achieve certain pedagogical goals’ [Kim
and Wilkinson, 2019]. Our activities therefore also centralize whole-class discussions and
authentic examples.

In particular, we developed five different activity types, each with an opportunity to
reflect usually through whole-class discussion and comparison of answers supported by an
online polling system: (A) develop and express perceptions, experiences, and opinions,
(B) create appropriate names for given variables within a code, (C) rank a set of given
names based on (perceived) appropriateness or deceptiveness, (D) read and compare two
identical codes with different names, and (E) locate a naming mistake in a code containing
one misleading name. To stimulate reflection and discussion on naming, we facilitated
program comprehension by a/ways accompanying our code examples with a description
of what the code does, its output, and the contents of each variable, both through the
presented materials and the teacher. Below we discuss the activities separately before
showing how we adapted them to develop a one-hour interactive workshop on naming
and presenting our experiences per activity.

631 Activity TYPE A: PERCEPTIONS

This activity type stimulates students’ reasoning and opinions on naming, encouraging
them to develop and express their perceptions and own experiences. We designed two
variants, one to “warm-up” (Ar), focusing on activating and motivating students to ex-
plore the topic based on their prior experiences, and one to “wrap-up” (A2), aiming to
consolidate opinions and establish students’ viewpoints.

Variant Ar includes questions such as “when writing code, do you pay attention to
naming?”, “do you find naming an issue for software developers?”, and “in your opinion,
is naming worth the effort?”. Students answer on a scale from 1 (never/not at all) to
10 (always/absolutely) through the online polling tool, which generates a summary of
opinions to show the class as input for discussion. The teacher facilitates by prompting
for more in-depth reasoning, and students are expected to participate by reacting to one
another. Variant A2 asks students to individually write down their reasons for paying or
not paying attention to naming practices and what prevents them from paying (more)
attention to it. This can be implemented right after the discussion or at the end of the
lesson. Alternatively, variant A2 could be given as preparation before class in a flzpped
classroom style with the intended interaction during class, serving the same purpose as A1

6.3.2 Activity TYPE B: CREATE NAMES

This activity uses student input on code snippets to lead the discussion, ensuring authen-
tic instruction. The activity not only stimulates students to reason about appropriate
names but also stimulates interest in the examples as the discussed names are their own.
Additionally, the discussion allows for developing a common understanding of ‘good’
naming practices among the students.

93

Students are given a small code with redacted variable names. They individually name
the redacted variables on paper and submit them anonymously through the online polling
tool, which creates an overview of given names in the form of a list or word cloud. The
teacher presents this overview, using it as the basis for discussion and prompting students
to indicate what they notice about the set of names, which names they prefer and why,
and what elements from these names they consider a part of “good” or “bad” naming.

6.3.3 AcTtivity TYPE C: EVALUATE THROUGH RANKING

This activity encourages reflection by asking students to rank names for specific code
snippets based on which they find most to least appropriate, or most to least misleading
alternatively. By doing so, they rely on their perceptions and opinions to evaluate what
they consider appropriate. Moreover, the activity provides an opportunity to experience
that naming needs not be as straightforward as it seems at first sight. We expect different or
opposing preferences to provide an ideal situation for discussion that is essential to reveal
students’ reasoning, show them how and why a name can be misleading to some, and help
them understand the effect of names.

We designed two variants: (Ci) ranking names from a given set per a single variable
from most to least appropriate, and (C2) ranking names from a complete code snippet
(each name representing a different variable) from most to least misleading. Again, a
whole-class, teacher-led discussion is facilitated by submitting individual rankings to the
online polling tool.

63.4 ActivitY TYPE D: COMPARE TWO CODES

This activity type provides an opportunity to reflect on the effect of different naming
styles on code comprehension by reading and comparing two codes only differing in the
names representing the variables. By prompting students to compare the two codes and
evaluate which they find easier to understand or more efficient, students further develop
their perceptions. Moreover, by prompting students to reflect on which code looks more
like those of other people and those written by themselves, they are stimulated to put the
naming styles, including their own, in context.

We opted for two identical programs representing opposite naming styles: (x) letters
and abbreviations, and (2) full word names. Students write down what they notice while
comparing the codes and then select the program most fitting to four questions (which is
easier, more efficient, looks like their programs, looks like other people’s programs). They
also explain their reasoning on paper.

6.3.5 AcTtiviTY TYpPE E: LOCATE THE MISTAKE

This activity aims for students to understand the effect of names on their understanding
of code, showing them that names can be (unintentionally) deceiving and that choosing
a good name might not be as straightforward as they might assume. We expect that this
activity might serve as an ‘eye-opener’ to students when they struggle to identify the
naming error. Discussion afterward is essential to reveal students’ reasoning and to show
them how and why a name can (sometimes) be misleading.

94

To mirror a real-life situation, we offer students code containing a (single) misleading
name. To aid them, the explanation of the program, its output, and the contents of the
variables are stressed (again). Students need to read and analyze the code to evaluate its
names and are asked which name is wrong. Again, a whole-class, teacher-led discussion is
facilitated by the online polling tool.

6.4 WORKSHOP - DESIGN, SETTING & DATA

To test our activities, we developed a one-hour workshop covering all activity types (see
Figure 6.1), and implemented it in March 2024 in two first-year classes within a three-
year vocational program Software Development in an urban area in The Netherlands.
We reached a total of 27 (male) students, aged 16-17. Twenty-one students gave consent
to use their data. To accommodate the course, the first author visited the classes to do
classroom observations, gaining a feel for the classroom interactions. We then developed
the assignments in collaboration with the students’ usual teacher, and presented the
example codes in C#, as this is the language the students were learning, thereby eliminating
possible confusion due to encountering an unfamiliar language. The first author led the
workshop with the students’ usual teacher present. The workshop was given in Dutch,
including all the variable names used. Quotes and names presented in this chapter are all
translated into English.

5min 10 min 15 min 20 min

Opening 3 (instruction

(5 min) J L online tool
(A . t 1 \ ()\

55|gnm-en A1 A2

(10 min)
\ J J
(. N\)

Assignment 2
) B 1

(10 min)
& J U J
(Assignment3 | [Y

gm B c1 E)

(20 min)
L s L J\.
(. N\)

Ass. 4 + closing D A2 question

(10 min) naire

\ s U J

Figure 6.1: Overview of the workshop with time indications.

To collect data, we video recorded the front of the classroom, with only the whiteboard
and the first author on tape, supported by additional audio recordings to capture students’
verbal input observational notes of any events taken by a student assistant. The video
recordings were transcribed and complemented with transcription from the audiotapes
when necessary. Furthermore, we collected students’ submissions in the online polling tool
and their written contributions on paper hand-outs. These were digitized and added to
the data from the polling tool using MS Excel. Finally, we collected students’ experiences
of the workshop through a questionnaire, part of the paper hand-out. The Ethics Review
Committee of Leiden University approved this research.

It should be noted that students appreciated the online polling tool and it worked
as intended. However, paper writing proved more challenging as students remarked it

95

had been “ages” since they had written anything with pen and paper. We also observed
that the positioning of tables in the classroom influenced the workshop. There was a
flexible seating arrangement with up to seven students per table. According to the teachers,
this was the common setup, however, students were easily distracted by group dynamics
within and between tables.

6.5 WORKSHOP - EXPERIENCES & RESULTS

6.5.1 ASSIGNMENT 1: AcTIvITY TYPE AI & A2

The ‘warming-up’ discussions (Activity Type Ax) were successtul in exploring students’
perspectives. Students expressed they did not find naming an issue for software developers
since “it is not that difficult at all.” When asked whether they pay attention to naming,
students responded diversely across the scale, giving ample room for discussion. Some
students indicated that they gave specific attention because “it is important to keep track
of your code,” whereas others said they did not because “it is easy.”

The written assignment directly afterward (Activity Type A2) showed more depth to
students’ reasoning: when prompted to name reasons for paying or not paying attention
to naming, we found several themes, addressed in Table 6.x. Many students acknowledge
that naming improves the code and benefits both understanding and writing, yet at the
same time, they also express several issues. Most importantly, students indicate that paying
attention to naming costs too much time and students fail to see its relevance. These
results reveal that students have mixed experiences and opinions about whether or not
naming deserves their attention, some of which hold them back from embracing the topic.

Table 6.1: Students’ reasons for and against paying attention to naming and mentioned
limitations while working with naming (obstacles).

Reasons for Code clarity (1r)
Understanding (7): self (4), others (s), both (2)
Code readability (4)
Eases programming/debugging (3)

Preventing errors (2)

Reasons against Costs (too much) time (9)
Itis a non-issue (s): ie., I already know”,
.. “Gt is not necessary’, “it does not matter”
Competes with writing/performance/accuracy (3)
Costs too much effort (2)

Obstacles Time (8)
It is a non-issue (6): i.e., “nonsense”, “unnecessary”
Possible confusion (3)
Nothing (3)
Too repetitive (1)

6.5.2 ASSIGNMENT 2: ActiviTY TYPE B AND C1

To illustrate different naming options and their effects, we used the same code snippet for
both activities, which converts temperature from Celsius to Fahrenheit (Figure 6.2a).
After each activity, a whole-class discussion facilitated the understanding of how, why, and
when the use of certain names can be counterproductive.

double A,B;

Console.WriteLine("Give temperature in Celsius");

A = Console.Read();

B =1.8 x A+ 32;

Console.WriteLine("Temperature in Fahrenheit:" + B);

(a) Convert temperatures from Celsius [A] to Fahrenheit [B].

double A,B,D;

int C;

Console.WriteLine("give [A1");

A = double.Parse(Console.ReadLine());
Console.WritelLine("give [B1");

B = double.Parse(Console.ReadlLine());
Console.WriteLine("give [C]");

C = double.Parse(Console.ReadlLine());

D= (A*xB*xC) / 100.0;
Console.WriteLine("Euro " + D.ToString("N2"));

(b) Calculate profit [D] from a savings account with [A] amount of money, [B] interest rate in %,
for [C] number of years.

Figure 6.2: C# code snippets for assignments 2 (a) and 3 (b).

When asked to name variables [A] and [B] (Activity Type B), students predominantly
write celsius-fabrenbeit (8) or tempCelsins-tempFabrenbeit (7), where "temp” could also
be replaced by "degrees”. Less popular were constructions like temperature-fabrenbeit
(3), temperature-result (1) and numberi-numberz (2). This demonstrates a preference for
clarity, and perhaps already internalized conventions or community guidelines, but also
reveals lazy and less informative attempts.

When ranking (best-worst) a set of name pairs for this code (Activity Type Cr), we
see a similar pattern (see Figure 6.3). However, students disagreed on the name pairs
tempr-tempz, input-output, and c-f, which provided room for discussion in class: upon
seeing the results of the ranking, students showed surprise, commenting, for example,
that the name pair ¢-f was much better and more practical than temperaturer or tempr,
as these are too long and could be confusing. Although no student expressed it out
loud, the disagreement for tempr-tempz could result from the common use of zemp as an
abbreviation for a temporary variable.

97

[A] celsi [A] degree|[A] temperature1| [A] temp1 | [A]input | [A]c [Ala [Alx
(n=18) [B] fahrenheit| [B] result |[B] temperature2| [B] temp2 | [B] cutput| [B]f [B] b [Bly
1st [7points] 7 0 1 0 0 0 0 0
2nd 0 7 6 4 0 1 0 0
3rd 1 5 8 2 1 0 0 1
4th 0 4 2 7 2 3 0 0
5th 0 1 1 3 8 2 3 0
6th 0 1 0 0 4 3 7 3
7th 0 0 0 1 2 2 7 6
8th [0points] 0 0 0 1 1 7 1 8
average rank 341 2,8 4,0 5.4 6,2 6.3 7.1
% of max points 69,8% 74,6% 57,1% 37,3% 25,4% 23,8% 13,5%

Figure 6.3: Assignment 2, Cr: Name-pair ranking

6.5.3 AsSSIGNMENT 3: ActiviTY TYPE B, C1, E, AND C2

Again, all activities use a single code snippet (sce Figure 6.2b), allowing for experiencing
and discussing the effect of different naming choices for a single code. The snippet presents
a simplified calculation of the profit after saving a given amount for a given interest rate
and a given time. Due to prior courses on the subject, students should be familiar with
the economic context and terminology.

After explaining the program and each variable’s contents, the students were asked
to name the variables [A] to [D] (Activity Type B). Their answers revealed a preference
for using a name that combines two words, such as startingAmount, interestRate or
numberOfYears (“aantalJaar”). Also popular were single words such as amount, balance,
or for variable [D], result, outcome, and money.

Interestingly, even though the variables’ contents were discussed and provided, several
students still made mistakes, writing totalAmount for variable [C] or interest for variable
[D]. Moreover, while the names given to variables [A], [B], and [C] were mostly specific,
the names given to variable [D] varied widely and showed little creativity. In fact, no
student provided a name that included profiz, which accurately describes the content. This
could indicate a lack of domain knowledge. Alternatively, it could indicate an inability
or unwillingness to translate the contents into a suitable name, or a lack of vocabulary or
creativity. After seeing their classmates’ answers, some students commented on the length
of names by critiquing the combined names. This demonstrates a preference for shorter
and more compact names.

For each variable, we presented students a set of names and asked them to rank from
best to worst (Activity Type Cr). Even though just before this activity, students clearly
expressed they regarded combined names as “too long”, the names students chose as “best
name” overwhelmingly disregard that sentiment (see Table 6.2). Looking at the second,
third, and fourth/last choice we mostly see clear ‘winners’ and shared ‘losers’. For example,
amount, account, and start received mixed positions, as did years and term, indicating they
are considered equally bad, receiving very mixed positions.

98

Table 6.2: Students’ 1st choice from a given list of names per variable (assignment 3: Cr).
The order shows the average ranking when a full ranking was provided (only 9/21 students).

[A] (n=18) [B] (n=18) [C] (n=21) [D] (n=21)
startingAmount (r7) || interestRate (17) || numberOfYears (1s) profit (s)
amount (o) interest (1) years (2) result (5)
account (o) percentage (o) term (1) outcome (2)
start (1) perc (o) time (o) endAmount (6)
calculation (o)

However, while patterns are more or less similar for variables [A], [B], and [C], students
demonstrate different preferences for variable [D]: some students move toward profit as
the best name, but end Amount and result remain equally popular. During the whole-class
discussion, we witnessed students strongly defending their choices, although without clear
and convincing arguments. When prompted what makes calculation so much worse than
outcome or result the following discussion took place (translated):

Su: “Calculation of what?”
Sa: “It’s too vague.”
S3: “Result’is more specific.”
T: “But how about result/ontcome ‘of what’?”
St: “Yes, but result’ is much clearer.”
S3: “It’s the outcome of the calculation.”

One explanation for the preference for result might be that students are influenced by
the “meta-program”, where they prioritize the result of the function or program over a
better reflection of the content. After all, the name result or outcome gives little information
on what that result is composed of.

By locating a naming mistake (Activity Type E), students experience first-hand how
certain naming practices can be unintentionally misleading. To illustrate this, we presented
again the same code, but now with the names startingAdmount, interestRate, endAmount,
and terminYears, asking the students to find the mistake (end Amount).

Despite these efforts, this activity proved difficult for the students. Almost half of
the students indicated they did not know, four students pointed to inzerestRate, another
four to terminYears, and only three answered correctly. Since none of the students could
explain why endAmount was misleading, the teacher attempted to make students get there
by asking questions such as: “What does the variable represent?”, “What does the name
endAmount represent?”, “What do you expect the program to deliver as output when the
variable is called endAmount?”, and “Does endAmount mean the same as profit?”. Only
with the last question, some students started to realize the mistake, but the majority still
needed an explicit example. While the activity served as an eye-opener to many students,
some continued to resist, commenting that “end Amount” still accurately represents the
amount at the ‘end’ of the calculation. This further indicates that these students consider
a certain ‘meta-level” when choosing names, in a similar fashion as the names resu/t and
outcome, rather than choosing a name more indicative of its actual contents.

By having students rank all names from a code snippet from most to least misleading

929

(Activity Type C2), we create an authentic context in which students are stimulated to
further explore how names can have negative effects. We prepared two different versions,
each having a different set of (misleading) names. The most misleading names per version
are presented in Table 6.3 and show consistency with previous activities.

Table 6.3: Names chosen as most misleading (assignment 3: C2)

Variable | Version 1 (n=19) | Version 2 (n=11)
A amount (3) account (3)
B percentage () interestRate (1)
C years (3) time (7)
D calculation (8) result (o)

6.5.4 ASSIGNMENT 4: AcTivitY Tyre D aAND A2

By comparing identical codes with opposite naming styles (Activity Type D) students get
another opportunity to experience the effect of naming choices. Students were unanimous
in their opinion on which code they found easier (words) and most also indicated that
this version looks more like their own programs. However, students were split in half on
which approach was more efficient, showing that some prefer letters and abbreviations
for efficiency, which is consistent with the opinions we found during Assignment 1 when
students noted that paying attention to naming is too time-consuming and can compete
with other objectives.

When prompted again with more general questions on naming practices (Activity
Type A2), we see that, compared to the start of the lesson, students are slightly more
concerned. In more detail, we see four types of responses to the question do you find
naming a problem for software developers? (scale 1-10). Those answering on the lowest end
of the scale (1, never) say “it’s not difficult” and “if naming would be a problem we have a
big issue”. Those rating 2-3 2nd those rating 7 and up note that naming “is no effort at all
and helps immensely”, whereas those rating 4-6 note that naming “costs a lot of time” and
is a “big effort”. Reactions to the question do you find naming worth the effort? can be
found in Figure 6.4, which shows conflicting perspectives, especially among the middle
group, and room for further dialogue.

6.5.5 QUESTIONNAIRE (WORKSHOP EVALUATION)

Students rated the workshop with an average score of 7.6 out of 10 (n=21). Assignment
Three was found most informative (n=8), followed by Assignment One (n=6) and Two
(n=4). Half of the students (n=11) indicated that they plan to pay more attention to
naming. These students also noted the following takeaways from the workshop: “naming
is important,” “the hows and whys of naming,” and “to make deliberate decisions.” On
the other hand, eight students indicated that they do not plan to pay more attention to
naming, even though their takeaways also included “names should be readable for another
person too” and “always use correct names.” These students may feel they already pay
enough attention to naming, as one student also indicated “I didn’t learn anything I didn’t
already know.” Three students concluded the questionnaire by noting that they found
the lesson enjoyable and very informative.

» <«

100

3
“could use the time for “it helps me understand”
other things” “it creates clarity”
2 “it is not difficult”, . - “it makes it easier”
“it saves time”, “improves readability
“just pick a name” and clarity”
1
“it takes only a second”
0 L L 1 1 1 L 1 1 1
never 1 2 3 4 5 6 7 8 9 10 always

Figure 6.4: Results (n=19): is naming worth the effort?

6.6 PRACTICAL IMPLICATIONS

Since naming practices influence code comprehension in various ways, but are currently
taught inconsistently in introductory programming education [van der Werf et al., 2024c¢,
van der Werf et al., 2023] (Chapter 3, 4, s), we experimented with an adaptive and
interactive teaching approach to naming practices, supporting critical thinking, reflection,
and deliberate naming choices. We presented five Activity Types and their design, discussed
how they can be adapted for implementation, and showed our experiences with them.
Below we highlight our insights and recommendations regarding the adoption of naming
practices in a curriculum.

Use versatile activities Although we used C# code, the various activities support any
programming language that uses labels for variables. Moreover, they support selecting and
adapting existing programs from student code or examples from a running or previous
course. This versatility helps create authentic experiences while limiting the time needed
to develop new materials.

Encourage whole-class discussion Whole-class discussions proved extremely valuable
in revealing potential issues (see below) and creating opportunities for reflection, nudging
students to re-evaluate naming practices. We found the use of a third-party online polling
tool beneficial in supporting the dialogue, but expect that other ways of promoting
dialogue would have a similar effect, as long as students can share their choices and opinions
with others and reflect upon those of others as well. Additionally, we have seen that
reflection is deepened by also including activities that focus on individual consolidation
of opinions after discussion.

Address and counter obstacles by offering various experiences DPerception-focused
activities (Type A) are successful in revealing potential issues for paying attention to nam-
ing practices, as students reported conflicting opinions and experiences. At least half of
the students perceive paying attention to naming as (too) time-consuming, inefficient,
and irrelevant, while also reporting finding the act of naming easy. If left unattended,

101

students could take a long time before experiencing the benefits of good naming choices.
Considering that naming affects comprehension and heavily depends on many factors
while teachers expect students to ‘figure out naming by themselves’ [van der Werf et al.,
2024¢] (Chapter 3), a nonchalant attitude is unhelpful. Including a diverse set of activ-
ities provides (guided) opportunities for students to ‘figure out naming’ by practicing,
experiencing, and reflecting on different naming styles, hence increasing the chances of
gaining new perspectives. In this way, we can ‘prime’ students to adapt to a wide range
of names and encourage the adoption of deliberate naming choices, without teaching
specific naming styles.

Highlight the pitfalls surrounding naming At the same time, students already
recognize reasons for paying attention, most often to improve code clarity and support
code understanding for themselves and others. However, reflection based on ranking
names (Activity Type C) and locating a naming mistake (Activity Type E) revealed that
students are unaware of the limitations of certain naming choices and in particular of how
naming choices can (unintentionally) deceive a reader. Through the activities, students
showed increased awareness of how names are interpreted differently by different people,
or when names, with the best intentions, do not accurately reflect the variable’s contents.
The teacher-led whole-class discussion was vital in increasing this awareness, highlighting
both the strengths and weaknesses of naming choices. Our results show that using a single
code snippet for various activities (Assignment Three) supports ‘aha-moments’ while
using a variety of codes creates repeated practice with a wider range of examples.

6.7 CONCLUDING REMARKS

In this work, we implemented a set of educational activities on variable naming in the
single context of a vocational program with two small-size workshops totaling 27 (male)
students. We stress that student participation, group dynamics, and teacher involvement
all influence the outcomes of the discussions. However, we encourage practitioners to
experiment with the activities also in other contexts, such as higher education or pri-
mary/secondary education. It would be especially interesting to compare these results
with a similar workshop given to more experienced students, specifically related to our
encountered (explicit) preference for names such as ‘result’, ‘end Amount’, and ‘outcome’.
We find this preference intriguing, as such names seem to be tailored to the ‘meta-program’
rather than the contents of the variable, and are known to be problematic for code com-
prehension [Feitelson, 2023, Schankin et al., 2018]. Finally, it could be interesting to use
the activities with other programming languages, or even try out naming activities in
a language the students are zor familiar with, to see the effects on comprehension. Re-
garding comprehension, we also suggest experimenting with presenting code withont an
explanation of its purpose, its output, and/or a description of the contents of the variables.
This likely increases difficulty and completion time, but would also train reading and
program comprehension skills.

I02

