
Variables and variable naming in introductory
programming education
Werf, V. van der

Citation
Werf, V. van der. (2025, September 2). Variables and variable naming in
introductory programming education. Retrieved from
https://hdl.handle.net/1887/4259393

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4259393

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4259393

58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 79PDF page: 79PDF page: 79PDF page: 79

Chapter 5
Variables and Variable Naming in

Popular Programming Textbooks for
Children and Novices

Vivian van der Werf
Felienne Hermans
Marcus Specht

Efthimia Aivaloglou

58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 80PDF page: 80PDF page: 80PDF page: 80

Abstract
In programming, the concept of variables is central to learning other concepts like loops,
functions, and conditions, and the way variables are explained influences students’ under-
standing. Chapter 4 observedMassive Open Online Courses (MOOCs) on introductory
programming to investigate how the topic is addressed in teaching materials. This chapter
aims to verify if these results generalize to other materials by analyzing 13 popular Scratch
and Python programming books and investigating (1) which definitions and analogies are
currently being used to explain the variables, (2) looking into the programming concepts that
are introduced alongside variables, and (3) analyzing if and how variable naming practices
are introduced. Our results support previous findings fromMOOCs, suggesting that CS
educators and developers of educational materials for introductory programming could pay
more attention to how they explain variables and can be more deliberate and consistent
when it concerns the teaching of naming practices. Additionally, we found specific analogies
used to explain variables, and differences between programming languages in the order that
variables are introduced. Our work can be used to update current educational materials
and inform the development of new ones. 1

Keywords
programming education
variables
naming practices
analogies
programming concepts
qualitative content analysis
Python
Scratch

1Published as: van der Werf, V., F. Hermans, M. Specht, and E. Aivaloglou (2024). Variables and
Variable Naming in Popular Programming Textbooks for Children and Novices. In Proceedings of the 2024
ACMVirtual Global Computing Education Conference V. 1, SIGCSE Virtual 2024, page 242–248, New
York, NY, USA. Association for ComputingMachinery. doi: 10.1145/3649165.3690112

76

58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 81PDF page: 81PDF page: 81PDF page: 81

5

5.1 Introduction
While variables are important for core programming skills such as reading and under-
standing code [Pelchen and Lister, 2019,Lister et al., 2009, Sajaniemi, 2002], they are also
a hard concept to grasp for novice programmers [Hermans et al., 2018b, Kohn, 2017].
However, since several programming concepts expand on the concept of variables (i.e.
control flow, functions), it is essential that variables are well understood. At the same
time, variable naming practices are also relevant to the act of reading and understanding
code: meaningful identifier names help readers understand code more easily than when
abbreviations or (random) letters are used [Avidan and Feitelson, 2017,Lawrie et al., 2006].
Yet, other work also found that full names can be misleading if they do not correctly
represent their contents or purpose [Arnaoudova et al., 2016,Caprile and Tonella, 2000].

Prior work [van der Werf et al., 2023] (Chapter 4) already investigated teaching
practices regarding the concept of variables and variable naming by observing introductory
programmingMOOCs. To verify whether their findings generalize to other materials, the
current chapter investigates the same topics in programming textbooks. Additionally, since
previous work on textbooks [McMaster et al., 2016,McMaster et al., 2018] investigated
which concepts are covered, but do not detail how these are covered, this chapter also aims
to expand on the current state of knowledge on teaching practices. Following [van der
Werf et al., 2023] (Chapter 4), but in the context of introductory programming books,
our research questions are:

RQ1 How are variables explained? (use of definitions and analogies)

RQ2 What other programming concepts are introduced either together with, right before
or right after variables?

RQ3 How is naming addressed when variables are introduced?

5.2 Related work
5.2.1 Analogies for explaining variables
Analogies are often used to explain programming concepts [Fincher et al., 2020]. In
education, an analogy, metaphor or notional machine is a ‘tool’ that supports learning
by simplifying a concept through a representation that highlights the most important
aspects of the concept, while obscuring less important aspects [Fincher et al., 2020]. For
example, ‘variables as parking spaces’ transfers knowledge about parking spaces to the
comprehension of a variable. Waguespack [Waguespack, 1989] explains a variable of a
particular data type as a ‘container with the corresponding shape’ (shape refers to the data
type). With metaphors like ‘container’ or the popular ‘variables as a box’, it is important
however to stress that the container or box can hold only a single value. It has been found
that, even though this analogy can support an initial understanding of the concept, it is
also susceptible to the common misconception among novices that variables can hold
multiple values at the same time [Hermans et al., 2018b, Boulay, 1986, Chiodini et al.,
2021]. Any analogy might thus only partly or incorrectly represent a concept and can,
therefore, leave novice students with an incorrect understanding. Nevertheless, Doukakis
et al. [Doukakis et al., 2007] found that using an analogy appears preferable over using

77

58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 82PDF page: 82PDF page: 82PDF page: 82

none. More research is needed to understand which analogies are suited in which contexts,
and if we should abandon the box metaphor entirely, perhaps replacing it with ‘variables
as labels’ [Hermans et al., 2018b]. In introductory programming MOOCs, prior work
[van der Werf et al., 2023] (Chapter 4) found common use of the metaphor variables as
a (mail)box in explanations and visualizations and also a ‘question-and-answer’ format
to think about variable names and contents. Another promising way of introducing and
teaching variables is with the help of Sajaniemi’s theory of “roles of variables” [Sajaniemi,
2002, Sajaniemi and Kuittinen, 2005], which categorizes variables based on their dynamic
nature, i.e., fixed value, stepper, gatherer, ormost-wanted value.

5.2.2 Variable naming
That (variable) naming is important for comprehension and code quality is indisputable
from the existing literature focusing on the effect of naming on program comprehension,
code quality, and coding skills. Most importantly, programmers rely on names for their
understanding of code [Avidan and Feitelson, 2017,Hofmeister et al., 2017,Teasley, 1994,
Takang et al., 1996, Lawrie et al., 2007b, Lawrie et al., 2006], and names often serve as
beacons during code comprehension [Gellenbeck and Cook, 1991]. Moreover, bugs are
easier to find when words are used [Hofmeister et al., 2017]. Additionally, names that are
not descriptive enough, for example, single letters or abbreviations from which meaning
is not directly clear, interfere with code comprehension [Lawrie et al., 2007b,Lawrie et al.,
2006,Hofmeister et al., 2017,Beniamini et al., 2017]. The sameholds true for names that are
too long, making them difficult to remember [Binkley et al., 2009]. Additionally, names
can be unintentionally misleading and should therefore be chosen cautiously [Avidan and
Feitelson, 2017,Arnaoudova et al., 2016, Feitelson, 2023, Feitelson et al., 2022]. Especially
general, non-specific names, such as ‘length’ [Feitelson, 2023] or ‘result’ [Schankin et al.,
2018], appear problematic. Finally, novices can wrongly believe that computers interpret
or assign values based on the semantic meaning of variables’ names, and thus incorrectly
apply semantic assumptions to syntax [Kaczmarczyk et al., 2010].

Consequently, it is relevant to think about how we teach variable naming in introduc-
tory programming courses. Thirty years ago, Keller [Keller, 1990] indicated that variable
namingwas rarely included in programming textbooks. Since then, little research observed
teaching practices on this topic. Two recent studies [van derWerf et al., 2023,van derWerf
et al., 2024c] (Chapter 3, 4) found that teachers do address naming practices in their
learning materials, but inconsistently: variable naming practices are not always taught
explicitly, taught practices are sometimes conflicting, and given example code does not
always match the provided rules and recommendations. Moreover, research investigating
code quality perceptions among students and teachers [Börstler et al., 2017] confirmed
students’ desire for ‘more andmore specific feedback aboutwhat was good and bad in their
code’. Other studies on variable naming in education found that novice programmers
often fail to name variables correctly [Gobil et al., 2009] and that Scratch students are
misled by variables named with a letter, probably because of prior knowledge from their
mathematics education [Grover and Basu, 2017].

78

58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 83PDF page: 83PDF page: 83PDF page: 83

5

5.3 Methods
To answer our research questions, we analyzed thirteen textbooks that aim to teach Scratch
or Python to children and novices. To systematically select programming books we used
two Amazon best sellers lists (top 100 popular products based on sales), both visited
on April 18, 2023. For Scratch books, we selected the five books ranked highest within
the Amazon Best Sellers: Best Children’s Programming Books. Also for Python books, we
selected the five books ranked highest within the same list. However, since teens and young
adults might prefer using adult textbooks, we also added the three books ranked highest
within the Amazon Best Sellers: Best Python Programming. For all lists the following
selection criteria were applied: 1) being a physical book, 2) written in English, and 3)
focused solely on learning Scratch or solely on learning Python. The selected books and
their details are presented inTable 5.1.

Table 5.1: Overview of selected programming books

ID Target Bestseller Title Year
S1 Children #6 Coding Games in Scratch [Woodcock, 2015] 2019
S2 Children #13 Coding Projects in Scratch [Woodcock, 2016] 2019
S3 Children #14 Code Your Own Games! [Wainewright, 2020] 2020
S4 Children #22 Coding for Kids Scratch [Highland, 2019] 2019
S5 Children #60 Learn to Program with Scratch [Marji, 2014] 2014
P1 Children #4 Coding for Kids python [Tacke, 2019] 2019
P2 Children #7 Python Coding for Kids Ages 10+ [Makda andMamazai, 2022] 2022
P3 Children #8 Coding Games in Python [Vorderman et al., 2018] 2018
P4 Children #12 Python for Kids [Briggs, 2023] 2023
P5 Children #19 Coding Projects in Python [Vorderman et al., 2017] 2017
P6 Adults #2 Python Crash Course [Matthes, 2023] 2023
P7 Adults #4 Python Programming for Beginners [Robbins, 2023] 2023
P8 Adults #6 Automate the boring stuff with Python [Sweigart, 2020] 2019

To systematically collect our data and ensure good operational definitions, the first
author created a a codebook in a Microsoft Form, which was tested on three random
books (one from each category) by the first author and an independent data collector.
Issues were resolved and a new version of the form was designed by the first author. This
version was then independently used by both parties to gather all information relevant to
the research questions. The data collector was recruited from a pool of research assistants
and hired to reduce bias in the collection of data. As such, after transferring the data to
MS Excel, the first author compared the two sets. Any information found by only one
collector was reassessed for inclusion.

Each research question covered different chapters and was analyzed separately, as
specified below:

RQ1: Explanation of variables We collected all definitions (quotes) and analogies
(quotes and pictures) from the section in the book that introduces the concept of variables.
We then also checked all other sections, and, when applicable, glossaries, for any definitions
of variables. For example, sometimes a summary with a definition was also given at the
end of a chapter, which was included.

79

58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 84PDF page: 84PDF page: 84PDF page: 84

The collected definitions were analyzed on the object (what are variables: nouns, i.e.,
a ‘box’, a ‘memory location’), the purpose (what do variables do: verbs + addition, i.e.,
‘store information’), any additional information that was provided (i.e., ‘data can change’),
and if any, used analogies. For each definition, the relevant information was recorded.
Additionally, when imageswere provided to accompany the definition, theywere described
and it was recorded which analogy it represents. The independent data collector and first
author had no disagreements.

RQ2: Other programming concepts To investigate how variables are connected with
other programming concepts, we examined the concepts discussed right before and right
after the concept of variables. To this aim, we investigated three chapters: the chapter in
which variables are introduced, the chapter before, and the chapter after. This means that
if a topic is not represented in our results, it was either not covered in the book, or it was
introduced in other chapters and therefore not considered in the analysis.

To collect the different concepts, we firstmade a list of expected programming concepts
(based on [van der Werf et al., 2023] (Chapter 4)) to check for in the chapters and added
to this list when we encountered a different concept. We then systematically analyzed
the different chapters for the presence of these concepts. For the analysis, we categorized
the concepts into the following topics: data types, operators, control flow, print-input
statements, and others.

RQ3: Naming rules and guidelines To search for naming rules and guidelines, we
looked at the chapter where variables were introduced. Any rules discussed here were
collected, following the categories found in [van der Werf et al., 2023] (Chapter 4): (1)
syntax rules, including case sensitivity, accepted symbols, reserved keywords, and restriction
of spaces; (2) references to specific naming conventions, such as camel case or underscore
styles, and (3) any guidelines on variable name meaning.

For the first two categories we collected which rules and conventions were mentioned
much like a closed coding process. For the third category, we used an iterative and open
coding process whichmeant we analyzed the books several times. Based on an initial glance
at the chapters, we first collected whether one of the following topics was addressed: ‘use
descriptive/meaningful names’, ‘avoid single-letter names’, ‘avoid misleading names’, and
‘you should be able to understand your name’. During this phase, we also gathered other
quotes or statements on naming we encountered, if any, such as ‘use a simple naming
method,’ ‘too long names are hard to read,’ ‘consistency in naming is important,’ and ‘you
can use any name youwant.’ Then, after going through each book, wewent through all the
books again to see if any newly encountered statements were missed in earlier books. To
continue the analysis, we grouped all naming statements and quotes into four subtopics:
those (a) suggesting to use meaningful/descriptive names, (b) addressing reasons for using
such names, (c) addressing the length of the name, and (d) highlighting that names can
be whatever you like. We furthermore noticed several other interesting quotes that were
collected under ‘other’. After the grouping, to ensure a complete overview, all books were
checked a final time for any additional input on any of these four topics.

Besides this, we collected and investigated explicit examples and naming exercises,
when provided. We then checked other parts of the books to see if naming was (also)

80

58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 85PDF page: 85PDF page: 85PDF page: 85

5

addressed elsewhere, for example, some books include a section or chapter on “how to
improve your code”. If naming was addressed elsewhere in the book, we recorded the
context.

5.4 Results
5.4.1 How are variables explained?
Most Scratch books explain variables as a box, as opposed to only 3/8 Python books
(seeTable 5.2). This analogy is often accompanied by a picture that affirms it. A typical
definition looks like ‘a variable works like a box that you can store information in, such as
a number that can change’ (S1). Some books explain variables as a place or (memory)
location, for example, a variable ‘describes a place to store information, such as numbers,
text, lists, and so on’ (P4), or, ‘a variable is a named area of computer memory’ (S5). Few
books (also) explicitly address variables as a label, for example, a variable is ‘a fancy name
or a tag’ (P1) or ‘essentially a label for something’ (P4). Others include it more implicitly,
mentioning that the variable is a ‘labeled box’ or needs a name ‘to label the information.’
To address the common misconception that often happens with the variable as a box
analogy, P6 writes: ‘Variables are often described as boxes you can store values in. This
idea can be helpful the first few times you use a variable, but it isn’t an accurate way to
describe how variables are represented internally in Python. It’s much better to think of
variables as labels that you can assign to values. You can also say that a variable references a
certain value.’

Table 5.2: Explaining variables with analogies and purpose.

Variables... Scratch Python
...as a box *with image S1, S2*, S3*, S5* P3*, P5*, P8*
...as a place S4, S5 P2, P4, P8
...as a label (implicit) (S2, S5) P1, P4, P6 (P3, P5, P8)
To store information S1–S5 P3–P8
To track information S2 P1, P3, P5
To access information S5 P3, P4, P5
To interact w/ information P7
To support code writing P4
To use later P3, P4, P5
Their value can change S1, S2, S4, S5

Most explanations address the purpose of variables. Books most often write that vari-
ables ‘store information’. Other purposes mentioned are to ‘keep track of information’,
‘to access information’, ‘to interact with information’, ‘to support code writing’, ‘and to
use later’. In addition, only Scratch books mention explicitly that a variable’s information
(value) can change, for example, ‘notice that the value of the score changes throughout
the program. This is why we call it a variable – its value changes’ (S5).

81

58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 86PDF page: 86PDF page: 86PDF page: 86

Scratch books primarily explain variables as a box; Python books use more diverse explanations. The
emphasis is on ‘storing information’, while other purposes of variables get less attention. Only Scratch
books explicitly mention that a variable’s value can change.

5.4.2 What programming concepts are introduced along-
side the concepts of variables?

Scratch and Python books apply different trajectories when it comes to which program-
ming concepts are introduced alongside variables (see Figure 5.1). Below we discuss
detailed results per concept.

(a) Scratch

(b) Python

Figure 5.1: Trajectory of programming concepts as introduced by (almost) all [in gray] or
about half [in white] of the books.

Simple data types (string, integers, float, boolean) are discussed by all Python books,
either in the same chapter as variables (P1, P3, P5, P6, P8) or in the next (P2, P4, P7). Only
one Scratch book (S5) introduces them (right before variables). More complex data types
or structures (arrays, lists, dictionaries, tuples) are covered in 4/8 Python books, either in
the same chapter (P3, P5), and/or the next (P3, P6, P7). They are not addressed in Scratch
books.

All Python books and three Scratch books addressmathematical operators (+, -, /, *)
in the predefined chapters. While most books prefer to introduce them after variables (S2,
S3, S5, P1, P2, P6), Python books also introduce them right before (P4, P7, P8) or together
with (P3, P5) variables. We see a different pattern for comparison operators (==, !=. <, >)
and logical operators (and, or, not): they are introduced by almost all Scratch books and
only half of the Python books, most frequently after variables are introduced, either in
the same chapter (S2, P3, P5) or the next (S3, S5, P1, P8). Only S4 introduces comparison
operators right before variables.

While all Scratch books introduce control flow concepts like if-else statements (5/5)
and loops (4/5) in the predefined chapters, only three Python books do so. Moreover,

82

58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 87PDF page: 87PDF page: 87PDF page: 87

5

Scratch books (except for S5), introduce them before variables, while all three Python
books (P3, P5, P8) introduce them after. We noticed that in Python books, control flow is
often introduced later in the books.

Several other concepts are (sometimes) introduced in the predefined chapters. Here
we mention only those that are covered in two or more books. For Scratch, these concepts
are user input, random numbers, first program, error messages/bugs, and procedures.
For Python books, these are print-statements/first program, using comments, error mes-
sages/bugs; user input, and functions/classes.

Scratch books introduce mathematical operators after variables; Python books also introduce them
right before or together with variables. Control flow concepts are introduced before variables in Scratch
books, and after variables in Python books, if at all in the chapters surrounding variables.

5.4.3 How is naming addressed?
Variable naming is addressed in almost all books, except for S3 (seeTable 5.3). Nine books
provide a dedicated section on naming, whereas three books only briefly mention naming.
Three books provide dedicated naming exercises. Especially Python books also address
naming in chapters, in the context of functions, scope, name errors, conventions, or
readability. When naming is reintroduced, books mostly repeat what is mentioned in the
chapter on variables, or explicitly refer back to it.

Table 5.3: Overview of how naming is addressed.

Scratch Python
Is naming addressed in the chapter that introduces variables? (N) 4 8
yes, naming is briefly mentioned S2, S4 P4
yes, naming has a dedicated section S1, S5 P1–P3, P5–P8
Are naming exercises provided? (yes) – P1, P2, P8
Are there explicit examples of “good” or “bad” naming? (N) 4 8
yes, but only on syntax rules (‘valid’ or ‘invalid’ names) S4, S5 P7, P8
yes, the good examples also address the descriptiveness of names S1, S2 P1–P6
yes, the bad examples also address the descriptiveness of names – P1–P6
Is naming addressed in other parts of the book? (N) 1 6
yes, when functions are introduced – P1, P3, P5, P7
yes, in a section on readability / conventions S1 P2, P8
yes, in another section S1 P2, P3, P5, P8

Syntax rules
Syntax rules, like reserved keywords and case-sensitivity (seeTable 5.4), are addressed by
all Python books (8/8) and just 2/5 Scratch books (S1, S5). Both Scratch books mention
that spaces are technically allowed, but it is better to avoid them because other languages
do not allow it, for example,DogSpeed instead of dog speed (S1) and SideLength instead
of side length (S5). Besides mentioning the rules, several specific example names are also
given in 5/8 Python books, for example, Good1 (P2) is accepted, whereas 2Good (P2),
100_days_of_code (P1), and TOTAL_$UM (P8) are names disrespecting the rules.

83

58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 88PDF page: 88PDF page: 88PDF page: 88

Table 5.4: Overview of syntax rules addressed in the books.

Syntax rules Scratch Python
Names are case-sensitive S5 P3, P5, P8
Use Unicode-letters, no symbols P2–P8
Do not start with a number S5 all
Do not use spaces S1, S5 all
Do not use reserved keywords P2, P4–P7

Naming conventions
The same two Scratch books (S1, S5) mention naming conventions, such as using under-
scores to separate words. All Python books refer to such conventions or ‘community
guidelines’ (P7), although the specific conventions mentioned vary and can deviate from
the common underscores, for example, camel case (P1, P2, P8), Pascal case (P1), Hungarian
notation (P2), PEP (P8), and Zen of Python (P6, P7, P8). P2 and P8 also use camel casing
in their example code. Furthermore, P2, P3, and P6 mention that constants are fully
capitalized: ‘constants will be named in all caps to spot them easily’ (P2), for example, PI
or SPEED_OF_LIGHT (P2).

Variable name meaning
Three out of five Scratch books note that it is preferable to use meaningful (S1, S5), sensible
(S2), or descriptive (S5) names that ‘tell you what the variable is for’ (S1) and ‘to make the
code readable’ (S1). Given examples are speed, score, dragon (S1),High Score, Player Name
(S2), firstName, and interestRate (S5). On the other hand, 7/8 Python books instruct
students to use descriptive (P1, P3, P5, P6, P8), meaningful (P2, P3, P4), or useful (P4)
names. For example: ‘When naming a variable you want to be as descriptive as possible
but also follow the rules of Python (P1),’ and, ‘the variable name should be meaningful e.g.
if a variable stores the name of my friend, then the variable name should be friendName
not just name which can be confusing or misleading’ (P2). Avoiding confusion is not the
only reason given for using descriptive names. The idea of variables (and names) storing
something inside them (see also Section 5.4.1) is again highlighted. For example, P5 writes
to ‘think of a name that will remind youwhat’s inside the variable’, others note that a good
name ‘describes the data it contains’ (P3, P8). The most common argument, however,
is to improve readability, explicitly mentioned by S1, P1, P7, and P8. Interestingly, the
latter addresses its own examples as too generic: ‘most of this book’s examples use generic
variable names like spam, eggs, and bacon, but in your programs, a descriptive name will
help make your code more readable’ (P8). Finally, two books note that good names will
help you to understand (P1, P5) the code.

In 5/13 books, the length of variable names is also related to a name’s meaning (S5, P3,
P4, P5, P6). For example, S5 writes to avoid using single-letter names such asw or z, ‘unless
theirmeaning is very clear’. The book also continues with that ‘names that are too long can
make your script harder to read.’ P6 stresses that names ‘should be short but descriptive
[therefore] name is better than n, student_name is better than s_n, and name_length is
better than length_of_persons_name.’ P3 and P5 are less explicit but give examples such as
using attempts rather than a (P2) and lives_remaining rather than lr (P5). On the other

84

58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 89PDF page: 89PDF page: 89PDF page: 89

5

hand, P4 writes: ‘Sometimes, if you’re doing something quick, a short variable name is
best. The name you choose should depend on how meaningful you need the variable
name to be,’ however, no further explanation is provided besides ‘Fred probably isn’t a
very useful name.’

Finally, some books (S4, S5, P4, P8) make an explicit mention that variables can be
named anything. Whereas most do so while highlighting that descriptive and meaningful
names are highly recommended, S4 only writes: ‘you can name a variable anything you
want–get creative (...) points, goals, or yes, even hippo farts.’

Regarding naming practices, most books focus on syntax rules that, when not adhered to, break the
program. Python books give more attention to naming guidelines and variable name meaning, yet,
like Scratch books, also present conflicting information, take a ‘free-for-all’ approach, or remain vague
on what is a ‘meaningful’ name.

5.4.4 Patterns between children and adult books
The analysis highlighted two differences between the Python books for children and
adults. First, in the books for children, the topic of functions was sometimes introduced
within our predefined chapters, however in adult books this topic had a chapter elsewhere.
Second, regarding naming, we found that all children’s books and P6 provided explicit
examples of “good” or “bad” names that cover what is and is not a descriptive name. The
other two adult books focused on examples regarding syntax rules.

5.5 Discussion
We investigated how the concept of variables, and the respective naming practices, are
taught in thirteen popular introductory Scratch and Python programming textbooks.
Our collected data was qualitative in nature and included definitions and analogies used
to explain variables, other programming concepts introduced with or near variables, and
any naming practices that are addressed. Our most important findings are:

5.5.1 Variables are commonly explained as a box
From the literature, we know that analogies come with a risk of carrying over misinforma-
tion from one topic to the other [Boulay, 1986,Chiodini et al., 2021,Hermans et al., 2018b].
Consistent with prior work [van der Werf et al., 2023] (Chapter 4), we found a tendency
to explain variables as a box, which is prone to cause misconceptions when learning new
programming concepts. Nevertheless, one book explicitly addresses this issue, while others
opt for alternative explanations, such as variables as a label or place. This might indicate
that the community is looking for new analogies, however, the consequences of these are
yet to be investigated [Hermans et al., 2018b]. We also found most explanations to focus
on ‘storing information’, which is again consistent with prior work [van der Werf et al.,
2023] (Chapter 4). Few other purposes of variables were mentioned, including tracking
information, accessing information, and the ability to flexibly reuse data elsewhere in the
code.

Hence we see room for using a wider variety of definitions and analogies and extending

85

58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 90PDF page: 90PDF page: 90PDF page: 90

the explanation to include different purposes. Domain isomorphic analogies [Bettin and
Ott, 2023,Bettin et al., 2023], which are flexible in use across domains while preserving
the analogical mapping, and roles of variables [Sajaniemi, 2002, Sajaniemi and Kuittinen,
2005] might be promising directions, keeping inmind students’ background and cognitive
load.

5.5.2 The concepts introduced near variables vary
Like prior work [van der Werf et al., 2023] (Chapter 4), we found that variables are often
taught in close connection to data types, operators (arithmetic expressions), and control
flow. Additionally, we found that Scratch and Python textbooks introduce different pro-
gramming concepts alongside variables. The order in which these concepts are introduced
also differs between Scratch and Python books and among Python books. This raises ques-
tions such as when is the best moment to introduce variables, is there a “one-size-fits-all”
trajectory crossing audience and programming language, or should such learning trajec-
tories naturally depend on the programming language (and audience). Rich et al. [Rich
et al., 2017, Rich et al., 2022] advocate for a language-independent learning trajectory
focused on variables. However, our results hint towards current learning trajectories being
influenced by language. This then also raises the question of how different trajectories
influence transfer from Scratch to Python (or another programming language). Moreover,
the variations we found within Python programming books suggest that a single “natural”
trajectory, as we found for Scratch books, might not exist for Python. Alternatively, there
might be unclarity or disagreement among developers on what order is most desirable, for
example in terms of prior knowledge, avoiding or tackling misconceptions carried over
from other disciplines or languages, or varying teaching purposes or learning philosophies.
If the order of concepts was chosen carefully by the books’ authors, there is an opening to
investigate underlying motivations.

5.5.3 Naming is addressed inconsistently
In line with related work [van der Werf et al., 2023, van der Werf et al., 2024c] (Chapter 3,
4), we also see that when naming practices are introduced, most books focus on syntax
rules that, when not adhered to, break the program. Sometimes community guidelines
and naming conventions are mentioned, but these are not consistent between and within
books, therefore some books even provide conflicting information. Although the effects
of style and casing on a programmer’s accuracy might be limited [Sharif and Maletic,
2010], inconsistent approaches could confuse a learner, or unintentionally undermine the
development of a critical attitude towards naming.

A careless attitude can be further encouraged in a learner by unclear definitions or
examples ofwhat is a ‘meaningful’ name. Wehave seenmost books telling their reader touse
meaningful or descriptive names, but some without indicating why naming is important.
Moreover, some of those do not give explicit examples of what is considered meaningful,
mention that variables can be named anything, or use generic variable names themselves.
The limited attention to what is meaningful could be explained by that developers of
educational materials chose a ‘constructivist’ pedagogical approach, in which students
themselves discover by example what is good naming [van derWerf et al., 2024c] (Chapter
3). In fact, two Python books (P2, P8) hint at using such an approach, writing that with

86

58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 91PDF page: 91PDF page: 91PDF page: 91

5

experience ‘you will naturally know how to name [variables]’. However, for students to
learn by example, wewould expect the given guidelines and examples to bemore consistent
with eachother. Perhapswewould even expectmore emphasis onwhynaming is important
rather than on certain rules and guidelines. Any inconsistencies, together with a limited
explanation of why naming is important, could insinuate that one does not need to pay
attention at all to naming practices.

Therefore, we suggest that our results demonstrate a potential misalignment between
developers of educational materials and what research already knows is important for
comprehension. Because our results are in line with prior work [van der Werf et al.,
2023, van der Werf et al., 2024c] (Chapter 3, 4), we suggest that if we want students to
adopt good naming practices and develop a critical attitude, developers of educational
materials and practitioners pay attention to how they address naming practices and be
consistent in their approach. Moreover, considering that naming is context-dependent,
there is room to focus on what makes a name (in)appropriate and why.

5.5.4 Limitations
Since our research analyzed only a limited number of books, our results might not be
representative. However, by selecting the most popular books from Amazon, we aimed
to include those books that people are most likely to buy and be exposed to, now and in
the (near) future. However, even though Amazon is a popular platform, we cannot say
if these bestsellers represent the books children and adults are truly exposed to. Using
other (local) platforms or renewing the search at a different time might result in a different
selection of books and hence influence our results. Nevertheless, the results we found
correspond with results from prior studies, which suggests that our selection of books is
reasonably representative. Even so, since most of the books included in this study were
published relatively recently, older books, which could be designed differently, may likely
still be in use. Finally, Scratch and Python are the languages most used by children. Had
we focused on adults, other programming languages should be taken into account. We
expect some differences due to the nature of the language, just like we found between
Scratch and Python.

5.6 Concluding remarks
Our observations strengthen existing insights into how variables are presented in program-
ming MOOCs, and extend them to programming textbooks for children and novices.
More attention in research is needed to, for example, when to introduce the topic within
the curriculum (in which language). Our insights also call for a (more) careful approach
regarding variables and their naming, to be taken by educators and developers of learning
materials in the fields of Computer Science and Software Engineering. Most importantly,
we encourage the community to use (1) a wider range of definitions and analogies while
teaching the concept of variables and (2) a more consistent teaching approach regarding
variable naming that goes beyond syntax rules, personal preferences, and naming conven-
tions. This includes a discussion on the importance of the topic and what makes a name
(in)appropriate and why.

87

58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 92PDF page: 92PDF page: 92PDF page: 92

88

