
Variables and variable naming in introductory
programming education
Werf, V. van der

Citation
Werf, V. van der. (2025, September 2). Variables and variable naming in
introductory programming education. Retrieved from
https://hdl.handle.net/1887/4259393
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/4259393
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4259393


58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 65PDF page: 65PDF page: 65PDF page: 65

Chapter 4
Variables in Practice. An Observation
of Teaching Variables in Introductory

Programming MOOCs
Vivian van der Werf

Min Yi Zhang
Efthimia Aivaloglou
Felienne Hermans
Marcus Specht



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 66PDF page: 66PDF page: 66PDF page: 66

Abstract
Motivation.Many people interested in learning a programming language choose online
courses to develop their skills. The concept of variables is one of the most foundational ones to
learn, but can be hard to grasp for novices. Variables are researched, but to our knowledge, few
empirical observations onhow the concept is taught in practice exist. Objective.Weinvestigate
how the concept of variables, and the respective naming practices, are taught in introductory
Massive Open Online Courses (MOOCs) teaching programming languages.Methods.We
gathered qualitative data related to variables and their naming from 17MOOCs. Collected
data include connections to other programming concepts, formal definitions, used analogies,
and presented names. Results.We found that variables are often taught in close connection
to data types, expressions, and program execution and are often explained using the ‘variable
as a box’ analogy. The latter finding represents a stronger focus on ‘storing values’, than on
naming, memory, and flexibility. Furthermore, MOOCs are inconsistent when teaching
naming practices. Conclusions.We recommend teachers and researchers to pay deliberate
attention to the definitions and analogies used to explain the concept of variables as well as to
naming practices, and in particular to variable name meaning. 1

Keywords
programming education
variables
naming practices
analogies
qualitative content analysis

1Published as: van derWerf, V.,M.Y. Zhang, E. Aivaloglou, F.Hermans, andM. Specht (2023). Variables
in Practice. An Observation of Variables in Introductory Programming MOOCs. In Proceedings of the
2023 Conference on Innovation and Technology in Computer Science Education V. 1, ITiCSE 2023, page
208–214, New York, NY, USA. Association for ComputingMachinery. doi: 10.1145/3587102.3588857

62



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 67PDF page: 67PDF page: 67PDF page: 67

4

4.1 Introduction
Variables are a hard concept to grasp for novice programmers [Hermans et al., 2018b,
Gienow, 2017, Kohn, 2017]. At the same time, variables are important for reading and
understanding code, which are both core skills for a proficient programmer [Pelchen and
Lister, 2019,Corney et al., 2011, Lister et al., 2009, Lopez et al., 2008, Sajaniemi, 2002].
Variables are at the core of many programs, as they are able to store and retrieve data from
memory ever since the introduction of “variable cards” in The Analytical Engine, which
was designed in the 1830s and laid the foundation for modern-day programming. Many
programming concepts expand on the concept of variables, for example, loops, functions,
and control flow, and it is essential that variables are well understood by novice program-
mers. Furthermore, naming is an important aspect of variables, especially concerning
the act of reading and understanding code. It is commonly accepted that meaningful
identifier names help readers understand code more easily than when abbreviations or
(random) letters are used [Avidan and Feitelson, 2017,Lawrie et al., 2006], although it has
also been found that full names can be misleading if they do not correctly represent their
contents or purpose [Arnaoudova et al., 2016,Caprile and Tonella, 2000].

Little empirical research has investigated how variables are taught, hence we are inter-
ested in conducting an observational study to gain insights into current teaching practices
regarding variables. Since online platforms such as edX and Coursera grow increasingly
popular [Koksal, 2020], we use Massive Open Online Courses (MOOCs) as a case study
for our observation study. Our research questions are:

RQ1 How is the concept of variables taught in introductory programmingMOOCs?
We investigate (a) the connection to other programming concepts when variables
are introduced, (b) how variables are defined, and (c) what analogies are used to
explain variables.

RQ2 How are variable naming practices taught in introductory programming
MOOCs?We examine naming practices that (a) are taught explicitly, and (b) are
used by the instructors, and therefore taught implicitly.

During our analysis, we found that variables are often taught in close connection to
data types, expressions, and program execution, and are often explained using the ‘variable
as a box’ analogy. This represents a stronger focus on ‘storing values’ than on naming,
computer memory, and the flexibility gained by using variables. Furthermore, we found
inconsistencies in the taught naming practices – if they were taught at all. We recommend
teachers and researchers to pay deliberate attention to naming practices, specifically to
meaning, and to the definitions and analogies used to explain the concept.

4.2 Related work
Analogies are used to explain programming concepts [Fincher et al., 2020]. In education,
an analogy, metaphor or notional machine is a ‘tool’ that supports learning by simplifying
a concept through a representation that highlights the most important aspects of the
concept, while obscuring less important aspects [Fincher et al., 2020]. For example,
‘variables as parking spaces’ simplifies the concept of variables, transferring our knowledge
about parking spaces to our comprehension of a variable. Waguespack [Waguespack, 1989]

63



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 68PDF page: 68PDF page: 68PDF page: 68

explains a variable of a particular data type as a ‘container with the corresponding shape’
(shape refers to the data type). In this explanation, a container can hold only a single value.
This assumption is important since a commonmisconception is that variables can hold
multiple values at the same time [Hermans et al., 2018b,Boulay, 1986,Chiodini et al., 2021].
Any analogy might only partly or incorrectly represent a concept and thus can leave novice
students with an incorrect understanding or misconception. Nevertheless, Doukakis et
al. [Doukakis et al., 2007] found that using an analogy still appears preferable over using
none.

Thirty years ago, teaching variable naming was rarely included in programming text-
books [Keller, 1990]. There is no recent research on this topic, however, since then a
considerate amount of work focused on the effect of naming on program comprehension,
code quality and coding skills [Lawrie et al., 2006,Lawrie et al., 2007b,Avidan and Feitel-
son, 2017,Hofmeister et al., 2017,Cates et al., 2021,Blinman andCockburn, 2005,Schankin
et al., 2018, Sharif andMaletic, 2010,Binkley et al., 2009,Teasley, 1994,Beniamini et al.,
2017]. Some results indicate that meaningful identifier names are most beneficial for code
comprehension and debugging, and that “better names” are associated with better code
quality. Few studies with a focus on naming aim at improving programming education.
In the context of improving online curricula, Glassman et al. [Glassman et al., 2015] de-
veloped a tool and a quiz for their MOOC to assess naming on length and vagueness.
They found that feedback on naming practices, as well as both good and bad examples,
was highly valued by students. Other studies on variable naming in education found that
novice programmers often fail to name variables correctly [Gobil et al., 2009] and that
Scratch students are misled by variables named with a letter, probably because of prior
knowledge from their mathematics education [Grover and Basu, 2017].

Observation studies on variable naming often target code quality and efficiency, and
are based on names “found in the wild”, meaning used by professional developers and/or
taken from open source projects [Beniamini et al., 2017, Gresta et al., 2021, Newman
et al., 2020]. Although Swidan et al. [Swidan et al., 2017] investigated naming practices in
Scratch, a programming language for children, to the best of our knowledge no empirical
observations investigate classroom practices on teaching variables or their naming.

4.3 Methods
To answer our research questions, we analyzed seventeen MOOCs on the platforms
Coursera and EdX throughoutMarch and April 2022. We searched for theMOOCs using
the keyword “programming”, filtering for ‘courses’ and ‘available now’, excluding archived
courses. Additionally, we applied the following selection criteria: the MOOC has to be (1)
a beginner’s course without programming prerequisites, that (2) focuses on (fundamental)
programming skills and concepts. This information is obtained from the title and course
descriptions. Furthermore, the course is (3) provided by a university, (4) taught in English,
and (5) has at least one of its objectives to teach Python, Java, or C. Lastly, the course (6)
should be freely available to anyone. Thus, courses that cover some programming but
mainly focus on data science or web development are excluded, as well as courses that are
created by companies.

Following the criteria, we looked at the first two pages of search results on both

64



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 69PDF page: 69PDF page: 69PDF page: 69

4

platforms, as we argue that these courses are most likely to be chosen by those interested
in learning the skill. Arguably, these are the most popular and relevant courses, with a
significant number of students enrolled and high ratings (between 4.3 and 4.8 out of 5
stars). This led to the selection of seventeenMOOCs.

Of these seventeenMOOCs, seven are dedicated to Python programming (labeled P1-
P7), six to Java (J1-J6), and four to C (C1-C4). One course (C1) teaches multiple languages,
but as the C language was focused on most, we treat the MOOC as teaching C. Most
of the courses are offered by US institutions, including prestigious universities such as
Harvard (P3, C1), Princeton (J4), and the University of Pennsylvania (P6, J5). Only P5, J1,
and J2 are respectively from Canada, Hong Kong and Spain. TenMOOCs are taught by
multiple instructors. Two teachers were (co-)teaching twoMOOCs within our selection.
In total there are thirty instructors.

To collect our data, we enrolled for the selected courses as would a regular student.
The data that we used were: (1) the pre-recorded video lessons, (2) the lecture slides, (3) the
practice materials and exercises, and (4) the additional explanations in between the video
lessons. We usedMS Excel to collect all relevant quotes, examples, and screenshots from
the MOOCs. Data collection was carried out by the second author of this work. The first
and second authors worked in close collaboration for the analysis, and uncertainties were
discussed and resolved during regular sessions.

For RQ1a, we looked at the concepts explained right before, together with, and right
after the introduction of the concept of variables. For RQ1b, we gathered the formal defi-
nitions given to variables and counted often recurring terms. We are specifically interested
in how the definitions answer “what is a variable” and “what does a variable do”. For RQ1c,
we collected the analogies addressing the concept of variables, including visualizations
that we found in the course material. For of RQ2a, we collected the explanations, tips,
and explicit examples concerning variable naming practices. From these we established
two categories: language rules, and human guidelines (conventions and variable name
meaning). For RQ2b, we analyzed the variable names that were presented to students in
videos, exercises and other learning materials.

4.4 Results
4.4.1 How is the concept of variables taught?
Connection to other programming concepts
Most often the analyzedMOOCs introduce variables at the beginning of the course; either
right before, simultaneously with, or right after introducing data types and/or arithmetic
expressions (seeTable 4.1). In P3 and P5, variables and functions are explained together,
and in C1 and C2, variables are introduced after functions, control flow, and loops. P4
introduces variables together with the concept of control flow and code order: “Variables
are possibly the most fundamental element of programming. There really isn’t much you
can do without [them]. (...) We use variables to represent the information in which we are
interested, like stock prices or user names, and we will also use variables to control how our
programs run, like counting repeated actions or checking if something has been found.”

65



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 70PDF page: 70PDF page: 70PDF page: 70

Table 4.1: Concepts related to variables and when they are introduced. DT=data types;
EXP=expressions.

Variables are introduced... MOOCs
...right before DT and EXP C4, J1
...together with EXP, usually before DT P1, C3, J2, J3, J6
...together with DT, usually before EXP P2, P4, C2, J2, J5
...right after EXP and DT, but before FUNCTIONS P6, P7, J4
...together with FUNCTIONS P3, P5
...after FUNCTIONS C1, C2

Definitions
A formal definition of a variable is given by 12MOOCs (70%), fromwhich we can identify
four recurring elements: variables (1) store, (2) values or data in (3)memory, and (4)
can be referred to with a name. As shown in Figure 4.1, almost all definitions agree on
what variables do (storing values or data), but there is no consensus on what a variable
is (container, name, place in memory). Both memory and naming are less frequently
included than “storing values”. Only P1 and J3 explicitly cover a ‘complete’ definition, for
example, “A variable is a named place (4) in the memory (3) where a programmer can store
(1) data (2) and later retrieve the data using the variable name (4)” (P1). An incomplete
definition looks like “A variable is just a container for some value (2) inside a computer or
inside of your own program” (P3). FiveMOOCs do not give a definition (P5, C4, J2, J5, J6).

An interesting finding is that, although not in the definition, C2 is the only MOOC
to demonstrate that flexibility is also a major benefit, or even purpose, of using variables.

Analogies
Eight MOOCs (P3, P4, P5, C2, C3, J1, J3, J6) use analogies to explain the concept of
variables. Of these, five (bold) also use matching visualizations. The identified analogies
relate to the memory address and to the contents of a variable.

Most common is the analogy ‘variable as a box’, or variations of it, such as ‘variables as
a mailbox’ (J1, Figure 4.2a). Boxes are often drawn with values inside and labels attached
to the boxes (see Figure 4.2). The analogy also appears as only a visualization (P1) and
without any visualizations but during ‘live’ coding: “what we’d like to memorize is an
integer value. Suppose I want to memorize this ‘17’ right here. To do so, I need to first create a
variable. So a memory box with room to store the 17 in. And then I need to place that 17 into
this memory box” (C2).

Some instructors explicitly relate variables to the computer’s memory. J1 introduces
a figure (Figure 4.3a) to explain that the current value of a variable can be retrieved by
referring to its name; in the illustration, an arrow is drawn from the variable name to this
piece of memory. P5 draws a variable name with a box (Figure 4.3b) and emphasizes
that the value does not go into that box but lives at a particular memory address. To
clarify, he draws another square with the value ‘20’, picking an arbitrary memory address
marked with ‘x3’, explaining that the assignment statement takes ‘x3’, and puts it in the
box associated with the variable name. P5: “So ‘base’ contains ‘x3’ and (...) what that means

66



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 71PDF page: 71PDF page: 71PDF page: 71

4

Fi
gu
re
4.
1:
A
na
ly
sis

of
va
ria
bl
ed

efi
ni
tio

ns
.T

he
co
nc
ep
ts
ar
ee
xt
ra
ct
ed

fro
m
12
de
fin

iti
on

s.

67



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 72PDF page: 72PDF page: 72PDF page: 72

(a) J1, Variables as a mailbox. “Each mailbox is labeled by its owner (or identifier) and different kinds
of mails (or values) can be put into the mailbox”

(b) J3, Variables as a labeled box (c) P1, Variables as a box

Figure 4.2: Visualizations of the analogy “variables as a box”

(a) J1, memory (b) P5, box analogy and memory

Figure 4.3: Visualizations connected to computer memory

Figure 4.4: Three different stages of program execution (C3)

68



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 73PDF page: 73PDF page: 73PDF page: 73

4

is that [it] points to the memory address ‘x3’ where the value ‘20’ lives. (...) Python keeps track
of [the variable’s] value in that little box, and its value is a memory address.” He continues
“[the memory address is] arbitrary, Python is in charge of that choice, and so I don’t need
to worry about exactly what the memory address is as long as I know that this relationship
between variables and their values exists.”

A recurring visualization addresses the declaration and initialization of variables, by
also covering the topics of program execution and tracing (J4, C3, J6, Figure 4.4). After
highlighting the importance of drawing pictures of what happens during program execu-
tion, and in line with the box-analogy, the instructors of C3 and J6 create a box labeled
with the variable name for a first statement, entering a question mark as the variable is still
uninitialized. They then illustrate that executing a second statement will put a value in
the previously created box. As a result, the question mark disappears.

Another analogy we encountered is that of a “question-and-answer” format, which
connects well to variable naming practices. P4: “If you’re ever confused about what a
variable means, treat it as a question.” As an example, the instructor shows that “num
cats” can become the question “Number of cats?”. “The value, then, is the answer to this
question.”

4.4.2 How are naming practices taught?
Which practices are taught?
We observe two primary aspects that are explicitly taught: (1) ‘syntax rules’ that need to
be applied for the language to interpret correctly, and (2) ‘human guidelines’ that can be
applied to aid a human interpreter. Thefirst category, syntax rules, includes legal characters,
reserved keywords, and case sensitivity. The latter category, human guidelines, breaks down
into two subcategories: standardized conventions and the variable name meaning, both
supporting code readability. An overview of which topic was represented per MOOC is
provided inTable 4.2. MOOCs mostly focus on conventions and syntax whereas variable
name meaning is covered in only half of the MOOCs, often superficially and with the
interpretation of ‘meaningful’ varying per course and context. Three MOOCs do not
cover naming practices at all and two more only cover syntax rules.

1. Syntax. Nine out of tenMOOCs covering syntax rules mention which characters
variables may contain: i.e. in Python variable names cannot start with a number character
or contain spaces. Four MOOCs mention that certain words are reserved keywords, such
as ‘if’, ‘for’, and ‘return’, as explained by J3: “To avoid confusing the compiler, you can’t
use reserved words as identifiers. Reserved words are words that are already given specific
meanings in Java.” Finally, six MOOCs bring up case sensitivity, for example, P1: “And
it’s case sensitive, but we don’t want you to depend on that. So ‘spam’, ‘Spam’ with one upper
case, and ‘SPAM’ all are different variable names, but you’re not doing anybody any favor
if you think that’s being clever.”

2a. Conventions. Twelve MOOCs introduce naming conventions, such as using un-
derscores or camel case words. For example, P5 states, “every programming language has a
set of conventions for how to choose a name, much like websites have a particular style and

69



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 74PDF page: 74PDF page: 74PDF page: 74

Table 4.2: Overview of taught variable naming practices, ordered bymeaning, conventions
then syntax. When meaning is discussed, conventions are always discussed too, but not
the other way around. Syntax sometimes stands on its own.

MOOC syntax conventions meaning
P1 x x x
P4 x x x
C2 x x x
C4 x x x
J1 x x x
J2 x x x
P2 x x
P7 x x
C1 x x
P5 x x
J3 x x
J5 x
P6 x
C3 x
P3
J4
J6

Total (N=17) 10 12 9

layout. In Python most variable names use only lowercase letters with underscores to separate
words, we call this pothole case.” Three (P7, C1 and J2) also specify using capitalized words
for constant variables only as a subtle visual reminder: “Kind of like you’re yelling, but it
really just visually makes it stand out. So (...) like a nice rule of thumb that helps you realize,
oh, that must be a constant. Capitalization alone does not make it constant, but [it] is just a
visual reminder that this is somewhere, somehow a constant” (C1).

2b. Variable name meaning. Nine MOOCs bring up the topic of meaningful or
mnemonic names. They generally highlight that names are important for the readability
of the code, but not so much for the language interpreter, as explained by P1: “I emphasize
that one of the key things about variable names is that you get to name them. We have a
technique calledmnemonic, and the idea is that when you choose a variable name, you should
choose a variable name to be sensible. Python doesn’t care whether you choose mnemonic
variable names or not. The name that you choose for a variable does not communicate any
additional information to Python (...) so mnemonic variables are only for humans.”

Even though teachers mention to use meaningful names, the interpretation of ‘mean-
ingful’ varies between teachers and contexts. One example is choosing between letters and
words. Some teachers find the use of letters as variable names not that meaningful, and
rather replace ‘x’, ‘y’ and ‘z’ by “more meaningful names such as ‘radius’, ‘area’, ‘scores’,
if possible” (J1). Also ‘i’ and ‘j’ could be more meaningful by using ‘row’ and ‘column’ in
certain contexts, P7: “Notice that if we chose ‘row’ and ‘column’, we’d immediately know by
reading the names that they’re indices. And more importantly, we’d know if we’re looking at
the vertical index or the horizontal index” (...) “I think that you’ll find, if you pay a little

70



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 75PDF page: 75PDF page: 75PDF page: 75

4

bit of attention to your variable names, this won’t be much of a burden, and it’ll lead to
significantly better code”. P7 thus indicates that smart naming improves code quality and
belongs to good programmer’s practice. However, the instructor of C1 expresses that
choosing a good name is all about context. In particular, in the context of arithmetic
expressions (‘x + y’), letters can be “totally fine,” as changing ‘x’ and ‘y’ to ‘first number’
and ‘second number’ “isn’t really adding anything semantically to help my comprehension”
(C1).

One teacher (C4) spends extra time to highlight the importance of context when it
comes to good naming practices. He first shows names that are usually considered ‘bad’,
such as ‘grx33’, ‘pp_25’ and ‘i_am_FourWords’, pointing to that these names give no clue
of what they might be, and the latter even mixes two conventions. However, he also says:
“we are not going to necessarily know if [the names are] good or bad, (...) they’re going to
have to have the right context. So ‘data’ may or may not be good, it may not be adequately
descriptive. Maybe you need ‘height data’, or ‘weight data’, or something else.” He continues
with several other examples, one of them being: “(...) Again, if you were writing somemovie
with Superman andMxyzptlk, [Mxyzptlk] might be an appropriate identifier.”

To summarize, about half of theMOOCs address variable name meaning, but what is
considered meaningful, or ‘good naming’ is hard to define: it differs per instructor and
context. Only the instructors of C1 and C4 acknowledge the importance of context when
choosing a name and sought to clarify this by presenting several examples.

Which practices are used by teachers?
Most instructors apply the naming convention that is related to the language, so for
Python and C that means lowercase letters and an underscore between words, and for
Java it means using the camel case style. However, the instructors of MOOCs P4, C2 and
C3 use the opposite style. Whereas the instructors of C2 and C3 do not give a clarification,
P4’s teacher tells the students: “Each programming language has its own accepted style.
In Python, you should use underscores. In Java and C#, you would use camel case. Other
languages have their own conventions. ‘But wait!’ you say, ‘You are using camel case in the
videos!’ That’s right! I learned to program first in C++, and then in Java, and then in C#,
three languages that use camel case instead of underscores. Old habits are hard to break!”

Although nine MOOCs address the importance of meaningful variable names, only
the instructor of P1 takes the students along to experience that importance. In the be-
ginning of his course, he uses “silly” names such as ‘eee’, ‘sval’, ‘xr’ and ‘nsv’. Later in
the course, he uses examples such as ‘count’, ‘largest_so_far’, ‘sum’, and ‘found’. He
highlights that some names could be good names e.g. ‘sval’, ‘fval’ (string value, float value),
but confusing to novices because they are unfamiliar with the terminology. However, in
his explanations, he also stresses the unimportance of a name to the language interpreter,
which reflects a stronger focus on ‘names do not matter’ than on ‘what is a meaningful
name’: “So you’ll notice as I write, especially in these first two chapters, some of my codes use
really dumb variable names and some of them use really clever ones. So I go back and forth
to emphasize to you that the name of a variable, as long as it’s consistent within a program,
doesn’t matter. And Python is perfectly happy” (P1).

The instructor of C2 chooses to ‘lead the way’ by using more meaningful names right

71



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 76PDF page: 76PDF page: 76PDF page: 76

from the start all the way through to the end of the course. Examples of these names are
‘age’, ‘balance’, ‘numberOfHazelnuts’, and ‘distanceTraveled’. In contrast, we observed
that sometimes ‘meaningless’ names (for novices) are chosen to explain or show a specific
concept, for example, C1 introduces the concept of variable scope with the help of ‘foo’.
Lastly, in almost all MOOCs, single letters, such as ‘a’, ‘b’, ‘c’, ‘x’, ‘y’, and ‘z’, are used to
refer to variables holding numbers. Only the instructors of P4 and J1 do not use single
letters and instead choose names such as ‘aNumber’, ‘aInt”, and ‘aDouble’.

4.5 Discussion
We investigated teaching practices regarding the concept of variables and their naming, by
systematically observing how variables are taught in introductory programmingMOOCs.

We found that variables are usually taught together or in close connection with data
types and arithmetic expressions, most often at the very beginning of the course. Further-
more, we recognized a pattern in how the concept of variables is defined. A definition is
given in twelve MOOCs (70%) and centers around ‘storing’ ‘data’. SomeMOOCs also
refer to a computer’smemory and/or naming. Although there is a clear consensus on
what variables do, we have seen no consensus on what variables are (i.e. part of memory,
box, name). This might partly be due to the definitions of variables found in literature,
such as ‘containers that hold values’ [Waguespack, 1989] and the origin of the concept
from The Analytical Engine, where variables were used to store data. However, accessing,
re-using, and modifying data is as important to the concept, but is little represented in
our observation. Consistent with [Santos and Sousa, 2017], the ‘variable as a box’ analogy
was often used while explaining variables. Since we already know this analogy might cause
certain misconceptions [Hermans et al., 2018b,Chiodini et al., 2021], we suggest teachers
should keep this in mind. We also found a questions-and-answer format as an analogy
and some definitions that refer to variables as references. It would be interesting to further
investigate how these latter analogies influence students learning, as well as the effect of a
shift from ‘storing data’ towards other aspects of variables such as how and why we use
them.

Naming practices are explicitly taught inmostMOOCs, with syntax rules and conven-
tions more often attended to than meaningful variable naming. Only half of the MOOCs
allocate time to such naming practices, and when meaning is touched upon, a discussion
on ‘what is meaningful’ is rarely implemented. Although plenty of provided examples
concern syntactically acceptable names, few examples concern variable name meaning.
This shows that not much seems to have changed since 1990 when Keller [Keller, 1990]
established that choosingmeaningful names for variables is rarely covered in programming
textbooks. Moreover, our results could explain why many novice programmers fail to
name variables correctly [Gobil et al., 2009].

When we look at implicit naming practices, in particular, how instructors use naming
in the provided materials, we found that not all instructors used the naming convention
style that is generally accepted for the respective language. However, Shariff andMaletic
[Sharif andMaletic, 2010] indicate that underscore-styles versus camel case-styles do not
influence a programmer’s accuracy, which suggests that this inconsistency should not
make much difference in student learning.

72



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 77PDF page: 77PDF page: 77PDF page: 77

4

Furthermore, we found that instructors used different approaches regarding the mean-
ing of a name. Only fewMOOCs explicitly provided good and bad examples throughout
the course or led the way from the start by always using names conveying the meaning of
the content. In most MOOCs, letters were primarily used in demonstrations of code, and
sometimes meaningless names were chosen to explain a certain concept. These findings
reflect issues regarding naming practices in programming education. Firstly, they stress
that meaningful naming practices are not very common in online education [Keller, 1990].
Secondly, the dichotomy in using letters as names, both when explicitly taught or solely
used in the provided materials, is also reflected in the literature. For example, Lawrie et
al. [Lawrie et al., 2007b,Lawrie et al., 2006] found that full word names are more effective
for comprehension than letters, whereas Beniamini et al. [Beniamini et al., 2017] conclude
that letters can be meaningful when they convey information that is commonly attributed
to that letter. However, we observed that there sometimes exists no consistency in naming
practices, which may leave students confused.

To conclude, it is becoming clear that appropriate variable names impact how quickly
and how well a code is understood [Avidan and Feitelson, 2017, Beniamini et al., 2017,
Binkley et al., 2009, Blinman and Cockburn, 2005,Cates et al., 2021,Hofmeister et al.,
2017,Lawrie et al., 2007b,Schankin et al., 2018,Teasley, 1994]. We, therefore, might assume
that, for this reason alone, they influence how learners learn a programming language, yet,
still little is known about how these practices are taught and how exactly they influence
learners. Based on our results, we feel a strong urge for both teachers and researchers to
pay more attention to variable name meaning as part of naming practices.

4.5.1 Limitations
Since our study only covered the free-to-follow part of MOOCs, we did not include
premium content features such as additional tests, assignments, or videos. It is possible
that we have missed certain practices because of this, however, we wanted to examine what
was available to everyone. Nevertheless, our answers on RQ2b, which naming practices do
teachers use themselves, may have been influenced most, since it would have been valuable
to see how instructors named their variables on the spot, a practice that was not always
freely available. Furthermore, most of theMOOCs were created at US institutions, which
might not be representative for online courses made and followed in other parts of the
world. This is most likely an effect of our selection criterion that the MOOCs should be
taught in English, or the fact that we used edX and Coursera. It would be interesting to
compare our results with courses from other parts of the world, taught in local languages.
Especially on the topic of variable name meaning, we would expect to see compelling
variances.

4.6 Conclusion
Wegained insight intohowvariables are taught in introductory programming education, in
particular inMOOCs teaching Python, C, or Java. We found that the concept of variables
is embedded through connections with other concepts such as data types, expressions,
and program execution. There is a strong focus on storing data, whereas memory and
naming are less well represented. Even flexibility as a benefit or purpose of variables is

73



58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf58290-bw-vdWerf
Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025Processed on: 31-7-2025 PDF page: 78PDF page: 78PDF page: 78PDF page: 78

rarely mentioned. Furthermore, naming does not get consistent attention. Only a few
MOOCs discuss the topic consistently with special attention to the meaning and context
of names, whereas other MOOCs show inconsistency between taught and used practices,
or show no discussion regarding meaningful naming at all.

Based on our results, we stress the importance for both teachers and researchers to
pay more attention to naming practices, in particular to variable name meaning, and
think about how these might influence the learning process of students. For future work
we suggest extending our research by including observations from courses offered by
tech companies and on YouTube, as many programmers might learn their skills there.
Furthermore, we have conducted in-depth interviews with teachers of secondary-level and
university-level education to complement the current research, with a special focus on
naming practices (Chapter 2). Finally, it could be interesting to connect our results to
knownmisconceptions, as suggested by [Hermans et al., 2018b].

74


